1
|
Abdelgawad HAH, Foster R, Otto M. Nothing short of a revolution: Novel extended half-life factor VIII replacement products and non-replacement agents reshape the treatment landscape in hemophilia A. Blood Rev 2024; 64:101164. [PMID: 38216442 DOI: 10.1016/j.blre.2023.101164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/14/2024]
Abstract
Hemophilia A, an X-linked genetic disorder, is characterized by a deficiency or dysfunction of clotting Factor VIII. The treatment landscape has substantially changed by introducing novel extended half-life factor VIII (EHL-FVIII) replacement therapies such as efanesoctocog Alfa and non-factor replacement therapy such as emicizumab. These agents signal a shift from treatments requiring multiple weekly infusions to advanced therapies with long half-lives, offering superior protection against bleeding and improving patient adherence and quality of life. While EHL-FVIII treatment might lead to inhibitor development in some patients, non-factor replacement therapy carries thrombotic risks. Therefore, ongoing research and the generation of robust clinical evidence remain vital to guide the selection of optimal and cost-effective first-line therapies for hemophilia A patients.
Collapse
Affiliation(s)
- Hussien Ahmed H Abdelgawad
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, Phoenix, AZ, USA; Department of Child Health, University of Arizona College of Medicine, Phoenix, AZ, USA.
| | - Rachel Foster
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Mario Otto
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, Phoenix, AZ, USA; Department of Child Health, University of Arizona College of Medicine, Phoenix, AZ, USA.
| |
Collapse
|
2
|
Reid KM, Brown GC. LRPAP1 is released from activated microglia and inhibits microglial phagocytosis and amyloid beta aggregation. Front Immunol 2023; 14:1286474. [PMID: 38035103 PMCID: PMC10687467 DOI: 10.3389/fimmu.2023.1286474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Low-density lipoprotein receptor-related protein-associated protein 1 (LRPAP1), also known as receptor associated protein (RAP), is an endoplasmic reticulum (ER) chaperone and inhibitor of LDL receptor related protein 1 (LRP1) and related receptors. These receptors have dozens of physiological ligands and cell functions, but it is not known whether cells release LRPAP1 physiologically at levels that regulate these receptors and cell functions. We used mouse BV-2 and human CHME3 microglial cell lines, and found that microglia released nanomolar levels of LRPAP1 when inflammatory activated by lipopolysaccharide or when ER stressed by tunicamycin. LRPAP1 was found on the surface of live activated and non-activated microglia, and anti-LRPAP1 antibodies induced internalization. Addition of 10 nM LRPAP1 inhibited microglial phagocytosis of isolated synapses and cells, and the uptake of Aβ. LRPAP1 also inhibited Aβ aggregation in vitro. Thus, activated and stressed microglia release LRPAP1 levels that can inhibit phagocytosis, Aβ uptake and Aβ aggregation. We conclude that LRPAP1 release may regulate microglial functions and Aβ pathology, and more generally that extracellular LRPAP1 may be a physiological and pathological regulator of a wide range of cell functions.
Collapse
Affiliation(s)
| | - Guy C. Brown
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
3
|
Sarafanov AG. Plasma Clearance of Coagulation Factor VIII and Extension of Its Half-Life for the Therapy of Hemophilia A: A Critical Review of the Current State of Research and Practice. Int J Mol Sci 2023; 24:ijms24108584. [PMID: 37239930 DOI: 10.3390/ijms24108584] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Factor VIII (FVIII) is an important component of blood coagulation as its congenital deficiency results in life-threatening bleeding. Current prophylactic therapy of the disease (hemophilia A) is based on 3-4 intravenous infusions of therapeutic FVIII per week. This poses a burden on patients, demanding reduction of infusion frequency by using FVIII with extended plasma half-life (EHL). Development of these products requires understanding FVIII plasma clearance mechanisms. This paper overviews (i) an up-to-date state of the research in this field and (ii) current EHL FVIII products, including recently approved efanesoctocog alfa, for which the plasma half-life exceeds a biochemical barrier posed by von Willebrand factor, complexed with FVIII in plasma, which results in ~1 per week infusion frequency. We focus on the EHL FVIII products' structure and function, in particular related to the known discrepancy in results of one-stage clotting (OC) and chromogenic substrate (CS) assays used to assign the products' potency, dosing, and for clinical monitoring in plasma. We suggest a possible root cause of these assays' discrepancy that is also pertinent to EHL factor IX variants used to treat hemophilia B. Finally, we discuss approaches in designing future EHL FVIII variants, including those to be used for hemophilia A gene therapy.
Collapse
Affiliation(s)
- Andrey G Sarafanov
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
4
|
Chun H, Kurasawa JH, Olivares P, Marakasova ES, Shestopal SA, Hassink GU, Karnaukhova E, Migliorini M, Obi JO, Smith AK, Wintrode PL, Durai P, Park K, Deredge D, Strickland DK, Sarafanov AG. Characterization of interaction between blood coagulation factor VIII and LRP1 suggests dynamic binding by alternating complex contacts. J Thromb Haemost 2022; 20:2255-2269. [PMID: 35810466 PMCID: PMC9804390 DOI: 10.1111/jth.15817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/15/2022] [Accepted: 07/01/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Deficiency in blood coagulation factor VIII (FVIII) results in life-threating bleeding (hemophilia A) treated by infusions of FVIII concentrates. To improve disease treatment, FVIII has been modified to increase its plasma half-life, which requires understanding mechanisms of FVIII catabolism. An important catabolic actor is hepatic low density lipoprotein receptor-related protein 1 (LRP1), which also regulates many other clinically significant processes. Previous studies showed complexity of FVIII site for binding LRP1. OBJECTIVES To characterize binding sites between FVIII and LRP1 and suggest a model of the interaction. METHODS A series of recombinant ligand-binding complement-type repeat (CR) fragments of LRP1 including mutated variants was generated in a baculovirus system and tested for FVIII interaction using surface plasmon resonance, tissue culture model, hydrogen-deuterium exchange mass spectrometry, and in silico. RESULTS Multiple CR doublets within LRP1 clusters II and IV were identified as alternative FVIII-binding sites. These interactions follow the canonical binding mode providing major binding energy, and additional weak interactions are contributed by adjacent CR domains. A representative CR doublet was shown to have multiple contact sites on FVIII. CONCLUSIONS FVIII and LRP1 interact via formation of multiple complex contacts involving both canonical and non-canonical binding combinations. We propose that FVIII-LRP1 interaction occurs via switching such alternative binding combinations in a dynamic mode, and that this mechanism is relevant to other ligand interactions of the low-density lipoprotein receptor family members including LRP1.
Collapse
Affiliation(s)
- Haarin Chun
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMarylandUSA
| | - James H. Kurasawa
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMarylandUSA
- Present address:
Biologics Engineering, R&D, AstraZeneca, GaithersburgMarylandUSA
| | - Philip Olivares
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMarylandUSA
| | - Ekaterina S. Marakasova
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMarylandUSA
- Present address:
(1) Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver SpringMarylandUSA
- Present address:
George Mason University, School of Systems Biology, FairfaxVirginiaUSA
| | - Svetlana A. Shestopal
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMarylandUSA
| | - Gabriela U. Hassink
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMarylandUSA
- Present address:
GSK‐Rockville Center for Vaccines Research, RockvilleMarylandUSA
| | - Elena Karnaukhova
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMarylandUSA
| | - Mary Migliorini
- Center for Vascular and Inflammatory DiseasesDepartments of Surgery and PhysiologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Juliet O. Obi
- Department of Pharmaceutical SciencesUniversity of Maryland School of PharmacyBaltimoreMarylandUSA
| | - Ally K. Smith
- Department of Pharmaceutical SciencesUniversity of Maryland School of PharmacyBaltimoreMarylandUSA
| | - Patrick L. Wintrode
- Department of Pharmaceutical SciencesUniversity of Maryland School of PharmacyBaltimoreMarylandUSA
| | - Prasannavenkatesh Durai
- Natural Product Informatics Research CenterKorea Institute of Science and TechnologyGangneungRepublic of Korea
| | - Keunwan Park
- Natural Product Informatics Research CenterKorea Institute of Science and TechnologyGangneungRepublic of Korea
| | - Daniel Deredge
- Department of Pharmaceutical SciencesUniversity of Maryland School of PharmacyBaltimoreMarylandUSA
| | - Dudley K. Strickland
- Center for Vascular and Inflammatory DiseasesDepartments of Surgery and PhysiologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Andrey G. Sarafanov
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMarylandUSA
| |
Collapse
|
5
|
Cadé M, Muñoz-Garcia J, Babuty A, Fouassier M, Heymann MF, Monahan PE, Heymann D. FVIII at the crossroad of coagulation, bone and immune biology: Emerging evidence of biological activities beyond hemostasis. Drug Discov Today 2021; 27:102-116. [PMID: 34311113 DOI: 10.1016/j.drudis.2021.07.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/27/2021] [Accepted: 07/19/2021] [Indexed: 12/19/2022]
Abstract
Hemophilia A is an X-linked hereditary disorder that results from deficient coagulation factor VIII (FVIII) activity, leading to spontaneous bleeding episodes, particularly in joints and muscles. FVIII deficiency has been associated with altered bone remodeling, dysregulated macrophage polarization, and inflammatory processes that are associated with the neoformation of abnormal blood vessels. Treatment based on FVIII replacement can lead to the development of inhibitors that render FVIII concentrate infusion ineffective. In this context, hemophilia has entered a new therapeutic era with the development of new drugs, such as emicizumab, that seek to restore the hemostatic balance by bypassing pathologically acquired antibodies. We discuss the potential extrahemostatic functions of FVIII that may be crucial for defining future therapies in hemophilia.
Collapse
Affiliation(s)
- Marie Cadé
- Université de Nantes, INSERM, Institut de Cancérologie de l'Ouest, Saint-Herblain 44805, France
| | - Javier Muñoz-Garcia
- Université de Nantes, INSERM, Institut de Cancérologie de l'Ouest, Saint-Herblain 44805, France
| | - Antoine Babuty
- Université de Nantes, INSERM, Institut de Cancérologie de l'Ouest, Saint-Herblain 44805, France; Department of Haemostasis, CHU de Nantes, France
| | | | - Marie-Francoise Heymann
- Université de Nantes, INSERM, Institut de Cancérologie de l'Ouest, Saint-Herblain 44805, France
| | - Paul E Monahan
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Dominique Heymann
- Université de Nantes, INSERM, Institut de Cancérologie de l'Ouest, Saint-Herblain 44805, France; University of Sheffield, Department of Oncology and Metabolism, Sheffield, UK.
| |
Collapse
|
6
|
Marakasova E, Olivares P, Karnaukhova E, Chun H, Hernandez NE, Kurasawa JH, Hassink GU, Shestopal SA, Strickland DK, Sarafanov AG. Molecular chaperone RAP interacts with LRP1 in a dynamic bivalent mode and enhances folding of ligand-binding regions of other LDLR family receptors. J Biol Chem 2021; 297:100842. [PMID: 34058195 PMCID: PMC8239462 DOI: 10.1016/j.jbc.2021.100842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022] Open
Abstract
The low-density lipoprotein receptor (LDLR) family of receptors are cell-surface receptors that internalize numerous ligands and play crucial role in various processes, such as lipoprotein metabolism, hemostasis, fetal development, etc. Previously, receptor-associated protein (RAP) was described as a molecular chaperone for LDLR-related protein 1 (LRP1), a prominent member of the LDLR family. We aimed to verify this role of RAP for LRP1 and two other LDLR family receptors, LDLR and vLDLR, and to investigate the mechanisms of respective interactions using a cell culture model system, purified system, and in silico modelling. Upon coexpression of RAP with clusters of the ligand-binding complement repeats (CRs) of the receptors in secreted form in insect cells culture, the isolated proteins had increased yield, enhanced folding, and improved binding properties compared with proteins expressed without RAP, as determined by circular dichroism and surface plasmon resonance. Within LRP1 CR-clusters II and IV, we identified multiple sites comprised of adjacent CR doublets, which provide alternative bivalent binding combinations with specific pairs of lysines on RAP. Mutational analysis of these lysines within each of isolated RAP D1/D2 and D3 domains having high affinity to LRP1 and of conserved tryptophans on selected CR-doublets of LRP1, as well as in silico docking of a model LRP1 CR-triplet with RAP, indicated a universal role for these residues in interaction of RAP and LRP1. Consequently, we propose a new model of RAP interaction with LDLR family receptors based on switching of the bivalent contacts between molecules over time in a dynamic mode.
Collapse
Affiliation(s)
- Ekaterina Marakasova
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Philip Olivares
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Elena Karnaukhova
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Haarin Chun
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Nancy E Hernandez
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - James H Kurasawa
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Gabriela U Hassink
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Svetlana A Shestopal
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Dudley K Strickland
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Andrey G Sarafanov
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA.
| |
Collapse
|
7
|
Bloem E, Karpf DM, Nørby PL, Johansen PB, Loftager M, Rahbek-Nielsen H, Petersen HH, Blouse GE, Thim L, Kjalke M, Bolt G. Factor VIII with a 237 amino acid B-domain has an extended half-life in F8-knockout mice. J Thromb Haemost 2019; 17:350-360. [PMID: 30525289 DOI: 10.1111/jth.14355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Indexed: 12/30/2022]
Abstract
Essentials Factor (F)VIII with an intermediate-length B-domain showed higher levels in murine gene therapy. FVIII with different B-domain lengths were analysed. FVIII variants with B-domains between 186 and 240 amino acids (aa) have extended half-life in mice. Reduced cell binding of FVIII with a 237aa B-domain may explain the extended half-life. SUMMARY: Background Factor VIII consists of the A1-domain, A2-domain, B-domain, A3-domain, C1-domain, and C2-domain. FVIII with an intermediate-length B-domain of 226 amino acids (aa) has previously been evaluated in murine gene therapy studies. Objective To characterize FVIII with intermediate-length B-domains in vitro and in vivo in F8-knockout (KO) mice. Methods and results FVIII molecules with B-domains of 186-240aa had longer half-lives in F8-KO mice than FVIII molecules with shorter or longer B-domains. FVIII with a B-domain containing the 225 N-terminal aa fused to the 12 C-terminal aa of the wild-type B-domain (FVIII-237) had a 1.6-fold extended half-life in F8-KO mice as compared with FVIII with a 21aa B-domain (FVIII-21). The in vitro and in vivo activity of FVIII-237 were comparable to those of FVIII-21, as was binding to von Willebrand factor. Cell binding to LDL receptor-related protein 1 (LRP-1)-expressing cells was markedly reduced for FVIII-237 as compared with FVIII-21, whereas the affinity for LRP-1 was not reduced in surface plasmon resonance (SPR) studies. FVIII-21 cell binding and internalization could be inhibited by a fragment consisting of the 226 N-terminal aa of the FVIII B-domain, and SPR analysis suggested that this B-domain fragment might bind with weak affinity to FVIII-21. Conclusion Reduced cell binding of FVIII-237 might explain the observed extended half-life in F8-KO mice. This may contribute to the increased FVIII levels measured in murine gene therapy studies using FVIII constructs with similar B-domain lengths.
Collapse
Affiliation(s)
- E Bloem
- Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark
| | - D M Karpf
- Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark
| | - P L Nørby
- Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark
| | - P B Johansen
- Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark
| | - M Loftager
- Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark
| | | | - H H Petersen
- Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark
| | - G E Blouse
- Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark
| | - L Thim
- Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark
| | - M Kjalke
- Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark
| | - G Bolt
- Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark
| |
Collapse
|
8
|
Shestopal SA, Hao JJ, Karnaukhova E, Liang Y, Ovanesov MV, Lin M, Kurasawa JH, Lee TK, Mcvey JH, Sarafanov AG. Expression and characterization of a codon-optimized blood coagulation factor VIII. J Thromb Haemost 2017; 15:709-720. [PMID: 28109042 DOI: 10.1111/jth.13632] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Indexed: 08/31/2023]
Abstract
Essentials Recombinant factor VIII (FVIII) is known to be expressed at a low level in cell culture. To increase expression, we used codon-optimization of a B-domain deleted FVIII (BDD-FVIII). This resulted in 7-fold increase of the expression level in cell culture. The biochemical properties of codon-optimized BDD-FVIII were similar to the wild-type protein. SUMMARY Background Production of recombinant factor VIII (FVIII) is challenging because of its low expression. It was previously shown that codon-optimization of a B-domain-deleted FVIII (BDD-FVIII) cDNA resulted in increased protein expression. However, it is well recognized that synonymous mutations may affect the protein structure and function. Objectives To compare biochemical properties of a BDD-FVIII variants expressed from codon-optimized and wild-type cDNAs (CO and WT, respectively). Methods Each variant of the BDD-FVIII was expressed in several independent Chinese hamster ovary (CHO) cell lines, generated using a lentiviral platform. The proteins were purified by two-step affinity chromatography and analyzed in parallel by PAGE-western blot, mass spectrometry, circular dichroism, surface plasmon resonance, and chromogenic, clotting and thrombin generation assays. Results and conclusion The average yield of the CO was 7-fold higher than WT, whereas both proteins were identical in the amino acid sequences (99% coverage) and very similar in patterns of the molecular fragments (before and after thrombin cleavage), glycosylation and tyrosine sulfation, secondary structures and binding to von Willebrand factor and to a fragment of the low-density lipoprotein receptor-related protein 1. The CO preparations had on average 1.5-fold higher FVIII specific activity (activity normalized to protein mass) than WT preparations, which was attributed to better preservation of the CO structure as a result of considerably higher protein concentrations during the production. We concluded that the codon-optimization of the BDD-FVIII resulted in significant increase of its expression and did not affect the structure-function properties.
Collapse
Affiliation(s)
- S A Shestopal
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - J-J Hao
- Poochon Scientific, Frederick, MD, USA
| | - E Karnaukhova
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Y Liang
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - M V Ovanesov
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - M Lin
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - J H Kurasawa
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - T K Lee
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - J H Mcvey
- School of Biosciences and Medicine, University of Surrey, Surrey, UK
| | - A G Sarafanov
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
9
|
Young PA, Migliorini M, Strickland DK. Evidence That Factor VIII Forms a Bivalent Complex with the Low Density Lipoprotein (LDL) Receptor-related Protein 1 (LRP1): IDENTIFICATION OF CLUSTER IV ON LRP1 AS THE MAJOR BINDING SITE. J Biol Chem 2016; 291:26035-26044. [PMID: 27794518 DOI: 10.1074/jbc.m116.754622] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/25/2016] [Indexed: 11/06/2022] Open
Abstract
Hemophilia A is a bleeding disorder caused by a deficiency in coagulation factor VIII (fVIII) that affects 1 in 5,000 males. Current prophylactic replacement therapy, although effective, is difficult to maintain due to the cost and frequency of injections. Hepatic clearance of fVIII is mediated by the LDL receptor-related protein 1 (LRP1), a member of the LDL receptor family. Although it is well established that fVIII binds LRP1, the molecular details of this interaction are unclear as most of the studies have been performed using fragments of fVIII and LRP1. In the current investigation, we examine the binding of intact fVIII to full-length LRP1 to gain insight into the molecular interaction. Chemical modification studies confirm the requirement for lysine residues in the interaction of fVIII with LRP1. Examination of the ionic strength dependence of the interaction of fVIII with LRP1 resulted in a Debye-Hückel plot with a slope of 1.8 ± 0.5, suggesting the involvement of two critical charged residues in the interaction of fVIII with LRP1. Kinetic studies utilizing surface plasmon resonance techniques reveal that the high affinity of fVIII for LRP1 results from avidity effects mediated by the interactions of two sites in fVIII with complementary sites on LRP1 to form a bivalent fVIII·LRP1 complex. Furthermore, although fVIII bound avidly to soluble forms of clusters II and IV from LRP1, only soluble cluster IV competed with the binding of fVIII to full-length LRP1, revealing that cluster IV represents the major fVIII binding site in LRP1.
Collapse
Affiliation(s)
- Patricia A Young
- From the Center for Vascular and Inflammatory Disease and the Departments of Surgery and Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Mary Migliorini
- From the Center for Vascular and Inflammatory Disease and the Departments of Surgery and Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Dudley K Strickland
- From the Center for Vascular and Inflammatory Disease and the Departments of Surgery and Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| |
Collapse
|
10
|
Yamamoto K, Okano H, Miyagawa W, Visse R, Shitomi Y, Santamaria S, Dudhia J, Troeberg L, Strickland DK, Hirohata S, Nagase H. MMP-13 is constitutively produced in human chondrocytes and co-endocytosed with ADAMTS-5 and TIMP-3 by the endocytic receptor LRP1. Matrix Biol 2016; 56:57-73. [PMID: 27084377 PMCID: PMC5146981 DOI: 10.1016/j.matbio.2016.03.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 03/23/2016] [Accepted: 03/23/2016] [Indexed: 01/26/2023]
Abstract
Matrix metalloproteinase 13 (MMP-13) degrades collagenous extracellular matrix and its aberrant activity associates with diseases such as arthritis, cancer, atherosclerosis and fibrosis. The wide range of MMP-13 proteolytic capacity suggests that it is a powerful, potentially destructive proteinase and thus it has been believed that MMP-13 is not produced in most adult human tissues in the steady state. Present study has revealed that human chondrocytes isolated from healthy adults constitutively express and secrete MMP-13, but that it is rapidly endocytosed and degraded by chondrocytes. Both pro- and activated MMP-13 bind to clusters II and III of low-density lipoprotein (LDL) receptor-related protein 1 (LRP1). Domain deletion studies indicated that the hemopexin domain is responsible for this interaction. Binding competition between MMP-13 and ADAMTS-4, -5 or TIMP-3, which also bind to cluster II, further shown that the MMP-13 binding site within cluster II is different from those of ADAMTS-4, -5 or TIMP-3. MMP-13 is therefore co-endocytosed with ADAMTS-5 and TIMP-3 by human chondrocytes. These findings indicate that MMP-13 may play a role on physiological turnover of cartilage extracellular matrix and that LRP1 is a key modulator of extracellular levels of MMP-13 and its internalization is independent of the levels of ADAMTS-4, -5 and TIMP-3. ProMMP-13 is constitutively produced and endocytosed by chondrocytes. LRP1 is a key modulator of extracellular levels of proMMP-13 and MMP-13. ProMMP-13 and MMP-13 directly bind to LRP1 via the hemopexin domain. Unique sites on LRP1 for MMP-13 binding have been mapped. Co-endocytosis of proMMP-13 with ADAMTS-4, -5 and TIMP-3.
Collapse
Affiliation(s)
- Kazuhiro Yamamoto
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| | - Hiroshi Okano
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, UK; Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Wakako Miyagawa
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, UK; Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Robert Visse
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Yasuyuki Shitomi
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Salvatore Santamaria
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Jayesh Dudhia
- Department of Clinical Sciences and Services, Royal Veterinary College, Herts, UK
| | - Linda Troeberg
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Dudley K Strickland
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, USA
| | - Satoshi Hirohata
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hideaki Nagase
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| |
Collapse
|