1
|
Liu Y, Hu B, Pei X, Li J, Qi D, Xu Y, Ou H, Wu Y, Xue L, Huang JH, Wu E, Hu X. A Non-G-Quadruplex DNA Aptamer Targeting NCL for Diagnosis and Therapy in Bladder Cancer. Adv Healthc Mater 2023; 12:e2300791. [PMID: 37262080 PMCID: PMC11469069 DOI: 10.1002/adhm.202300791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Indexed: 06/03/2023]
Abstract
Bladder cancer (BC) is a highly aggressive malignant tumor affecting the urinary system, characterized by metastasis and a poor prognosis that often leads to limited therapeutic success. This study aims to develop a novel DNA aptamer for the diagnosis and treatment of BC using a tissue-based systematic evolution of ligands by an exponential enrichment (SELEX) process. By using SELEX, this work successfully generates a new aptamer named TB-5, which demonstrates a remarkable and specific affinity for nucleolin (NCL) in BC tissues and displays marked biocompatibility both in vitro and in vivo. Additionally, this work shows that NCL is a reliable tissue-specific biomarker in BC. Moreover, according to circular dichroism spectroscopy, TB-5 forms a non-G-quadruplex structure, distinguishing it from the current NCL-targeting aptamer AS1411, and exhibits a distinct binding region on NCL compared to AS1411. Notably, this study further reveals that TB-5 activates NCL function by promoting autophagy and suppressing the migration and invasion of BC cells, which occurs by disrupting mRNA transcription processes. These findings highlight the critical role of NCL in the pathological examination of BC and warrant more comprehensive investigations on anti-NCL aptamers in BC imaging and treatment.
Collapse
Affiliation(s)
- Yunyi Liu
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of BiologyMolecular Science and Biomedicine Laboratory and Aptamer Engineering Center of Hunan ProvinceHunan UniversityChangshaHunan410082China
| | - Bei Hu
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of BiologyMolecular Science and Biomedicine Laboratory and Aptamer Engineering Center of Hunan ProvinceHunan UniversityChangshaHunan410082China
| | - Xiaming Pei
- Department of UrologyHunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine. ChangshaHunan410013China
| | - Juan Li
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of BiologyMolecular Science and Biomedicine Laboratory and Aptamer Engineering Center of Hunan ProvinceHunan UniversityChangshaHunan410082China
| | - Dan Qi
- Department of Neurosurgery and Neuroscience InstituteBaylor Scott & White HealthTempleTX76508USA
| | - Yuxi Xu
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of BiologyMolecular Science and Biomedicine Laboratory and Aptamer Engineering Center of Hunan ProvinceHunan UniversityChangshaHunan410082China
| | - Hailong Ou
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of BiologyMolecular Science and Biomedicine Laboratory and Aptamer Engineering Center of Hunan ProvinceHunan UniversityChangshaHunan410082China
| | - Yatao Wu
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of BiologyMolecular Science and Biomedicine Laboratory and Aptamer Engineering Center of Hunan ProvinceHunan UniversityChangshaHunan410082China
| | - Lei Xue
- Department of PathologyHunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine. ChangshaHunan410013China
| | - Jason H. Huang
- Department of Neurosurgery and Neuroscience InstituteBaylor Scott & White HealthTempleTX76508USA
- Department of Medical EducationTexas A&M University School of MedicineCollege StationTX77843USA
| | - Erxi Wu
- Department of Neurosurgery and Neuroscience InstituteBaylor Scott & White HealthTempleTX76508USA
- Department of Medical EducationTexas A&M University School of MedicineCollege StationTX77843USA
- Department of Pharmaceutical SciencesTexas A&M University School of PharmacyCollege StationTX77843USA
- LIVESTRONG Cancer Institutes and Department of OncologyDell Medical SchoolThe University of Texas at AustinAustinTX78712USA
| | - Xiaoxiao Hu
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of BiologyMolecular Science and Biomedicine Laboratory and Aptamer Engineering Center of Hunan ProvinceHunan UniversityChangshaHunan410082China
- Research Institute of Hunan University in ChongqingChongqing401120China
- Shenzhen Research InstituteHunan UniversityShenzhenGuangdong518000China
- Hunan Yonghe‐sun Biotechnology Co. Ltd.ChangshaHunan410082China
| |
Collapse
|
2
|
Chen J, Xiang Y, Wang P, Liu J, Lai W, Xiao M, Pei H, Fan C, Li L. Ensemble Modified Aptamer Based Pattern Recognition for Adaptive Target Identification. NANO LETTERS 2022; 22:10057-10065. [PMID: 36524831 DOI: 10.1021/acs.nanolett.2c03808] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The difficulty of the molecular design and chemical synthesis of artificial sensing receptors restricts their diagnostic and proteomic applications. Herein, we report a concept of "ensemble modified aptamers" (EMAmers) that exploits the collective recognition abilities of a small set of protein-like side-chain-modified nucleic acid ligands for discriminative identification of molecular or cellular targets. Different types and numbers of hydrophobic functional groups were incorporated at designated positions on nucleic acid scaffolds to mimic amino acid side chains. We successfully assayed 18 EMAmer probes with differential binding affinities to seven proteins. We constructed an EMAmer-based chemical nose sensor and demonstrated its application in blinded unknown protein identification, giving a 92.9% accuracy. Additionally, the sensor is generalizable to the detection of blinded unknown bacterial and cellular samples, which enabled identification accuracies of 96.3% and 94.8%, respectively. This sensing platform offers a discriminative means for adaptive target identification and holds great potential for diverse applications.
Collapse
Affiliation(s)
- Jing Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People's Republic of China
| | - Ying Xiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People's Republic of China
| | - Peipei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People's Republic of China
| | - Jingjing Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People's Republic of China
| | - Wei Lai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People's Republic of China
| | - Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People's Republic of China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People's Republic of China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201240, People's Republic of China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People's Republic of China
| |
Collapse
|
3
|
Liu Y, Li J, Ou H, Qi D, Hu B, Xu Y, Hu J, Xiong Y, Xia L, Huang JH, Hu X, Wu E. Identification of new aptamer BC-3 targeting RPS7 from rapid screening for bladder carcinoma. Genes Dis 2022. [PMID: 37492709 PMCID: PMC10363591 DOI: 10.1016/j.gendis.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Aptamers, short single DNA or RNA oligonucleotides, have shown immense application potential as molecular probes for the early diagnosis and therapy of cancer. However, conventional cell-SELEX technologies for aptamer discovery are time-consuming and laborious. Here we discovered a new aptamer BC-3 by using an improved rapid X-Aptamer selection process for human bladder carcinoma, for which there is no specific molecular probe yet. We show that BC-3 exhibited excellent affinity in bladder cancer cells but not normal cells. We demonstrate that BC-3 displayed high selectivity for tumor cells over their normal counterparts in vitro, in mice, and in patient tumor tissue specimens. Further endocytosis pathway analysis revealed that BC-3 internalized into bladder cancer cells via clathrin-mediated endocytosis. Importantly, we identified ribosomal protein S7 (RPS7) as the binding target of BC-3 via an integrated methodology (mass spectrometry, colocalization assay, and immunoblotting). Together, we report that a novel aptamer BC-3 is discovered for bladder cancer and its properties in the disease are unearthed. Our findings will facilitate the discovery of novel diagnostic and therapeutic strategies for bladder cancer.
Collapse
|
4
|
Parekh P, Mu Q, Badachhape A, Bhavane R, Srivastava M, Devkota L, Sun X, Bhandari P, Eriksen JL, Tanifum E, Ghaghada K, Annapragada A. A surrogate marker for very early-stage tau pathology is detectable by molecular magnetic resonance imaging. Theranostics 2022; 12:5504-5521. [PMID: 35910789 PMCID: PMC9330526 DOI: 10.7150/thno.72258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/02/2022] [Indexed: 01/30/2023] Open
Abstract
The abnormal phosphorylation of tau is a necessary precursor to the formation of tau fibrils, a marker of Alzheimer's disease. We hypothesize that hyperphosphorylative conditions may result in unique cell surface markers. We identify and demonstrate the utility of such surrogate markers to identify the hyperphosphorylative state. Methods: Cell SELEX was used to identify novel thioaptamers specifically binding hyperphosphorylative cells. Cell surface vimentin was identified as a potential binding target of the aptamer. Novel molecular magnetic resonance imaging (M-MRI) probes using these aptamers and a small molecule ligand to vimentin were used for in vivo detection of this pre-pathological state. Results: In a mouse model of pathological tau, we demonstrated in vivo visualization of the hyperphosphorylative state by M-MRI, enabling the identification at a pre-pathological stage of mice that develop frank tau pathology several months later. In vivo visualization of the hyperphosphorylative state by M-MRI was further validated in a second mouse model (APP/PS1) of Alzheimer's disease again identifying the mutants at a pre-pathological stage. Conclusions: M-MRI of the hyperphosphorylative state identifies future tau pathology and could enable extremely early-stage diagnosis of Alzheimer's disease, at a pre-patholgical stage.
Collapse
Affiliation(s)
| | - Qingshan Mu
- Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | - Xianwei Sun
- Baylor College of Medicine, Houston, TX, USA
| | | | | | - Eric Tanifum
- Texas Children's Hospital/Baylor College of Medicine, Houston, TX, USA
| | - Ketan Ghaghada
- Texas Children's Hospital/Baylor College of Medicine, Houston, TX, USA
| | - Ananth Annapragada
- Texas Children's Hospital/Baylor College of Medicine, Houston, TX, USA,✉ Corresponding author:
| |
Collapse
|
5
|
Wang H, Li X, Lai LA, Brentnall TA, Dawson DW, Kelly KA, Chen R, Pan S. X-aptamers targeting Thy-1 membrane glycoprotein in pancreatic ductal adenocarcinoma. Biochimie 2021; 181:25-33. [PMID: 33242496 PMCID: PMC7863625 DOI: 10.1016/j.biochi.2020.11.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/26/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022]
Abstract
Modified DNA aptamers incorporated with amino-acid like side chains or drug-like ligands can offer unique advantages and enhance specificity as affinity ligands. Thy-1 membrane glycoprotein (THY1 or CD90) was previously identified as a biomarker candidate of neovasculature in pancreatic ductal adenocarcinoma (PDAC). The current study developed and evaluated modified DNA X-aptamers targeting THY1 in PDAC. The expression and glycosylation of THY1 in PDAC tumor tissues were assessed using immunohistochemistry and quantitative proteomics. Bead-based X-aptamer library that contains 108 different sequences was used to screen for high affinity THY1 X-aptamers. The sequences of the X-aptamers were analyzed with the next-generation sequencing. The affinities of the selected X-aptamers to THY1 were quantitatively evaluated with flow cytometry. Three high affinity THY1 X-aptamers, including XA-B217, XA-B216 and XA-A9, were selected after library screening and affinity binding evaluation. These three X-aptamers demonstrated a high binding affinity and specificity to THY1 protein and the THY1 expressing cell lines, using THY1 antibody as a comparison. The development of these X-aptamers provides highly specific and non-immunogenic affinity ligands for THY1 binding in the context of biomarker development and clinical applications. They could be further exploited to assist molecular imaging of PDAC targeting THY1.
Collapse
Affiliation(s)
- Hongyu Wang
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA; Department of Diagnostic and Interventional Imaging, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| | - Xin Li
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Lisa A Lai
- Division of Gastroenterology, Department of Medicine, The University of Washington, Seattle, WA, 98195, USA
| | - Teresa A Brentnall
- Division of Gastroenterology, Department of Medicine, The University of Washington, Seattle, WA, 98195, USA
| | - David W Dawson
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Kimberly A Kelly
- Department of Biomedical Engineering, University of Virginia School of Engineering and Applied Sciences, Charlottesville, VA, 22908, USA
| | - Ru Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sheng Pan
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA; Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
6
|
Walss-Bass C, Lokesh GLR, Dyukova E, Gorenstein DG, Roberts DL, Velligan D, Volk DE. X-Aptamer Technology Identifies C4A and ApoB in Blood as Potential Markers for Schizophrenia. MOLECULAR NEUROPSYCHIATRY 2018; 5:52-59. [PMID: 31019918 DOI: 10.1159/000492331] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/20/2018] [Indexed: 12/18/2022]
Abstract
The field of proteomics is rapidly gaining territory as a promising alternative to genomic approaches in the efforts to unravel the complex molecular mechanisms underlying schizophrenia and other psychiatric disorders. X-aptamer tech-nology has emerged as a novel proteomic approach for high-sensitivity analyses, and we hypothesized that this technology would identify unique molecular signatures in plasma samples from schizophrenia patients (n = 60) compared to controls (n = 20). Using a combinatorial library of X-aptamer beads, we developed a two-color flow cytometer-based approach to identify specific X-aptamers that bound with high specificity to each target group. Based on this, we synthesized two unique X-aptamer sequences, and specific proteins pulled down from the patient and control groups by these X-aptamers were identified by mass spectrometry. We identified two protein biomarkers, complement component C4A and ApoB, upregulated in plasma samples from schizophrenia patients. ELISA validation suggested that the observed differences in C4 levels in patients are likely due to the presence of the illness itself, while ApoB may be a marker of antipsychotic-induced alterations. These studies highlight the utility of the X-aptamer technology in the identification of biomarkers for schizophrenia that will advance our understanding of the pathophysiological mechanisms of this disorder.
Collapse
Affiliation(s)
- Consuelo Walss-Bass
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ganesh L R Lokesh
- Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Elena Dyukova
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - David G Gorenstein
- Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - David L Roberts
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Dawn Velligan
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - David E Volk
- Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
7
|
Dolot R, Lam CH, Sierant M, Zhao Q, Liu FW, Nawrot B, Egli M, Yang X. Crystal structures of thrombin in complex with chemically modified thrombin DNA aptamers reveal the origins of enhanced affinity. Nucleic Acids Res 2018; 46:4819-4830. [PMID: 29684204 PMCID: PMC5961234 DOI: 10.1093/nar/gky268] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/26/2018] [Accepted: 04/15/2018] [Indexed: 01/11/2023] Open
Abstract
Thrombin-binding aptamer (TBA) is a DNA 15-mer of sequence 5'-GGT TGG TGT GGT TGG-3' that folds into a G-quadruplex structure linked by two T-T loops located on one side and a T-G-T loop on the other. These loops are critical for post-SELEX modification to improve TBA target affinity. With this goal in mind we synthesized a T analog, 5-(indolyl-3-acetyl-3-amino-1-propenyl)-2'-deoxyuridine (W) to substitute one T or a pair of Ts. Subsequently, the affinity for each analog was determined by biolayer interferometry. An aptamer with W at position 4 exhibited about 3-fold increased binding affinity, and replacing both T4 and T12 with W afforded an almost 10-fold enhancement compared to native TBA. To better understand the role of the substituent's aromatic moiety, an aptamer with 5-(methyl-3-acetyl-3-amino-1-propenyl)-2'-deoxyuridine (K; W without the indole moiety) in place of T4 was also synthesized. This K4 aptamer was found to improve affinity 7-fold relative to native TBA. Crystal structures of aptamers with T4 replaced by either W or K bound to thrombin provide insight into the origins of the increased affinities. Our work demonstrates that facile chemical modification of a simple DNA aptamer can be used to significantly improve its binding affinity for a well-established pharmacological target protein.
Collapse
Affiliation(s)
- Rafal Dolot
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90–363 Lodz, Sienkiewicza 112, Poland
| | - Curtis H Lam
- AM Biotechnologies, LLC, 12521 Gulf Freeway, Houston, TX 77034, USA
| | - Malgorzata Sierant
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90–363 Lodz, Sienkiewicza 112, Poland
| | - Qiang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Feng-Wu Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Science Avenue 100, Zhengzhou 450001, Henan, China
| | - Barbara Nawrot
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90–363 Lodz, Sienkiewicza 112, Poland
| | - Martin Egli
- Department of Biochemistry, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA
| | - Xianbin Yang
- AM Biotechnologies, LLC, 12521 Gulf Freeway, Houston, TX 77034, USA
| |
Collapse
|
8
|
Mai J, Li X, Zhang G, Huang Y, Xu R, Shen Q, Lokesh GL, Thiviyanathan V, Chen L, Liu H, Zu Y, Ma X, Volk DE, Gorenstein DG, Ferrari M, Shen H. DNA Thioaptamer with Homing Specificity to Lymphoma Bone Marrow Involvement. Mol Pharm 2018; 15:1814-1825. [PMID: 29537266 PMCID: PMC6311132 DOI: 10.1021/acs.molpharmaceut.7b01169] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Selective drug accumulation in the malignant tissue is a prerequisite for effective cancer treatment. However, most drug molecules and their formulated particles are blocked en route to the destiny tissue due to the existence of multiple biological and physical barriers including the tumor microvessel endothelium. Since the endothelial cells on the surface of the microvessel wall can be modulated by inflammatory cytokines and chemokines secreted by the tumor or stromal cells, an effective drug delivery approach is to enhance interaction between the drug particles and the unique spectrum of surface proteins on the tumor endothelium. In this study, we performed in vivo screening for thioaptamers that bind to the bone marrow endothelium with specificity in a murine model of lymphoma with bone marrow involvement (BMI). The R1 thioaptamer was isolated based on its high homing potency to bones with BMI, and 40-60% less efficiency in accumulation to healthy bones. In cell culture, R1 binds to human umbilical vein endothelial cells (HUVEC) with a high affinity ( Kd ≈ 3 nM), and the binding affinity can be further enhanced when cells were treated with a mixture of lymphoma cell and bone marrow cell conditioned media. Cellular uptake of R1 is through clathrin-mediated endocytosis. Conjugating R1 on to the surface of liposomal doxorubicin nanoparticles resulted in 2-3-fold increase in drug accumulation in lymphoma BMI. Taking together, we have successfully identified a thioaptamer that preferentially binds to the endothelium of lymphoma BMI. It can serve as an affinity moiety for targeted delivery of drug particles to the disease organ.
Collapse
Affiliation(s)
- Junhua Mai
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - Xin Li
- Institute of Molecular Medicine and the Department of Nanomedicine and Biomedical Engineering, McGovern Medical School, The University of Texas Health Science Center at Houston, 1825 Hermann Pressler, Houston 77030, USA
| | - Guodong Zhang
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - Yi Huang
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - Rong Xu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - Qi Shen
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - Ganesh L. Lokesh
- Institute of Molecular Medicine and the Department of Nanomedicine and Biomedical Engineering, McGovern Medical School, The University of Texas Health Science Center at Houston, 1825 Hermann Pressler, Houston 77030, USA
| | - Varatharasa Thiviyanathan
- Institute of Molecular Medicine and the Department of Nanomedicine and Biomedical Engineering, McGovern Medical School, The University of Texas Health Science Center at Houston, 1825 Hermann Pressler, Houston 77030, USA
| | - Lingxiao Chen
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, USA
- Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Haoran Liu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, USA
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Youli Zu
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas 77030, USA
| | - Xiaojing Ma
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065, USA
| | - David E. Volk
- Institute of Molecular Medicine and the Department of Nanomedicine and Biomedical Engineering, McGovern Medical School, The University of Texas Health Science Center at Houston, 1825 Hermann Pressler, Houston 77030, USA
| | - David G. Gorenstein
- Institute of Molecular Medicine and the Department of Nanomedicine and Biomedical Engineering, McGovern Medical School, The University of Texas Health Science Center at Houston, 1825 Hermann Pressler, Houston 77030, USA
| | - Mauro Ferrari
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York 10065, USA
| | - Haifa Shen
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, New York 10065, USA
| |
Collapse
|
9
|
Abstract
Aptamers and second generation analogs, such as X-Aptamers (XAs), SOMAmers, locked nucleic acids (LNAs), and others are increasingly being used for molecular pathway targeting, biomarker discovery, or disease diagnosis by interacting with protein targets on the surface of cells or in solution. Such targeting is being used for imaging, diagnostic evaluation, interference of protein function, or delivery of therapeutic agents. Selection of aptamers using the original SELEX method is cumbersome and time-consuming, often requiring 10-15 rounds of selection, and provides aptamers with a limited number of functional groups, namely four bases of DNA or RNA, although newer SELEX methods have increased this diversity. In contrast, X-Aptamers provide an unlimited number of functional groups and thus are superior targeting agents. Here, we discuss the X-Aptamer selection process.
Collapse
|
10
|
Selection of PD1/PD-L1 X-Aptamers. Biochimie 2017; 145:125-130. [PMID: 28912094 DOI: 10.1016/j.biochi.2017.09.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 09/08/2017] [Indexed: 01/09/2023]
Abstract
Specific, chemically modified aptamers (X-Aptamers) were identified against two immune checkpoint proteins, recombinant Programmed Death 1 (PD-1) and Programmed Death Ligand 1 (PD-L1). Selections were performed using a bead-based X-Aptamer (XA) library containing several different amino acid functional groups attached to dU at the 5-position. The binding affinities and specificities of the selected XA-PD1 and XA-PDL1 were validated by hPD-1 and hPD-L1 expression cells, as well as by binding to human pancreatic ductal adenocarcinoma tissue. The selected PD1 and PDL1 XAs can mimic antibody functions in in vitro assays.
Collapse
|
11
|
Volk DE, Lokesh GLR. Development of Phosphorothioate DNA and DNA Thioaptamers. Biomedicines 2017; 5:E41. [PMID: 28703779 PMCID: PMC5618299 DOI: 10.3390/biomedicines5030041] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/03/2017] [Accepted: 07/11/2017] [Indexed: 02/07/2023] Open
Abstract
Nucleic acid aptamers are short RNA- or DNA-based affinity reagents typically selected from combinatorial libraries to bind to a specific target such as a protein, a small molecule, whole cells or even animals. Aptamers have utility in the development of diagnostic, imaging and therapeutic applications due to their size, physico-chemical nature and ease of synthesis and modification to suit the application. A variety of oligonucleotide modifications have been used to enhance the stability of aptamers from nuclease degradation in vivo. The non-bridging oxygen atoms of the phosphodiester backbones of RNA and DNA aptamers can be substituted with one or two sulfur atoms, resulting in thioaptamers with phosphorothioate or phosphorodithioate linkages, respectively. Such thioaptamers are known to have increased binding affinity towards their target, as well as enhanced resistance to nuclease degradation. In this review, we discuss the development of phosphorothioate chemistry and thioaptamers, with a brief review of selection methods.
Collapse
Affiliation(s)
- David E Volk
- McGovern Medical School, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center, Houston, TX 77030, USA.
| | - Ganesh L R Lokesh
- McGovern Medical School, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center, Houston, TX 77030, USA.
| |
Collapse
|
12
|
An Update on Aptamer-Based Multiplex System Approaches for the Detection of Common Foodborne Pathogens. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-0814-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Sharma TK, Bruno JG, Dhiman A. ABCs of DNA aptamer and related assay development. Biotechnol Adv 2017; 35:275-301. [PMID: 28108354 DOI: 10.1016/j.biotechadv.2017.01.003] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/19/2016] [Accepted: 01/17/2017] [Indexed: 12/14/2022]
Abstract
This review is intended to guide the novice in aptamer research and development to understand virtually all of the aptamer development options and currently available assay modalities. Aptamer development topics range from discussions of basic and advanced versions of Systematic Evolution of Ligands by EXponential Enrichment (SELEX) and SELEX variations involving incorporation of exotic unnatural nucleotides to expand library diversity for even greater aptamer affinity and specificity to improved next generation methods of DNA sequencing, screening and tracking aptamer development throughout the SELEX process and characterization of lead aptamer candidates. Aptamer assay development topics include descriptions of various colorimetric and fluorescent assays in microplates or on membranes including homogeneous beacon and multiplexed Fluorescence Resonance Energy Transfer (FRET) assays. Finally, a discussion of the potential for marketing successful aptamer-based assays or test kits is included.
Collapse
Affiliation(s)
- Tarun Kumar Sharma
- Center for Biodesign and Diagnostics, Translational Health Science and Technology Institute, Faridabad, Haryana 121001, India; AptaBharat Innovation Private Limited, Translational Health Science and Technology Institute Incubator, Haryana 121001, India.
| | - John G Bruno
- Operational Technologies Corporation, 4100 NW Loop 410, Suite, 230, San Antonio, TX 78229, USA..
| | - Abhijeet Dhiman
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India.; Faculty of Pharmacy, Uttarakhand Technical University, Dehradun 248007, Uttarakhand, India
| |
Collapse
|
14
|
Morph-X-Select: Morphology-based tissue aptamer selection for ovarian cancer biomarker discovery. Biotechniques 2016; 61:249-259. [PMID: 27839510 DOI: 10.2144/000114473] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 09/09/2016] [Indexed: 12/28/2022] Open
Abstract
High affinity aptamer-based biomarker discovery has the advantage of simultaneously discovering an aptamer affinity reagent and its target biomarker protein. Here, we demonstrate a morphology-based tissue aptamer selection method that enables us to use tissue sections from individual patients and identify high-affinity aptamers and their associated target proteins in a systematic and accurate way. We created a combinatorial DNA aptamer library that has been modified with thiophosphate substitutions of the phosphate ester backbone at selected 5´dA positions for enhanced nuclease resistance and targeting. Based on morphological assessment, we used image-directed laser microdissection (LMD) to dissect regions of interest bound with the thioaptamer (TA) library and further identified target proteins for the selected TAs. We have successfully identified and characterized the lead candidate TA, V5, as a vimentin-specific sequence that has shown specific binding to tumor vasculature of human ovarian tissue and human microvascular endothelial cells. This new Morph-X-Select method allows us to select high-affinity aptamers and their associated target proteins in a specific and accurate way, and could be used for personalized biomarker discovery to improve medical decision-making and to facilitate the development of targeted therapies to achieve more favorable outcomes.
Collapse
|
15
|
Yüce M, Ullah N, Budak H. Trends in aptamer selection methods and applications. Analyst 2016; 140:5379-99. [PMID: 26114391 DOI: 10.1039/c5an00954e] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aptamers are target specific ssDNA, RNA or peptide sequences generated by an in vitro selection and amplification method called SELEX (Systematic Evolution of Ligands by EXponential Enrichment), which involves repetitive cycles of binding, recovery and amplification steps. Aptamers have the ability to bind with a variety of targets such as drugs, proteins, heavy metals, and pathogens with high specificity and selectivity. Aptamers are similar to monoclonal antibodies regarding their binding affinities, but they offer a number of advantages over the existing antibody-based detection methods, which make the aptamers promising diagnostic and therapeutic tools for future biomedical and analytical applications. The aim of this review article is to provide an overview of the recent advancements in aptamer screening methods along with a concise description of the major application areas of aptamers including biomarker discovery, diagnostics, imaging and nanotechnology.
Collapse
Affiliation(s)
- Meral Yüce
- Sabanci University, Nanotechnology Research and Application Centre, 34956, Istanbul, Turkey.
| | | | | |
Collapse
|
16
|
Elle IC, Karlsen KK, Terp MG, Larsen N, Nielsen R, Derbyshire N, Mandrup S, Ditzel HJ, Wengel J. Selection of LNA-containing DNA aptamers against recombinant human CD73. MOLECULAR BIOSYSTEMS 2016; 11:1260-70. [PMID: 25720604 DOI: 10.1039/c5mb00045a] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
LNA-containing DNA aptamers against CD73 (human ecto-5'-nucleotidase), a protein frequently overexpressed in solid tumours, were isolated by SELEX. A pre-defined stem-loop library, containing LNA in the forward primer region, was enriched with CD73 binding sequences through six rounds of SELEX with recombinant his-tagged CD73 immobilised on anti-his plates. Enriched pools isolated from rounds one, three and six were subjected to next-generation sequencing and analysed for enrichment using custom bioinformatics software. The software identified aptamer sequences via the primers and then performed several steps including sequence unification, clustering and alignment to identify enriched sequences. Three enriched sequences were synthesised for further analysis, two of which showed sequence similarities. These sequences exhibited binding to the recombinant CD73 with KD values of 10 nM and 3.5 nM when tested by surface plasmon resonance. Truncated variants of these aptamers and variants where the LNA nucleotides were substituted for the DNA equivalent also exhibited affinity for the recombinant CD73 in the low nanomolar range. In enzyme inhibition assays with recombinant CD73 the aptamer sequences were able to decrease the activity of the protein. However, the aptamers exhibited no binding to cellular CD73 by flow cytometry analysis likely since the epitope recognised by the aptamer was not available for binding on the cellular protein.
Collapse
Affiliation(s)
- Ida C Elle
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Conjugate-SELEX: A High-throughput Screening of Thioaptamer-liposomal Nanoparticle Conjugates for Targeted Intracellular Delivery of Anticancer Drugs. MOLECULAR THERAPY-NUCLEIC ACIDS 2016; 5:e382. [DOI: 10.1038/mtna.2016.81] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 08/17/2016] [Indexed: 01/03/2023]
|