1
|
González-Delgado JM, Thompson PM, Andrałojć W, Gdaniec Z, Ghiladi RA, Franzen S. Comparison of the Backbone Dynamics of Dehaloperoxidase-Hemoglobin Isoenzymes. J Phys Chem B 2024; 128:3383-3397. [PMID: 38563384 DOI: 10.1021/acs.jpcb.3c07176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Dehaloperoxidase (DHP) is a multifunctional hemeprotein with a functional switch generally regulated by the chemical class of the substrate. Its two isoforms, DHP-A and DHP-B, differ by only five amino acids and have an almost identical protein fold. However, the catalytic efficiency of DHP-B for oxidation by a peroxidase mechanism ranges from 2- to 6-fold greater than that of DHP-A depending on the conditions. X-ray crystallography has shown that many substrates and ligands have nearly identical binding in the two isoenzymes, suggesting that the difference in catalytic efficiency could be due to differences in the conformational dynamics. We compared the backbone dynamics of the DHP isoenzymes at pH 7 through heteronuclear relaxation dynamics at 11.75, 16.45, and 19.97 T in combination with four 300 ns MD simulations. While the overall dynamics of the isoenzymes are similar, there are specific local differences in functional regions of each protein. In DHP-A, Phe35 undergoes a slow chemical exchange between two conformational states likely coupled to a swinging motion of Tyr34. Moreover, Asn37 undergoes fast chemical exchange in DHP-A. Given that Phe35 and Asn37 are adjacent to Tyr34 and Tyr38, it is possible that their dynamics modulate the formation and migration of the active tyrosyl radicals in DHP-A at pH 7. Another significant difference is that both distal and proximal histidines have a 15-18% smaller S2 value in DHP-B, thus their greater flexibility could account for the higher catalytic activity. The distal histidine grants substrate access to the distal pocket. The greater flexibility of the proximal histidine could also accelerate H2O2 activation at the heme Fe by increased coupling of an amino acid charge relay to stabilize the ferryl Fe(IV) oxidation state in a Poulos-Kraut "push-pull"-type peroxidase mechanism.
Collapse
Affiliation(s)
| | - Peter M Thompson
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
- Molecular Education, Technology and Research Innovation Center (METRIC), North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Witold Andrałojć
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Zofia Gdaniec
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Reza A Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Stefan Franzen
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
2
|
Auerbach H, Faus I, Rackwitz S, Wolny JA, Chumakov AI, Knipp M, Walker FA, Schünemann V. Heme protonation affects iron-NO binding in the NO transport protein nitrophorin. J Inorg Biochem 2023; 246:112281. [PMID: 37352657 DOI: 10.1016/j.jinorgbio.2023.112281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/26/2023] [Accepted: 05/30/2023] [Indexed: 06/25/2023]
Abstract
The nitrophorins (NPs) comprise an unusual group of heme proteins with stable ferric heme iron nitric oxide (Fe-NO) complexes. They are found in the salivary glands of the blood-sucking kissing bug Rhodnius prolixus, which uses the NPs to transport the highly reactive signaling molecule NO. Nuclear resonance vibrational spectroscopy (NRVS) of both isoform NP2 and a mutant NP2(Leu132Val) show, after addition of NO, a strong structured vibrational band at around 600 cm-1, which is due to modes with significant Fe-NO bending and stretching contribution. Based on a hybrid calculation method, which uses density functional theory and molecular mechanics, it is demonstrated that protonation of the heme carboxyl groups does influence both the vibrational properties of the Fe-NO entity and its electronic ground state. Moreover, heme protonation causes a significant increase of the gap between the highest occupied and lowest unoccupied molecular orbital by almost one order of magnitude leading to a stabilization of the Fe-NO bond.
Collapse
Affiliation(s)
- Hendrik Auerbach
- Department of Physics, RPTU Kaiserslautern-Landau, 67663 Kaiserslautern, Germany
| | - Isabelle Faus
- Department of Physics, RPTU Kaiserslautern-Landau, 67663 Kaiserslautern, Germany
| | - Sergej Rackwitz
- Department of Physics, RPTU Kaiserslautern-Landau, 67663 Kaiserslautern, Germany
| | - Juliusz A Wolny
- Department of Physics, RPTU Kaiserslautern-Landau, 67663 Kaiserslautern, Germany
| | | | - Markus Knipp
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany; Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - F Ann Walker
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721-0041, United States
| | - Volker Schünemann
- Department of Physics, RPTU Kaiserslautern-Landau, 67663 Kaiserslautern, Germany.
| |
Collapse
|
3
|
Dynamics of dehaloperoxidase-hemoglobin A derived from NMR relaxation spectroscopy and molecular dynamics simulation. J Inorg Biochem 2018; 181:65-73. [DOI: 10.1016/j.jinorgbio.2018.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 12/11/2017] [Accepted: 01/07/2018] [Indexed: 11/18/2022]
|
4
|
Berry RE, Muthu D, Yang F, Walker FA. NMR studies of the dynamics of high-spin nitrophorins: comparative studies of NP4 and NP2 at close to physiological pH. Biochemistry 2015; 54:221-39. [PMID: 25486224 PMCID: PMC4303294 DOI: 10.1021/bi501305a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
The
β-barrel nitrophorin (NP) heme proteins are found in
the saliva of the blood-sucking insect Rhodnius prolixus, which synthesizes and stores nitric oxide (NO) in the salivary
glands. NO is bound to iron of the NPs and is released by dilution
and an increase in pH when the insect spits its saliva into the tissues
of a victim, to aid in obtaining a blood meal. In the adult insect,
there are four nitrophorins, NP1–NP4, which have sequence similarities
in two pairs, NP1 and NP4 (90% identical) and NP2 and NP3 (80% identical).
The available crystal structures of NP4 have been used to propose
that pH-dependent changes in the conformation of two loops between
adjacent β-strands at the front opening of the protein, the
A–B and G–H loops, determine the rate of NO release.
At pH 7.3, NP4 releases NO 17 times faster than NP2 does. In this
work, the aqua complexes of NP4 and NP2 have been investigated by
nuclear magnetic resonance (NMR) relaxation measurements to probe
the pico- to nanosecond and micro- to millisecond time scale motions
at two pH values, 6.5 and 7.3. It is found that NP4-OH2 is fairly rigid and only residues in the loop regions show dynamics
at pH 6.5; at pH 7.3, much more dynamics of the loops and most of
the β-strands are observed while the α-helices remain
fairly rigid. In comparison, NP2-OH2 shows much less dynamics,
albeit somewhat more than that of the previously reported NP2-NO complex
[Muthu, D., Berry, R. E., Zhang, H., and Walker, F. A. (2013) Biochemistry 52, 7910–7925]. The reasons for this
major difference between NP4 and NP2 are discussed.
Collapse
Affiliation(s)
- Robert E Berry
- Department of Chemistry and Biochemistry, The University of Arizona , 1306 East University Boulevard, Tucson, Arizona 85721-0041, United States
| | | | | | | |
Collapse
|
5
|
Berry RE, Yang F, Shokhireva TK, Amoia AM, Garrett S, Goren AM, Korte SR, Zhang H, Weichsel A, Montfort WR, Walker FA. Dimerization of nitrophorin 4 at low pH and comparison to the K1A mutant of nitrophorin 1. Biochemistry 2015; 54:208-20. [PMID: 25489673 PMCID: PMC4303305 DOI: 10.1021/bi5013047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/08/2014] [Indexed: 11/28/2022]
Abstract
Nitrophorin 4, one of the four NO-carrying heme proteins from the salivary glands of Rhodnius prolixus, forms a homodimer at pH 5.0 with a Kd of ∼8 μM. This dimer begins to dissociate at pH 5.5 and is completely dissociated to monomer at pH 7.3, even at 3.7 mM. The dimer is significantly stabilized by binding NO to the heme and at pH 7.3 would require dilution to well below 0.2 mM to completely dissociate the NP4-NO homodimer. The primary techniques used for investigating the homodimer and the monomer-dimer equilibrium were size-exclusion fast protein liquid chromatography at pH 5.0 and (1)H{(15)N} heteronuclear single-quantum coherence spectroscopy as a function of pH and concentration. Preparation of site-directed mutants of NP4 (A1K, D30A, D30N, V36A/D129A/L130A, K38A, R39A, K125A, K125E, D132A, L133V, and K38Q/R39Q/K125Q) showed that the N-terminus, D30, D129, D132, at least one heme propionate, and, by association, likely also E32 and D35 are involved in the dimerization. The "closed loop" form of the A-B and G-H flexible loops of monomeric NP4, which predominates in crystal structures of the monomeric protein reported at pH 5.6 but not at pH 7.5 and which involves all of the residues listed above except D132, is required for dimer formation. Wild-type NP1 does not form a homodimer, but NP1(K1A) and native N-terminal NP1 form dimers in the presence of NO. The homodimer of NP1, however, is considerably less stable than that of NP4 in the absence of NO. This suggests that additional aspartate or glutamate residues present in the C-terminal region of NP4, but not NP1, are also involved in stabilizing the dimer.
Collapse
Affiliation(s)
| | - Fei Yang
- Department of Chemistry and
Biochemistry, The University of Arizona, P.O. Box 210041, Tucson, Arizona 85721-0041, United States
| | - Tatiana K. Shokhireva
- Department of Chemistry and
Biochemistry, The University of Arizona, P.O. Box 210041, Tucson, Arizona 85721-0041, United States
| | - Angela M. Amoia
- Department of Chemistry and
Biochemistry, The University of Arizona, P.O. Box 210041, Tucson, Arizona 85721-0041, United States
| | - Sarah
A. Garrett
- Department of Chemistry and
Biochemistry, The University of Arizona, P.O. Box 210041, Tucson, Arizona 85721-0041, United States
| | - Allena M. Goren
- Department of Chemistry and
Biochemistry, The University of Arizona, P.O. Box 210041, Tucson, Arizona 85721-0041, United States
| | - Stephanie R. Korte
- Department of Chemistry and
Biochemistry, The University of Arizona, P.O. Box 210041, Tucson, Arizona 85721-0041, United States
| | - Hongjun Zhang
- Department of Chemistry and
Biochemistry, The University of Arizona, P.O. Box 210041, Tucson, Arizona 85721-0041, United States
| | - Andrzej Weichsel
- Department of Chemistry and
Biochemistry, The University of Arizona, P.O. Box 210041, Tucson, Arizona 85721-0041, United States
| | - William R. Montfort
- Department of Chemistry and
Biochemistry, The University of Arizona, P.O. Box 210041, Tucson, Arizona 85721-0041, United States
| | - F. Ann Walker
- Department of Chemistry and
Biochemistry, The University of Arizona, P.O. Box 210041, Tucson, Arizona 85721-0041, United States
| |
Collapse
|
6
|
NMR investigations of nitrophorin 2 belt side chain effects on heme orientation and seating of native N-terminus NP2 and NP2(D1A). J Biol Inorg Chem 2013; 19:577-93. [PMID: 24292244 DOI: 10.1007/s00775-013-1063-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 10/31/2013] [Indexed: 12/21/2022]
Abstract
Nitrophorin 2 (NP2), one of the four NO-storing and NO-releasing proteins found in the saliva of the blood-sucking bug Rhodnius prolixus, has a more ruffled heme and a high preference for a particular heme orientation (B) compared with nitrophorin 1 and nitrophorin 4, which show not a preference (A to B ratio of approximately 1:1), suggesting that it fits more tightly in the β-barrel protein. In this work we have prepared a series of "belt" mutants of NP2(D1A) and (ΔM0)NP2 aimed at reducing the size of aromatic or other residues that surround the heme, and investigated them as the high-spin aqua and low-spin N-methylimidazole complexes. The belt mutants included Y38A, Y38F, F42A, F66A, Y85A, Y85F, Y104A, I120T, and a triple mutant of NP2(D1A), the F42L, L106F, I120T mutant. Although I120 has been mainly considered to be a distal pocket residue, CδH3 of I120 lies directly above the heme 3-methyl, at 2.67 Å, of heme orientation B, or the 2-vinyl of A, and it thus plays a role as a belt mutant, a role that turns out to be extremely important in creating the strong favoring of the B heme orientation [A to B ratio of 1:14 for NP2(D1A) or 1:12 for (ΔM0)NP2]. The results show that the 1D (1)H NMR spectra of the high-spin forms are quite sensitive to changes in the shape of the heme binding cavity. The single mutation I120T eliminates the favorability of the B heme orientation by producing a heme A to B orientation ratio of 1:1, whereas the single mutation F42A reverses the heme orientation from an A to B ratio of 1:14 seen for NP2(D1A) to 10:1 for NP2(D1A,F42A). The most extreme ratio was found for the triple mutant of NP2(D1A), NP2(D1A,F42L,L105F,I120T), in which the A to B ratio is approximately 25:1, a ΔG change of about -3.5 kcal/mol or -14.1 kJ/mol with respect to NP2(D1A). The seating of the heme is modified as well in that mutant and in several others, by rotations of the heme by up to 4° from the seating observed in NP2(D1A), in order to relieve steric interactions between a vinyl β-carbon and a protein side chain, or to fill a cavity created by replacing a large protein side chain by a much smaller one; the latter was observed for all tyrosine to alanine mutants. These relatively small changes in seating have a measurable effect on the NMR spectra of the mutants, but are indeed minor in terms of overall seating and reactivity of the NP2(D1A) protein. The (1)H NMR resonances of the hemin substituents of the low-spin N-methylimidazole complexes of NP2(D1A,F42L,L105F,I120T) as well as NP2(D1A,I120T), NP2(D1A,Y104A), and NP2(D1A,F42A) have been assigned using natural abundance (1)H{(13)C} heteronuclear multiple quantum correlation and (1)H-(1)H nuclear Overhauser effect spectroscopy spectra.
Collapse
|