1
|
Grassmann G, Miotto M, Desantis F, Di Rienzo L, Tartaglia GG, Pastore A, Ruocco G, Monti M, Milanetti E. Computational Approaches to Predict Protein-Protein Interactions in Crowded Cellular Environments. Chem Rev 2024; 124:3932-3977. [PMID: 38535831 PMCID: PMC11009965 DOI: 10.1021/acs.chemrev.3c00550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 04/11/2024]
Abstract
Investigating protein-protein interactions is crucial for understanding cellular biological processes because proteins often function within molecular complexes rather than in isolation. While experimental and computational methods have provided valuable insights into these interactions, they often overlook a critical factor: the crowded cellular environment. This environment significantly impacts protein behavior, including structural stability, diffusion, and ultimately the nature of binding. In this review, we discuss theoretical and computational approaches that allow the modeling of biological systems to guide and complement experiments and can thus significantly advance the investigation, and possibly the predictions, of protein-protein interactions in the crowded environment of cell cytoplasm. We explore topics such as statistical mechanics for lattice simulations, hydrodynamic interactions, diffusion processes in high-viscosity environments, and several methods based on molecular dynamics simulations. By synergistically leveraging methods from biophysics and computational biology, we review the state of the art of computational methods to study the impact of molecular crowding on protein-protein interactions and discuss its potential revolutionizing effects on the characterization of the human interactome.
Collapse
Affiliation(s)
- Greta Grassmann
- Department
of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza University of Rome, Rome 00185, Italy
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Mattia Miotto
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Fausta Desantis
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- The
Open University Affiliated Research Centre at Istituto Italiano di
Tecnologia, Genoa 16163, Italy
| | - Lorenzo Di Rienzo
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Gian Gaetano Tartaglia
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa 16163, Italy
- Center
for Human Technologies, Genoa 16152, Italy
| | - Annalisa Pastore
- Experiment
Division, European Synchrotron Radiation
Facility, Grenoble 38043, France
| | - Giancarlo Ruocco
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Physics, Sapienza University, Rome 00185, Italy
| | - Michele Monti
- RNA
System Biology Lab, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Edoardo Milanetti
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Physics, Sapienza University, Rome 00185, Italy
| |
Collapse
|
2
|
Maruyama Y, Mitsutake A. Effect of Main and Side Chains on the Folding Mechanism of the Trp-Cage Miniprotein. ACS OMEGA 2023; 8:43827-43835. [PMID: 38027385 PMCID: PMC10666239 DOI: 10.1021/acsomega.3c05809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/19/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023]
Abstract
Proteins that do not fold into their functional native state have been linked to diseases. In this study, the influence of the main and side chains of individual amino acids on the folding of the tryptophan cage (Trp-cage), a designed 20-residue miniprotein, was analyzed. For this purpose, we calculated the solvation free energy (SFE) contributions of individual atoms by using the 3D-reference interaction site model with the atomic decomposition method. The mechanism by which the Trp-cage is stabilized during the folding process was examined by calculating the total energy, which is the sum of the conformational energy and SFE. The folding process of the Trp-cage resulted in a stable native state, with a total energy that was 62.4 kcal/mol lower than that of the unfolded state. The solvation entropy, which is considered to be responsible for the hydrophobic effect, contributed 31.3 kcal/mol to structural stabilization. In other words, the contribution of the solvation entropy accounted for approximately half of the total contribution to Trp-cage folding. The hydrophobic core centered on Trp6 contributed 15.6 kcal/mol to the total energy, whereas the solvation entropy contribution was 6.3 kcal/mol. The salt bridge formed by the hydrophilic side chains of Asp9 and Arg16 contributed 10.9 and 5.0 kcal/mol, respectively. This indicates that not only the hydrophobic core but also the salt bridge of the hydrophilic side chains gain solvation entropy and contribute to stabilizing the native structure of the Trp-cage.
Collapse
Affiliation(s)
- Yutaka Maruyama
- Data
Science Center for Creative Design and Manufacturing, The Institute of Statistical Mathematics, 10-3 Midori-cho, Tachikawa, Tokyo 190-8562, Japan
- Department
of Physics, School of Science and Technology, Meiji University, 1-1-1
Higashi-Mita, Tama-ku, Kawasaki-shi, Kanagawa 214-8571, Japan
| | - Ayori Mitsutake
- Department
of Physics, School of Science and Technology, Meiji University, 1-1-1
Higashi-Mita, Tama-ku, Kawasaki-shi, Kanagawa 214-8571, Japan
| |
Collapse
|
3
|
Bajpai S, Petkov BK, Tong M, Abreu CRA, Nair NN, Tuckerman ME. An interoperable implementation of collective-variable based enhanced sampling methods in extended phase space within the OpenMM package. J Comput Chem 2023; 44:2166-2183. [PMID: 37464902 DOI: 10.1002/jcc.27182] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 07/20/2023]
Abstract
Collective variable (CV)-based enhanced sampling techniques are widely used today for accelerating barrier-crossing events in molecular simulations. A class of these methods, which includes temperature accelerated molecular dynamics (TAMD)/driven-adiabatic free energy dynamics (d-AFED), unified free energy dynamics (UFED), and temperature accelerated sliced sampling (TASS), uses an extended variable formalism to achieve quick exploration of conformational space. These techniques are powerful, as they enhance the sampling of a large number of CVs simultaneously compared to other techniques. Extended variables are kept at a much higher temperature than the physical temperature by ensuring adiabatic separation between the extended and physical subsystems and employing rigorous thermostatting. In this work, we present a computational platform to perform extended phase space enhanced sampling simulations using the open-source molecular dynamics engine OpenMM. The implementation allows users to have interoperability of sampling techniques, as well as employ state-of-the-art thermostats and multiple time-stepping. This work also presents protocols for determining the critical parameters and procedures for reconstructing high-dimensional free energy surfaces. As a demonstration, we present simulation results on the high dimensional conformational landscapes of the alanine tripeptide in vacuo, tetra-N-methylglycine (tetra-sarcosine) peptoid in implicit solvent, and the Trp-cage mini protein in explicit water.
Collapse
Affiliation(s)
- Shitanshu Bajpai
- Department of Chemistry, Indian Institute of Technology Kanpur (IITK), Kanpur, India
| | - Brian K Petkov
- Department of Chemistry, New York University (NYU), New York, New York, USA
| | - Muchen Tong
- Department of Chemistry, New York University (NYU), New York, New York, USA
| | - Charlles R A Abreu
- Chemical Engineering Department, Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nisanth N Nair
- Department of Chemistry, Indian Institute of Technology Kanpur (IITK), Kanpur, India
| | - Mark E Tuckerman
- Department of Chemistry, New York University (NYU), New York, New York, USA
- Courant Institute of Mathematical Sciences, New York University (NYU), New York, New York, USA
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, China
- Simons Center for Computational Physical Chemistry, New York University, New York, New York, USA
| |
Collapse
|
4
|
Sun Q, He X, Fu Y. The "Beacon" Structural Model of Protein Folding: Application for Trp-Cage in Water. Molecules 2023; 28:5164. [PMID: 37446826 DOI: 10.3390/molecules28135164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Protein folding is a process in which a polypeptide must undergo folding process to obtain its three-dimensional structure. Thermodynamically, it is a process of enthalpy to overcome the loss of conformational entropy in folding. Folding is primarily related to hydrophobic interactions and intramolecular hydrogen bondings. During folding, hydrophobic interactions are regarded to be the driving forces, especially in the initial structural collapse of a protein. Additionally, folding is guided by the strong interactions within proteins, such as intramolecular hydrogen bondings related to the α-helices and β-sheets of proteins. Therefore, a protein is divided into the folding key (FK) regions related to intramolecular hydrogen bondings and the non-folding key (non-FK) regions. Various conformations are expected for FK and non-FK regions. Different from non-FK regions, it is necessary for FK regions to form the specific conformations in folding, which are regarded as the necessary folding pathways (or "beacons"). Additionally, sequential folding is expected for the FK regions, and the intermediate state is found during folding. They are reflected on the local basins in the free energy landscape (FEL) of folding. To demonstrate the structural model, molecular dynamics (MD) simulations are conducted on the folding pathway of the TRP-cage in water.
Collapse
Affiliation(s)
- Qiang Sun
- Key Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education, The School of Earth and Space Sciences, Peking University, Beijing 100871, China
| | - Xian He
- Key Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education, The School of Earth and Space Sciences, Peking University, Beijing 100871, China
| | - Yanfang Fu
- Key Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education, The School of Earth and Space Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Kasavajhala K, Simmerling C. Exploring the Transferability of Replica Exchange Structure Reservoirs to Accelerate Generation of Ensembles for Alternate Hamiltonians or Protein Mutations. J Chem Theory Comput 2023; 19:1931-1944. [PMID: 36861842 PMCID: PMC10658647 DOI: 10.1021/acs.jctc.3c00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Generating precise ensembles is commonly a prerequisite to understand the energetics of biological processes using Molecular Dynamics (MD) simulations. Previously, we have shown how unweighted reservoirs built from high temperature MD simulations can accelerate convergence of Boltzmann-weighted ensembles by at least 10× with the Reservoir Replica Exchange MD (RREMD) method. Therefore, in this work, we explore whether an unweighted structure reservoir generated with one Hamiltonian (solute force field plus solvent model) can be reused to quickly generate accurately weighted ensembles for Hamiltonians other than the one that was used to generate the reservoir. We also extended this methodology to rapidly estimate the effects of mutations on peptide stability by using a reservoir of diverse structures obtained from wild-type simulations. These results suggest that structures generated via fast methods such as coarse-grained models or structures predicted by Rosetta or deep learning approaches could be integrated into a reservoir to accelerate generation of ensembles using more accurate representations.
Collapse
Affiliation(s)
- Koushik Kasavajhala
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, United States
| | - Carlos Simmerling
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
6
|
Maruyama Y, Igarashi R, Ushiku Y, Mitsutake A. Analysis of Protein Folding Simulation with Moving Root Mean Square Deviation. J Chem Inf Model 2023; 63:1529-1541. [PMID: 36821519 PMCID: PMC10015464 DOI: 10.1021/acs.jcim.2c01444] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
We apply moving root-mean-square deviation (mRMSD), which does not require a reference structure, as a method for analyzing protein dynamics. This method can be used to calculate the root-mean-square deviation (RMSD) of structure between two specified time points and to analyze protein dynamics behavior through time series analysis. We applied this method to the Trp-cage trajectory calculated by the Anton supercomputer and found that it shows regions of stable states as well as the conventional RMSD. In addition, we extracted a characteristic structure in which the side chains of Asp1 and Arg16 form hydrogen bonds near the most stable structure of the Trp-cage. We also determined that ≥20 ns is an appropriate time interval to investigate protein dynamics using mRMSD. Applying this method to NuG2 protein, we found that mRMSD can be used to detect regions of metastable states in addition to the stable state. This method can be applied to molecular dynamics simulations of proteins whose stable structures are unknown.
Collapse
Affiliation(s)
- Yutaka Maruyama
- OMRON SINIC X Corporation, Tokyo 113-0033, Japan.,Department of Physics, School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki-shi, Kanagawa 214-8571, Japan
| | - Ryo Igarashi
- OMRON SINIC X Corporation, Tokyo 113-0033, Japan
| | | | - Ayori Mitsutake
- Department of Physics, School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki-shi, Kanagawa 214-8571, Japan
| |
Collapse
|
7
|
Sahoo A, Lee PY, Matysiak S. Transferable and Polarizable Coarse Grained Model for Proteins─ProMPT. J Chem Theory Comput 2022; 18:5046-5055. [PMID: 35793442 DOI: 10.1021/acs.jctc.2c00269] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The application of classical molecular dynamics (MD) simulations at atomic resolution (fine-grained level, FG), to most biomolecular processes, remains limited because of the associated computational complexity of representing all the atoms. This problem is magnified in the presence of protein-based biomolecular systems that have a very large conformational space, and MD simulations with fine-grained resolution have slow dynamics to explore this space. Current transferable coarse grained (CG) force fields in literature are either limited to only peptides with the environment encoded in an implicit form or cannot capture transitions into secondary/tertiary peptide structures from a primary sequence of amino acids. In this work, we present a transferable CG force field with an explicit representation of the environment for accurate simulations with proteins. The force field consists of a set of pseudoatoms representing different chemical groups that can be joined/associated together to create different biomolecular systems. This preserves the transferability of the force field to multiple environments and simulation conditions. We have added electronic polarization that can respond to environmental heterogeneity/fluctuations and couple it to protein's structural transitions. The nonbonded interactions are parametrized with physics-based features such as solvation and partitioning free energies determined by thermodynamic calculations and matched with experiments and/or atomistic simulations. The bonded potentials are inferred from corresponding distributions in nonredundant protein structure databases. We present validations of the CG model with simulations of well-studied aqueous protein systems with specific protein fold types─Trp-cage, Trpzip4, villin, WW-domain, and β-α-β. We also explore the applications of the force field to study aqueous aggregation of Aβ 16-22 peptides.
Collapse
Affiliation(s)
- Abhilash Sahoo
- Biophysics Program, University of Maryland, College Park, Maryland 20742, United States
| | - Pei-Yin Lee
- Chemical Physics Program, University of Maryland, College Park, Maryland 20742, United States
| | - Silvina Matysiak
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
8
|
Bò L, Milanetti E, Chen CG, Ruocco G, Amadei A, D’Abramo M. Computational Modeling of the Thermodynamics of the Mesophilic and Thermophilic Mutants of Trp-Cage Miniprotein. ACS OMEGA 2022; 7:13448-13454. [PMID: 35559192 PMCID: PMC9088802 DOI: 10.1021/acsomega.1c06206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/10/2022] [Indexed: 06/15/2023]
Abstract
We characterize the folding-unfolding thermodynamics of two mutants of the miniprotein Trp-cage by combining extended molecular dynamics simulations and an advanced statistical-mechanical-based approach. From a set of molecular dynamics simulations in an explicit solvent performed along a reference isobar, we evaluated the structural and thermodynamic behaviors of a mesophilic and a thermophilic mutant of the Trp-cage and their temperature dependence. In the case of the thermophilic mutant, computational data confirm that our theoretical-computational approach is able to reproduce the available experimental estimate with rather good accuracy. On the other hand, the mesophilic mutant does not show a clear two-state (folded and unfolded) behavior, preventing us from reconstructing its thermodynamics; thus, an analysis of its structural behavior along a reference isobar is presented. Our results show that an extended sampling of these kinds of systems coupled to an advanced statistical-mechanical-based treatment of the data can provide an accurate description of the folding-unfolding thermodynamics along a reference isobar, rationalizing the discrepancies between the simulated and experimental systems.
Collapse
Affiliation(s)
- Leonardo Bò
- Department
of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Edoardo Milanetti
- Department
of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Center
for Life Nano & Neuroscience, Italian
Institute of Technology, Viale Regina Elena 291, 00161 Rome, Italy
| | - Cheng Giuseppe Chen
- Department
of Chemistry, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Giancarlo Ruocco
- Department
of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Center
for Life Nano & Neuroscience, Italian
Institute of Technology, Viale Regina Elena 291, 00161 Rome, Italy
| | - Andrea Amadei
- Department
of Chemical Sciences and Technology, Universitá
degli Studi di Roma Tor Vergata, Via della ricerca scientifica 00133 Rome, Italy
| | - Marco D’Abramo
- Department
of Chemistry, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
9
|
Kapakayala AB, Nair NN. Boosting the conformational sampling by combining replica exchange with solute tempering and well-sliced metadynamics. J Comput Chem 2021; 42:2233-2240. [PMID: 34585768 DOI: 10.1002/jcc.26752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/30/2021] [Accepted: 09/12/2021] [Indexed: 01/22/2023]
Abstract
Methods that combine collective variable (CV) based enhanced sampling and global tempering approaches are used in speeding-up the conformational sampling and free energy calculation of large and soft systems with a plethora of energy minima. In this paper, a new method of this kind is proposed in which the well-sliced metadynamics approach (WSMTD) is united with replica exchange with solute tempering (REST2) method. WSMTD employs a divide-and-conquer strategy wherein high-dimensional slices of a free energy surface are independently sampled and combined. The method enables one to accomplish a controlled exploration of the CV-space with a restraining bias as in umbrella sampling, and enhance-sampling of one or more orthogonal CVs using a metadynamics like bias. The new hybrid method proposed here enables boosting the sampling of more slow degrees of freedom in WSMTD simulations, without the need to specify associated CVs, through a replica exchange scheme within the framework of REST2. The high-dimensional slices of the probability distributions of CVs computed from the united WSMTD and REST2 simulations are subsequently combined using the weighted histogram analysis method to obtain the free energy surface. We show that the new method proposed here is accurate, improves the conformational sampling, and achieves quick convergence in free energy estimates. We demonstrate this by computing the conformational free energy landscapes of solvated alanine tripeptide and Trp-cage mini protein in explicit water.
Collapse
Affiliation(s)
- Anji Babu Kapakayala
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India.,School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Australia
| | - Nisanth N Nair
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| |
Collapse
|
10
|
Ploetz EA, Karunaweera S, Smith PE. Kirkwood-Buff-Derived Force Field for Peptides and Proteins: Applications of KBFF20. J Chem Theory Comput 2021; 17:2991-3009. [PMID: 33878264 DOI: 10.1021/acs.jctc.1c00076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here, we perform structural, thermodynamic, and kinetics tests of the Kirkwood-Buff-derived force field, KBFF20, for peptides and proteins developed in the previous article. The physical/structural tests measure the ability of KBFF20 to capture the experimental J-couplings for small peptides, to keep globular monomeric and oligomeric proteins folded, and to produce the experimentally relevant expanded conformational ensembles of intrinsically disordered proteins. The thermodynamic-based tests probe KBFF20's ability to quantify the preferential interactions of sodium chloride around native β-lactoglobulin and urea around native lysozyme, to reproduce the melting curves for small helix- and sheet-based peptides, and to fold the small proteins Trp-cage and Villin. The kinetics-based tests quantify how well KBFF20 can match the experimental contact formation rates of small, repeat-sequence peptides of variable lengths and the rotational diffusion coefficients of globular proteins. The results suggest that KBFF20 is naturally able to reproduce properties of both folded and disordered proteins, which we attribute to the use of the Kirkwood-Buff theory as the foundation of the force field's development. However, we show that KBFF20 tends to lose some well-defined secondary structural elements and increases the percentage of coil regions, indicating that the perfect balance of all interactions remains elusive. Nevertheless, we argue that KBFF20 is an improvement over recently modified force fields that require ad hoc interventions to prevent the collapse of intrinsically disordered proteins.
Collapse
Affiliation(s)
- Elizabeth A Ploetz
- Department of Chemistry, Kansas State University, 213 CBC Building, 1212 Mid-Campus Drive North, Manhattan, Kansas 66506, United States
| | - Sadish Karunaweera
- Department of Chemistry, Kansas State University, 213 CBC Building, 1212 Mid-Campus Drive North, Manhattan, Kansas 66506, United States
| | - Paul E Smith
- Department of Chemistry, Kansas State University, 213 CBC Building, 1212 Mid-Campus Drive North, Manhattan, Kansas 66506, United States
| |
Collapse
|
11
|
Yasuda T, Shigeta Y, Harada R. The Folding of Trp-cage is Regulated by Stochastic Flip of the Side Chain of Tryptophan. CHEM LETT 2021. [DOI: 10.1246/cl.200699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Takunori Yasuda
- College of Biological Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-0821, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-0821, Japan
| | - Ryuhei Harada
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-0821, Japan
| |
Collapse
|
12
|
The Uniqueness of Tryptophan in Biology: Properties, Metabolism, Interactions and Localization in Proteins. Int J Mol Sci 2020; 21:ijms21228776. [PMID: 33233627 PMCID: PMC7699789 DOI: 10.3390/ijms21228776] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Tryptophan (Trp) holds a unique place in biology for a multitude of reasons. It is the largest of all twenty amino acids in the translational toolbox. Its side chain is indole, which is aromatic with a binuclear ring structure, whereas those of Phe, Tyr, and His are single-ring aromatics. In part due to these elaborate structural features, the biosynthetic pathway of Trp is the most complex and the most energy-consuming among all amino acids. Essential in the animal diet, Trp is also the least abundant amino acid in the cell, and one of the rarest in the proteome. In most eukaryotes, Trp is the only amino acid besides Met, which is coded for by a single codon, namely UGG. Due to the large and hydrophobic π-electron surface area, its aromatic side chain interacts with multiple other side chains in the protein, befitting its strategic locations in the protein structure. Finally, several Trp derivatives, namely tryptophylquinone, oxitriptan, serotonin, melatonin, and tryptophol, have specialized functions. Overall, Trp is a scarce and precious amino acid in the cell, such that nature uses it parsimoniously, for multiple but selective functions. Here, the various aspects of the uniqueness of Trp are presented in molecular terms.
Collapse
|
13
|
Gerig JT. Examination of Interactions of Hexafluoro-2-propanol with Trp-Cage in Hexafluoro-2-propanol-Water by MD Simulations and Intermolecular Nuclear Overhauser Effects. J Phys Chem B 2020; 124:9793-9802. [PMID: 33095591 DOI: 10.1021/acs.jpcb.0c06476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
All-atom molecular dynamic simulations of the peptide Trp-cage in 30% hexafluoro-2-propanol- water (V/V) at 278 K have been carried out with the goal of exploring peptide hydrogen-solvent fluorine nuclear spin cross relaxation. Force field parameters for HFIP reported by Fioroni et al. along with the fluorine parameters of the TFE5 model reported by this lab were used. Water was represented by the TIP5P-Ew model. Peptide modeling used the AMBER99SB-ILDN force field. Translational diffusion coefficients of solution components at 278 K were predicted to within 35% of experimental values using these parameter sets. The simulations indicate that the solvent mixture is not homogeneous, with HFIP molecules clustered into aggregates as large as 53 fluoroalcohol molecules. The solvent environment of surface atoms of Trp-cage fluctuates between being HFIP-rich and more water-rich about every 10 ns. In accord with previous studies by other groups, the average concentration of HFIP near the surface of the peptide is significantly enhanced over the concentration of HFIP in the bulk solvent. In the simulations, ∼7% of the initial contacts between HFIP molecules and Trp-cage develop into peptide-fluoroalcohol interactions that persist for times as long as 8 ns. Most of the available experimental nuclear spin cross-relaxation rates (ΣHF) for hydrogens of the Trp-cage in 30% HFIP-water are reproduced from the MD trajectories to within uncertainties of the experimental data and the simulations. However, a few calculated ΣHF values for hydrogens of the Trp-cage do not agree with experiment. These tend to be situations where long-lived peptide-HFIP interactions are predicted. The disagreements between observed and calculated ΣHF in these instances signal defects in the modeling parameters and procedures that are presently unrecognized.
Collapse
Affiliation(s)
- J T Gerig
- Department of Chemistry & Biochemistry University of California, Santa Barbara Santa Barbara, California 93106, United States
| |
Collapse
|
14
|
Preußke N, Moormann W, Bamberg K, Lipfert M, Herges R, Sönnichsen FD. Visible-light-driven photocontrol of the Trp-cage protein fold by a diazocine cross-linker. Org Biomol Chem 2020; 18:2650-2660. [PMID: 32207764 DOI: 10.1039/c9ob02442e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Diazocines are characterized by extraordinary photochemical properties rendering them of particular interest for switching the conformation of biomolecules with visible light. Current developments afford synthetic access to unprecedented diazocine derivatives promising particular opportunities in photocontrol of proteins and biological systems. In this work, the well-established approach of photocontrolling the secondary structure of α-helices was exploited using a diazocine to reversibly fold and unfold the tertiary structure of a small protein. The protein of choice was the globulary folded Trp-cage, a widely used model system for the elucidation of protein folding pathways. A specifically designed, short and rigid dicarboxy-functionalized diazocine-based cross-linker was attached to two solvent-exposed side chains at the α-helix of the miniprotein through the use of a primary amine-selective active ester. This cross-linking strategy is orthogonal to the common cysteine-based chemistry. The cross-linked Trp-cage was successfully photoisomerized and exhibited a strong correlation between protein fold and diazocine isomeric state. As determined by NMR spectroscopy, the cis-isomer stabilized the fold, while the trans-isomer led to complete protein unfolding. The successful switching of the protein fold in principle demonstrates the ability to control protein function, as the activity depends on their structural integrity.
Collapse
Affiliation(s)
- Nils Preußke
- Otto-Diels-Institute for Organic Chemistry, Christian-Albrechts-University of Kiel, Otto-Hahn-Platz 4, 24118 Kiel, Germany.
| | | | | | | | | | | |
Collapse
|
15
|
Chalyavi F, Schmitz AJ, Tucker MJ. Unperturbed Detection of the Dynamic Structure in the Hydrophobic Core of Trp-Cage via Two-Dimensional Infrared Spectroscopy. J Phys Chem Lett 2020; 11:832-837. [PMID: 31931573 PMCID: PMC7026909 DOI: 10.1021/acs.jpclett.9b03706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The tyrosine ring mode is an intrinsic non-perturbing site-specific infrared reporter for conformational dynamics within protein systems. This transition is influenced by direct and indirect interactions associated with the electron-donating ability and the hydrophobicity of the surrounding molecules. Utilizing an intrinsic tyrosine moiety, two-dimensional infrared spectra of Trp-cage, often called the "hydrogen atom" of protein folding, were measured in the folded and denatured states to uncover the dynamics of the hydrophobic core. The vibrational lifetimes and the correlation decays of the tyrosine ring mode showed significant changes upon both temperature and chemical denaturation of the Trp-cage miniprotein, indicating important structural features of the hydrophobic core and its dynamics. The observed Trp6-Tyr3 interactions are in good agreement with the prior studies of the folded state, but they reach beyond the static structure. These stacking interactions and orientations fluctuate on the picosecond time scale as measured through the spectral dephasing within a dehydrated environment.
Collapse
Affiliation(s)
- Farzaneh Chalyavi
- Department of Chemistry , University of Nevada, Reno , Reno , Nevada 89557 , United States
| | - Andrew J Schmitz
- Department of Chemistry , University of Nevada, Reno , Reno , Nevada 89557 , United States
| | - Matthew J Tucker
- Department of Chemistry , University of Nevada, Reno , Reno , Nevada 89557 , United States
| |
Collapse
|
16
|
D'Abramo M, Del Galdo S, Amadei A. Theoretical-computational modelling of the temperature dependence of the folding-unfolding thermodynamics and kinetics: the case of a Trp-cage. Phys Chem Chem Phys 2019; 21:23162-23168. [PMID: 31612180 DOI: 10.1039/c9cp03303c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we present a theoretical-computational study of the thermodynamics and kinetics of an aqueous Trp-cage, a 20-residue long miniprotein. The combined use of accurate molecular dynamics simulations rigorously reconstructing the proper isobar of the system and a sound statistical-mechanical model provides a quantitative description of the temperature dependence of the relevant physical-chemical properties and insights into the detailed mechanisms regulating the folding-unfolding properties.
Collapse
Affiliation(s)
- Marco D'Abramo
- Dept. of Chemistry, Sapienza University of Rome, P.le A. Moro, 5, 00185, Rome, Italy.
| | | | | |
Collapse
|
17
|
Tan Q, Duan M, Li M, Han L, Huo S. Approximating dynamic proximity with a hybrid geometry energy-based kernel for diffusion maps. J Chem Phys 2019; 151:105101. [PMID: 31521094 DOI: 10.1063/1.5100968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The diffusion map is a dimensionality reduction method. The reduction coordinates are associated with the leading eigenfunctions of the backward Fokker-Planck operator, providing a dynamic meaning for these coordinates. One of the key factors that affect the accuracy of diffusion map embedding is the dynamic measure implemented in the Gaussian kernel. A common practice in diffusion map study of molecular systems is to approximate dynamic proximity with RMSD (root-mean-square deviation). In this paper, we present a hybrid geometry-energy based kernel. Since high energy-barriers may exist between geometrically similar conformations, taking both RMSD and energy difference into account in the kernel can better describe conformational transitions between neighboring conformations and lead to accurate embedding. We applied our diffusion map method to the β-hairpin of the B1 domain of streptococcal protein G and to Trp-cage. Our results in β-hairpin show that the diffusion map embedding achieves better results with the hybrid kernel than that with the RMSD-based kernel in terms of free energy landscape characterization and a new correlation measure between the cluster center Euclidean distances in the reduced-dimension space and the reciprocals of the total net flow between these clusters. In addition, our diffusion map analysis of the ultralong molecular dynamics trajectory of Trp-cage has provided a unified view of its folding mechanism. These promising results demonstrate the effectiveness of our diffusion map approach in the analysis of the dynamics and thermodynamics of molecular systems. The hybrid geometry-energy criterion could be also useful as a general dynamic measure for other purposes.
Collapse
Affiliation(s)
- Qingzhe Tan
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, Massachusetts 01610, USA
| | - Mojie Duan
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, Massachusetts 01610, USA
| | - Minghai Li
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, Massachusetts 01610, USA
| | - Li Han
- Department of Math and Computer Science, Clark University, Worcester, Massachusetts 01610, USA
| | - Shuanghong Huo
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, Massachusetts 01610, USA
| |
Collapse
|
18
|
Graham KA, Byrne A, Mason M, Andersen NH. Optimizing the fold stability of the circularly permuted Trp-cage motif. Biopolymers 2019; 110:e23327. [PMID: 31479150 DOI: 10.1002/bip.23327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/11/2019] [Accepted: 08/13/2019] [Indexed: 11/09/2022]
Abstract
Through optimization of the linker region and key stabilizing mutations, it has been possible to improve the stability of the circularly permuted (cp) Trp-cage miniprotein. However, even the most stable Trp-cage circular permutants are still less stable than the analogous standard topology (std) Trp-cages. Extending mutational studies of Trp-cage fold stability to cp-species, including analogs lacking chain terminal charges, has uncovered and quantitated some additional stabilizing and destabilizing interactions. Upon protonation, the circular permutants are destabilized to a much greater extent than the standard topology series. End effects, particularly Coulombic interactions, appear to be more important for the cp-series while the Y10/P4 interaction in the cp-series is not as significant a stabilizing feature as the corresponding Y3/P19 in the standard topology series.
Collapse
Affiliation(s)
- Katherine A Graham
- Department of Chemistry, University of Washington, Seattle, Washington, United States of America
| | - Aimee Byrne
- Department of Chemistry, University of Washington, Seattle, Washington, United States of America
| | - Micheal Mason
- Department of Chemistry, University of Washington, Seattle, Washington, United States of America
| | - Niels H Andersen
- Department of Chemistry, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
19
|
Graham KA, Byrne A, Son R, Andersen NH. Reversing the typical pH stability profile of the Trp-cage. Biopolymers 2019; 110:e23260. [PMID: 30779444 DOI: 10.1002/bip.23260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/14/2018] [Accepted: 01/07/2019] [Indexed: 12/18/2022]
Abstract
The Trp-cage, an 18-20 residue miniprotein, has emerged as a primary test system for evaluating computational fold prediction and folding rate determination efforts. As it turns out, a number of stabilizing interactions in the Trp-cage folded state have a strong pH dependence; all prior Trp-cage mutants have been destabilized under carboxylate-protonating conditions. Notable among the pH dependent stabilizing interactions within the Trp-cage are: (1) an Asp as the helix N-cap, (2) an H-bonded Asp9/Arg16 salt bridge, (3) an interaction between the chain termini which are in close spatial proximity, and (4) additional side chain interactions with Asp9. In the present study, we have prepared Trp-cage species that are significantly more stable at pH 2.5 (rather than 7) and quantitated the contribution of each interaction listed above. The Trp-cage structure remains constant with the pH change. The study has also provided measures of the stabilizing contribution of indole ring shielding from surface exposure and the destabilizing effects of an ionized Asp at the C-terminus of an α-helix.
Collapse
Affiliation(s)
| | - Aimee Byrne
- Department of Chemistry, University of Washington, Seattle, Washington
| | - Ruth Son
- Department of Chemistry, University of Washington, Seattle, Washington
| | - Niels H Andersen
- Department of Chemistry, University of Washington, Seattle, Washington
| |
Collapse
|
20
|
Tsuchie R, Shimosato M, Hamasaki K. Hydrophobic Association of a Side Chains Induces Reversible Helix Folding in a Dual Aromatic Ring Tagged Short Peptide. CHEM LETT 2018. [DOI: 10.1246/cl.180601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ryusuke Tsuchie
- Department of Applied Chemistry, Shibaura Institute of Technology, 3-5-7 Toyosu, Koto-ku, Tokyo 135-8548, Japan
| | - Mayu Shimosato
- Department of Applied Chemistry, Shibaura Institute of Technology, 3-5-7 Toyosu, Koto-ku, Tokyo 135-8548, Japan
| | - Keita Hamasaki
- Department of Applied Chemistry, Shibaura Institute of Technology, 3-5-7 Toyosu, Koto-ku, Tokyo 135-8548, Japan
| |
Collapse
|
21
|
Kamiya M, Sugita Y. Flexible selection of the solute region in replica exchange with solute tempering: Application to protein-folding simulations. J Chem Phys 2018; 149:072304. [PMID: 30134668 DOI: 10.1063/1.5016222] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Replica-exchange molecular dynamics (REMD) and their variants have been widely used in simulations of the biomolecular structure and dynamics. Replica exchange with solute tempering (REST) is one of the methods where temperature of a pre-defined solute molecule is exchanged between replicas, while solvent temperatures in all the replicas are kept constant. REST greatly reduces the number of replicas compared to the temperature REMD, while replicas at low temperatures are often trapped under their conditions, interfering with the conformational sampling. Here, we introduce a new scheme of REST, referred to as generalized REST (gREST), where the solute region is defined as a part of a molecule or a part of the potential energy terms, such as the dihedral-angle energy term or Lennard-Jones energy term. We applied this new method to folding simulations of a β-hairpin (16 residues) and a Trp-cage (20 residues) in explicit water. The protein dihedral-angle energy term is chosen as the solute region in the simulations. gREST reduces the number of replicas necessary for good random walks in the solute-temperature space and covers a wider conformational space compared to the conventional REST2. Considering the general applicability, gREST should become a promising tool for the simulations of protein folding, conformational dynamics, and an in silico drug design.
Collapse
Affiliation(s)
- Motoshi Kamiya
- Computational Biophysics Research Team, RIKEN Advanced Institute for Computational Science, 7-1-26 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Yuji Sugita
- Computational Biophysics Research Team, RIKEN Advanced Institute for Computational Science, 7-1-26 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
22
|
Gerig JT. Examination of ethanol interactions with Trp‐cage peptide through MD simulations and intermolecular nuclear Overhauser effects. J PHYS ORG CHEM 2018. [DOI: 10.1002/poc.3809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- John T. Gerig
- Department of Chemistry and Biochemistry University of California, Santa Barbara Santa Barbara CA USA
| |
Collapse
|
23
|
Lee JG, Ryu JH, Kim SM, Park MY, Kim SH, Shin YG, Sohn JW, Kim HH, Park ZY, Seong JY, Kim JI. Replacement of the C-terminal Trp-cage of exendin-4 with a fatty acid improves therapeutic utility. Biochem Pharmacol 2018. [PMID: 29522713 DOI: 10.1016/j.bcp.2018.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Exendin-4, a 39 amino acid peptide isolated from the saliva of the Gila monster, plays an important role in regulating glucose homeostasis, and is used clinically for the treatment of type 2 diabetes. Exendin-4 shares 53% sequence identity with the incretin hormone glucagon-like peptide 1 (GLP-1) but, unlike GLP-1, is highly resistant to proteolytic enzymes such as dipeptidyl peptidase IV (DPP-IV) and neutral endopeptidase 24.11 (NEP 24.11). Herein, we focused on the structure and function of the C-terminal Trp-cage of exendin-4, and suggest that it may be structurally required for resistance to proteolysis by NEP 24.11. Using a series of substitutions and truncations of the C-terminal Trp-cage, we found that residues 1-33, including the N-terminal and helical regions of wild-type (WT) exendin-4, is the minimum motif required for both high peptidase resistance and potent activity toward the GLP-1 receptor comparable to WT exendin-4. To improve the therapeutic utility of C-terminally truncated exendin-4, we incorporated various fatty acids into exendin-4(1-33) in which Ser33 was substituted with Lys for acylation. Exendin-4(1-32)K-capric acid exhibited the most well balanced activity, with much improved therapeutic utility for regulating blood glucose and body weight relative to WT exendin-4.
Collapse
Affiliation(s)
- Jung Gi Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, 123, Cheomdangwagiro, Buk-gu, Gwangju 500-712, South Korea
| | - Jae Ha Ryu
- School of Life Sciences, Gwangju Institute of Science and Technology, 123, Cheomdangwagiro, Buk-gu, Gwangju 500-712, South Korea
| | - Seon-Myung Kim
- Rm. 206, Pilot Plant, Anygen, Gwangju Technopark, Cheomdankwagiro 333, Buk-gu, Gwangju 61008, South Korea
| | - Moon-Young Park
- Rm. 206, Pilot Plant, Anygen, Gwangju Technopark, Cheomdankwagiro 333, Buk-gu, Gwangju 61008, South Korea
| | - San-Ho Kim
- Rm. 206, Pilot Plant, Anygen, Gwangju Technopark, Cheomdankwagiro 333, Buk-gu, Gwangju 61008, South Korea
| | - Young G Shin
- College of Pharmacy, Chungnam National University, Daejeon, South Korea
| | - Jong-Woo Sohn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeon 34141, South Korea
| | - Ha Hyung Kim
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 156-756, South Korea
| | - Zee-Yong Park
- School of Life Sciences, Gwangju Institute of Science and Technology, 123, Cheomdangwagiro, Buk-gu, Gwangju 500-712, South Korea
| | - Jae Young Seong
- Graduate School of Medicine, Korea University, Anam-dong 5ga, Seongbuk-gu, Seoul 136-701, South Korea
| | - Jae Il Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, 123, Cheomdangwagiro, Buk-gu, Gwangju 500-712, South Korea; Rm. 206, Pilot Plant, Anygen, Gwangju Technopark, Cheomdankwagiro 333, Buk-gu, Gwangju 61008, South Korea.
| |
Collapse
|
24
|
Goyal S, Chattopadhyay A, Kasavajhala K, Priyakumar UD. Role of Urea–Aromatic Stacking Interactions in Stabilizing the Aromatic Residues of the Protein in Urea-Induced Denatured State. J Am Chem Soc 2017; 139:14931-14946. [DOI: 10.1021/jacs.7b05463] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Siddharth Goyal
- Center for Computational
Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500 032, India
| | - Aditya Chattopadhyay
- Center for Computational
Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500 032, India
| | - Koushik Kasavajhala
- Center for Computational
Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500 032, India
| | - U. Deva Priyakumar
- Center for Computational
Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500 032, India
| |
Collapse
|
25
|
Andryushchenko VA, Chekmarev SF. Temperature evolution of Trp-cage folding pathways: An analysis by dividing the probability flux field into stream tubes. J Biol Phys 2017; 43:565-583. [PMID: 28983809 DOI: 10.1007/s10867-017-9470-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 09/01/2017] [Indexed: 11/25/2022] Open
Abstract
Owing to its small size and very fast folding rate, the Trp-cage miniprotein has become a benchmark system to study protein folding. Two folding pathways were found to be characteristic of this protein: pathway I, in which the hydrophobic collapse precedes the formation of α-helix, and pathway II, in which the events occur in the reverse order. At the same time, the relative contribution of these pathways at different temperatures as well as the nature of transition from one pathway to the other remain unclear. To gain insight into this issue, we employ a recently proposed hydrodynamic description of protein folding, in which the process of folding is considered as a motion of a "folding fluid" (Chekmarev et al., Phys. Rev. Lett. 100(1), 018107 2008). Using molecular dynamics simulations, we determine the field of probability fluxes of transitions in a space of collective variables and divide it into stream tubes. Each tube contains a definite fraction of the total folding flow and can be associated with a certain pathway. Specifically, three temperatures were considered, T = 285K, T = 315K, and T = 325K. We have found that as the temperature increases, the contribution of pathway I, which is approximately 90% of the total folding flow at T = 285K, decreases to approximately 10% at T = 325K, i.e., pathway II becomes dominant. At T = 315K, both pathways contribute approximately equally. All these temperatures are found below the calculated melting point, which suggests that the Trp-cage folding mechanism is determined by kinetic factors rather than thermodynamics.
Collapse
Affiliation(s)
- Vladimir A Andryushchenko
- Institute of Thermophysics, SB RAS, 630090, Novosibirsk, Russia
- Department of Physics, Novosibirsk State University, 630090, Novosibirsk, Russia
| | - Sergei F Chekmarev
- Institute of Thermophysics, SB RAS, 630090, Novosibirsk, Russia.
- Department of Physics, Novosibirsk State University, 630090, Novosibirsk, Russia.
| |
Collapse
|
26
|
Watson MD, Monroe J, Raleigh DP. Size-Dependent Relationships between Protein Stability and Thermal Unfolding Temperature Have Important Implications for Analysis of Protein Energetics and High-Throughput Assays of Protein–Ligand Interactions. J Phys Chem B 2017; 122:5278-5285. [DOI: 10.1021/acs.jpcb.7b05684] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Daniel P. Raleigh
- Research Department of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| |
Collapse
|
27
|
Pang YP. How fast fast-folding proteins fold in silico. Biochem Biophys Res Commun 2017; 492:135-139. [PMID: 28802577 DOI: 10.1016/j.bbrc.2017.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 08/02/2017] [Indexed: 12/30/2022]
Abstract
In reported microcanonical molecular dynamics simulations, fast-folding proteins CLN025 and Trp-cage autonomously folded to experimentally determined native conformations. However, the folding times of these proteins derived from the simulations were more than 4-10 times longer than their experimental values. This article reports autonomous folding of CLN025 and Trp-cage in isobaric-isothermal molecular dynamics simulations with agreements within factors of 0.69-1.75 between simulated and experimental folding times at different temperatures. These results show that CLN025 and Trp-cage can now autonomously fold in silico as fast as in experiments, and suggest that the accuracy of folding simulations for fast-folding proteins begins to overlap with the accuracy of folding experiments. This opens new prospects of developing computer algorithms that can predict both ensembles of conformations and their interconversion rates for a protein from its sequence for artificial intelligence on how and when a protein acts as a receiver, switch, and relay to facilitate various subcellular-to-tissue communications. Then the genetic information that encodes proteins can be better read in the context of intricate biological functions.
Collapse
Affiliation(s)
- Yuan-Ping Pang
- Computer-Aided Molecular Design Laboratory, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
28
|
Abstract
Over the last few years, there has been significant progress in the knowledge on protein folding. However, some aspects of protein folding still need further attention. One of these is the exact relationship between the folded and unfolded states and the differences between them. Whereas the folded state is well known, at least from a structural point of view (just think of the thousands of structures in online databases), the unfolded state is more elusive. Also, these are dynamic states of matter, and this aspect cannot be overlooked. Molecular dynamics-derived correlation matrices are an invaluable source of information on the protein dynamics. Here, bulk eigenvalue spectra of the correlation matrices obtained from the Trp-cage dynamics in the folded and unfolded states have been analyzed. The associated modes represent localized vibrations and are significantly affected by the fine details of the structure and interactions. Therefore, these bulk modes can be used as probes of the protein local dynamics in different states. The results of these analyses show that the correlation matrices describing the folded and unfolded dynamics belong to different symmetry classes. This finding provides new support to the phase-transition models of protein folding.
Collapse
Affiliation(s)
- Luigi L Palese
- Department of Basic Medical Sciences, Neurosciences and Sense Organs (SMBNOS), University of Bari "Aldo Moro" , Piazza G.Cesare - Policlinico, 70124 Bari, Italy
| |
Collapse
|
29
|
Pang YP. FF12MC: A revised AMBER forcefield and new protein simulation protocol. Proteins 2016; 84:1490-516. [PMID: 27348292 PMCID: PMC5129589 DOI: 10.1002/prot.25094] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/16/2016] [Accepted: 06/18/2016] [Indexed: 12/25/2022]
Abstract
Specialized to simulate proteins in molecular dynamics (MD) simulations with explicit solvation, FF12MC is a combination of a new protein simulation protocol employing uniformly reduced atomic masses by tenfold and a revised AMBER forcefield FF99 with (i) shortened CH bonds, (ii) removal of torsions involving a nonperipheral sp(3) atom, and (iii) reduced 1-4 interaction scaling factors of torsions ϕ and ψ. This article reports that in multiple, distinct, independent, unrestricted, unbiased, isobaric-isothermal, and classical MD simulations FF12MC can (i) simulate the experimentally observed flipping between left- and right-handed configurations for C14-C38 of BPTI in solution, (ii) autonomously fold chignolin, CLN025, and Trp-cage with folding times that agree with the experimental values, (iii) simulate subsequent unfolding and refolding of these miniproteins, and (iv) achieve a robust Z score of 1.33 for refining protein models TMR01, TMR04, and TMR07. By comparison, the latest general-purpose AMBER forcefield FF14SB locks the C14-C38 bond to the right-handed configuration in solution under the same protein simulation conditions. Statistical survival analysis shows that FF12MC folds chignolin and CLN025 in isobaric-isothermal MD simulations 2-4 times faster than FF14SB under the same protein simulation conditions. These results suggest that FF12MC may be used for protein simulations to study kinetics and thermodynamics of miniprotein folding as well as protein structure and dynamics. Proteins 2016; 84:1490-1516. © 2016 The Authors Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yuan-Ping Pang
- Computer-Aided Molecular Design Laboratory, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
30
|
Palese LL. Correlation Analysis of Trp-Cage Dynamics in Folded and Unfolded States. J Phys Chem B 2015; 119:15568-73. [PMID: 26619349 DOI: 10.1021/acs.jpcb.5b09678] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A fundamental and still debated problem is how folded structures of proteins are related to their unfolded state. Besides the classical view, in which a large number of conformations characterize the unfolded state while the folded one is dominated by a single structure, recently a reassessment of the denatured state has been suggested. A growing amount of evidence indicates that not only the folded but also the unfolded state is at least partially organized. Here, we try to answer the question of how different protein dynamics is in folded and unfolded states by performing all-atom molecular dynamics simulations on the model protein Trp-cage. Random matrix theory inspired analysis of the correlation matrices has been carried out. The spectra of these correlation matrices show that the low rank modes of Trp-cage dynamics are outside of the limit expected for a random system both in folded and in unfolded conditions. These findings shed light on the nature of the unfolded state of the proteins, suggesting that it is much less random than previously thought.
Collapse
Affiliation(s)
- Luigi L Palese
- Department of Basic Medical Sciences, Neurosciences and Sense Organs (SMBNOS), University of Bari "Aldo Moro" , Piazza G. Cesare - Policlinico, 70124 Bari, Italy
| |
Collapse
|
31
|
A hydrodynamic view of the first-passage folding of Trp-cage miniprotein. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 45:229-43. [PMID: 26559408 DOI: 10.1007/s00249-015-1089-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/27/2015] [Accepted: 10/09/2015] [Indexed: 12/11/2022]
Abstract
We study folding of Trp-cage miniprotein in the conditions when the native state of the protein is stable and unfolding events are improbable, which corresponds to physiological conditions. Using molecular dynamics simulations with an implicit solvent model, an ensemble of folding trajectories from unfolded (practically extended) states of the protein to the native state was generated. To get insight into the folding kinetics, the free energy surface and kinetic network projected on this surface were constructed. This, "conventional" analysis of the folding reaction was followed by a recently proposed hydrodynamic description of protein folding (Chekmarev et al. in Phys Rev Lett 100(1):018107, 2008), in which the process of the first-passage folding is viewed as a stationary flow of a folding "fluid" from the unfolded to native state. This approach is conceptually different from the previously used approaches and thus allows an alternative view of the folding dynamics and kinetics of Trp-cage, the conclusions about which are very diverse. In agreement with most previous studies, we observed two characteristic folding pathways: in one pathway (I), the collapse of the hydrophobic core precedes the formation of the [Formula: see text]-helix, and in the other pathway (II), these events occur in the reverse order. We found that although pathway II is complicated by a repeated partial protein unfolding, it contributes to the total folding flow as little as ≈10%, so that the folding kinetics remain essentially single-exponential.
Collapse
|
32
|
Zhou CY, Jiang F, Wu YD. Folding Thermodynamics and Mechanism of Five Trp-Cage Variants from Replica-Exchange MD Simulations with RSFF2 Force Field. J Chem Theory Comput 2015; 11:5473-80. [PMID: 26574335 DOI: 10.1021/acs.jctc.5b00581] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
To test whether our recently developed residue-specific force field RSFF2 can reproduce the mutational effect on the thermal stability of Trp-cage mini-protein and decipher its detailed folding mechanism, we carried out long-time replica-exchange molecular dynamics (REMD) simulations on five Trp-cage variants, including TC5b and TC10b. Initiated from their unfolded structures, the simulations not only well-reproduce their experimental structures but also their melting temperatures and folding enthalpies reasonably well. For each Trp-cage variant, the overall folding free energy landscape is apparently two-state, but some intermediate states can be observed when projected on more detailed coordinates. We also found different variants have the same major folding pathway, including the well formed PII-helix in the unfolded state, the formation of W6-P12/P18/P19 contacts and the α-helix before the transition state, the following formation of most native contacts, and the final native loop formation. The folding mechanism derived here is consistent with many previous simulations and experiments.
Collapse
Affiliation(s)
- Chen-Yang Zhou
- Laboratory of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School , Shenzhen 518055, China.,College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Fan Jiang
- Laboratory of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School , Shenzhen 518055, China
| | - Yun-Dong Wu
- Laboratory of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School , Shenzhen 518055, China.,College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| |
Collapse
|
33
|
Kim SB, Dsilva CJ, Kevrekidis IG, Debenedetti PG. Systematic characterization of protein folding pathways using diffusion maps: Application to Trp-cage miniprotein. J Chem Phys 2015; 142:085101. [DOI: 10.1063/1.4913322] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sang Beom Kim
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Carmeline J. Dsilva
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Ioannis G. Kevrekidis
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
- Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA
| | - Pablo G. Debenedetti
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
34
|
Abaskharon RM, Culik RM, Woolley GA, Gai F. Tuning the Attempt Frequency of Protein Folding Dynamics via Transition-State Rigidification: Application to Trp-Cage. J Phys Chem Lett 2015; 6:521-6. [PMID: 26120378 PMCID: PMC4479204 DOI: 10.1021/jz502654q] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 01/22/2015] [Indexed: 05/23/2023]
Abstract
The attempt frequency or prefactor (k0) of the transition-state rate equation of protein folding kinetics has been estimated to be on the order of 10(6) s(-1), which is many orders of magnitude smaller than that of chemical reactions. Herein we use the mini-protein Trp-cage to show that it is possible to significantly increase the value of k0 for a protein folding reaction by rigidifying the transition state. This is achieved by reducing the conformational flexibility of a key structural element (i.e., an α-helix) formed in the transition state via photoisomerization of an azobenzene cross-linker. We find that this strategy not only decreases the folding time of the Trp-cage peptide by more than an order of magnitude (to ∼100 ns at 25°C) but also exposes parallel folding pathways, allowing us to provide, to the best of our knowledge, the first quantitative assessment of the curvature of the transition-state free-energy surface of a protein.
Collapse
Affiliation(s)
- Rachel M. Abaskharon
- Department of Chemistry and Department
of Biochemistry & Biophysics, University of Pennsylvania,
231 South 34th Street, Philadelphia, Pennsylvania 19104, United
States
| | - Robert M. Culik
- Department of Chemistry and Department
of Biochemistry & Biophysics, University of Pennsylvania,
231 South 34th Street, Philadelphia, Pennsylvania 19104, United
States
| | - G. Andrew Woolley
- Department of Chemistry, University of
Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6,
Canada
| | - Feng Gai
- Department of Chemistry and Department
of Biochemistry & Biophysics, University of Pennsylvania,
231 South 34th Street, Philadelphia, Pennsylvania 19104, United
States
| |
Collapse
|