1
|
Qi Q, Ghaly TM, Rajabal V, Russell DH, Gillings MR, Tetu SG. Vegetable phylloplane microbiomes harbour class 1 integrons in novel bacterial hosts and drive the spread of chlorite resistance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176348. [PMID: 39304140 DOI: 10.1016/j.scitotenv.2024.176348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/10/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Bacterial hosts in vegetable phylloplanes carry mobile genetic elements, such as plasmids and transposons that are associated with integrons. These mobile genetic elements and their cargo genes can enter human microbiomes via consumption of fresh agricultural produce, including uncooked vegetables. This presents a risk of acquiring antimicrobial resistance genes from uncooked vegetables. To better understand horizontal gene transfer of class 1 integrons in these compartments, we applied epicPCR, a single-cell fusion-PCR surveillance technique, to link the class 1 integron integrase (intI1) gene with phylogenetic markers of their bacterial hosts. Ready-to-eat salads carried class 1 integrons from the phyla Bacteroidota and Pseudomonadota, including four novel genera that were previously not known to be associated with intI1. We whole-genome sequenced Pseudomonas and Erwinia hosts of pre-clinical class 1 integrons that are embedded in Tn402-like transposons. The proximal gene cassette in these integrons was identified as a chlorite dismutase gene cassette, which we showed experimentally to confer chlorite resistance. Chlorine-derived compounds such as acidified sodium chlorite and chloride dioxide are used to disinfectant raw vegetables in food processing facilities, suggesting selection for chlorite resistance in phylloplane integrons. The spread of integrons conferring chlorite resistance has the potential to exacerbate integron-mediated antimicrobial resistance (AMR) via co-selection of chlorite resistance and AMR, thus highlighting the importance of monitoring chlorite residues in agricultural produce. These results demonstrate the strength of combining epicPCR and culture-based isolation approaches for identifying hosts and dissecting the molecular ecology of class 1 integrons.
Collapse
Affiliation(s)
- Qin Qi
- School of Natural Sciences, Macquarie University, New South Wales, Australia; Manchester Institute of Biotechnology, The University of Manchester, Greater Manchester, United Kingdom.
| | - Timothy M Ghaly
- School of Natural Sciences, Macquarie University, New South Wales, Australia
| | - Vaheesan Rajabal
- School of Natural Sciences, Macquarie University, New South Wales, Australia; ARC Centre of Excellence for Synthetic Biology, Macquarie University, New South Wales, Australia
| | - Dylan H Russell
- School of Natural Sciences, Macquarie University, New South Wales, Australia
| | - Michael R Gillings
- School of Natural Sciences, Macquarie University, New South Wales, Australia
| | - Sasha G Tetu
- School of Natural Sciences, Macquarie University, New South Wales, Australia; ARC Centre of Excellence for Synthetic Biology, Macquarie University, New South Wales, Australia.
| |
Collapse
|
2
|
Zhang X, Liu Y. Computational Insights into the Catalysis of the pH Dependence of Bromite Decomposition Catalyzed by Chlorite Dismutase from Dechloromonas aromatica ( DaCld). Inorg Chem 2024; 63:6776-6786. [PMID: 38572830 DOI: 10.1021/acs.inorgchem.4c00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
The heme-containing chlorite dismutases catalyze the rapid and efficient decomposition of chlorite (ClO2-) to yield Cl- and O2, and the catalytic efficiency of chlorite dismutase from Dechloromonas aromatica (DaCld) in catalyzing the decomposition of bromite (BrO2-) was dependent on pH, which was supposed to be caused by the conversion of active Cpd I to the inactive Cpd II by proton-coupled electron transfer (PCET) from the pocket Tyr118 to the propionate side chain of heme at high pH. However, the direct evidence of PCET and how the pH affects the efficiency of DaCld, as well as whether Cpd II is really inactive, are still poorly understood. Here, on the basis of the high-resolution crystal structures, the computational models in both acidic (pH 5.0) and alkaline (pH 9.0) environments were constructed, and a series of quantum mechanical/molecular mechanical calculations were performed. On the basis of our calculation results, the O-Br bond cleavage of BrO2- always follows the homolytic mode to generate Cpd II rather than Cpd I. It is different from the O-O cleavage of O2/H2O2 or peracetic acid catalyzed by the other heme-containing enzymes. Thus, in the subsequent O-O rebound reaction, it is the Fe(IV)═O in Cpd II that combines with the O-Br radical. Because the porphyrin ring in Cpd II does not bear an unpaired electron, the previously suggested PCET from Tyr118 to the propionate side chain of heme was not theoretically recognized in an alkaline environment. In addition, the O-O rebound step in an alkaline solution corresponds to an energy barrier that is larger than that in an acidic environment, which can well explain the pH dependence of the activity of DaCld. In addition, the protonation state of the propionic acid side chains of heme and the surrounding hydrogen bond networks were calculated to have a significant impact on the barriers of the O-O rebound step, which is mainly achieved by affecting the reactivity of the Fe(IV)═O group in Cpd II. In an acidic environment, the relatively weaker coordination of the O2 atom to Fe leads to its higher reactivity toward the O-O rebound reaction. These observations may provide useful information for understanding the catalysis of chlorite dismutases.
Collapse
Affiliation(s)
- Xianghui Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yongjun Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
3
|
Barnum TP, Coates JD. Chlorine redox chemistry is widespread in microbiology. THE ISME JOURNAL 2023; 17:70-83. [PMID: 36202926 PMCID: PMC9751292 DOI: 10.1038/s41396-022-01317-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/07/2022]
Abstract
Chlorine is abundant in cells and biomolecules, yet the biology of chlorine oxidation and reduction is poorly understood. Some bacteria encode the enzyme chlorite dismutase (Cld), which detoxifies chlorite (ClO2-) by converting it to chloride (Cl-) and molecular oxygen (O2). Cld is highly specific for chlorite and aside from low hydrogen peroxide activity has no known alternative substrate. Here, we reasoned that because chlorite is an intermediate oxidation state of chlorine, Cld can be used as a biomarker for oxidized chlorine species. Cld was abundant in metagenomes from various terrestrial habitats. About 5% of bacterial and archaeal genera contain a microorganism encoding Cld in its genome, and within some genera Cld is highly conserved. Cld has been subjected to extensive horizontal gene transfer. Genes found to have a genetic association with Cld include known genes for responding to reactive chlorine species and uncharacterized genes for transporters, regulatory elements, and putative oxidoreductases that present targets for future research. Cld was repeatedly co-located in genomes with genes for enzymes that can inadvertently reduce perchlorate (ClO4-) or chlorate (ClO3-), indicating that in situ (per)chlorate reduction does not only occur through specialized anaerobic respiratory metabolisms. The presence of Cld in genomes of obligate aerobes without such enzymes suggested that chlorite, like hypochlorous acid (HOCl), might be formed by oxidative processes within natural habitats. In summary, the comparative genomics of Cld has provided an atlas for a deeper understanding of chlorine oxidation and reduction reactions that are an underrecognized feature of biology.
Collapse
Affiliation(s)
- Tyler P Barnum
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - John D Coates
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
4
|
Munro-Ehrlich M, Nothaft DB, Fones EM, Matter JM, Templeton AS, Boyd ES. Parapatric speciation of Meiothermus in serpentinite-hosted aquifers in Oman. Front Microbiol 2023; 14:1138656. [PMID: 37125170 PMCID: PMC10130571 DOI: 10.3389/fmicb.2023.1138656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
The factors that control the distribution and evolution of microbial life in subsurface environments remain enigmatic due to challenges associated with sampling fluids from discrete depth intervals via boreholes while avoiding mixing of fluids. Here, using an inflatable packer system, fracture waters were isolated and collected from three discrete depth intervals spanning >130 m in a borehole intersecting an ultramafic rock formation undergoing serpentinization in the Samail Ophiolite, Sultanate of Oman. Near surface aquifer waters were moderately reducing and had alkaline pH while deeper aquifer waters were reduced and had hyperalkaline pH, indicating extensive influence by serpentinization. Metagenomic sequencing and analysis of DNA from filtered biomass collected from discrete depth intervals revealed an abundance of aerobes in near surface waters and a greater proportion of anaerobes at depth. Yet the abundance of the putatively obligate aerobe, Meiothermus, increased with depth, providing an opportunity to evaluate the influence of chemical and spatial variation on its distribution and speciation. Two clades of Meiothermus metagenome assembled genomes (MAGs) were identified that correspond to surface and deep populations termed Types I (S) and II (D), respectively; both clades comprised an apparently Oman-specific lineage indicating a common ancestor. Type II (D) clade MAGs encoded fewer genes and were undergoing slower genome replication as inferred from read mapping. Further, single nucleotide variants (SNVs) and mobile genetic elements identified among MAGs revealed detectable, albeit limited, evidence for gene flow/recombination between spatially segregated Type I (S) and Type II (D) populations. Together, these observations indicate that chemical variation generated by serpentinization, combined with physical barriers that reduce/limit dispersal and gene flow, allowed for the parapatric speciation of Meiothermus in the Samail Ophiolite or a geologic precursor. Further, Meiothermus genomic data suggest that deep and shallow aquifer fluids in the Samail Ophiolite may mix over shorter time scales than has been previously estimated from geochemical data.
Collapse
Affiliation(s)
- Mason Munro-Ehrlich
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| | - Daniel B. Nothaft
- Department of Geosciences, University of Colorado, Boulder, Boulder, CO, United States
| | - Elizabeth M. Fones
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| | - Juerg M. Matter
- School of Ocean and Earth Science, University of Southampton, Southampton, United Kingdom
| | - Alexis S. Templeton
- Department of Geosciences, University of Colorado, Boulder, Boulder, CO, United States
| | - Eric S. Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
- *Correspondence: Eric S. Boyd,
| |
Collapse
|
5
|
Barnum TP, Coates JD. The biogeochemical cycling of chlorine. GEOBIOLOGY 2022; 20:634-649. [PMID: 35851523 DOI: 10.1111/gbi.12513] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 05/24/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Chlorine has important roles in the Earth's systems. In different forms, it helps balance the charge and osmotic potential of cells, provides energy for microorganisms, mobilizes metals in geologic fluids, alters the salinity of waters, and degrades atmospheric ozone. Despite this importance, there has not been a comprehensive summary of chlorine's geobiology. Here, we unite different areas of recent research to describe a biogeochemical cycle for chlorine. Chlorine enters the biosphere through volcanism and weathering of rocks and is sequestered by subduction and the formation of evaporite sediments from inland seas. In the biosphere, chlorine is converted between solid, dissolved, and gaseous states and in oxidation states ranging from -1 to +7, with the soluble, reduced chloride ion as its most common form. Living organisms and chemical reactions change chlorine's form through oxidation and reduction and the addition and removal of chlorine from organic molecules. Chlorine can be transported through the atmosphere, and the highest oxidation states of chlorine are produced by reactions between sunlight and trace chlorine gases. Partial oxidation of chlorine occurs across the biosphere and creates reactive chlorine species that contribute to the oxidative stress experienced by living cells. A unified view of this chlorine cycle demonstrates connections between chlorine biology, chemistry, and geology that affect life on the Earth.
Collapse
Affiliation(s)
- Tyler P Barnum
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - John D Coates
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| |
Collapse
|
6
|
Geeraerts Z, Stiller OR, Lukat-Rodgers GS, Rodgers KR. Roles of High-Valent Hemes and pH Dependence in Halite Decomposition Catalyzed by Chlorite Dismutase from Dechloromonas aromatica. ACS Catal 2022; 12:8641-8657. [DOI: 10.1021/acscatal.2c01428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zachary Geeraerts
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Olivia R. Stiller
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Gudrun S. Lukat-Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Kenton R. Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| |
Collapse
|
7
|
An active site at work – the role of key residues in C. diphteriae coproheme decarboxylase. J Inorg Biochem 2022; 229:111718. [DOI: 10.1016/j.jinorgbio.2022.111718] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/14/2021] [Accepted: 01/01/2022] [Indexed: 12/12/2022]
|
8
|
Serra I, Schmidt D, Pfanzagl V, Mlynek G, Hofbauer S, Djinović-Carugo K, Furtmüller PG, García-Rubio I, Van Doorslaer S, Obinger C. Impact of the dynamics of the catalytic arginine on nitrite and chlorite binding by dimeric chlorite dismutase. J Inorg Biochem 2021; 227:111689. [PMID: 34922158 DOI: 10.1016/j.jinorgbio.2021.111689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/15/2021] [Accepted: 12/03/2021] [Indexed: 01/04/2023]
Abstract
Chlorite dismutases (Clds) are heme b containing oxidoreductases able to decompose chlorite to chloride and molecular oxygen. This work analyses the impact of the distal, flexible and catalytic arginine on the binding of anionic angulate ligands like nitrite and the substrate chlorite. Dimeric Cld from Cyanothece sp. PCC7425 was used as a model enzyme. We have investigated wild-type CCld having the distal catalytic R127 hydrogen-bonded to glutamine Q74 and variants with R127 (i) being arrested in a salt-bridge with a glutamate (Q74E), (ii) being fully flexible (Q74V) or (iii) substituted by either alanine (R127A) or lysine (R127K). We present the electronic and spectral signatures of the high-spin ferric proteins and the corresponding low-spin nitrite complexes elucidated by UV-visible, circular dichroism and electron paramagnetic resonance spectroscopies. Furthermore, we demonstrate the impact of the dynamics of R127 on the thermal stability of the respective nitrite adducts and present the X-ray crystal structures of the nitrite complexes of wild-type CCld and the variants Q74V, Q74E and R127A. In addition, the molecular dynamics (MD) and the binding modi of nitrite and chlorite to the ferric wild-type enzyme and the mutant proteins and the interaction of the oxoanions with R127 have been analysed by MD simulations. The findings are discussed with respect to the role(s) of R127 in ligand and chlorite binding and substrate degradation.
Collapse
Affiliation(s)
- Ilenia Serra
- BIMEF Laboratory, Department of Chemistry, University of Antwerp, Belgium
| | - Daniel Schmidt
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna, Austria
| | - Vera Pfanzagl
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna, Austria
| | - Georg Mlynek
- Core Facility Biomolecular & Cellular Analysis, University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, A-1190 Vienna, Austria; Department of Structural and Computational Biology, Max Perutz Laboratories, A-1030, Vienna, Austria
| | - Stefan Hofbauer
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna, Austria
| | - Kristina Djinović-Carugo
- Department of Structural and Computational Biology, Max Perutz Laboratories, A-1030, Vienna, Austria; Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 5, SI-1000 Ljubljana, Slovenia
| | - Paul G Furtmüller
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna, Austria
| | - Inés García-Rubio
- Department of Condensed Matter Physics, Faculty of Sciences, University of Zaragoza, 50009 Zaragoza, Spain; Centro Universitario de la Defensa, 50090 Zaragoza, Spain
| | | | - Christian Obinger
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna, Austria.
| |
Collapse
|
9
|
Schröder GC, Meilleur F. Metalloprotein catalysis: structural and mechanistic insights into oxidoreductases from neutron protein crystallography. Acta Crystallogr D Struct Biol 2021; 77:1251-1269. [PMID: 34605429 PMCID: PMC8489226 DOI: 10.1107/s2059798321009025] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/31/2021] [Indexed: 11/11/2022] Open
Abstract
Metalloproteins catalyze a range of reactions, with enhanced chemical functionality due to their metal cofactor. The reaction mechanisms of metalloproteins have been experimentally characterized by spectroscopy, macromolecular crystallography and cryo-electron microscopy. An important caveat in structural studies of metalloproteins remains the artefacts that can be introduced by radiation damage. Photoreduction, radiolysis and ionization deriving from the electromagnetic beam used to probe the structure complicate structural and mechanistic interpretation. Neutron protein diffraction remains the only structural probe that leaves protein samples devoid of radiation damage, even when data are collected at room temperature. Additionally, neutron protein crystallography provides information on the positions of light atoms such as hydrogen and deuterium, allowing the characterization of protonation states and hydrogen-bonding networks. Neutron protein crystallography has further been used in conjunction with experimental and computational techniques to gain insight into the structures and reaction mechanisms of several transition-state metal oxidoreductases with iron, copper and manganese cofactors. Here, the contribution of neutron protein crystallography towards elucidating the reaction mechanism of metalloproteins is reviewed.
Collapse
Affiliation(s)
- Gabriela C. Schröder
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Flora Meilleur
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
10
|
Schmidt D, Serra I, Mlynek G, Pfanzagl V, Hofbauer S, Furtmüller PG, Djinović-Carugo K, Van Doorslaer S, Obinger C. Arresting the Catalytic Arginine in Chlorite Dismutases: Impact on Heme Coordination, Thermal Stability, and Catalysis. Biochemistry 2021; 60:621-634. [PMID: 33586945 PMCID: PMC7931450 DOI: 10.1021/acs.biochem.0c00910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Chlorite dismutases
(Clds) are heme b-containing
oxidoreductases that can decompose chlorite to chloride and molecular
oxygen. They are divided in two clades that differ in oligomerization,
subunit architecture, and the hydrogen-bonding network of the distal
catalytic arginine, which is proposed to switch between two conformations
during turnover. To understand the impact of the conformational dynamics
of this basic amino acid on heme coordination, structure, and catalysis,
Cld from Cyanothece sp. PCC7425 was used as a model
enzyme. As typical for a clade 2 Cld, its distal arginine 127 is hydrogen-bonded
to glutamine 74. The latter has been exchanged with either glutamate
(Q74E) to arrest R127 in a salt bridge or valine (Q74V) that mirrors
the setting in clade 1 Clds. We present the X-ray crystal structures
of Q74V and Q74E and demonstrate the pH-induced changes in the environment
and coordination of the heme iron by ultraviolet–visible, circular
dichroism, and electron paramagnetic resonance spectroscopies as well
as differential scanning calorimetry. The conformational dynamics
of R127 is shown to have a significant role in heme coordination during
the alkaline transition and in the thermal stability of the heme cavity,
whereas its impact on the catalytic efficiency of chlorite degradation
is relatively small. The findings are discussed with respect to (i)
the flexible loop connecting the N-terminal and C-terminal ferredoxin-like
domains, which differs in clade 1 and clade 2 Clds and carries Q74
in clade 2 proteins, and (ii) the proposed role(s) of the arginine
in catalysis.
Collapse
Affiliation(s)
- Daniel Schmidt
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna, Austria
| | - Ilenia Serra
- BIMEF Laboratory, Department of Chemistry, University of Antwerp, 2020 Antwerp, Belgium
| | - Georg Mlynek
- Department of Structural and Computational Biology, Max Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
| | - Vera Pfanzagl
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna, Austria
| | - Stefan Hofbauer
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna, Austria
| | - Paul G Furtmüller
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna, Austria
| | - Kristina Djinović-Carugo
- Department of Structural and Computational Biology, Max Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria.,Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 5, SI-1000 Ljubljana, Slovenia
| | - Sabine Van Doorslaer
- BIMEF Laboratory, Department of Chemistry, University of Antwerp, 2020 Antwerp, Belgium
| | - Christian Obinger
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna, Austria
| |
Collapse
|
11
|
Mahor D, Püschmann J, Adema DR, Strampraad MJF, Hagedoorn PL. Unexpected photosensitivity of the well-characterized heme enzyme chlorite dismutase. J Biol Inorg Chem 2020; 25:1129-1138. [PMID: 33113038 PMCID: PMC7665973 DOI: 10.1007/s00775-020-01826-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/09/2020] [Indexed: 11/30/2022]
Abstract
Chlorite dismutase is a heme enzyme that catalyzes the conversion of the toxic compound ClO2- (chlorite) to innocuous Cl- and O2. The reaction is a very rare case of enzymatic O-O bond formation, which has sparked the interest to elucidate the reaction mechanism using pre-steady-state kinetics. During stopped-flow experiments, spectroscopic and structural changes of the enzyme were observed in the absence of a substrate in the time range from milliseconds to minutes. These effects are a consequence of illumination with UV-visible light during the stopped-flow experiment. The changes in the UV-visible spectrum in the initial 200 s of the reaction indicate a possible involvement of a ferric superoxide/ferrous oxo or ferric hydroxide intermediate during the photochemical inactivation. Observed EPR spectral changes after 30 min reaction time indicate the loss of the heme and release of iron during the process. During prolonged illumination, the oligomeric state of the enzyme changes from homo-pentameric to monomeric with subsequent protein precipitation. Understanding the effects of UV-visible light illumination induced changes of chlorite dismutase will help us to understand the nature and mechanism of photosensitivity of heme enzymes in general. Furthermore, previously reported stopped-flow data of chlorite dismutase and potentially other heme enzymes will need to be re-evaluated in the context of the photosensitivity. Illumination of recombinantly expressed Azospira oryzae Chlorite dismutase (AoCld) with a high-intensity light source, common in stopped-flow equipment, results in disruption of the bond between FeIII and the axial histidine. This leads to the enzyme losing its heme cofactor and changing its oligomeric state as shown by spectroscopic changes and loss of activity.
Collapse
Affiliation(s)
- Durga Mahor
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ, Delft, The Netherlands
| | - Julia Püschmann
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ, Delft, The Netherlands
| | - Diederik R Adema
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ, Delft, The Netherlands
| | - Marc J F Strampraad
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ, Delft, The Netherlands
| | - Peter-Leon Hagedoorn
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ, Delft, The Netherlands.
| |
Collapse
|
12
|
Geeraerts Z, Heskin AK, DuBois J, Rodgers KR, Lukat-Rodgers GS. Structure and reactivity of chlorite dismutase nitrosyls. J Inorg Biochem 2020; 211:111203. [PMID: 32768737 PMCID: PMC7749827 DOI: 10.1016/j.jinorgbio.2020.111203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 11/28/2022]
Abstract
Ferric nitrosyl ({FeNO}6) and ferrous nitrosyl ({FeNO}7) complexes of the chlorite dismutases (Cld) from Klebsiella pneumoniae and Dechloromonas aromatica have been characterized using UV-visible absorbance and Soret-excited resonance Raman spectroscopy. Both of these Clds form kinetically stable {FeNO}6 complexes and they occupy a unique region of ν(Fe-NO)/ν(N-O) correlation space for proximal histidine liganded heme proteins, characteristic of weak Fe-NO and N-O bonds. This location is attributed to admixed FeIII-NO character of the {FeNO}6 ground state. Cld {FeNO}6 complexes undergo slow reductive nitrosylation to yield {FeNO}7 complexes. The effects of proximal and distal environment on reductive nitroylsation rates for these dimeric and pentameric Clds are reported. The ν(Fe-NO) and ν(N-O) frequencies for Cld {FeNO}7 complexes reveal both six-coordinate (6c) and five-coordinate (5c) nitrosyl hemes. These 6c and 5c forms are in a pH dependent equilibrium. The 6c and 5c {FeNO}7 Cld frequencies provided positions of both Clds on their respective ν(Fe-NO) vs ν(N-O) correlation lines. The 6c {FeNO}7 complexes fall below (along the ν(Fe-NO) axis) the correlation line that reports hydrogen-bond donation to NNO, which is consistent with a relatively weak Fe-NO bond. Kinetic and spectroscopic evidence is consistent with the 5c {FeNO}7 Clds having NO coordinated on the proximal side of the heme, analogous to 5c {FeNO}7 hemes in proteins known to have NO sensing functions.
Collapse
Affiliation(s)
- Zachary Geeraerts
- North Dakota State University, Fargo, ND 58108, United States of America
| | - Alisa K Heskin
- North Dakota State University, Fargo, ND 58108, United States of America
| | - Jennifer DuBois
- Montana State University, Bozeman, MT 59717, United States of America
| | - Kenton R Rodgers
- North Dakota State University, Fargo, ND 58108, United States of America.
| | | |
Collapse
|
13
|
Understanding molecular enzymology of porphyrin-binding α + β barrel proteins - One fold, multiple functions. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140536. [PMID: 32891739 PMCID: PMC7611857 DOI: 10.1016/j.bbapap.2020.140536] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 11/24/2022]
Abstract
There is a high functional diversity within the structural superfamily of porphyrin-binding dimeric α + β barrel proteins. In this review we aim to analyze structural constraints of chlorite dismutases, dye-decolorizing peroxidases and coproheme decarboxylases in detail. We identify regions of structural variations within the highly conserved fold, which are most likely crucial for functional specificities. The loop linking the two ferredoxin-like domains within one subunit can be of different sequence lengths and can adopt various structural conformations, consequently defining the shape of the substrate channels and the respective active site architectures. The redox cofactor, heme b or coproheme, is oriented differently in either of the analyzed enzymes. By thoroughly dissecting available structures and discussing all available results in the context of the respective functional mechanisms of each of these redox-active enzymes, we highlight unsolved mechanistic questions in order to spark future research in this field.
Collapse
|
14
|
Barnum TP, Cheng Y, Hill KA, Lucas LN, Carlson HK, Coates JD. Identification of a parasitic symbiosis between respiratory metabolisms in the biogeochemical chlorine cycle. THE ISME JOURNAL 2020; 14:1194-1206. [PMID: 32024948 PMCID: PMC7174294 DOI: 10.1038/s41396-020-0599-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/08/2020] [Accepted: 01/23/2020] [Indexed: 11/09/2022]
Abstract
A key step in the chlorine cycle is the reduction of perchlorate (ClO4-) and chlorate (ClO3-) to chloride by microbial respiratory pathways. Perchlorate-reducing bacteria and chlorate-reducing bacteria differ in that the latter cannot use perchlorate, the most oxidized chlorine compound. However, a recent study identified a bacterium with the chlorate reduction pathway dominating a community provided only perchlorate. Here we confirm a metabolic interaction between perchlorate- and chlorate-reducing bacteria and define its mechanism. Perchlorate-reducing bacteria supported the growth of chlorate-reducing bacteria to up to 90% of total cells in communities and co-cultures. Chlorate-reducing bacteria required the gene for chlorate reductase to grow in co-culture with perchlorate-reducing bacteria, demonstrating that chlorate is responsible for the interaction, not the subsequent intermediates chlorite and oxygen. Modeling of the interaction suggested that cells specialized for chlorate reduction have a competitive advantage for consuming chlorate produced from perchlorate, especially at high concentrations of perchlorate, because perchlorate and chlorate compete for a single enzyme in perchlorate-reducing cells. We conclude that perchlorate-reducing bacteria inadvertently support large populations of chlorate-reducing bacteria in a parasitic relationship through the release of the intermediate chlorate. An implication of these findings is that undetected chlorate-reducing bacteria have likely negatively impacted efforts to bioremediate perchlorate pollution for decades.
Collapse
Affiliation(s)
- Tyler P Barnum
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Yiwei Cheng
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kaisle A Hill
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Lauren N Lucas
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Hans K Carlson
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - John D Coates
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
15
|
Atashgahi S, Liebensteiner MG, Janssen DB, Smidt H, Stams AJM, Sipkema D. Microbial Synthesis and Transformation of Inorganic and Organic Chlorine Compounds. Front Microbiol 2018; 9:3079. [PMID: 30619161 PMCID: PMC6299022 DOI: 10.3389/fmicb.2018.03079] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 11/29/2018] [Indexed: 12/26/2022] Open
Abstract
Organic and inorganic chlorine compounds are formed by a broad range of natural geochemical, photochemical and biological processes. In addition, chlorine compounds are produced in large quantities for industrial, agricultural and pharmaceutical purposes, which has led to widespread environmental pollution. Abiotic transformations and microbial metabolism of inorganic and organic chlorine compounds combined with human activities constitute the chlorine cycle on Earth. Naturally occurring organochlorines compounds are synthesized and transformed by diverse groups of (micro)organisms in the presence or absence of oxygen. In turn, anthropogenic chlorine contaminants may be degraded under natural or stimulated conditions. Here, we review phylogeny, biochemistry and ecology of microorganisms mediating chlorination and dechlorination processes. In addition, the co-occurrence and potential interdependency of catabolic and anabolic transformations of natural and synthetic chlorine compounds are discussed for selected microorganisms and particular ecosystems.
Collapse
Affiliation(s)
- Siavash Atashgahi
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | | | - Dick B. Janssen
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Alfons J. M. Stams
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
16
|
Huang X, Groves JT. Oxygen Activation and Radical Transformations in Heme Proteins and Metalloporphyrins. Chem Rev 2018; 118:2491-2553. [PMID: 29286645 PMCID: PMC5855008 DOI: 10.1021/acs.chemrev.7b00373] [Citation(s) in RCA: 591] [Impact Index Per Article: 98.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Indexed: 12/20/2022]
Abstract
As a result of the adaptation of life to an aerobic environment, nature has evolved a panoply of metalloproteins for oxidative metabolism and protection against reactive oxygen species. Despite the diverse structures and functions of these proteins, they share common mechanistic grounds. An open-shell transition metal like iron or copper is employed to interact with O2 and its derived intermediates such as hydrogen peroxide to afford a variety of metal-oxygen intermediates. These reactive intermediates, including metal-superoxo, -(hydro)peroxo, and high-valent metal-oxo species, are the basis for the various biological functions of O2-utilizing metalloproteins. Collectively, these processes are called oxygen activation. Much of our understanding of the reactivity of these reactive intermediates has come from the study of heme-containing proteins and related metalloporphyrin compounds. These studies not only have deepened our understanding of various functions of heme proteins, such as O2 storage and transport, degradation of reactive oxygen species, redox signaling, and biological oxygenation, etc., but also have driven the development of bioinorganic chemistry and biomimetic catalysis. In this review, we survey the range of O2 activation processes mediated by heme proteins and model compounds with a focus on recent progress in the characterization and reactivity of important iron-oxygen intermediates. Representative reactions initiated by these reactive intermediates as well as some context from prior decades will also be presented. We will discuss the fundamental mechanistic features of these transformations and delineate the underlying structural and electronic factors that contribute to the spectrum of reactivities that has been observed in nature as well as those that have been invented using these paradigms. Given the recent developments in biocatalysis for non-natural chemistries and the renaissance of radical chemistry in organic synthesis, we envision that new enzymatic and synthetic transformations will emerge based on the radical processes mediated by metalloproteins and their synthetic analogs.
Collapse
Affiliation(s)
- Xiongyi Huang
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department
of Chemistry, California Institute of Technology, Pasadena, California 91125, United States
| | - John T. Groves
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
17
|
Geeraerts Z, Celis AI, Mayfield JA, Lorenz M, Rodgers KR, DuBois JL, Lukat-Rodgers GS. Distinguishing Active Site Characteristics of Chlorite Dismutases with Their Cyanide Complexes. Biochemistry 2018; 57:1501-1516. [PMID: 29406727 PMCID: PMC5849076 DOI: 10.1021/acs.biochem.7b01278] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
O2-evolving chlorite dismutases (Clds) efficiently convert chlorite (ClO2-) to O2 and Cl-. Dechloromonas aromatica Cld ( DaCld) is a highly active chlorite-decomposing homopentameric enzyme, typical of Clds found in perchlorate- and chlorate-respiring bacteria. The Gram-negative, human pathogen Klebsiella pneumoniae contains a homodimeric Cld ( KpCld) that also decomposes ClO2-, albeit with an activity 10-fold lower and a turnover number lower than those of DaCld. The interactions between the distal pocket and heme ligand of the DaCld and KpCld active sites have been probed via kinetic, thermodynamic, and spectroscopic behaviors of their cyanide complexes for insight into active site characteristics that are deterministic for chlorite decomposition. At 4.7 × 10-9 M, the KD for the KpCld-CN- complex is 2 orders of magnitude smaller than that of DaCld-CN- and indicates an affinity for CN- that is greater than that of most heme proteins. The difference in CN- affinity between Kp- and DaClds is predominantly due to differences in koff. The kinetics of binding of cyanide to DaCld, DaCld(R183Q), and KpCld between pH 4 and 8.5 corroborate the importance of distal Arg183 and a p Ka of ∼7 in stabilizing complexes of anionic ligands, including the substrate. The Fe-C stretching and FeCN bending modes of the DaCld-CN- (νFe-C, 441 cm-1; δFeCN, 396 cm-1) and KpCld-CN- (νFe-C, 441 cm-1; δFeCN, 356 cm-1) complexes reveal differences in their FeCN angle, which suggest different distal pocket interactions with their bound cyanide. Conformational differences in their catalytic sites are also reported by the single ferrous KpCld carbonyl complex, which is in contrast to the two conformers observed for DaCld-CO.
Collapse
Affiliation(s)
- Zachary Geeraerts
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, USA
| | - Arianna I. Celis
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Jeffery A. Mayfield
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Megan Lorenz
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, USA
| | - Kenton R. Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, USA
| | - Jennifer L. DuBois
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Gudrun S. Lukat-Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, USA
| |
Collapse
|
18
|
Mobilia KC, Hutchison JM, Zilles JL. Characterizing Isozymes of Chlorite Dismutase for Water Treatment. Front Microbiol 2018; 8:2423. [PMID: 29312158 PMCID: PMC5733030 DOI: 10.3389/fmicb.2017.02423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/22/2017] [Indexed: 11/13/2022] Open
Abstract
This work investigated the potential for biocatalytic degradation of micropollutants, focusing on chlorine oxyanions as model contaminants, by mining biology to identify promising biocatalysts. Existing isozymes of chlorite dismutase (Cld) were characterized with respect to parameters relevant to this high volume, low-value product application: kinetic parameters, resistance to catalytic inactivation, and stability. Maximum reaction velocities (Vmax) were typically on the order of 104 μmol min-1 (μmol heme)-1. Substrate affinity (Km) values were on the order of 100 μM, except for the Cld from Candidatus Nitrospira defluvii (NdCld), which showed a significantly lower affinity for chlorite. NdCld also had the highest susceptibility to catalytic inactivation. In contrast, the Cld from Ideonella dechloratans was least susceptible to catalytic inactivation, with a maximum turnover number of approximately 150,000, more than sevenfold higher than other tested isozymes. Under non-reactive conditions, Cld was quite stable, retaining over 50% of activity after 30 days, and most samples retained activity even after 90–100 days. Overall, Cld from I. dechloratans was the most promising candidate for environmental applications, having high affinity and activity, a relatively low propensity for catalytic inactivation, and excellent stability.
Collapse
Affiliation(s)
- Kellen C Mobilia
- Department of Civil Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Justin M Hutchison
- Department of Civil Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Julie L Zilles
- Department of Civil Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
19
|
Schaffner I, Mlynek G, Flego N, Pühringer D, Libiseller-Egger J, Coates L, Hofbauer S, Bellei M, Furtmüller PG, Battistuzzi G, Smulevich G, Djinović-Carugo K, Obinger C. Molecular Mechanism of Enzymatic Chlorite Detoxification: Insights from Structural and Kinetic Studies. ACS Catal 2017; 7:7962-7976. [PMID: 29142780 PMCID: PMC5678291 DOI: 10.1021/acscatal.7b01749] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 09/22/2017] [Indexed: 01/19/2023]
Abstract
![]()
The
heme enzyme chlorite dismutase (Cld) catalyzes the degradation
of chlorite to chloride and dioxygen. Although structure and steady-state
kinetics of Clds have been elucidated, many questions remain (e.g.,
the mechanism of chlorite cleavage and the pH dependence of the reaction).
Here, we present high-resolution X-ray crystal structures of a dimeric
Cld at pH 6.5 and 8.5, its fluoride and isothiocyanate complexes and
the neutron structure at pH 9.0 together with the pH dependence of
the Fe(III)/Fe(II) couple, and the UV–vis and resonance Raman
spectral features. We demonstrate that the distal Arg127 cannot act
as proton acceptor and is fully ionized even at pH 9.0 ruling out
its proposed role in dictating the pH dependence of chlorite degradation.
Stopped-flow studies show that (i) Compound I and hypochlorite do
not recombine and (ii) Compound II is the immediately formed redox
intermediate that dominates during turnover. Homolytic cleavage of
chlorite is proposed.
Collapse
Affiliation(s)
- Irene Schaffner
- Department
of Chemistry, Division of Biochemistry, BOKU—University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Georg Mlynek
- Department
for Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Dr.-Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Nicola Flego
- Dipartimento
di Chimica “Ugo Schiff”, Università di Firenze, Via della
Lastruccia 3-13, I-50019 Sesto Fiorentino (FI), Italy
| | - Dominic Pühringer
- Department
for Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Dr.-Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Julian Libiseller-Egger
- Department
of Chemistry, Division of Biochemistry, BOKU—University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Leighton Coates
- Biology
and Soft Matter Division, Oak Ridge National Laboratory, 1 Bethel
Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Stefan Hofbauer
- Department
of Chemistry, Division of Biochemistry, BOKU—University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Marzia Bellei
- Department
of Life Sciences, University of Modena and Reggio Emilia, Via Campi
103, 41125 Modena, Italy
| | - Paul G. Furtmüller
- Department
of Chemistry, Division of Biochemistry, BOKU—University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Gianantonio Battistuzzi
- Department
of Chemistry and Geology, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Giulietta Smulevich
- Dipartimento
di Chimica “Ugo Schiff”, Università di Firenze, Via della
Lastruccia 3-13, I-50019 Sesto Fiorentino (FI), Italy
| | - Kristina Djinović-Carugo
- Department
for Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Dr.-Bohr-Gasse 9, A-1030 Vienna, Austria
- Department
of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Christian Obinger
- Department
of Chemistry, Division of Biochemistry, BOKU—University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| |
Collapse
|
20
|
Geeraerts Z, Rodgers KR, DuBois JL, Lukat-Rodgers GS. Active Sites of O 2-Evolving Chlorite Dismutases Probed by Halides and Hydroxides and New Iron-Ligand Vibrational Correlations. Biochemistry 2017; 56:4509-4524. [PMID: 28758386 DOI: 10.1021/acs.biochem.7b00572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
O2-evolving chlorite dismutases (Clds) fall into two subfamilies, which efficiently convert ClO2- to O2 and Cl-. The Cld from Dechloromonas aromatica (DaCld) represents the chlorite-decomposing homopentameric enzymes found in perchlorate- and chlorate-respiring bacteria. The Cld from the Gram-negative human pathogen Klebsiella pneumoniae (KpCld) is representative of the second subfamily, comprising homodimeric enzymes having truncated N-termini. Here steric and nonbonding properties of the DaCld and KpCld active sites have been probed via kinetic, thermodynamic, and spectroscopic behaviors of their fluorides, chlorides, and hydroxides. Cooperative binding of Cl- to KpCld drives formation of a hexacoordinate, high-spin aqua heme, whereas DaCld remains pentacoordinate and high-spin under analogous conditions. Fluoride coordinates to the heme iron in KpCld and DaCld, exhibiting ν(FeIII-F) bands at 385 and 390 cm-1, respectively. Correlation of these frequencies with their CT1 energies reveals strong H-bond donation to the F- ligand, indicating that atoms directly coordinated to heme iron are accessible to distal H-bond donation. New vibrational frequency correlations between either ν(FeIII-F) or ν(FeIII-OH) and ν(FeII-His) of Clds and other heme proteins are reported. These correlations orthogonalize proximal and distal effects on the bonding between iron and exogenous π-donor ligands. The axial Fe-X vibrations and the relationships between them illuminate both similarities and differences in the H-bonding and electrostatic properties of the distal and proximal heme environments in pentameric and dimeric Clds. Moreover, they provide general insight into the structural basis of reactivity toward substrates in heme-dependent enzymes and their mechanistic intermediates, especially those containing the ferryl moiety.
Collapse
Affiliation(s)
- Zachary Geeraerts
- Department of Chemistry and Biochemistry, North Dakota State University , Fargo, North Dakota 58102, United States
| | - Kenton R Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University , Fargo, North Dakota 58102, United States
| | - Jennifer L DuBois
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59715, United States
| | - Gudrun S Lukat-Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University , Fargo, North Dakota 58102, United States
| |
Collapse
|
21
|
Streit BR, Celis AI, Shisler K, Rodgers KR, Lukat-Rodgers GS, DuBois JL. Reactions of Ferrous Coproheme Decarboxylase (HemQ) with O 2 and H 2O 2 Yield Ferric Heme b. Biochemistry 2016; 56:189-201. [PMID: 27982566 DOI: 10.1021/acs.biochem.6b00958] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A recently discovered pathway for the biosynthesis of heme b ends in an unusual reaction catalyzed by coproheme decarboxylase (HemQ), where the Fe(II)-containing coproheme acts as both substrate and cofactor. Because both O2 and H2O2 are available as cellular oxidants, pathways for the reaction involving either can be proposed. Analysis of reaction kinetics and products showed that, under aerobic conditions, the ferrous coproheme-decarboxylase complex is rapidly and selectively oxidized by O2 to the ferric state. The subsequent second-order reaction between the ferric complex and H2O2 is slow, pH-dependent, and further decelerated by D2O2 (average kinetic isotope effect of 2.2). The observation of rapid reactivity with peracetic acid suggested the possible involvement of Compound I (ferryl porphyrin cation radical), consistent with coproheme and harderoheme reduction potentials in the range of heme proteins that heterolytically cleave H2O2. Resonance Raman spectroscopy nonetheless indicated a remarkably weak Fe-His interaction; how the active site structure may support heterolytic H2O2 cleavage is therefore unclear. From a cellular perspective, the use of H2O2 as an oxidant in a catalase-positive organism is intriguing, as is the unusual generation of heme b in the Fe(III) rather than Fe(II) state as the end product of heme synthesis.
Collapse
Affiliation(s)
- Bennett R Streit
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59715, United States
| | - Arianna I Celis
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59715, United States
| | - Krista Shisler
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59715, United States
| | - Kenton R Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University , Fargo, North Dakota 58102, United States
| | - Gudrun S Lukat-Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University , Fargo, North Dakota 58102, United States
| | - Jennifer L DuBois
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59715, United States
| |
Collapse
|
22
|
From chlorite dismutase towards HemQ - the role of the proximal H-bonding network in haeme binding. Biosci Rep 2016; 36:BSR20150330. [PMID: 26858461 PMCID: PMC4793301 DOI: 10.1042/bsr20150330] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 01/21/2016] [Indexed: 12/31/2022] Open
Abstract
Chlorite dismutase (Cld) and HemQ are structurally and phylogenetically closely related haeme enzymes differing fundamentally in their enzymatic properties. Clds are able to convert chlorite into chloride and dioxygen, whereas HemQ is proposed to be involved in the haeme b synthesis of Gram-positive bacteria. A striking difference between these protein families concerns the proximal haeme cavity architecture. The pronounced H-bonding network in Cld, which includes the proximal ligand histidine and fully conserved glutamate and lysine residues, is missing in HemQ. In order to understand the functional consequences of this clearly evident difference, specific hydrogen bonds in Cld from 'Candidatus Nitrospira defluvii' (NdCld) were disrupted by mutagenesis. The resulting variants (E210A and K141E) were analysed by a broad set of spectroscopic (UV-vis, EPR and resonance Raman), calorimetric and kinetic methods. It is demonstrated that the haeme cavity architecture in these protein families is very susceptible to modification at the proximal site. The observed consequences of such structural variations include a significant decrease in thermal stability and also affinity between haeme b and the protein, a partial collapse of the distal cavity accompanied by an increased percentage of low-spin state for the E210A variant, lowered enzymatic activity concomitant with higher susceptibility to self-inactivation. The high-spin (HS) ligand fluoride is shown to exhibit a stabilizing effect and partially restore wild-type Cld structure and function. The data are discussed with respect to known structure-function relationships of Clds and the proposed function of HemQ as a coprohaeme decarboxylase in the last step of haeme biosynthesis in Firmicutes and Actinobacteria.
Collapse
|
23
|
Ouellet YH, Ndiaye CT, Gagné SM, Sebilo A, Suits MD, Jubinville É, Jia Z, Ivancich A, Couture M. An alternative reaction for heme degradation catalyzed by the Escherichia coli O157:H7 ChuS protein: Release of hematinic acid, tripyrrole and Fe(III). J Inorg Biochem 2016; 154:103-13. [DOI: 10.1016/j.jinorgbio.2015.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/08/2015] [Accepted: 11/01/2015] [Indexed: 11/24/2022]
|
24
|
Clark IC, Youngblut M, Jacobsen G, Wetmore KM, Deutschbauer A, Lucas L, Coates JD. Genetic dissection of chlorate respiration in Pseudomonas stutzeri PDA reveals syntrophic (per)chlorate reduction. Environ Microbiol 2015; 18:3342-3354. [PMID: 26411776 DOI: 10.1111/1462-2920.13068] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/02/2015] [Accepted: 09/23/2015] [Indexed: 12/22/2022]
Abstract
Genes important for growth of Pseudomonas stutzeri PDA on chlorate were identified using a randomly DNA bar-coded transposon mutant library. During chlorate reduction, mutations in genes encoding the chlorate reductase clrABC, predicted molybdopterin cofactor chaperon clrD, molybdopterin biosynthesis and two genes of unknown function (clrE, clrF) had fitness defects in pooled mutant assays (Bar-seq). Markerless in-frame deletions confirmed that clrA, clrB and clrC were essential for chlorate reduction, while clrD, clrE and clrF had less severe growth defects. Interestingly, the key detoxification gene cld was essential for chlorate reduction in isogenic pure culture experiments, but showed only minor fitness defects in Bar-seq experiments. We hypothesized this was enabled through chlorite dismutation by the community, as most strains in the Bar-seq library contained an intact cld. In support of this, Δcld grew with wild-type PDA or ΔclrA, and purified Cld also restored growth to the Δcld mutant. Expanding on this, wild-type PDA and a Δcld mutant of the perchlorate reducer Azospira suillum PS grew on perchlorate in co-culture, but not individually. These results demonstrate that co-occurrence of cld and a chloroxyanion reductase within a single organism is not necessary and raises the possibility of syntrophic (per)chlorate respiration in the environment.
Collapse
Affiliation(s)
- Iain C Clark
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, 94720, USA
| | - Matt Youngblut
- Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Gillian Jacobsen
- Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Kelly M Wetmore
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Adam Deutschbauer
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Lauren Lucas
- Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - John D Coates
- Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
25
|
De Schutter A, Correia HD, Freire DM, Rivas MG, Rizzi A, Santos-Silva T, González PJ, Van Doorslaer S. Ligand Binding to Chlorite Dismutase from Magnetospirillum sp. J Phys Chem B 2015; 119:13859-69. [PMID: 26287794 DOI: 10.1021/acs.jpcb.5b04141] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chlorite dismutase (Cld) catalyzes the reduction of chlorite to chloride and dioxygen. Here, the ligand binding to Cld of Magnetospirillum sp. (MaCld) is investigated with X-ray crystallography and electron paramagnetic resonance (EPR). EPR reveals a large heterogeneity in the structure of wild-type MaCld, showing a variety of low- and high-spin ferric heme forms. Addition of an axial ligand, such as azide or imidazole, removes this heterogeneity almost entirely. This is in line with the two high resolution crystal structures of MaCld obtained in the presence of azide and thiocyanate that show the coordination of the ligands to the heme iron. The crystal structure of the MaCld-azide complex reveals a single well-defined orientation of the azide molecule in the heme pocket. EPR shows, however, a pH-dependent heme structure, probably due to acid-base transitions of the surrounding amino-acid residues stabilizing azide. For the azide and imidazole complex of MaCld, the hyperfine and nuclear quadrupole interactions with the close-by (14)N and (1)H nuclei are determined using pulsed EPR. These values are compared to the corresponding data for the low-spin forms observed in the ferric wild-type MaCld and to existing EPR data on azide and imidazole complexes of other heme proteins.
Collapse
Affiliation(s)
- Amy De Schutter
- BIMEF Laboratory, Department of Physics, University of Antwerp , Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Hugo D Correia
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa , 2829-516 Caparica, Portugal
| | - Diana M Freire
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa , 2829-516 Caparica, Portugal
| | - María G Rivas
- Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral , Ciudad Universitaria, Paraje El Pozo, S3000ZAA Santa Fe, Argentina
| | - Alberto Rizzi
- Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral , Ciudad Universitaria, Paraje El Pozo, S3000ZAA Santa Fe, Argentina
| | - Teresa Santos-Silva
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa , 2829-516 Caparica, Portugal
| | - Pablo J González
- Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral , Ciudad Universitaria, Paraje El Pozo, S3000ZAA Santa Fe, Argentina
| | - Sabine Van Doorslaer
- BIMEF Laboratory, Department of Physics, University of Antwerp , Universiteitsplein 1, B-2610 Wilrijk, Belgium
| |
Collapse
|
26
|
Freire DM, Rivas MG, Dias AM, Lopes AT, Costa C, Santos-Silva T, Van Doorslaer S, González PJ. The homopentameric chlorite dismutase from Magnetospirillum sp. J Inorg Biochem 2015. [PMID: 26218477 DOI: 10.1016/j.jinorgbio.2015.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chlorite dismutase (Cld) is a b-type heme containing enzyme that catalyzes the reduction of chlorite into chloride plus dioxygen. This enzyme has gained attention because it can be used in the development of bioremediation processes, biosensors, and controlled dioxygen production. In the present work, Cld was purified from Magnetospirillum sp. cells cultured anaerobically with acetate/perchlorate until stationary phase. Biochemical, spectroscopic and X-ray crystallography methods showed that Cld from Magnetospirillum sp. is a ~140 kDa homopentamer comprising ~27.8 kDa monomers. Preliminary X-ray crystallography studies confirmed the quaternary structure and the presence of one b-type heme per monomer. The EPR spectroscopic signature of the as-purified Cld samples is affected by the buffer composition used during the purification. Potassium phosphate buffer is the only buffer that affected neither the spectral nor the kinetic properties of Cld. Kinetic studies in solution revealed that Cld from Magnetospirillum sp. decomposes chlorite at high turnover rates with optimal pH6.0. A temperature below 10 °C is required to avoid enzyme inactivation due to cofactor bleaching during turnover, and to achieve full substrate consumption. Cld kinetic parameters were not affected when kinetic assays were performed in the presence of air or under argon atmosphere, but chloride is a weak mixed inhibitor that modifies the EPR signal of as-prepared samples.
Collapse
Affiliation(s)
- Diana M Freire
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Maria G Rivas
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Paraje El Pozo, S3000ZAA Santa Fe, Argentina
| | - André M Dias
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Ana T Lopes
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Cristina Costa
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Teresa Santos-Silva
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Sabine Van Doorslaer
- Department of Physics, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium.
| | - Pablo J González
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Paraje El Pozo, S3000ZAA Santa Fe, Argentina.
| |
Collapse
|
27
|
Liebensteiner MG, Oosterkamp MJ, Stams AJM. Microbial respiration with chlorine oxyanions: diversity and physiological and biochemical properties of chlorate- and perchlorate-reducing microorganisms. Ann N Y Acad Sci 2015; 1365:59-72. [PMID: 26104311 DOI: 10.1111/nyas.12806] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Chlorine oxyanions are valuable electron acceptors for microorganisms. Recent findings have shed light on the natural formation of chlorine oxyanions in the environment. These suggest a permanent introduction of respective compounds on Earth, long before their anthropogenic manufacture. Microorganisms that are able to grow by the reduction of chlorate and perchlorate are affiliated with phylogenetically diverse lineages, spanning from the Proteobacteria to the Firmicutes and archaeal microorganisms. Microbial reduction of chlorine oxyanions can be found in diverse environments and different environmental conditions (temperature, salinities, pH). It commonly involves the enzymes perchlorate reductase (Pcr) or chlorate reductase (Clr) and chlorite dismutase (Cld). Horizontal gene transfer seems to play an important role for the acquisition of functional genes. Novel and efficient Clds were isolated from microorganisms incapable of growing on chlorine oxyanions. Archaea seem to use a periplasmic Nar-type reductase (pNar) for perchlorate reduction and lack a functional Cld. Chlorite is possibly eliminated by alternative (abiotic) reactions. This was already demonstrated for Archaeoglobus fulgidus, which uses reduced sulfur compounds to detoxify chlorite. A broad biochemical diversity of the trait, its environmental dispersal, and the occurrence of relevant enzymes in diverse lineages may indicate early adaptations of life toward chlorine oxyanions on Earth.
Collapse
Affiliation(s)
| | - Margreet J Oosterkamp
- Laboratory of Microbiology, Wageningen University, Wageningen, the Netherlands.,Energy Biosciences Institute, University of Illinois, Urbana, Illinois
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University, Wageningen, the Netherlands.,Department of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
28
|
Celis AI, DuBois JL. Substrate, product, and cofactor: The extraordinarily flexible relationship between the CDE superfamily and heme. Arch Biochem Biophys 2015; 574:3-17. [PMID: 25778630 PMCID: PMC4414885 DOI: 10.1016/j.abb.2015.03.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/06/2015] [Accepted: 03/08/2015] [Indexed: 12/21/2022]
Abstract
PFam Clan 0032, also known as the CDE superfamily, is a diverse group of at least 20 protein families sharing a common α,β-barrel domain. Of these, six different groups bind heme inside the barrel's interior, using it alternately as a cofactor, substrate, or product. Focusing on these six, an integrated picture of structure, sequence, taxonomy, and mechanism is presented here, detailing how a single structural motif might be able to mediate such an array of functions with one of nature's most important small molecules.
Collapse
Affiliation(s)
- Arianna I Celis
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, United States
| | - Jennifer L DuBois
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, United States.
| |
Collapse
|
29
|
Schaffner I, Hofbauer S, Krutzler M, Pirker KF, Bellei M, Stadlmayr G, Mlynek G, Djinovic-Carugo K, Battistuzzi G, Furtmüller PG, Daims H, Obinger C. Dimeric chlorite dismutase from the nitrogen-fixing cyanobacterium Cyanothece sp. PCC7425. Mol Microbiol 2015; 96:1053-68. [PMID: 25732258 PMCID: PMC4973843 DOI: 10.1111/mmi.12989] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2015] [Indexed: 11/28/2022]
Abstract
It is demonstrated that cyanobacteria (both azotrophic and non-azotrophic) contain heme b oxidoreductases that can convert chlorite to chloride and molecular oxygen (incorrectly denominated chlorite 'dismutase', Cld). Beside the water-splitting manganese complex of photosystem II, this metalloenzyme is the second known enzyme that catalyses the formation of a covalent oxygen-oxygen bond. All cyanobacterial Clds have a truncated N-terminus and are dimeric (i.e. clade 2) proteins. As model protein, Cld from Cyanothece sp. PCC7425 (CCld) was recombinantly produced in Escherichia coli and shown to efficiently degrade chlorite with an activity optimum at pH 5.0 [kcat 1144 ± 23.8 s(-1), KM 162 ± 10.0 μM, catalytic efficiency (7.1 ± 0.6) × 10(6) M(-1) s(-1)]. The resting ferric high-spin axially symmetric heme enzyme has a standard reduction potential of the Fe(III)/Fe(II) couple of -126 ± 1.9 mV at pH 7.0. Cyanide mediates the formation of a low-spin complex with k(on) = (1.6 ± 0.1) × 10(5) M(-1) s(-1) and k(off) = 1.4 ± 2.9 s(-1) (KD ∼ 8.6 μM). Both, thermal and chemical unfolding follows a non-two-state unfolding pathway with the first transition being related to the release of the prosthetic group. The obtained data are discussed with respect to known structure-function relationships of Clds. We ask for the physiological substrate and putative function of these O2 -producing proteins in (nitrogen-fixing) cyanobacteria.
Collapse
Affiliation(s)
- Irene Schaffner
- Department of Chemistry, Division of Biochemistry, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, A-1190, Vienna, Austria
| | - Stefan Hofbauer
- Department of Chemistry, Division of Biochemistry, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, A-1190, Vienna, Austria.,Department for Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Michael Krutzler
- Department of Chemistry, Division of Biochemistry, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, A-1190, Vienna, Austria
| | - Katharina F Pirker
- Department of Chemistry, Division of Biochemistry, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, A-1190, Vienna, Austria
| | - Marzia Bellei
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Gerhard Stadlmayr
- Department of Chemistry, Division of Biochemistry, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, A-1190, Vienna, Austria
| | - Georg Mlynek
- Department for Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Kristina Djinovic-Carugo
- Department for Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria.,Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Gianantonio Battistuzzi
- Department of Chemistry and Geology, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Paul G Furtmüller
- Department of Chemistry, Division of Biochemistry, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, A-1190, Vienna, Austria
| | - Holger Daims
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Christian Obinger
- Department of Chemistry, Division of Biochemistry, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, A-1190, Vienna, Austria
| |
Collapse
|