1
|
Keller F, Alavizargar A, Wedlich-Söldner R, Heuer A. The impact of bilayer composition on the dimerization properties of the Slg1 stress sensor TMD from a multiscale analysis. Phys Chem Chem Phys 2023; 25:1299-1309. [PMID: 36533706 DOI: 10.1039/d2cp03497b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The impact of mutual interactions between the transmembrane domains of membrane proteins and lipids on bilayer properties has gained major attraction. Most simulation studies of membranes rely on the Martini force field, which has proven extremely helpful in providing molecular insights into realistic systems. Accordingly, an evaluation of the accuracy of the Martini force field is crucial to be able to correctly interpret the reported data. In this study, we combine atomistic and coarse-grained Martini simulations to investigate the properties of transmembrane domains (TMDs) in a model yeast membrane. The results show that the TMD binding state (monomeric and dimeric with positive or negative crossing angle) and the membrane composition significantly influence the properties around the TMDs and change TMD-TMD and TMD-lipid affinities. Furthermore, ergosterol (ERG) exhibits a strong affinity to TMD dimers. Importantly, the right-handed TMD dimer configuration is stabilized via TMD-TMD contacts by the addition of asymmetric anionic phosphatidylserine (PS). The coarse-grained simulations corroborate many of these findings, with two notable exceptions: a systematic overestimation of TMD-ERG interaction and lack of stabilization of the right-handed TMD dimers with the addition of PS.
Collapse
Affiliation(s)
- Fabian Keller
- Institut für Physikalische Chemie, Corrensstraße 28, Münster, Germany.
| | | | | | - Andreas Heuer
- Institut für Physikalische Chemie, Corrensstraße 28, Münster, Germany.
| |
Collapse
|
2
|
Zimmer SE, Takeichi T, Conway DE, Kubo A, Suga Y, Akiyama M, Kowalczyk AP. Differential Pathomechanisms of Desmoglein 1 Transmembrane Domain Mutations in Skin Disease. J Invest Dermatol 2022; 142:323-332.e8. [PMID: 34352264 PMCID: PMC9109890 DOI: 10.1016/j.jid.2021.07.154] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 06/25/2021] [Accepted: 07/12/2021] [Indexed: 02/03/2023]
Abstract
Dominant and recessive mutations in the desmosomal cadherin, desmoglein (DSG) 1, cause the skin diseases palmoplantar keratoderma (PPK) and severe dermatitis, multiple allergies, and metabolic wasting (SAM) syndrome, respectively. In this study, we compare two dominant missense mutations in the DSG1 transmembrane domain (TMD), G557R and G562R, causing PPK (DSG1PPK-TMD) and SAM syndrome (DSG1SAM-TMD), respectively, to determine the differing pathomechanisms of these mutants. Expressing the DSG1TMD mutants in a DSG-null background, we use cellular and biochemical assays to reveal the differences in the mechanistic behavior of each mutant. Super-resolution microscopy and functional assays showed a failure by both mutants to assemble desmosomes due to reduced membrane trafficking and lipid raft targeting. DSG1SAM-TMD maintained normal expression levels and turnover relative to wildtype DSG1, but DSG1PPK-TMD lacked stability, leading to increased turnover through lysosomal and proteasomal pathways and reduced expression levels. These results differentiate the underlying pathomechanisms of these disorders, suggesting that DSG1SAM-TMD acts dominant negatively, whereas DSG1PPK-TMD is a loss-of-function mutation causing the milder PPK disease phenotype. These mutants portray the importance of the DSG TMD in desmosome function and suggest that a greater understanding of the desmosomal cadherin TMDs will further our understanding of the role that desmosomes play in epidermal pathophysiology.
Collapse
Affiliation(s)
- Stephanie E Zimmer
- Department of Dermatology, Penn State College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania, USA; Biochemistry, Cell and Developmental Biology Graduate Program, Emory School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Takuya Takeichi
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Daniel E Conway
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Akiharu Kubo
- Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasushi Suga
- Department of Dermatology, Juntendo University Urayasu Hospital, Urayasu, Japan
| | - Masashi Akiyama
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Andrew P Kowalczyk
- Department of Dermatology, Penn State College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania, USA; Department of Cellular & Molecular Physiology, Penn State College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania, USA.
| |
Collapse
|
3
|
Majumder A, Straub JE. Addressing the Excessive Aggregation of Membrane Proteins in the MARTINI Model. J Chem Theory Comput 2021; 17:2513-2521. [PMID: 33720709 DOI: 10.1021/acs.jctc.0c01253] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The MARTINI model is a widely used coarse-grained force field popular for its capacity to represent a diverse array of complex biomolecules. However, efforts to simulate increasingly realistic models of membranes, involving complex lipid mixtures and multiple proteins, suggest that membrane protein aggregates are overstabilized by the MARTINI v2.2 force field. In this study, we address this shortcoming of the MARTINI model. We determined the free energy of dimerization of four transmembrane protein systems using the nonpolarizable MARTINI model. Comparison with experimental FRET-based estimates of the dimerization free energy was used to quantify the significant overstabilization of each protein homodimer studied. To improve the agreement between simulation and experiment, a single uniform scaling factor, α, was used to enhance the protein-lipid Lennard-Jones interaction. A value of α = 1.04-1.045 was found to provide the best fit to the dimerization free energies for the proteins studied while maintaining the specificity of contacts at the dimer interface. To further validate the modified force field, we performed a multiprotein simulation using both MARTINI v2.2 and the reparameterized MARTINI model. While the original MARTINI model predicts oligomerization of protein into a single aggregate, the reparameterized MARTINI model maintains a dynamic equilibrium between monomers and dimers as predicted by experimental studies. The proposed reparameterization is an alternative to the standard MARTINI model for use in simulations of realistic models of a biological membrane containing diverse lipids and proteins.
Collapse
Affiliation(s)
- Ayan Majumder
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston 02215, Massachusetts, United States
| | - John E Straub
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston 02215, Massachusetts, United States
| |
Collapse
|
4
|
Soteriou C, Kalli AC, Connell SD, Tyler AII, Thorne JL. Advances in understanding and in multi-disciplinary methodology used to assess lipid regulation of signalling cascades from the cancer cell plasma membrane. Prog Lipid Res 2020; 81:101080. [PMID: 33359620 DOI: 10.1016/j.plipres.2020.101080] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 12/31/2022]
Abstract
The lipid bilayer is a functional component of cells, forming a stable platform for the initiation of key biological processes, including cell signalling. There are distinct changes in the lipid composition of cell membranes during oncogenic transformation resulting in aberrant activation and inactivation of signalling transduction pathways. Studying the role of the cell membrane in cell signalling is challenging, since techniques are often limited to by timescale, resolution, sensitivity, and averaging. To overcome these limitations, combining 'computational', 'wet-lab' and 'semi-dry' approaches offers the best opportunity to resolving complex biological processes involved in membrane organisation. In this review, we highlight analytical tools that have been applied for the study of cell signalling initiation from the cancer cell membranes through computational microscopy, biological assays, and membrane biophysics. The cancer therapeutic potential of extracellular membrane-modulating agents, such as cholesterol-reducing agents is also discussed, as is the need for future collaborative inter-disciplinary research for studying the role of the cell membrane and its components in cancer therapy.
Collapse
Affiliation(s)
- C Soteriou
- School of Food Science and Nutrition, University of Leeds, Leeds LS29JT, UK; Leeds Institute of Cardiovascular and Metabolic Medicine and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK; Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - A C Kalli
- Leeds Institute of Cardiovascular and Metabolic Medicine and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - S D Connell
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - A I I Tyler
- School of Food Science and Nutrition, University of Leeds, Leeds LS29JT, UK
| | - J L Thorne
- School of Food Science and Nutrition, University of Leeds, Leeds LS29JT, UK.
| |
Collapse
|
5
|
Matsuoka D, Kamiya M, Sato T, Sugita Y. Role of the N-Terminal Transmembrane Helix Contacts in the Activation of FGFR3. J Comput Chem 2019; 41:561-572. [PMID: 31804721 DOI: 10.1002/jcc.26122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 10/31/2019] [Accepted: 11/08/2019] [Indexed: 12/16/2022]
Abstract
Fibroblast growth factor receptor 3 (FGFR3) is a member of receptor tyrosine kinases, which is involved in skeletal cell growth, differentiation, and migration. FGFR3 transduces biochemical signals from the extracellular ligand-binding domain to the intracellular kinase domain through the conformational changes of the transmembrane (TM) helix dimer. Here, we apply generalized replica exchange with solute tempering method to wild type (WT) and G380R mutant (G380R) of FGFR3. The dimer interface in G380R is different from WT and the simulation results are in good agreement with the solid-state nuclear magnetic resonance (NMR) spectroscopy. TM helices in G380R are extended more than WT, and thereby, G375 in G380R contacts near the N-termini of the TM helix dimer. Considering that both G380R and G375C show the constitutive activation, the formation of the N-terminal contacts of the TM helices can be generally important for the activation mechanism. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Daisuke Matsuoka
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama, 351-0198, Japan
| | - Motoshi Kamiya
- Computational Biophysics Research Team, RIKEN Center for Computational Science, Kobe, 650-0047, Japan
| | - Takeshi Sato
- Division of Liberal Arts and Science, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan
| | - Yuji Sugita
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama, 351-0198, Japan.,Computational Biophysics Research Team, RIKEN Center for Computational Science, Kobe, 650-0047, Japan.,Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystem Dynamics Research, Kobe, 650-0047, Japan
| |
Collapse
|
6
|
Muller MP, Jiang T, Sun C, Lihan M, Pant S, Mahinthichaichan P, Trifan A, Tajkhorshid E. Characterization of Lipid-Protein Interactions and Lipid-Mediated Modulation of Membrane Protein Function through Molecular Simulation. Chem Rev 2019; 119:6086-6161. [PMID: 30978005 PMCID: PMC6506392 DOI: 10.1021/acs.chemrev.8b00608] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The cellular membrane constitutes one of the most fundamental compartments of a living cell, where key processes such as selective transport of material and exchange of information between the cell and its environment are mediated by proteins that are closely associated with the membrane. The heterogeneity of lipid composition of biological membranes and the effect of lipid molecules on the structure, dynamics, and function of membrane proteins are now widely recognized. Characterization of these functionally important lipid-protein interactions with experimental techniques is however still prohibitively challenging. Molecular dynamics (MD) simulations offer a powerful complementary approach with sufficient temporal and spatial resolutions to gain atomic-level structural information and energetics on lipid-protein interactions. In this review, we aim to provide a broad survey of MD simulations focusing on exploring lipid-protein interactions and characterizing lipid-modulated protein structure and dynamics that have been successful in providing novel insight into the mechanism of membrane protein function.
Collapse
Affiliation(s)
- Melanie P. Muller
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tao Jiang
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chang Sun
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Muyun Lihan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shashank Pant
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Paween Mahinthichaichan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Anda Trifan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
7
|
Lewis JD, Caldara AL, Zimmer SE, Stahley SN, Seybold A, Strong NL, Frangakis AS, Levental I, Wahl JK, Mattheyses AL, Sasaki T, Nakabayashi K, Hata K, Matsubara Y, Ishida-Yamamoto A, Amagai M, Kubo A, Kowalczyk AP. The desmosome is a mesoscale lipid raft-like membrane domain. Mol Biol Cell 2019; 30:1390-1405. [PMID: 30943110 PMCID: PMC6724694 DOI: 10.1091/mbc.e18-10-0649] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Desmogleins (Dsgs) are cadherin family adhesion molecules essential for epidermal integrity. Previous studies have shown that desmogleins associate with lipid rafts, but the significance of this association was not clear. Here, we report that the desmoglein transmembrane domain (TMD) is the primary determinant of raft association. Further, we identify a novel mutation in the DSG1 TMD (G562R) that causes severe dermatitis, multiple allergies, and metabolic wasting syndrome. Molecular modeling predicts that this G-to-R mutation shortens the DSG1 TMD, and experiments directly demonstrate that this mutation compromises both lipid raft association and desmosome incorporation. Finally, cryo-electron tomography indicates that the lipid bilayer within the desmosome is ∼10% thicker than adjacent regions of the plasma membrane. These findings suggest that differences in bilayer thickness influence the organization of adhesion molecules within the epithelial plasma membrane, with cadherin TMDs recruited to the desmosome via the establishment of a specialized mesoscale lipid raft-like membrane domain.
Collapse
Affiliation(s)
- Joshua D Lewis
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322.,Department of Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University School of Medicine, Atlanta, GA 30322
| | - Amber L Caldara
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322.,Department of Graduate Program in Cancer Biology, Emory University School of Medicine, Atlanta, GA 30322
| | - Stephanie E Zimmer
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322.,Department of Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University School of Medicine, Atlanta, GA 30322
| | - Sara N Stahley
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322.,Department of Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University School of Medicine, Atlanta, GA 30322
| | - Anna Seybold
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60323 Frankfurt, Germany.,Institute for Biophysics, Goethe University Frankfurt, 60323 Frankfurt, Germany
| | - Nicole L Strong
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| | - Achilleas S Frangakis
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60323 Frankfurt, Germany.,Institute for Biophysics, Goethe University Frankfurt, 60323 Frankfurt, Germany
| | - Ilya Levental
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - James K Wahl
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE 68583
| | - Alexa L Mattheyses
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Takashi Sasaki
- Center for Supercentenarian Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan
| | | | - Kenichiro Hata
- National Research Institute for Child Health and Development, Tokyo, Japan
| | - Yoichi Matsubara
- National Research Institute for Child Health and Development, Tokyo, Japan
| | - Akemi Ishida-Yamamoto
- Department of Dermatology, Asahikawa Medical University, Asahikawa, Hokkaido 078-8510, Japan
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Akiharu Kubo
- Department of Dermatology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Andrew P Kowalczyk
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322.,Department of Dermatology, Emory University School of Medicine, Atlanta, GA 30322.,Department of Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University School of Medicine, Atlanta, GA 30322.,Department of Graduate Program in Cancer Biology, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
8
|
Afrose F, McKay MJ, Mortazavi A, Suresh Kumar V, Greathouse DV, Koeppe RE. Transmembrane Helix Integrity versus Fraying To Expose Hydrogen Bonds at a Membrane-Water Interface. Biochemistry 2019; 58:633-645. [PMID: 30565458 DOI: 10.1021/acs.biochem.8b01119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Transmembrane helices dominate the landscape for many membrane proteins. Often flanked by interfacial aromatic residues, these transmembrane helices also contain loops and interhelix segments, which could help in stabilizing a transmembrane orientation. Using 2H nuclear magnetic resonance spectroscopy to monitor bilayer-incorporated model GWALP23 family peptides, we address systematically the issue of helix fraying in relation to the dynamics and orientation of highly similar individual transmembrane helices. We inserted aromatic (Phe, Trp, Tyr, and His) or non-aromatic residues (Ala and Gly) into positions 4 and 5 adjacent to a core transmembrane helix to examine the side-chain dependency of the transmembrane orientation, dynamics, and helix integrity (extent and location of unraveling). Incorporation of [2H]alanine labels enables one to assess the helicity of the core sequence and the peptide termini. For most of the helices, we observed substantial unwinding involving at least three residues at both ends. For the unique case of histidine at positions 4 and 5, an extended N-terminal unwinding was observed up to residue 7. For further investigation of the onset of fraying, we employed A4,5GWALP23 with 2H labels at residues 4 and 5 and found that the number of terminal residues involved in the unwinding depends on bilayer thicknesses and helps to govern the helix dynamics. The combined results enable us to compare and contrast the extent of fraying for each related helix, as reflected by the deviation of experimental 2H quadrupolar splitting magnitudes of juxta-terminal alanines A3 and A21 from those represented by an ideal helix geometry.
Collapse
Affiliation(s)
- Fahmida Afrose
- Department of Chemistry and Biochemistry , University of Arkansas , Fayetteville , Arkansas 72701 , United States
| | - Matthew J McKay
- Department of Chemistry and Biochemistry , University of Arkansas , Fayetteville , Arkansas 72701 , United States
| | - Armin Mortazavi
- Department of Chemistry and Biochemistry , University of Arkansas , Fayetteville , Arkansas 72701 , United States
| | - Vasupradha Suresh Kumar
- Department of Chemistry and Biochemistry , University of Arkansas , Fayetteville , Arkansas 72701 , United States
| | - Denise V Greathouse
- Department of Chemistry and Biochemistry , University of Arkansas , Fayetteville , Arkansas 72701 , United States
| | - Roger E Koeppe
- Department of Chemistry and Biochemistry , University of Arkansas , Fayetteville , Arkansas 72701 , United States
| |
Collapse
|
9
|
Koh CZY, Hiong KC, Choo CYL, Boo MV, Wong WP, Chew SF, Neo ML, Ip YK. Molecular Characterization of a Dual Domain Carbonic Anhydrase From the Ctenidium of the Giant Clam, Tridacna squamosa, and Its Expression Levels After Light Exposure, Cellular Localization, and Possible Role in the Uptake of Exogenous Inorganic Carbon. Front Physiol 2018; 9:281. [PMID: 29632495 PMCID: PMC5879104 DOI: 10.3389/fphys.2018.00281] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 03/09/2018] [Indexed: 12/19/2022] Open
Abstract
A Dual-Domain Carbonic Anhydrase (DDCA) had been sequenced and characterized from the ctenidia (gills) of the giant clam, Tridacna squamosa, which lives in symbiosis with zooxanthellae. DDCA was expressed predominantly in the ctenidium. The complete cDNA coding sequence of DDCA from T. squamosa comprised 1,803 bp, encoding a protein of 601 amino acids and 66.7 kDa. The deduced DDCA sequence contained two distinct α-CA domains, each with a specific catalytic site. It had a high sequence similarity with tgCA from Tridacna gigas. In T. squamosa, the DDCA was localized apically in certain epithelial cells near the base of the ctenidial filament and the epithelial cells surrounding the tertiary water channels. Due to the presence of two transmembrane regions in the DDCA, one of the Zn2+-containing active sites could be located externally and the other one inside the cell. These results denote that the ctenidial DDCA was positioned to dehydrate [Formula: see text] to CO2 in seawater, and to hydrate the CO2 that had permeated the apical membrane back to [Formula: see text] in the cytoplasm. During insolation, the host clam needs to increase the uptake of inorganic carbon from the ambient seawater to benefit the symbiotic zooxanthellae; only then, can the symbionts conduct photosynthesis and share the photosynthates with the host. Indeed, the transcript and protein levels of DDCA/DDCA in the ctenidium of T. squamosa increased significantly after 6 and 12 h of exposure to light, respectively, denoting that DDCA could participate in the light-enhanced uptake and assimilation of exogenous inorganic carbon.
Collapse
Affiliation(s)
- Clarissa Z. Y. Koh
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Kum C. Hiong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Celine Y. L. Choo
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Mel V. Boo
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Wai P. Wong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Shit F. Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Mei L. Neo
- St. John's Island National Marine Laboratory, National University of Singapore, Singapore, Singapore
| | - Yuen K. Ip
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- The Tropical Marine Science Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
10
|
Reddy T, Sansom MSP. Computational virology: From the inside out. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1858:1610-8. [PMID: 26874202 PMCID: PMC4884666 DOI: 10.1016/j.bbamem.2016.02.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/05/2016] [Accepted: 02/08/2016] [Indexed: 12/23/2022]
Abstract
Viruses typically pack their genetic material within a protein capsid. Enveloped viruses also have an outer membrane made up of a lipid bilayer and membrane-spanning glycoproteins. X-ray diffraction and cryoelectron microscopy provide high resolution static views of viral structure. Molecular dynamics (MD) simulations may be used to provide dynamic insights into the structures of viruses and their components. There have been a number of simulations of viral capsids and (in some cases) of the inner core of RNA or DNA packaged within them. These simulations have generally focussed on the structural integrity and stability of the capsid and/or on the influence of the nucleic acid core on capsid stability. More recently there have been a number of simulation studies of enveloped viruses, including HIV-1, influenza A, and dengue virus. These have addressed the dynamic behaviour of the capsid, the matrix, and/or of the outer envelope. Analysis of the dynamics of the lipid bilayer components of the envelopes of influenza A and of dengue virus reveals a degree of biophysical robustness, which may contribute to the stability of virus particles in different environments. Significant computational challenges need to be addressed to aid simulation of complex viruses and their membranes, including the need to integrate structural data from a range of sources to enable us to move towards simulations of intact virions. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov.
Collapse
Affiliation(s)
- Tyler Reddy
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
11
|
Han J, Pluhackova K, Wassenaar TA, Böckmann RA. Synaptobrevin Transmembrane Domain Dimerization Studied by Multiscale Molecular Dynamics Simulations. Biophys J 2016; 109:760-71. [PMID: 26287628 DOI: 10.1016/j.bpj.2015.06.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/25/2015] [Accepted: 06/25/2015] [Indexed: 11/25/2022] Open
Abstract
Synaptic vesicle fusion requires assembly of the SNARE complex composed of SNAP-25, syntaxin-1, and synaptobrevin-2 (sybII) proteins. The SNARE proteins found in vesicle membranes have previously been shown to dimerize via transmembrane (TM) domain interactions. While syntaxin homodimerization is supposed to promote the transition from hemifusion to complete fusion, the role of synaptobrevin's TM domain association in the fusion process remains poorly understood. Here, we combined coarse-grained and atomistic simulations to model the homodimerization of the sybII transmembrane domain and of selected TM mutants. The wild-type helix is shown to form a stable, right-handed dimer with the most populated helix-helix interface, including key residues predicted in a previous mutagenesis study. In addition, two alternative binding interfaces were discovered, which are essential to explain the experimentally observed higher-order oligomerization of sybII. In contrast, only one dimerization interface was found for a fusion-inactive poly-Leu mutant. Moreover, the association kinetics found for this mutant is lower as compared to the wild-type. These differences in dimerization between the wild-type and the poly-Leu mutant are suggested to be responsible for the reported differences in fusogenic activity between these peptides. This study provides molecular insight into the role of TM sequence specificity for peptide aggregation in membranes.
Collapse
Affiliation(s)
- Jing Han
- Computational Biology, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Kristyna Pluhackova
- Computational Biology, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Tsjerk A Wassenaar
- Computational Biology, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Rainer A Böckmann
- Computational Biology, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
12
|
Sun F, Xu L, Chen P, Wei P, Qu J, Chen J, Luo SZ. Insights into the Packing Switching of the EphA2 Transmembrane Domain by Molecular Dynamic Simulations. J Phys Chem B 2015; 119:7816-24. [PMID: 26022644 DOI: 10.1021/acs.jpcb.5b01116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Receptor tyrosine kinases play an important role in mediating cell migration and adhesion associated with various biology processes. With a single-span transmembrane domain (TMD), the activities of the receptors are regulated by the definite packing configurations of the TMDs. For the EphA2 receptor, increasing studies have been conducted to investigate the packing domains that induce its switching TMD dimerization. However, the inherent transformation mechanisms including the interrelations among the involved packing domains remain unclear. Herein, we applied multiple simulation methods to explore the underlying packing mechanisms within the EphA2 TMD dimer. Our results demonstrated that the G(540)xxxG(544) contributed to the formation of the right-handed configuration while the heptad repeat L(535)xxxG(539)xxA(542)xxxV(546)xxL(549)xxxG(553) motif together with the FFxH(559) region mediated the parallel mode. Furthermore, the FF(557) residues packing mutually as rigid riveting structures were found comparable to the heptad repeat motif in maintaining the parallel configuration. In addition, the H(559) residue associated definitely with the lower bilayer leaflet, which was proved to stabilize the parallel mode significantly. The simulations provide a full range of insights into the essential packing motifs or residues involved in the switching TMD dimer configurations, which can enrich our comprehension toward the EphA2 receptor.
Collapse
Affiliation(s)
- Fude Sun
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lida Xu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Peng Chen
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Peng Wei
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jing Qu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jialin Chen
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shi-Zhong Luo
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
13
|
Activation of the bacterial thermosensor DesK involves a serine zipper dimerization motif that is modulated by bilayer thickness. Proc Natl Acad Sci U S A 2015; 112:6353-8. [PMID: 25941408 DOI: 10.1073/pnas.1422446112] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
DesK is a bacterial thermosensor protein involved in maintaining membrane fluidity in response to changes in environmental temperature. Most likely, the protein is activated by changes in membrane thickness, but the molecular mechanism of sensing and signaling is still poorly understood. Here we aimed to elucidate the mode of action of DesK by studying the so-called "minimal sensor DesK" (MS-DesK), in which sensing and signaling are captured in a single transmembrane segment. This simplified version of the sensor allows investigation of membrane thickness-dependent protein-lipid interactions simply by using synthetic peptides, corresponding to the membrane-spanning parts of functional and nonfunctional mutants of MS-DesK incorporated in lipid bilayers with varying thicknesses. The lipid-dependent behavior of the peptides was investigated by circular dichroism, tryptophan fluorescence, and molecular modeling. These experiments were complemented with in vivo functional studies on MS-DesK mutants. Based on the results, we constructed a model that suggests a new mechanism for sensing in which the protein is present as a dimer and responds to an increase in bilayer thickness by membrane incorporation of a C-terminal hydrophilic motif. This results in exposure of three serines on the same side of the transmembrane helices of MS-DesK, triggering a switching of the dimerization interface to allow the formation of a serine zipper. The final result is activation of the kinase state of MS-DesK.
Collapse
|
14
|
Modeling transmembrane domain dimers/trimers of plexin receptors: implications for mechanisms of signal transmission across the membrane. PLoS One 2015; 10:e0121513. [PMID: 25837709 PMCID: PMC4383379 DOI: 10.1371/journal.pone.0121513] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/03/2015] [Indexed: 01/01/2023] Open
Abstract
Single-pass transmembrane (TM) receptors transmit signals across lipid bilayers by helix association or by configurational changes within preformed dimers. The structure determination for such TM regions is challenging and has mostly been accomplished by NMR spectroscopy. Recently, the computational prediction of TM dimer structures is becoming recognized for providing models, including alternate conformational states, which are important for receptor regulation. Here we pursued a strategy to predict helix oligomers that is based on packing considerations (using the PREDDIMER webserver) and is followed by a refinement of structures, utilizing microsecond all-atom molecular dynamics simulations. We applied this method to plexin TM receptors, a family of 9 human proteins, involved in the regulation of cell guidance and motility. The predicted models show that, overall, the preferences identified by PREDDIMER are preserved in the unrestrained simulations and that TM structures are likely to be diverse across the plexin family. Plexin-B1 and -B3 TM helices are regular and tend to associate, whereas plexin-A1, -A2, -A3, -A4, -C1 and -D1 contain sequence elements, such as poly-Glycine or aromatic residues that distort helix conformation and association. Plexin-B2 does not form stable dimers due to the presence of TM prolines. No experimental structural information on the TM region is available for these proteins, except for plexin-C1 dimeric and plexin-B1 - trimeric structures inferred from X-ray crystal structures of the intracellular regions. Plexin-B1 TM trimers utilize Ser and Thr sidechains for interhelical contacts. We also modeled the juxta-membrane (JM) region of plexin-C1 and plexin-B1 and show that it synergizes with the TM structures. The structure and dynamics of the JM region and TM-JM junction provide determinants for the distance and distribution of the intracellular domains, and for their binding partners relative to the membrane. The structures suggest experimental tests and will be useful for the interpretation of future studies.
Collapse
|
15
|
Chavent M, Chetwynd AP, Stansfeld PJ, Sansom MSP. Dimerization of the EphA1 receptor tyrosine kinase transmembrane domain: Insights into the mechanism of receptor activation. Biochemistry 2014; 53:6641-52. [PMID: 25286141 PMCID: PMC4298228 DOI: 10.1021/bi500800x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
EphA1
is a receptor tyrosine kinase (RTK) that plays a key role
in developmental processes, including guidance of the migration of
axons and cells in the nervous system. EphA1, in common with other
RTKs, contains an N-terminal extracellular domain, a single transmembrane
(TM) α-helix, and a C-terminal intracellular kinase domain.
The TM helix forms a dimer, as seen in recent NMR studies. We have
modeled the EphA1 TM dimer using a multiscale approach combining coarse-grain
(CG) and atomistic molecular dynamics (MD) simulations. The one-dimensional
potential of mean force (PMF) for this system, based on interhelix
separation, has been calculated using CG MD simulations. This provides
a view of the free energy landscape for helix–helix interactions
of the TM dimer in a lipid bilayer. The resulting PMF profiles suggest
two states, consistent with a rotation-coupled activation mechanism.
The more stable state corresponds to a right-handed helix dimer interacting
via an N-terminal glycine zipper motif, consistent with a recent NMR
structure (2K1K). A second metastable state corresponds to a structure in which
the glycine zipper motif is not involved. Analysis of unrestrained
CG MD simulations based on representative models from the PMF calculations
or on the NMR structure reveals possible pathways of interconversion
between these two states, involving helix rotations about their long
axes. This suggests that the interaction of TM helices in EphA1 dimers
may be intrinsically dynamic. This provides a potential mechanism
for signaling whereby extracellular events drive a shift in the repopulation
of the underlying TM helix dimer energy landscape.
Collapse
Affiliation(s)
- Matthieu Chavent
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | | | | |
Collapse
|
16
|
Sawma P, Roth L, Blanchard C, Bagnard D, Crémel G, Bouveret E, Duneau JP, Sturgis JN, Hubert P. Evidence for new homotypic and heterotypic interactions between transmembrane helices of proteins involved in receptor tyrosine kinase and neuropilin signaling. J Mol Biol 2014; 426:4099-4111. [PMID: 25315821 DOI: 10.1016/j.jmb.2014.10.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 09/26/2014] [Accepted: 10/08/2014] [Indexed: 12/31/2022]
Abstract
Signaling in eukaryotic cells frequently relies on dynamic interactions of single-pass membrane receptors involving their transmembrane (TM) domains. To search for new such interactions, we have developed a bacterial two-hybrid system to screen for both homotypic and heterotypic interactions between TM helices. We have explored the dimerization of TM domains from 16 proteins involved in both receptor tyrosine kinase and neuropilin signaling. This study has revealed several new interactions. We found that the TM domain of Mucin-4, a putative intramembrane ligand for erbB2, dimerizes not only with erbB2 but also with all four members of the erbB family. In the Neuropilin/Plexin family of receptors, we showed that the TM domains of Neuropilins 1 and 2 dimerize with themselves and also with Plexin-A1, Plexin-B1, and L1CAM, but we were unable to observe interactions with several other TM domains notably those of members of the VEGF receptor family. The potentially important Neuropilin 1/Plexin-A1 interaction was confirmed using a surface plasmon resonance assay. This work shows that TM domain interactions can be highly specific. Exploring further the propensities of TM helix-helix association in cell membrane should have important practical implications related to our understanding of the structure-function of bitopic proteins' assembly and subsequent function, especially in the regulation of signal transduction.
Collapse
Affiliation(s)
- Paul Sawma
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR 7255, Centre National de la Recherche Scientifique and Aix-Marseille University, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Lise Roth
- INSERM U 1109 and University of Strasbourg, 3 Avenue Molière, 67200 Strasbourg, France
| | - Cécile Blanchard
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR 7255, Centre National de la Recherche Scientifique and Aix-Marseille University, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Dominique Bagnard
- INSERM U 1109 and University of Strasbourg, 3 Avenue Molière, 67200 Strasbourg, France
| | - Gérard Crémel
- INSERM U 1109 and University of Strasbourg, 3 Avenue Molière, 67200 Strasbourg, France
| | - Emmanuelle Bouveret
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR 7255, Centre National de la Recherche Scientifique and Aix-Marseille University, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Jean-Pierre Duneau
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR 7255, Centre National de la Recherche Scientifique and Aix-Marseille University, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - James N Sturgis
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR 7255, Centre National de la Recherche Scientifique and Aix-Marseille University, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Pierre Hubert
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR 7255, Centre National de la Recherche Scientifique and Aix-Marseille University, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
| |
Collapse
|
17
|
Emerging concepts in the regulation of the EGF receptor and other receptor tyrosine kinases. Trends Biochem Sci 2014; 39:437-46. [DOI: 10.1016/j.tibs.2014.08.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/04/2014] [Accepted: 08/07/2014] [Indexed: 11/21/2022]
|
18
|
Tamagaki H, Furukawa Y, Yamaguchi R, Hojo H, Aimoto S, Smith SO, Sato T. Coupling of transmembrane helix orientation to membrane release of the juxtamembrane region in FGFR3. Biochemistry 2014; 53:5000-7. [PMID: 25010350 PMCID: PMC4144707 DOI: 10.1021/bi500327q] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Activation of the protein tyrosine kinase receptors requires the coupling of ligand binding to a change in both the proximity and orientation of the single transmembrane (TM) helices of receptor monomers to allow transphosphorylation of the receptor kinase domain. We make use of peptides corresponding to the TM and juxtamembrane (JM) regions of the fibroblast growth factor receptor 3 to assess how mutations in the TM region (G380R and A391E), which lead to receptor activation, influence the orientation of the TM domain and interactions of the intracellular JM sequence with the membrane surface. On the basis of fluorescence and Fourier transform infrared spectroscopy, we find that both activating mutations change the TM helix tilt angle relative to the membrane normal and release the JM region from the membrane. These results suggest a general mechanism regarding how the TM-JM region functionally bridges the extracellular and intracellular regions for these receptors.
Collapse
Affiliation(s)
- Hiroko Tamagaki
- Institute for Protein Research, Osaka University , 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
19
|
Sal-Man N, Gerber D, Shai Y. Proline localized to the interaction interface can mediate self-association of transmembrane domains. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2313-8. [PMID: 24841754 DOI: 10.1016/j.bbamem.2014.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/01/2014] [Accepted: 05/09/2014] [Indexed: 01/11/2023]
Abstract
Assembly of transmembrane domains (TMDs) is a critical step in the function of membrane proteins. In recent years, the role of specific amino acids in TMD-TMD interactions has been better characterized, with more emphasis on polar and aromatic residues. Despite the high abundance of proline residues in TMDs, contribution of proline to TMD-TMD association has not been intensively studied. Here, we evaluated statistically the frequency of appearance, and experimentally the contribution of proline, compared to other hydrophobic amino acids (Gly, Ala, Val, Leu, Ile, and Met), with regard to TMD-TMD self-assembly. Our model system is the assembly motif ((22)QxxS(25)) found previously in TMDs of the Escherichia coli aspartate receptor (Tar-1). Statistically, our data revealed that all different motifs, except PxxS (P/S), have frequencies similar to their theoretical random expectancy within a database of 41916 sequences of TMDs, while PxxS motif is underrepresented. Experimentally, using the ToxR assembly system, the SDS-gel running pattern of biotin-conjugated TMD peptides, and FRET experiments between fluorescence-labeled peptides, we found that only the P/S motif preserves the dimerization ability of wild-type Tar-1 TMD. Although proline is known as a helix breaker in solution, Circular Dichroism spectroscopy revealed that the secondary structure of the P/S and the wild-type peptides are similar. All together, these data suggest that proline can stabilize TM self-assembly when localized to the interaction interface of a transmembrane oligomer. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.
Collapse
Affiliation(s)
- Neta Sal-Man
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel; Department of Microbiology and Immunology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Doron Gerber
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel; The Mina & Everard Goodman Faculty of Life Sciences, The Nanotechnology Institute, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Yechiel Shai
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
20
|
Sharonov GV, Bocharov EV, Kolosov PM, Astapova MV, Arseniev AS, Feofanov AV. Point mutations in dimerization motifs of the transmembrane domain stabilize active or inactive state of the EphA2 receptor tyrosine kinase. J Biol Chem 2014; 289:14955-64. [PMID: 24733396 DOI: 10.1074/jbc.m114.558783] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The EphA2 receptor tyrosine kinase plays a central role in the regulation of cell adhesion and guidance in many human tissues. The activation of EphA2 occurs after proper dimerization/oligomerization in the plasma membrane, which occurs with the participation of extracellular and cytoplasmic domains. Our study revealed that the isolated transmembrane domain (TMD) of EphA2 embedded into the lipid bicelle dimerized via the heptad repeat motif L(535)X3G(539)X2A(542)X3V(546)X2L(549) rather than through the alternative glycine zipper motif A(536)X3G(540)X3G(544) (typical for TMD dimerization in many proteins). To evaluate the significance of TMD interactions for full-length EphA2, we substituted key residues in the heptad repeat motif (HR variant: G539I, A542I, G553I) or in the glycine zipper motif (GZ variant: G540I, G544I) and expressed YFP-tagged EphA2 (WT, HR, and GZ variants) in HEK293T cells. Confocal microscopy revealed a similar distribution of all EphA2-YFP variants in cells. The expression of EphA2-YFP variants and their kinase activity (phosphorylation of Tyr(588) and/or Tyr(594)) and ephrin-A3 binding were analyzed with flow cytometry on a single cell basis. Activation of any EphA2 variant is found to occur even without ephrin stimulation when the EphA2 content in cells is sufficiently high. Ephrin-A3 binding is not affected in mutant variants. Mutations in the TMD have a significant effect on EphA2 activity. Both ligand-dependent and ligand-independent activities are enhanced for the HR variant and reduced for the GZ variant compared with the WT. These findings allow us to suggest TMD dimerization switching between the heptad repeat and glycine zipper motifs, corresponding to inactive and active receptor states, respectively, as a mechanism underlying EphA2 signal transduction.
Collapse
Affiliation(s)
- George V Sharonov
- From the Department of Structural Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of RAS, 117997 Moscow, Russia, the Faculty of Medicine, Moscow State University, 119992 Moscow, Russia
| | - Eduard V Bocharov
- From the Department of Structural Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of RAS, 117997 Moscow, Russia
| | - Peter M Kolosov
- the Department of Molecular Neurobiology, Institute of Higher Nervous Activity and Neurophysiology of RAS, 117485 Moscow, Russia, and
| | - Maria V Astapova
- From the Department of Structural Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of RAS, 117997 Moscow, Russia
| | - Alexander S Arseniev
- From the Department of Structural Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of RAS, 117997 Moscow, Russia
| | - Alexey V Feofanov
- From the Department of Structural Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of RAS, 117997 Moscow, Russia, the Biological Faculty, Moscow State University, 119992 Moscow, Russia
| |
Collapse
|