1
|
Lu XQ, Li J, Wang B, Qin S. Computational Insights into the Radical Scavenging Activity and Xanthine Oxidase Inhibition of the Five Anthocyanins Derived from Grape Skin. Antioxidants (Basel) 2024; 13:1117. [PMID: 39334776 PMCID: PMC11428504 DOI: 10.3390/antiox13091117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/22/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Anthocyanins, typical polyphenol compounds in grape skin, have attracted increasing interest due to their health-promoting properties. In this body of work, five representative anthocyanins (Cy-3-O-glc, Dp-3-O-glc, Pn-3-O-glc, Mv-3-O-glc, and Pt-3-O-glc) were studied using the density functional theory (DFT) to elucidate structure-radical scavenging activity in the relationship and the reaction path underlying the radical-trapping process. Based on thermodynamic parameters involved in HAT, SET-PT, and SPLET mechanisms, along with the structural attributes, it was found that the C4' hydroxyl group mainly contributes to the radical scavenging activities of the investigated compounds. Pt-3-O-glc exhibits a good antioxidant capacity among the five compounds. The preferred radical scavenging mechanisms vary in different phases. For the Pt-3-O-glc compound, the calculations indicate the thermodynamically favoured product is benzodioxole, rather than o-quinone, displaying considerably reduced energy in double HAT mechanisms. Additionally, the thermodynamic and kinetic calculations indicate that the reaction of •OH into the 4'-OH site of Pt-3-O-glc has a lower energy barrier (7.6 kcal/mol), a higher rate constant (5.72 × 109 M-1 s-1), and exhibits potent •OH radical scavenging properties. Molecular docking results have shown the strong affinity of the studied anthocyanins with the pro-oxidant enzyme xanthine oxidase, displaying their significant role in inhibiting ROS formation.
Collapse
Affiliation(s)
- Xiao-Qin Lu
- Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan 030031, China
| | - Jindong Li
- Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan 030031, China
| | - Bin Wang
- Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan 030031, China
| | - Shu Qin
- Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan 030031, China
| |
Collapse
|
2
|
Rana R, Sharma A, Kumar N, Khanna A, Jyoti, Dhir M, Gulati HK, Singh JV, Bedi PMS. A comprehensive review of synthetic and semisynthetic xanthine oxidase inhibitors: identification of potential leads based on in-silico computed ADME characteristics. Mol Divers 2024:10.1007/s11030-024-10962-1. [PMID: 39164505 DOI: 10.1007/s11030-024-10962-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024]
Abstract
Xanthine oxidase (XO) inhibitors, both synthetic and semisynthetic, have been developed extensively over the past few decades. The increased level of XO is not only the major cause of gout but is also responsible for various conditions associated with hyperuricemia, such as cardiovascular disorders, chronic kidney disorders, diabetes, Alzheimer's disease and chronic wounds. Marketed available XO inhibitors (allopurinol, febuxostat, and topiroxostat) are used to treat hyperuricemia but they are associated with fatal side effects, which pose serious problems for the healthcare system, rising the need for new, more potent, safer compounds. This review summarizes recent findings on XO and describes their design, synthesis, biological significance in the development of anti-hyperuricemic drugs with ADME profile, structure activity relationship (SAR) and molecular docking studies. The results might help medicinal chemists to develop more efficacious XO inhibitors.
Collapse
Affiliation(s)
- Rupali Rana
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| | - Anchal Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| | - Nitish Kumar
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Aanchal Khanna
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Jyoti
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Muskan Dhir
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Harmandeep Kaur Gulati
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Jatinder Vir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Preet Mohinder Singh Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
- Drug and Pollution Testing Laboratory, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| |
Collapse
|
3
|
Di Petrillo A, Siguri C, Delogu GL, Fais A, Era B, Floris S, Pintus F, Kumar A, Fantini MC, Olla S. Exploring Asphodelus microcarpus as a source of xanthine oxidase inhibitors: Insights from in silico and in vitro studies. Chem Biol Interact 2024; 397:111087. [PMID: 38823536 DOI: 10.1016/j.cbi.2024.111087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/19/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Xanthine oxidase (XO) plays a critical role in purine catabolism, catalyzing the conversion of hypoxanthine to xanthine and xanthine to uric acid, contributing to superoxide anion production. This process is implicated in various human diseases, particularly gout. Traditional XO inhibitors, such as allopurinol and febuxostat, while effective, may present side effects. Our study focuses on Asphodelus microcarpus, a plant renowned for traditional anti-inflammatory uses. Recent investigations into its phenolic-rich flowers, notably abundant in luteolin derivatives, reveal its potential as a natural source of XO inhibitors. In the present research, XO inhibition by an ethanolic flowers extract from A. microcarpus is reported. In silico docking studies have highlighted luteolin derivatives as potential XO inhibitors, and molecular dynamics support that luteolin 7-O-glucoside has the highest binding stability compared to other compounds and controls. In vitro studies confirm that luteolin 7-O-glucoside inhibits XO more effectively than the standard inhibitor allopurinol, with an IC50 value of 4.8 μg/mL compared to 11.5 μg/mL, respectively. These findings underscore the potential therapeutic significance of A. microcarpus in managing conditions related to XO activity. The research contributes valuable insights into the health-promoting properties of A. microcarpus and its potential application in natural medicine, presenting a promising avenue for further exploration in disease management.
Collapse
Affiliation(s)
- Amalia Di Petrillo
- Department of Medical Sciences and Public Health, University of Cagliari, 09042, Monserrato, Italy.
| | - Chiara Siguri
- Institute for Genetic and Biomedical Research (IRGB), The National Research Council (CNR), 09042, Monserrato, Italy
| | - Giovanna L Delogu
- Department of Life and Environmental Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Antonella Fais
- Department of Life and Environmental Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Benedetta Era
- Department of Life and Environmental Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Sonia Floris
- Department of Life and Environmental Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Francesca Pintus
- Department of Life and Environmental Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Amit Kumar
- Department of Electrical and Electronic Engineering, University of Cagliari, Via Marengo 2, 09123, Cagliari, Italy
| | - Massimo Claudio Fantini
- Department of Medical Sciences and Public Health, University of Cagliari, 09042, Monserrato, Italy
| | - Stefania Olla
- Institute for Genetic and Biomedical Research (IRGB), The National Research Council (CNR), 09042, Monserrato, Italy
| |
Collapse
|
4
|
Wang K, Cui H, Liu K, He Q, Fu X, Li W, Han W. Exploring the anti-gout potential of sunflower receptacles alkaloids: A computational and pharmacological analysis. Comput Biol Med 2024; 172:108252. [PMID: 38493604 DOI: 10.1016/j.compbiomed.2024.108252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/19/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024]
Abstract
Gout, a painful condition marked by elevated uric acid levels often linked to the diet's high purine and alcohol content, finds a potential treatment target in xanthine oxidase (XO), a crucial enzyme for uric acid production. This study explores the therapeutic properties of alkaloids extracted from sunflower (Helianthus annuus L.) receptacles against gout. By leveraging computational chemistry and introducing a novel R-based clustering algorithm, "TriDimensional Hierarchical Fingerprint Clustering with Tanimoto Representative Selection (3DHFC-TRS)," we assessed 231 alkaloid molecules from sunflower receptacles. Our clustering analysis pinpointed six alkaloids with significant gout-targeting potential, particularly emphasizing the fifth cluster's XO inhibition capabilities. Through molecular docking and the BatchDTA prediction model, we identified three top compounds-2-naphthylalanine, medroxalol, and fenspiride-with the highest XO affinity. Further molecular dynamics simulations assessed their enzyme active site interactions and binding free energies, employing MM-PBSA calculations. This investigation not only highlights the discovery of promising compounds within sunflower receptacle alkaloids via LC-MS but also introduces medroxalol as a novel gout treatment candidate, showcasing the synergy of computational techniques and LC-MS in drug discovery.
Collapse
Affiliation(s)
- Kaiyu Wang
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, 130012, Qianjin road 2699, China
| | - Huizi Cui
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, 130012, Qianjin road 2699, China
| | - Kaifeng Liu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, Qianjin road 2699, China
| | - Qizheng He
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, Qianjin road 2699, China
| | - Xueqi Fu
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, 130012, Qianjin road 2699, China
| | - Wannan Li
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, 130012, Qianjin road 2699, China.
| | - Weiwei Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, Qianjin road 2699, China.
| |
Collapse
|
5
|
Abraham AB, Panneerselvam M, Ebenezer C, Costa LT, Vijay Solomon R. A theoretical study on radical scavenging activity of phenolic derivatives naturally found within Alternaria alternata extract. Org Biomol Chem 2024; 22:2059-2074. [PMID: 38363153 DOI: 10.1039/d3ob02126b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The increasing oxidative stress demands potential chemical compounds derived from natural resources with good antioxidant activity to overcome adverse health issues. In this context, we investigated the antioxidant properties of four dibenzopyrone phenolic compounds obtained from the endophytic fungus Alternaria alternata: altenusin, altenusin B, alterlactone, and dehydroaltenusin using DFT calculations. Our investigation focused on understanding the structure-antioxidant property relationship. It delved into probing the activity by modelling the antioxidant mechanisms. The computed transition states and thermochemical parameters, along with the structural attributes, indicate that altenusin B has good antioxidant efficacy among the four compounds, and it follows the HAT mechanism in an aqueous phase. Remarkably, our findings indicate that altenusin B exhibits potent HOO˙ radical scavenging properties, characterized by the computed high rate constant. The molecular docking studies of these compounds with the pro-oxidant enzyme xanthine oxidase (XO) gave insights into the binding modes of the compounds in the protein environment. Furthermore, molecular dynamics (MD) simulations were employed to study the interaction and stability of the compounds inside the XO enzyme. Our exploration sheds light on the radical scavenging potential of the -OH sites and the underlying antioxidant mechanisms that underpin the compounds' effective antioxidant potential.
Collapse
Affiliation(s)
- Alen Binu Abraham
- Department of Chemistry, St Stephen's College, Affiliated to the University of Delhi, Delhi - 110007, India
| | - Murugesan Panneerselvam
- MolMod-CS - Instituto de Química, Universidade Federal Fluminense, Campos Valonginho s/n, Centro, Niterói 24020-14, Rio de Janeiro, Brazil
| | - Cheriyan Ebenezer
- Department of Chemistry, Madras Christian College (Autonomous), Affiliated to the University of Madras, Chennai - 600 059, Tamil Nadu, India.
| | - Luciano T Costa
- MolMod-CS - Instituto de Química, Universidade Federal Fluminense, Campos Valonginho s/n, Centro, Niterói 24020-14, Rio de Janeiro, Brazil
| | - Rajadurai Vijay Solomon
- Department of Chemistry, Madras Christian College (Autonomous), Affiliated to the University of Madras, Chennai - 600 059, Tamil Nadu, India.
| |
Collapse
|
6
|
He Y, Liu K, Cao F, Song R, Liu J, Zhang Y, Li W, Han W. Using deep learning and molecular dynamics simulations to unravel the regulation mechanism of peptides as noncompetitive inhibitor of xanthine oxidase. Sci Rep 2024; 14:174. [PMID: 38168773 PMCID: PMC10761953 DOI: 10.1038/s41598-023-50686-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
Xanthine oxidase (XO) is a crucial enzyme in the development of hyperuricemia and gout. This study focuses on LWM and ALPM, two food-derived inhibitors of XO. We used molecular docking to obtain three systems and then conducted 200 ns molecular dynamics simulations for the Apo, LWM, and ALPM systems. The results reveal a stronger binding affinity of the LWM peptide to XO, potentially due to increased hydrogen bond formation. Notable changes were observed in the XO tunnel upon inhibitor binding, particularly with LWM, which showed a thinner, longer, and more twisted configuration compared to ALPM. The study highlights the importance of residue F914 in the allosteric pathway. Methodologically, we utilized the perturbed response scan (PRS) based on Python, enhancing tools for MD analysis. These findings deepen our understanding of food-derived anti-XO inhibitors and could inform the development of food-based therapeutics for reducing uric acid levels with minimal side effects.
Collapse
Affiliation(s)
- Yi He
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Qianjin Road 2699, Changchun, 130012, China
| | - Kaifeng Liu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Qianjin Road 2699, Changchun, 130012, China
| | - Fuyan Cao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Qianjin Road 2699, Changchun, 130012, China
| | - Renxiu Song
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Qianjin Road 2699, Changchun, 130012, China
| | - Jianxuan Liu
- Jilin Academy of Chinese Medicine Sciences, Chuangju Road 155, Changchun, 130012, China
| | - Yinghua Zhang
- Jilin Academy of Chinese Medicine Sciences, Chuangju Road 155, Changchun, 130012, China.
| | - Wannan Li
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Qianjin Road 2699, Changchun, 130012, China.
| | - Weiwei Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Qianjin Road 2699, Changchun, 130012, China.
| |
Collapse
|
7
|
Lopez-Sanchez MA, Del Carmen Garcia-Rodriguez M, Aguayo-Ortiz R, Hernandez-Cruz E, Figueroa-Figueroa DI, Hernandez-Luis F. Synthesis of Quinazolin-2,4,6-triamine Derivatives as Non-purine Xanthine Oxidase Inhibitors and Exploration of Their Toxicological Potential. ChemMedChem 2023; 18:e202300184. [PMID: 37642254 DOI: 10.1002/cmdc.202300184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/02/2023] [Indexed: 08/31/2023]
Abstract
In this work, a new set of quinazolin-2,4,6-triamine derivatives were synthesized to explore their potential biological activity as xanthine oxidase (XO) inhibitors, superoxide scavengers and screening of their toxicological profile. Among all the synthesized compounds, B1 exhibited better inhibitory activity against bovine xanthine oxidase (bXO) than allopurinol (IC50 =1.56 μM and IC50 =6.99 μM, respectively). As superoxide scavengers, B1, B2 and B13 exhibited a better effect than allopurinol (97.3 %, 82.1 %, 87.4 % and 69.4 %, respectively). Regarding the toxicological profile, B1 was less cytotoxic than methotrexate on HCT-15 cancer cells. Apoptosis results obtained in cells of female and male mice, showed that B1 and B2 presented a similar behaviour to CrO3 (positive control) with respect to the average frequency to induce apoptosis; while B13 apoptosis induced effect was similar to DMSO and control group. Finally, B1, B2, B13 did not induce genotoxicity in a micronuclei murine model compared to CrO3 .
Collapse
Affiliation(s)
- Marcela A Lopez-Sanchez
- Departamento de Farmacia, Facultad de Química, UNAM, Universidad 3000, 04510, Ciudad de México, México
| | - María Del Carmen Garcia-Rodriguez
- Laboratorio de Antimutagénesis, Anticarcinogénesis y Antiteratogénesis Ambiental, Facultad de Estudios Superiores-Zaragoza, UNAM, Av Guelatao 66, 09230, Ciudad de México, México
| | - Rodrigo Aguayo-Ortiz
- Departamento de Farmacia, Facultad de Química, UNAM, Universidad 3000, 04510, Ciudad de México, México
| | - Estefani Hernandez-Cruz
- Laboratorio de Antimutagénesis, Anticarcinogénesis y Antiteratogénesis Ambiental, Facultad de Estudios Superiores-Zaragoza, UNAM, Av Guelatao 66, 09230, Ciudad de México, México
| | - Diego I Figueroa-Figueroa
- Departamento de Farmacia, Facultad de Química, UNAM, Universidad 3000, 04510, Ciudad de México, México
| | - Francisco Hernandez-Luis
- Departamento de Farmacia, Facultad de Química, UNAM, Universidad 3000, 04510, Ciudad de México, México
| |
Collapse
|
8
|
Abstract
A survey of protein databases indicates that the majority of enzymes exist in oligomeric forms, with about half of those found in the UniProt database being homodimeric. Understanding why many enzymes are in their dimeric form is imperative. Recent developments in experimental and computational techniques have allowed for a deeper comprehension of the cooperative interactions between the subunits of dimeric enzymes. This review aims to succinctly summarize these recent advancements by providing an overview of experimental and theoretical methods, as well as an understanding of cooperativity in substrate binding and the molecular mechanisms of cooperative catalysis within homodimeric enzymes. Focus is set upon the beneficial effects of dimerization and cooperative catalysis. These advancements not only provide essential case studies and theoretical support for comprehending dimeric enzyme catalysis but also serve as a foundation for designing highly efficient catalysts, such as dimeric organic catalysts. Moreover, these developments have significant implications for drug design, as exemplified by Paxlovid, which was designed for the homodimeric main protease of SARS-CoV-2.
Collapse
Affiliation(s)
- Ke-Wei Chen
- Lab of Computional Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Tian-Yu Sun
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yun-Dong Wu
- Lab of Computional Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
9
|
Maia LB. Bringing Nitric Oxide to the Molybdenum World-A Personal Perspective. Molecules 2023; 28:5819. [PMID: 37570788 PMCID: PMC10420851 DOI: 10.3390/molecules28155819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Molybdenum-containing enzymes of the xanthine oxidase (XO) family are well known to catalyse oxygen atom transfer reactions, with the great majority of the characterised enzymes catalysing the insertion of an oxygen atom into the substrate. Although some family members are known to catalyse the "reverse" reaction, the capability to abstract an oxygen atom from the substrate molecule is not generally recognised for these enzymes. Hence, it was with surprise and scepticism that the "molybdenum community" noticed the reports on the mammalian XO capability to catalyse the oxygen atom abstraction of nitrite to form nitric oxide (NO). The lack of precedent for a molybdenum- (or tungsten) containing nitrite reductase on the nitrogen biogeochemical cycle contributed also to the scepticism. It took several kinetic, spectroscopic and mechanistic studies on enzymes of the XO family and also of sulfite oxidase and DMSO reductase families to finally have wide recognition of the molybdoenzymes' ability to form NO from nitrite. Herein, integrated in a collection of "personal views" edited by Professor Ralf Mendel, is an overview of my personal journey on the XO and aldehyde oxidase-catalysed nitrite reduction to NO. The main research findings and the path followed to establish XO and AO as competent nitrite reductases are reviewed. The evidence suggesting that these enzymes are probable players of the mammalian NO metabolism is also discussed.
Collapse
Affiliation(s)
- Luisa B Maia
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology (FCT NOVA), 2829-516 Caparica, Portugal
| |
Collapse
|
10
|
Wen Y, Xu J, Pan D, Wang C. Removal of substrate inhibition of Acinetobacter baumannii xanthine oxidase by point mutation at Gln-201 enables efficient reduction of purine content in fish sauce. Food Chem X 2023; 17:100593. [PMID: 36845495 PMCID: PMC9944496 DOI: 10.1016/j.fochx.2023.100593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Xanthine oxidase is an oxidase that has a molybdopterin structure with substrate inhibition. Here, we show that a single point mutation (Q201) in the Acinetobacter baumannii xanthine oxidase (AbXOD) obtained mutant Q201E (k cat =799.44 s-1, no inhibition) with high enzyme activity and decrease of substrate inhibition in 5 mmol/L high substrate model, and which cause two loops structure change at active center, characterized by complete loss of substrate inhibition without reduction of enzymatic activity. Molecular docking results showed that the change of flexible loop increased the affinity between substrate and enzyme, and the formation of a π-π bond and two hydrogen bonds made the substrate more stable in the active center. Ultimately, Q201E can still maintain better enzyme activity under high purine content (an approximately 7-fold improvement over the wild-type), indicating a broader application prospect in the manufacture of low-purine food.
Collapse
Affiliation(s)
- You Wen
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, People’s Republic of China
| | - Jiahui Xu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, People’s Republic of China
| | - Donglei Pan
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, People’s Republic of China
| | - Chenghua Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, People’s Republic of China
| |
Collapse
|
11
|
Purushothaman A, Teena Rose KS, Jacob JM, Varatharaj R, Shashikala K, Janardanan D. Curcumin analogues with improved antioxidant properties: A theoretical exploration. Food Chem 2022; 373:131499. [PMID: 34763936 DOI: 10.1016/j.foodchem.2021.131499] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 02/04/2023]
Abstract
Curcumin, a ubiquitous dietary molecule, is a versatile antioxidant that fights against free radicals. The antioxidant activity of curcumin and its structural analogues such as hispolon, halfcurcumin and polyhydroxycurcumin is analyzed using density functional theory (DFT). The thermochemical parameter, bond dissociation enthalpy (BDE) is used to analyse the propensity of radical attack. The hydrogen atom transfer (HAT) energetics for the hydroxyl groups of the antioxidant molecules with •OH and •OOH in both gas and solvent media are explored. Based on ourresults, hispolon and polyhydroxycurcumin characterized by multiple hydroxyl groups arranged in ortho dihydroxy fashion are good radical scavengers. Halfcurcumin exhibited comparatively similar activity as that of curcumin. The absorption properties of these molecules are in good agreement with the reported experimental findings. The molecular docking studies revealed that these antioxidants can indirectly control the oxidative stress by favourably interacting with the pro-oxidant enzyme like xanthine oxidase.
Collapse
Affiliation(s)
- Aiswarya Purushothaman
- Department of Chemistry, School of Physical Sciences, Central University of Kerala, Kasaragod 671320, Kerala, India
| | - K S Teena Rose
- Department of Chemistry, School of Physical Sciences, Central University of Kerala, Kasaragod 671320, Kerala, India
| | - Jesni M Jacob
- Department of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore 641020, Tamil Nadu, India
| | - Rajapandian Varatharaj
- Department of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore 641020, Tamil Nadu, India.
| | - K Shashikala
- Department of Chemistry, School of Physical Sciences, Central University of Kerala, Kasaragod 671320, Kerala, India
| | - Deepa Janardanan
- Department of Chemistry, School of Physical Sciences, Central University of Kerala, Kasaragod 671320, Kerala, India.
| |
Collapse
|
12
|
Liu XS, Gao B, Dong ZD, Qiao ZA, Yan M, Han WW, Li WN, Han L. Chemical Compounds, Antioxidant Activities, and Inhibitory Activities Against Xanthine Oxidase of the Essential Oils From the Three Varieties of Sunflower ( Helianthus annuus L.) Receptacles. Front Nutr 2021; 8:737157. [PMID: 34869517 PMCID: PMC8641733 DOI: 10.3389/fnut.2021.737157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
Background/Aim: Essential oils of sunflower receptacles (SEOs) have antibacterial and antioxidant potential. However, the differences of biological activities from the different varieties of sunflowers have not been studied till now. The purpose of this study was to compare the differences of chemical compounds, antioxidant activities, and inhibitory activities against xanthine oxidase (XO) of SEOs from the three varieties of sunflowers including LD5009, SH363, and S606. Methods: SEOs were extracted by using the optimal extraction conditions selected by response surface methodology (RSM). Chemical compounds of SEOs were identified from the three varieties of sunflowers by gas chromatography-mass spectrometry (GC-MS). Antioxidant activities of SEOs were detected by 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and iron ion reduction ability. Inhibitory activities of SEOs against XO were measured by using UV spectrophotometer. XO inhibitors were selected from the main chemical compounds of SEOs by the high-throughput selections and molecular simulation docking. Results: The extraction yields of SEOs from LD5009, SH363, and S606 were 0.176, 0.319, and 0.580%, respectively. A total of 101 chemical compounds of SEOs were identified from the three varieties of sunflowers. In addition, the results of inhibitory activities against XO showed that SEOs can reduce uric acid significantly. Eupatoriochromene may be the most important chemical compounds of SEOs for reducing uric acid. The results of antioxidant activities and inhibitory activities against XO showed that SEOs of LD5009 had the strongest antioxidant and XO inhibitory activities. The Pearson correlation coefficient (r > 0.95) showed that γ-terpinene, (E)-citral, and L-Bornyl acetate were highly correlated with the antioxidant activities and XO inhibitory ability. Conclusion: SEOs had antioxidant activities and XO inhibitory ability. It would provide more scientific information for utilization and selection of varieties of sunflowers, which would increase the food quality of sunflowers and incomes of farmers.
Collapse
Affiliation(s)
- Xin-Sheng Liu
- School of Life Sciences, Jilin University, Changchun, China
| | - Bo Gao
- School of Life Sciences, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering, Jilin University, Ministry of Education, Changchun, China
| | - Zhan-De Dong
- School of Life Sciences, Jilin University, Changchun, China
| | - Zi-An Qiao
- School of Life Sciences, Jilin University, Changchun, China
| | - Min Yan
- School of Life Sciences, Jilin University, Changchun, China
| | - Wei-Wei Han
- Key Laboratory for Molecular Enzymology and Engineering, Jilin University, Ministry of Education, Changchun, China
| | - Wan-Nan Li
- School of Life Sciences, Jilin University, Changchun, China
| | - Lu Han
- School of Life Sciences, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering, Jilin University, Ministry of Education, Changchun, China.,Key Laboratory for Evolution of Past Life and Environment in Northeast Asia, Jilin University, Ministry of Education, Changchun, China
| |
Collapse
|
13
|
Maiti BK, Maia LB, Moura JJG. Sulfide and transition metals - A partnership for life. J Inorg Biochem 2021; 227:111687. [PMID: 34953313 DOI: 10.1016/j.jinorgbio.2021.111687] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 12/13/2022]
Abstract
Sulfide and transition metals often came together in Biology. The variety of possible structural combinations enabled living organisms to evolve an array of highly versatile metal-sulfide centers to fulfill different physiological roles. The ubiquitous iron‑sulfur centers, with their structural, redox, and functional diversity, are certainly the best-known partners, but other metal-sulfide centers, involving copper, nickel, molybdenum or tungsten, are equally crucial for Life. This review provides a concise overview of the exclusive sulfide properties as a metal ligand, with emphasis on the structural aspects and biosynthesis. Sulfide as catalyst and as a substrate is discussed. Different enzymes are considered, including xanthine oxidase, formate dehydrogenases, nitrogenases and carbon monoxide dehydrogenases. The sulfide effect on the activity and function of iron‑sulfur, heme and zinc proteins is also addressed.
Collapse
Affiliation(s)
- Biplab K Maiti
- National Institute of Technology Sikkim, Department of Chemistry, Ravangla Campus, Barfung Block, Ravangla Sub Division, South Sikkim 737139, India.
| | - Luisa B Maia
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology (FCT NOVA), Universidade NOVA de Lisboa, Campus de Caparica, Portugal.
| | - José J G Moura
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology (FCT NOVA), Universidade NOVA de Lisboa, Campus de Caparica, Portugal.
| |
Collapse
|
14
|
Pan Y, Lu Z, Li C, Qi R, Chang H, Han L, Han W. Molecular Dockings and Molecular Dynamics Simulations Reveal the Potency of Different Inhibitors against Xanthine Oxidase. ACS OMEGA 2021; 6:11639-11649. [PMID: 34056319 PMCID: PMC8154014 DOI: 10.1021/acsomega.1c00968] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/08/2021] [Indexed: 05/27/2023]
Abstract
Xanthine oxidase (XO), which can catalyze the formation of xanthine or hypoxanthine to uric acid, is the most important target of gout. To explore the conformational changes for inhibitor binding, molecular dockings and molecular dynamics simulations were performed. Docking results indicated that three inhibitors had similar pose binding to XO. Molecular dynamics simulations showed that the binding of three inhibitors influenced the secondary structure changes in XO. After binding to the inhibitor, the peptide Phe798-Leu814 formed different degrees of unhelix, while for the peptide Glu1065-Ser1075, only a partial helix region was formed when allopurinol was bound. Through the protein structure analysis in the simulation process, we found that the distance between the active residues Arg880 and Thr1010 was reduced and the distance between Glu802 and Thr1010 was increased after the addition of inhibitors. The above simulation results showed the similarities and differences of the interaction between the three inhibitors binding to the protein. MM-PBSA calculations suggested that, among three inhibitors, allopurinol had the best binding effect with XO followed by daidzin and puerarin. This finding was consistent with previous experimental data. Our results can provide some useful clues for further gout treatment research.
Collapse
Affiliation(s)
- Yue Pan
- Key
Laboratory for Molecular Enzymology and Engineering of Ministry of
Education, School of Life Science, Jilin
University, 2699 Qianjin Street, Changchun 130012, China
| | - Zhongkui Lu
- Key
Laboratory for Molecular Enzymology and Engineering of Ministry of
Education, School of Life Science, Jilin
University, 2699 Qianjin Street, Changchun 130012, China
| | - Congcong Li
- Key
Laboratory for Molecular Enzymology and Engineering of Ministry of
Education, School of Life Science, Jilin
University, 2699 Qianjin Street, Changchun 130012, China
| | - Renrui Qi
- Key
Laboratory for Molecular Enzymology and Engineering of Ministry of
Education, School of Life Science, Jilin
University, 2699 Qianjin Street, Changchun 130012, China
| | - Hao Chang
- Jilin
Province TeyiFood Biotechnology
Company Limited, Erdao District, Changchun 130012, China
| | - Lu Han
- Key
Laboratory for Molecular Enzymology and Engineering of Ministry of
Education, School of Life Science, Jilin
University, 2699 Qianjin Street, Changchun 130012, China
| | - Weiwei Han
- Key
Laboratory for Molecular Enzymology and Engineering of Ministry of
Education, School of Life Science, Jilin
University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
15
|
Marahatha R, Basnet S, Bhattarai BR, Budhathoki P, Aryal B, Adhikari B, Lamichhane G, Poudel DK, Parajuli N. Potential natural inhibitors of xanthine oxidase and HMG-CoA reductase in cholesterol regulation: in silico analysis. BMC Complement Med Ther 2021; 21:1. [PMID: 33386071 PMCID: PMC7775628 DOI: 10.1186/s12906-020-03162-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/23/2020] [Indexed: 12/30/2022] Open
Abstract
Background Hypercholesterolemia has posed a serious threat of heart diseases and stroke worldwide. Xanthine oxidase (XO), the rate-limiting enzyme in uric acid biosynthesis, is regarded as the root of reactive oxygen species (ROS) that generate atherosclerosis and cholesterol crystals. β-Hydroxy β-methylglutaryl-coenzyme A reductase (HMGR) is a rate-limiting enzyme in cholesterol biosynthesis. Although some commercially available enzyme inhibiting drugs have effectively reduced cholesterol levels, most of them have failed to meet potential drug candidates’ requirements. Here, we have carried out an in-silico analysis of secondary metabolites that have already shown good inhibitory activity against XO and HMGR in a wet lab setup. Methods Out of 118 secondary metabolites reviewed, sixteen molecules inhibiting XO and HMGR were selected based on the IC50 values reported in in vitro assays. Further, receptor-based virtual screening was carried out against secondary metabolites using GOLD Protein-Ligand Docking Software, combined with subsequent post-docking, to study the binding affinities of ligands to the enzymes. In-silico ADMET analysis was carried out to explore their pharmacokinetic properties, followed by toxicity prediction through ProTox-II. Results The molecular docking of amentoflavone (GOLD score 70.54, ∆G calc. = − 10.4 Kcal/mol) and ganomycin I (GOLD score 59.61, ∆G calc. = − 6.8 Kcal/mol) displayed that the drug has effectively bound at the competitive site of XO and HMGR, respectively. Besides, 6-paradol and selgin could be potential drug candidates inhibiting XO. Likewise, n-octadecanyl-O-α-D-glucopyranosyl (6′ → 1″)-O-α-D-glucopyranoside could be potential drug candidates to maintain serum cholesterol. In-silico ADMET analysis has shown that these sixteen metabolites were optimal within the categorical range compared to commercially available XO and HMGR inhibitors, respectively. Toxicity analysis through ProTox-II revealed that 6-gingerol, ganoleucoin K, and ganoleucoin Z are toxic for human use. Conclusion This computational analysis supports earlier experimental evidence towards the inhibition of XO and HMGR by natural products. Further study is necessary to explore the clinical efficacy of these secondary molecules, which might be alternatives for the treatment of hypercholesterolemia.
Collapse
Affiliation(s)
- Rishab Marahatha
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Saroj Basnet
- Center for Drug Design and Molecular Simulation Division, Cancer Care Nepal and Research Center, Jorpati, Kathmandu, Nepal
| | - Bibek Raj Bhattarai
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Prakriti Budhathoki
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Babita Aryal
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Bikash Adhikari
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Ganesh Lamichhane
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Darbin Kumar Poudel
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Niranjan Parajuli
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal.
| |
Collapse
|
16
|
Dong C, Montes M, Al-Sawai WM. Xanthine oxidoreductase inhibition – A review of computational aspect. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2020. [DOI: 10.1142/s0219633620400088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Xanthine Oxidoreductase (XOR) exists in a variety of organisms from bacteria to humans and catalyzes the oxidation of hypoxanthine to xanthine and from xanthine to uric acid. Excessive uric acid could lead to gout and hyperuricemia. In this paper, we have reviewed the recent computational studies on xanthine oxidase inhibition. Computational methods, such as molecular dynamics (molecular mechanics), quantum mechanics, and quantum mechanics/molecular mechanics (QM/MM), have been employed to investigate the binding affinity of xanthine oxidase with synthesized and isolated nature inhibitors. The limitations of different computational methods for xanthine oxidase inhibition studies were also discussed. Implications of the computational approach could be used to help to understand the existing arguments on substrate/product orientation in xanthine oxidase inhibition, which allows designing new inhibitors with higher efficacy.
Collapse
Affiliation(s)
- Chao Dong
- Department of Chemistry, The University of Texas of the Permian Basin, Odessa, Texas 79762, USA
| | - Milka Montes
- Department of Chemistry, The University of Texas of the Permian Basin, Odessa, Texas 79762, USA
| | - Wael M. Al-Sawai
- Department of Mathematics & Physics, The University of Texas of the Permian Basin, Odessa, Texas 79762, USA
| |
Collapse
|
17
|
Abstract
We propose a new model for prochirality that satisfies all known examples: the prochiral plane. This plane contains the prochiral carbon and defines two separate faces for chemical modification. We extend this to enzyme catalysis, replacing the "three point attachment" hypothesis and its variants. Once a prochiral substrate is fixed on an enzyme surface, the asymmetry of the enzyme provides reactants exclusively on one side of the prochiral plane, producing an enantiomerically pure chiral product. The aconitase reaction is detailed as an example, using molecular modeling and its known enzymatic mechanism. We show that the prochiral substrate for this enzyme is not citrate, but rather cis-aconitate. The number of interaction points of cis-aconitate is not relevant to prochirality, but rather to substrate specificity. A second detailed example is the enzyme fumarase; here the substrate fumarate has only two binding sites, but is nonetheless fixed onto the enzyme and has a defined prochiral plane. We also provide a literature survey of more prochiral substrates, all of which have sp2 hybridized carbon and contain a prochiral plane. An example of a prochiral unnatural substrate for sphingosine kinase 2, fingolimod, has an sp3 hybridized prochiral carbon and also contains a prochiral plane. Finally, we provide an intuitive example of a prochiral physical object, a coffee cup, interacting with one hand and lip.
Collapse
Affiliation(s)
- Raymond S Ochs
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439, USA.
| | - Tanaji T Talele
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439, USA
| |
Collapse
|
18
|
Ütkür FÖ, Schmid A, Bühler B. Anaerobic C-H Oxyfunctionalization: Coupling of Nitrate Reduction and Quinoline Hydroxylation in Recombinant Pseudomonas putida. Biotechnol J 2019; 14:e1800615. [PMID: 31144783 DOI: 10.1002/biot.201800615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 05/20/2019] [Indexed: 11/09/2022]
Abstract
Whole-cell biocatalysis for C-H oxyfunctionalization depends on and is often limited by O2 mass transfer. In contrast to oxygenases, molybdenum hydroxylases use water instead of O2 as an oxygen donor and thus have the potential to relieve O2 mass transfer limitations. Molybdenum hydroxylases may even allow anaerobic oxyfunctionalization when coupled to anaerobic respiration. To evaluate this option, the coupling of quinoline hydroxylation to denitrification is tested under anaerobic conditions employing Pseudomonas putida (P. putida) 86, capable of aerobic growth on quinoline. P. putida 86 reduces both nitrate and nitrite, but at low rates, which does not enable significant growth and quinoline hydroxylation. Introduction of the nitrate reductase from Pseudomonas aeruginosa enables considerable specific quinoline hydroxylation activity (6.9 U gCDW -1 ) under anaerobic conditions with nitrate as an electron acceptor and 2-hydroxyquinoline as the sole product (further metabolization depends on O2 ). Hydroxylation-derived electrons are efficiently directed to nitrate, accounting for 38% of the respiratory activity. This study shows that molybdenum hydroxylase-based whole-cell biocatalysts enable completely anaerobic carbon oxyfunctionalization when coupled to alternative respiration schemes such as nitrate respiration.
Collapse
Affiliation(s)
- Fatma Özde Ütkür
- Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Strasse 66, Dortmund, 44227, Germany
| | - Andreas Schmid
- Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Strasse 66, Dortmund, 44227, Germany.,Department of Solar Materials, Helmholtz-Centre for Environmental Research GmbH-UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Bruno Bühler
- Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Strasse 66, Dortmund, 44227, Germany.,Department of Solar Materials, Helmholtz-Centre for Environmental Research GmbH-UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| |
Collapse
|
19
|
Kumar R, Joshi G, Kler H, Kalra S, Kaur M, Arya R. Toward an Understanding of Structural Insights of Xanthine and Aldehyde Oxidases: An Overview of their Inhibitors and Role in Various Diseases. Med Res Rev 2017; 38:1073-1125. [DOI: 10.1002/med.21457] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/05/2017] [Accepted: 06/13/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Raj Kumar
- Laboratory for Drug Design and Synthesis, Centre for Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences; Central University of Punjab; Bathinda 151001 India
| | - Gaurav Joshi
- Laboratory for Drug Design and Synthesis, Centre for Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences; Central University of Punjab; Bathinda 151001 India
| | - Harveen Kler
- Laboratory for Drug Design and Synthesis, Centre for Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences; Central University of Punjab; Bathinda 151001 India
| | - Sourav Kalra
- Laboratory for Drug Design and Synthesis, Centre for Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences; Central University of Punjab; Bathinda 151001 India
- Centre for Human Genetics and Molecular Medicine
| | - Manpreet Kaur
- Laboratory for Drug Design and Synthesis, Centre for Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences; Central University of Punjab; Bathinda 151001 India
| | - Ramandeep Arya
- Laboratory for Drug Design and Synthesis, Centre for Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences; Central University of Punjab; Bathinda 151001 India
| |
Collapse
|
20
|
Maia LB, Moura I, Moura JJ. EPR Spectroscopy on Mononuclear Molybdenum-Containing Enzymes. FUTURE DIRECTIONS IN METALLOPROTEIN AND METALLOENZYME RESEARCH 2017. [DOI: 10.1007/978-3-319-59100-1_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Schwarz G. Molybdenum cofactor and human disease. Curr Opin Chem Biol 2016; 31:179-87. [DOI: 10.1016/j.cbpa.2016.03.016] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/22/2016] [Accepted: 03/22/2016] [Indexed: 11/27/2022]
|
22
|
Alvarez S, Menjón B, Falceto A, Casanova D, Alemany P. Stereochemistry of Complexes with Double and Triple Metal–Ligand Bonds: A Continuous Shape Measures Analysis. Inorg Chem 2014; 53:12151-63. [DOI: 10.1021/ic5021077] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
| | - Babil Menjón
- Instituto de Síntesis
Química y Catálisis Homogénea, CSIC−Universidad de Zaragoza, Pedro Cerbuna 12, E-50009 Zaragoza, Spain
| | | | - David Casanova
- Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), P.K: 1072, 20080 Donostia, Spain
- Donostia International Physics Center (DIPC), 20018 Donostia, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | | |
Collapse
|
23
|
Zanello P. The competition between chemistry and biology in assembling iron–sulfur derivatives. Molecular structures and electrochemistry. Part II. {[Fe2S2](SγCys)4} proteins. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2014.08.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
24
|
Cao H, Pauff JM, Hille R. X-ray crystal structure of a xanthine oxidase complex with the flavonoid inhibitor quercetin. JOURNAL OF NATURAL PRODUCTS 2014; 77:1693-1699. [PMID: 25060641 DOI: 10.1021/np500320g] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Xanthine oxidase catalyzes the sequential hydroxylation of hypoxanthine to uric acid via xanthine as intermediate. Deposition of crystals of the catalytic product uric acid or its monosodium salt in human joints with accompanying joint inflammation is the major cause of gout. Natural flavonoids are attractive leads for rational design of preventive and therapeutic xanthine oxidase inhibitors due to their beneficial antioxidant, anti-inflammatory, and antiproliferative activities in addition to their micromolar inhibitory activities toward xanthine oxidase. We determined the first complex X-ray structure of mammalian xanthine oxidase with the natural flavonoid inhibitor quercetin at 2.0 Å resolution. The inhibitor adopts a single orientation with its benzopyran moiety sandwiched between Phe 914 and Phe 1009 and ring B pointing toward the solvent channel leading to the molybdenum active center. The favorable steric complementarity of the conjugated three-ring structure of quercetin with the active site and specific hydrogen-bonding interactions of exocyclic hydroxy groups with catalytically relevant residues Arg 880 and Glu 802 correlate well with a previously reported structure-activity relationship of flavonoid inhibitors of xanthine oxidase. The current complex provides a structural basis for the rational design of flavonoid-type inhibitors against xanthine oxidase useful for the treatment of hyperuricemia, gout, and inflammatory disease states.
Collapse
Affiliation(s)
- Hongnan Cao
- Department of Biochemistry, University of California , Riverside, California 92521, United States
| | | | | |
Collapse
|