1
|
Different Pathways of Cellular Cholesterol Efflux. Cell Biochem Biophys 2022; 80:471-481. [PMID: 35737216 DOI: 10.1007/s12013-022-01081-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/13/2022] [Indexed: 12/22/2022]
Abstract
Cholesterol efflux is the first and rate-limiting step of reverse cholesterol transport (RCT) from peripheric cells to the liver. The involvement of high-density lipoprotein (HDL) in RCT determines the atheroprotective properties of HDL. Cholesterol efflux from different membrane pools includes both passive and energy-dependent processes. The first type of route consists of cholesterol desorption from the cell membrane into the unstirred layer adjacent to the cell surface and diffusion in the water phase. Moreover, the selective uptake and facilitated diffusion of cholesterol and cholesteryl ester molecules through the hydrophobic tunnel in the scavenger receptor BI molecule does not require energy consumption. The second type of route includes active cholesterol export by the ATP-binding cassette transporters A1 (ABCA1) and G1 (ABCG1). Several cholesterol acceptors specifically bind cholesterol and phospholipid molecules, and cholesterol binding to the albumin molecule, which acts as a shuttle, significantly increases cholesterol movement between acceptors and red blood cells, thus functioning as a sink for cholesterol. Cholesterol and phospholipid molecules effluxed from macrophages by ABCA1 are accepted exclusively by the lipid-free apolipoprotein apoA-I, which is the major protein moiety of HDL, whereas those effluxed by ABCG1 are accepted by HDL. ABCA1- and ABCG1-mediated cholesterol transport, together with cholesterol diffusion, largely determine cholesterol turnover at the physiological level of intracellular cholesterol. However, at cholesterol overload, ABCA1-mediated efflux prevails over other routes. The exchange of apoA-I between lipid-free and lipid-associated states and the synergism of nascent and mature HDL contribute to cholesterol efflux efficiency. Moreover, extracellular cholesterol deposits and microvesicles may be involved in RCT.
Collapse
|
2
|
Lorkowski SW, Brubaker G, Li L, Li XS, Hazen SL, Smith JD. A Novel Cell-Free Fluorescent Assay for HDL Function: Low Apolipoprotein A1 Exchange Rate Associated with Increased Incident Cardiovascular Events. J Appl Lab Med 2021; 5:544-557. [PMID: 32445357 DOI: 10.1093/jalm/jfaa002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/19/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Cholesterol efflux capacity is a tissue culture assay for HDL function that is not amenable for high-throughput monitoring of risk assessment. METHODS We devised a cell-free HDL function assay to measure the exchange rate of exogenous apoA1 into serum HDL using NBD/Alexa647 double-labeled apoA1, whose NBD/Alexa647 emission ratio increased upon exchange into HDL. ApoA1 exchange rate (AER) was assayed by incubating labeled apoA1 with human serum, and the rate of the increase of the NBD/Alexa647 ratio over time was calculated as AER. RESULTS Fast protein liquid chromatography analysis of serum confirmed that the labeled apoA1 selectively exchanged into the HDL lipoprotein fraction. Characterization studies demonstrated that the AER assay had excellent intra- and inter-day reproducibility, was stable over 3 freeze-thaw cycles, and yielded similar results with serum or plasma. We quantified AER in serum from randomly selected stable subjects undergoing elective diagnostic coronary angiography (n = 997). AER was correlated with HDL-cholesterol (r = 0.58, P < 0.0001) and apoA1 levels (r = 0.56, P < 0.0001). Kaplan-Meier survival plot showed subjects in the lowest quartile of AER experienced a significantly higher rate of incident major adverse cardiovascular events (MACE = myocardial infarction, stroke, or death) (P < 0.0069 log rank). Moreover, compared to subjects in the lowest AER quartile, the remaining subjects showed significantly lower incident (3 year) risk for MACE, even after adjustment for traditional risk factors and apoA1 (HR 0.58; 95% CI 0.40-0.85; P = 0.005). CONCLUSIONS In a prospective cohort of stable subjects undergoing elective diagnostic cardiac evaluations, low AER was associated with increased incident risk of MACE.
Collapse
Affiliation(s)
- Shuhui Wang Lorkowski
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH
| | - Gregory Brubaker
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH
| | - Lin Li
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH
| | - Xinmin S Li
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH
| | - Stanley L Hazen
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH.,Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH
| | - Jonathan D Smith
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH.,Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
3
|
Tsujita M, Vaisman B, Chengyu L, Vickers KC, Okuhira KI, Braesch-Andersen S, Remaley AT. Apolipoprotein A-I in mouse cerebrospinal fluid derives from the liver and intestine via plasma high-density lipoproteins assembled by ABCA1 and LCAT. FEBS Lett 2020; 595:773-788. [PMID: 33020907 DOI: 10.1002/1873-3468.13950] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/04/2020] [Accepted: 09/20/2020] [Indexed: 12/12/2022]
Abstract
Apolipoprotein (apo) A-I, the major structural protein of high-density lipoprotein (HDL), is present in human and mouse cerebrospinal fluid (CSF) despite its lack of expression in brain cells. To identify the origin of apoA-I in CSF, we generated intestine-specific and liver-specific Apoa1 knockout mice (Apoa1ΔInt and Apoa1Δliv mice, respectively). Lipoprotein profiles of Apoa1ΔInt and Apoa1ΔLiv mice resembled those of control littermates, whereas knockout of Apoa1 in both intestine and liver (Apoa1ΔIntΔLiv ) resulted in a 60-percent decrease in HDL-cholesterol levels, thus strongly mimicking the Apoa1-/- mice. Immunoassays revealed that mouse apoA-I was not present in the CSF of the Apoa1ΔIntΔLiv mice. Furthermore, apoA-I levels in CSF were highly correlated with plasma spherical HDL levels, which were regulated by ABCA1 and LCAT. Collectively, these results suggest that apoA-I protein in CSF originates in liver and small intestine and is taken up from the plasma.
Collapse
Affiliation(s)
- Maki Tsujita
- Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Boris Vaisman
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, NHLBI, NIH, Bethesda, MD, USA
| | - Liu Chengyu
- Transgenic Core facility, NHLBI, NIH, Bethesda, MD, USA
| | - Kasey C Vickers
- Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | - Alan T Remaley
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, NHLBI, NIH, Bethesda, MD, USA
| |
Collapse
|
4
|
Dergunov AD, Litvinov DY, Malkov AA, Baserova VB, Nosova EV, Dergunova LV. Denaturation of human plasma high-density lipoproteins by urea studied by apolipoprotein A-I dissociation. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158814. [PMID: 32961276 DOI: 10.1016/j.bbalip.2020.158814] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/30/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022]
Abstract
We studied the mechanism of HDL denaturation with concomitant apoA-I dissociation with HDL preparations from 48 patients with a wide range of plasma HDL-C and evaluated the contribution of lipid-free apoA-I into cholesterol efflux from macrophage, in particular, mediated by cholesterol transporter ABCA1. We prepared HDL by precipitation of apoB-containing lipoproteins by polyethylene glycol and used the chaotropic agent urea to denature HDL preparations. Apo-I dissociation from urea-treated HDL was assessed by the increase of preβ-band fraction with agarose gel electrophoresis followed by electro transfer and immunodetection and by the increase of ABCA1-mediated efflux of fluorescent analogue BODIPY-Cholesterol from RAW 264.7 macrophages. The HDL denaturation is governed by a single transition to fully dissociated apoA-I and the transition cooperativity decreases with increasing HDL-C. The apoA-I release depends on phospholipid concentration of HDL preparation and HDL compositional and structural heterogeneity and is well described by apolipoprotein partition between aqueous and lipid phases. Dissociated apoA-I determines the increase of ABCA1-mediated efflux of BODIPY-Cholesterol from RAW 264.7 macrophages to patient HDL. The increase in apoA-I dissociation is associated with the increase of ABCA1 gene transcript in peripheral blood mononuclear cells from patients. The low level of plasma HDL particles may be compensated by their increased potency for apoA-I release, thus suggesting apoA-I dissociation as a new HDL functional property.
Collapse
Affiliation(s)
- Alexander D Dergunov
- Laboratory of Structural Fundamentals of Lipoprotein Metabolism, National Research Centre for Preventive Medicine, Moscow, Russia.
| | - Dmitry Y Litvinov
- Laboratory of Structural Fundamentals of Lipoprotein Metabolism, National Research Centre for Preventive Medicine, Moscow, Russia
| | - Artem A Malkov
- Laboratory of Structural Fundamentals of Lipoprotein Metabolism, National Research Centre for Preventive Medicine, Moscow, Russia
| | - Veronika B Baserova
- Laboratory of Structural Fundamentals of Lipoprotein Metabolism, National Research Centre for Preventive Medicine, Moscow, Russia
| | - Elena V Nosova
- Laboratory of Functional Genomics, Institute of Molecular Genetics of the Russian Academy of Sciences, Moscow, Russia
| | - Liudmila V Dergunova
- Laboratory of Functional Genomics, Institute of Molecular Genetics of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
5
|
Heier M, Ofstad AP, Borja MS, Brunborg C, Endresen K, Gullestad L, Birkeland KI, Johansen OE, Oda MN. High-density lipoprotein function is associated with atherosclerotic burden and cardiovascular outcomes in type 2 diabetes. Atherosclerosis 2018; 282:183-187. [PMID: 30017177 DOI: 10.1016/j.atherosclerosis.2018.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 07/05/2018] [Indexed: 02/02/2023]
Abstract
BACKGROUND AND AIMS Measures of HDL function are emerging tools for assessing cardiovascular disease (CVD) event risk. HDL-apoA-I exchange (HAE) reflects HDL capacity for reverse cholesterol transport. METHODS HAE was measured in 93 participants with type 2 diabetes (T2D) and at least one additional CVD risk factor in the Asker and Bærum Cardiovascular Diabetes study. At baseline and after seven years, the atherosclerotic burden was assessed by invasive coronary angiography. Major CVD events were registered throughout the study. RESULTS Linear regression analysis demonstrated a significant inverse association between HAE and atherosclerotic burden. Cox proportional hazard regression analysis showed a significant association between HAE and a composite of major CVD events when controlling for waist-hip ratio, HR = 0.89, 95% CI = 0.80-1.00 and p=0.040. CONCLUSIONS Despite the relatively small size of the study population and the limited number of CVD events, these findings suggest that HAE provides valuable information in determining CVD risk.
Collapse
Affiliation(s)
- Martin Heier
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr Way, Oakland, CA, 94609, USA; Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Anne Pernille Ofstad
- Vestre Viken HF, Bærum Hospital, Department of Medical Research, Gjettum, Norway
| | - Mark S Borja
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr Way, Oakland, CA, 94609, USA
| | - Cathrine Brunborg
- Oslo Centre for Biostatistics and Epidemiology, Research Support Services, Oslo University Hospital, Oslo, Norway
| | - Knut Endresen
- Department of Cardiology, Oslo University Hospital, Oslo, Norway
| | - Lars Gullestad
- Department of Cardiology, Oslo University Hospital, Oslo, Norway
| | - Kåre I Birkeland
- Department of Transplantation Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Odd Erik Johansen
- Vestre Viken HF, Bærum Hospital, Department of Medical Research, Gjettum, Norway
| | - Michael N Oda
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr Way, Oakland, CA, 94609, USA
| |
Collapse
|
6
|
Gillard BK, Rosales C, Xu B, Gotto AM, Pownall HJ. Rethinking reverse cholesterol transport and dysfunctional high-density lipoproteins. J Clin Lipidol 2018; 12:849-856. [PMID: 29731282 DOI: 10.1016/j.jacl.2018.04.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/26/2018] [Accepted: 04/03/2018] [Indexed: 12/31/2022]
Abstract
Human plasma high-density lipoprotein cholesterol concentrations are a negative risk factor for atherosclerosis-linked cardiovascular disease. Pharmacological attempts to reduce atherosclerotic cardiovascular disease by increasing plasma high-density lipoprotein cholesterol have been disappointing so that recent research has shifted from HDL quantity to HDL quality, that is, functional vs dysfunctional HDL. HDL has varying degrees of dysfunction reflected in impaired reverse cholesterol transport (RCT). In the context of atheroprotection, RCT occurs by 2 mechanisms: one is the well-known trans-hepatic pathway comprising macrophage free cholesterol (FC) efflux, which produces early forms of FC-rich nascent HDL (nHDL). Lecithin:cholesterol acyltransferase converts HDL-FC to HDL-cholesteryl ester while converting nHDL from a disc to a mature spherical HDL, which transfers its cholesteryl ester to the hepatic HDL receptor, scavenger receptor B1 for uptake, conversion to bile salts, or transfer to the intestine for excretion. Although widely cited, current evidence suggests that this is a minor pathway and that most HDL-FC and nHDL-FC rapidly transfer directly to the liver independent of lecithin:cholesterol acyltransferase activity. A small fraction of plasma HDL-FC enters the trans-intestinal efflux pathway comprising direct FC transfer to the intestine. SR-B1-/- mice, which have impaired trans-hepatic FC transport, are characterized by high plasma levels of a dysfunctional FC-rich HDL that increases plasma FC bioavailability in a way that produces whole-body hypercholesterolemia and multiple pathologies. The design of future therapeutic strategies to improve RCT will have to be formulated in the context of these dual RCT mechanisms and the role of FC bioavailability.
Collapse
Affiliation(s)
- Baiba K Gillard
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX, USA; Weill Cornell Medicine, New York, NY, USA
| | - Corina Rosales
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX, USA; Weill Cornell Medicine, New York, NY, USA
| | - Bingqing Xu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Antonio M Gotto
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX, USA; Weill Cornell Medicine, New York, NY, USA
| | - Henry J Pownall
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX, USA; Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
7
|
Block RC, Holub A, Abdolahi A, Tu XM, Mousa SA, Oda MN. Effects of aspirin in combination with EPA and DHA on HDL-C cholesterol and ApoA1 exchange in individuals with type 2 diabetes mellitus. Prostaglandins Leukot Essent Fatty Acids 2017; 126:25-31. [PMID: 29031392 PMCID: PMC5683419 DOI: 10.1016/j.plefa.2017.08.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 01/04/2023]
Abstract
BACKGROUND/SYNOPSIS Low-dose aspirin is an effective drug for the prevention of cardiovascular disease (CVD) events but individuals with diabetes mellitus can be subject to 'aspirin resistance'. Thus, aspirin's effect in these individuals is controversial. Higher blood levels of seafood-derived omega-3 polyunsaturated fatty acids (ω3) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) also have beneficial effects in reducing risk of CVD events but few studies have examined the interaction of plasma EPA and DHA with aspirin ingestion. OBJECTIVE/PURPOSE Our study examined the combinatory effects of EPA, DHA, and aspirin ingestion on HDL-cholesterol (HDL-C) and apoA-I exchange (shown to be associated with CVD event risk). METHODS 30 adults with Type 2 diabetes mellitus ingested aspirin (81mg/day) for 7 consecutive days, EPA+DHA (2.6g/day) for 28 days, then both for 7 days. Plasma was collected at baseline and at 5 subsequent visits including 4h after each aspirin ingestion. Mixed model methods were used to determine HDL-C-concentrations and apoA-I exchange compared to the baseline visit values. LOWESS curves were used for non-linear analyses of outcomes to help discern change patterns, which was followed by piecewise linear functions for formal testing of curvilinear relationships. RESULTS Significant changes (p < 0.05) compared to baseline in both HDL-C-concentrations and apoA-I exchange were present at different times. After 7 days of aspirin-only ingestion, apoA-I exchange was significantly modified by increasing levels of DHA concentration, with increased apoA-I exchange observed up until log(DHA) of 4.6 and decreased exchange thereafter (p = 0.03). These LOWESS curve effects were not observed for EPA or HDL-C (p > 0.05). Aspirin's effects on apoA-I exchange were the greatest when EPA or DHA concentrations were moderate compared to high or low. Comparison of EPA, DHA, and EPA+DHA LOWESS curves, demonstrated that the majority of the effect is due to DHA. CONCLUSION Our results strongly suggest that plasma concentrations of EPA and DHA influence aspirin effects on lipid mediators of CVD event risk where their concentrations are most beneficial when moderate, not high or low. These effects on HDL-C cholesterol and apoA-I exchange are novel. Personalized dosing of DHA in those who take aspirin may be a beneficial option for patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Robert C Block
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States.
| | - Ashley Holub
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Amir Abdolahi
- Department of Acute Care Solutions, Philips Research North America, United States
| | - Xin M Tu
- Division of Biostatistics & Bioinformatics in the Department of Family Medicine and Public Health, University of California School of Medicine, San Diego, CA, United States
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, United States
| | - Michael N Oda
- Children's Hospital Oakland Research Institute, Oakland, CA, United States
| |
Collapse
|
8
|
Borja MS, Hammerson B, Tang C, Savinova OV, Shearer GC, Oda MN. Apolipoprotein A-I exchange is impaired in metabolic syndrome patients asymptomatic for diabetes and cardiovascular disease. PLoS One 2017; 12:e0182217. [PMID: 28767713 PMCID: PMC5540550 DOI: 10.1371/journal.pone.0182217] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 07/15/2017] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE We tested the hypothesis that HDL-apolipoprotein A-I exchange (HAE), a measure of high-density lipoprotein (HDL) function and a key step in reverse cholesterol transport (RCT), is impaired in metabolic syndrome (MetSyn) patients who are asymptomatic for diabetes and cardiovascular disease. We also compared HAE with cell-based cholesterol efflux capacity (CEC) to address previous reports that CEC is enhanced in MetSyn populations. METHODS HAE and ABCA1-specific CEC were measured as tests of HDL function in 60 MetSyn patients and 14 normolipidemic control subjects. Predictors of HAE and CEC were evaluated with multiple linear regression modeling using clinical markers of MetSyn and CVD risk. RESULTS HAE was significantly reduced in MetSyn patients (49.0 ± 10.9% vs. 61.2 ± 6.1%, P < 0.0001), as was ABCA1-specific CEC (10.1 ± 1.6% vs. 12.3 ± 2.0%, P < 0.002). Multiple linear regression analysis identified apoA-I concentration as a significant positive predictor of HAE, and MetSyn patients had significantly lower HAE per mg/dL of apoA-I (P = 0.004). MetSyn status was a negative predictor of CEC, but triglyceride (TG) was a positive predictor of CEC, with MetSyn patients having higher CEC per mg/dL of TG, but lower overall CEC compared to controls. CONCLUSIONS MetSyn patients have impaired HAE that contributes to reduced capacity for ABCA1-mediated CEC. MetSyn status is inversely correlated with CEC but positively correlated with TG, which explains the contradictory results from earlier MetSyn studies focused on CEC. HAE and CEC are inhibited in MetSyn patients over a broad range of absolute apoA-I and HDL particle levels, supporting the observation that this patient population bears significant residual cardiovascular disease risk.
Collapse
Affiliation(s)
- Mark S. Borja
- Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Bradley Hammerson
- Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Chongren Tang
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Olga V. Savinova
- Cardiovascular Health Research Center, Sanford Research USD, Sioux Falls, South Dakota, United States of America
| | - Gregory C. Shearer
- Cardiovascular Health Research Center, Sanford Research USD, Sioux Falls, South Dakota, United States of America
- Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, United States of America
| | - Michael N. Oda
- Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
- * E-mail:
| |
Collapse
|
9
|
Heier M, Borja MS, Brunborg C, Seljeflot I, Margeirsdottir HD, Hanssen KF, Dahl-Jørgensen K, Oda MN. Reduced HDL function in children and young adults with type 1 diabetes. Cardiovasc Diabetol 2017; 16:85. [PMID: 28683835 PMCID: PMC5501001 DOI: 10.1186/s12933-017-0570-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/23/2017] [Indexed: 12/30/2022] Open
Abstract
Background Patients with type 1 diabetes (T1D) are at increased risk of cardiovascular disease (CVD). Measures of high-density lipoprotein (HDL) function provide a better risk estimate for future CVD events than serum levels of HDL cholesterol. The objective of this study was to evaluate HDL function in T1D patients shortly after disease onset compared with healthy control subjects. Methods Participants in the atherosclerosis and childhood diabetes study were examined at baseline and after 5 years. At baseline, the cohort included 293 T1D patients with a mean age of 13.7 years and mean HbA1c of 8.4%, along with 111 healthy control subjects. Their HDL function, quantified by HDL-apoA-I exchange (HAE), was assessed at both time points. HAE is a measure of HDL’s dynamic property, specifically its ability to release lipid-poor apolipoprotein A-I (apoA-I), an essential step in reverse cholesterol transport. Results The HAE-apoA-I ratio, reflecting the HDL function per concentration unit apoA-I, was significantly lower in the diabetes group both at baseline, 0.33 (SD = 0.06) versus 0.36 (SD = 0.06) %HAE/mg/dL, p < 0.001 and at follow-up, 0.34 (SD = 0.06) versus 0.36 (SD = 0.06) %HAE/mg/dL, p = 0.003. HAE-apoA-I ratio was significantly and inversely correlated with HbA1c in the diabetes group. Over the 5 years of the study, the mean HAE-apoA-I ratio remained consistent in both groups. Individual changes were less than 15% for half of the study participants. Conclusions This study shows reduced HDL function, quantified as HAE-apoA-I ratio, in children and young adults with T1D compared with healthy control subjects. The differences in HDL function appeared shortly after disease onset and persisted over time.
Collapse
Affiliation(s)
- Martin Heier
- Children's Hospital Oakland Research Institute, Oakland, CA, USA. .,Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Mark S Borja
- Children's Hospital Oakland Research Institute, Oakland, CA, USA
| | - Cathrine Brunborg
- Oslo Centre for Biostatistics and Epidemiology, Research Support Services, Oslo University Hospital, Oslo, Norway
| | - Ingebjørg Seljeflot
- Faculty of Medicine, University of Oslo, Oslo, Norway.,Center for Clinical Heart Research and Department of Cardiology, Oslo University Hospital, Oslo, Norway
| | - Hanna Dis Margeirsdottir
- Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Pediatric and Adolescent Medicine, Akershus University Hospital, Lørenskog, Norway
| | - Kristian F Hanssen
- Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Endocrinology, Oslo University Hospital, Oslo, Norway
| | - Knut Dahl-Jørgensen
- Faculty of Medicine, University of Oslo, Oslo, Norway.,Pediatric Department, Oslo University Hospital, Oslo, Norway
| | - Michael N Oda
- Children's Hospital Oakland Research Institute, Oakland, CA, USA
| |
Collapse
|
10
|
Kimura H, Mikawa S, Mizuguchi C, Horie Y, Morita I, Oyama H, Ohgita T, Nishitsuji K, Takeuchi A, Lund-Katz S, Akaji K, Kobayashi N, Saito H. Immunochemical Approach for Monitoring of Structural Transition of ApoA-I upon HDL Formation Using Novel Monoclonal Antibodies. Sci Rep 2017; 7:2988. [PMID: 28592796 PMCID: PMC5462821 DOI: 10.1038/s41598-017-03208-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/24/2017] [Indexed: 11/24/2022] Open
Abstract
Apolipoprotein A-I (apoA-I) undergoes a large conformational reorganization during remodeling of high-density lipoprotein (HDL) particles. To detect structural transition of apoA-I upon HDL formation, we developed novel monoclonal antibodies (mAbs). Splenocytes from BALB/c mice immunized with a recombinant human apoA-I, with or without conjugation with keyhole limpet hemocyanin, were fused with P3/NS1/1-Ag4-1 myeloma cells. After the HAT-selection and cloning, we established nine hybridoma clones secreting anti-apoA-I mAbs in which four mAbs recognize epitopes on the N-terminal half of apoA-I while the other five mAbs recognize the central region. ELISA and bio-layer interferometry measurements demonstrated that mAbs whose epitopes are within residues 1–43 or 44–65 obviously discriminate discoidal and spherical reconstituted HDL particles despite their great reactivities to lipid-free apoA-I and plasma HDL, suggesting the possibility of these mAbs to detect structural transition of apoA-I on HDL. Importantly, a helix-disrupting mutation of W50R into residues 44–65 restored the immunoreactivity of mAbs whose epitope being within residues 44–65 against reconstituted HDL particles, indicating that these mAbs specifically recognize the epitope region in a random coil state. These results encourage us to develop mAbs targeting epitopes in the N-terminal residues of apoA-I as useful probes for monitoring formation and remodeling of HDL particles.
Collapse
Affiliation(s)
- Hitoshi Kimura
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan.,Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505, Japan
| | - Shiho Mikawa
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan.,Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505, Japan
| | - Chiharu Mizuguchi
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan.,Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505, Japan
| | - Yuki Horie
- Department of Bioanalytical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Izumi Morita
- Department of Bioanalytical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Hiroyuki Oyama
- Department of Bioanalytical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Takashi Ohgita
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Kazuchika Nishitsuji
- Department of Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Atsuko Takeuchi
- Analytical Laboratory, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Sissel Lund-Katz
- Lipid Research Group, Gastroenterology, Hepatology and Nutrition Division, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, 19104-4318, USA
| | - Kenichi Akaji
- Department of Medicinal Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Norihiro Kobayashi
- Department of Bioanalytical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Hiroyuki Saito
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan.
| |
Collapse
|
11
|
Gillard BK, Bassett GR, Gotto AM, Rosales C, Pownall HJ. Scavenger receptor B1 (SR-B1) profoundly excludes high density lipoprotein (HDL) apolipoprotein AII as it nibbles HDL-cholesteryl ester. J Biol Chem 2017; 292:8864-8873. [PMID: 28373285 DOI: 10.1074/jbc.m117.781963] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/24/2017] [Indexed: 01/12/2023] Open
Abstract
Reverse cholesterol transport (transfer of macrophage-cholesterol in the subendothelial space of the arterial wall to the liver) is terminated by selective high density lipoprotein (HDL)-cholesteryl ester (CE) uptake, mediated by scavenger receptor class B, type 1 (SR-B1). We tested the validity of two models for this process: "gobbling," i.e. one-step transfer of all HDL-CE to the cell and "nibbling," multiple successive cycles of SR-B1-HDL association during which a few CEs transfer to the cell. Concurrently, we compared cellular uptake of apoAI with that of apoAII, which is more lipophilic than apoAI, using HDL-[3H]CE labeled with [125I]apoAI or [125I]apoAII. The studies were conducted in CHO-K1 and CHO-ldlA7 cells (LDLR-/-) with (CHO-SR-B1) and without SR-B1 overexpression and in human Huh7 hepatocytes. Relative to CE, both apoAI and apoAII were excluded from uptake by all cells. However, apoAII was more highly excluded from uptake (2-4×) than apoAI. To distinguish gobbling versus nibbling mechanisms, media from incubations of HDL with CHO-SR-B1 cells were analyzed by non-denaturing PAGE, size-exclusion chromatography, and the distribution of apoAI, apoAII, cholesterol, and phospholipid among HDL species as a function of incubation time. HDL size gradually decreased, i.e. nibbling, with the concurrent release of lipid-free apoAI; apoAII was retained in an HDL remnant. Our data support an SR-B1 nibbling mechanism that is similar to that of streptococcal serum opacity factor, which also selectively removes CE and releases apoAI, leaving an apoAII-rich remnant.
Collapse
Affiliation(s)
- Baiba K Gillard
- From the Houston Methodist Research Institute, Houston Texas 77030, .,Weill Cornell Medicine, New York, New York 10065, and
| | | | - Antonio M Gotto
- From the Houston Methodist Research Institute, Houston Texas 77030.,Weill Cornell Medicine, New York, New York 10065, and
| | - Corina Rosales
- From the Houston Methodist Research Institute, Houston Texas 77030.,Weill Cornell Medicine, New York, New York 10065, and
| | - Henry J Pownall
- From the Houston Methodist Research Institute, Houston Texas 77030.,Weill Cornell Medicine, New York, New York 10065, and
| |
Collapse
|
12
|
Oluwole AO, Danielczak B, Meister A, Babalola JO, Vargas C, Keller S. Solubilization of Membrane Proteins into Functional Lipid-Bilayer Nanodiscs Using a Diisobutylene/Maleic Acid Copolymer. Angew Chem Int Ed Engl 2017; 56:1919-1924. [PMID: 28079955 PMCID: PMC5299484 DOI: 10.1002/anie.201610778] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 11/24/2016] [Indexed: 12/22/2022]
Abstract
Once removed from their natural environment, membrane proteins depend on membrane-mimetic systems to retain their native structures and functions. To this end, lipid-bilayer nanodiscs that are bounded by scaffold proteins or amphiphilic polymers such as styrene/maleic acid (SMA) copolymers have been introduced as alternatives to detergent micelles and liposomes for in vitro membrane-protein research. Herein, we show that an alternating diisobutylene/maleic acid (DIBMA) copolymer shows equal performance to SMA in solubilizing phospholipids, stabilizes an integral membrane enzyme in functional bilayer nanodiscs, and extracts proteins of various sizes directly from cellular membranes. Unlike aromatic SMA, aliphatic DIBMA has only a mild effect on lipid acyl-chain order, does not interfere with optical spectroscopy in the far-UV range, and does not precipitate in the presence of low millimolar concentrations of divalent cations.
Collapse
Affiliation(s)
- Abraham Olusegun Oluwole
- Molecular BiophysicsUniversity of KaiserslauternErwin-Schrödinger-Str. 1367663KaiserslauternGermany
- Department of ChemistryUniversity of Ibadan200284IbadanNigeria
| | - Bartholomäus Danielczak
- Molecular BiophysicsUniversity of KaiserslauternErwin-Schrödinger-Str. 1367663KaiserslauternGermany
| | - Annette Meister
- Institute of Chemistry and Institute of Biochemistry and BiotechnologyMartin Luther University Halle-WittenbergVon-Danckelmann-Platz 406120HalleGermany
| | | | - Carolyn Vargas
- Molecular BiophysicsUniversity of KaiserslauternErwin-Schrödinger-Str. 1367663KaiserslauternGermany
| | - Sandro Keller
- Molecular BiophysicsUniversity of KaiserslauternErwin-Schrödinger-Str. 1367663KaiserslauternGermany
| |
Collapse
|
13
|
Oluwole AO, Danielczak B, Meister A, Babalola JO, Vargas C, Keller S. Solubilisierung von Membranproteinen in funktionelle Lipiddoppelschicht-Nanodiscs mithilfe eines Diisobutylen/ Maleinsäure-Copolymers. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201610778] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Abraham Olusegun Oluwole
- Molekulare Biophysik; Technische Universität Kaiserslautern; Erwin-Schrödinger-Str. 13 67663 Kaiserslautern Deutschland
- Department of Chemistry; University of Ibadan; 200284 Ibadan Nigeria
| | - Bartholomäus Danielczak
- Molekulare Biophysik; Technische Universität Kaiserslautern; Erwin-Schrödinger-Str. 13 67663 Kaiserslautern Deutschland
| | - Annette Meister
- Institut für Chemie und Institut für Biochemie und Biotechnologie; Martin-Luther-Universität Halle-Wittenberg; Von-Danckelmann-Platz 4 06120 Halle Deutschland
| | | | - Carolyn Vargas
- Molekulare Biophysik; Technische Universität Kaiserslautern; Erwin-Schrödinger-Str. 13 67663 Kaiserslautern Deutschland
| | - Sandro Keller
- Molekulare Biophysik; Technische Universität Kaiserslautern; Erwin-Schrödinger-Str. 13 67663 Kaiserslautern Deutschland
| |
Collapse
|
14
|
Oda MN. Lipid-free apoA-I structure - Origins of model diversity. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:221-233. [PMID: 27890580 DOI: 10.1016/j.bbalip.2016.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 10/20/2016] [Accepted: 11/20/2016] [Indexed: 01/22/2023]
Abstract
Apolipoprotein A-I (apoA-I) is a prominent member of the exchangeable apolipoprotein class of proteins, capable of transitioning between lipid-bound and lipid-free states. It is the primary structural and functional protein of high density lipoprotein (HDL). Lipid-free apoA-I is critical to de novo HDL formation as it is the preferred substrate of the lipid transporter, ATP Binding Cassette Transporter A1 (ABCA1) Remaley et al. (2001) [1]. Lipid-free apoA-I is an important element in reverse cholesterol transport and comprehension of its structure is a core issue in our understanding of cholesterol metabolism. However, lipid-free apoA-I is highly conformationally dynamic making it a challenging subject for structural analysis. Over the past 20years there have been significant advances in overcoming the dynamic nature of lipid-free apoA-I, which have resulted in a multitude of proposed conformational models.
Collapse
Affiliation(s)
- Michael N Oda
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, United States.
| |
Collapse
|
15
|
Jayaraman S, Sánchez-Quesada JL, Gursky O. Triglyceride increase in the core of high-density lipoproteins augments apolipoprotein dissociation from the surface: Potential implications for treatment of apolipoprotein deposition diseases. Biochim Biophys Acta Mol Basis Dis 2016; 1863:200-210. [PMID: 27768903 DOI: 10.1016/j.bbadis.2016.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/13/2016] [Accepted: 10/16/2016] [Indexed: 12/12/2022]
Abstract
Lipids in the body are transported via lipoproteins that are nanoparticles comprised of lipids and amphipathic proteins termed apolipoproteins. This family of lipid surface-binding proteins is over-represented in human amyloid diseases. In particular, all major proteins of high-density lipoproteins (HDL), including apoA-I, apoA-II and serum amyloid A, can cause systemic amyloidoses in humans upon protein mutations, post-translational modifications or overproduction. Here, we begin to explore how the HDL lipid composition influences amyloid deposition by apoA-I and related proteins. First, we summarize the evidence that, in contrast to lipoproteins that are stabilized by kinetic barriers, free apolipoproteins are labile to misfolding and proteolysis. Next, we report original biochemical and biophysical studies showing that increase in triglyceride content in the core of plasma or reconstituted HDL destabilizes the lipoprotein assembly, making it more labile to various perturbations (oxidation, thermal and chemical denaturation and enzymatic hydrolysis), and promotes apoA-I release in a lipid-poor/free aggregation-prone form. Together, the results suggest that decreasing plasma levels of triglycerides will shift the dynamic equilibrium from the lipid-poor/free (labile) to the HDL-bound (protected) apolipoprotein state, thereby decreasing the generation of the protein precursor of amyloid. This prompts us to propose that triglyceride-lowering therapies may provide a promising strategy to alleviate amyloid diseases caused by the deposition of HDL proteins.
Collapse
Affiliation(s)
- Shobini Jayaraman
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, USA
| | - Jose Luis Sánchez-Quesada
- Cardiovascular Biochemistry Group, Biomedical Research Institute IIB-Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Olga Gursky
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, USA.
| |
Collapse
|
16
|
Yang Y, Rosales C, Gillard BK, Gotto AM, Pownall HJ. Acylation of lysine residues in human plasma high density lipoprotein increases stability and plasma clearance in vivo. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1787-1795. [PMID: 27594697 DOI: 10.1016/j.bbalip.2016.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/29/2016] [Accepted: 08/30/2016] [Indexed: 10/21/2022]
Abstract
Although human plasma high density lipoproteins (HDL) concentrations negatively correlate with atherosclerotic cardiovascular disease, underlying mechanisms are unknown. Thus, there is continued interest in HDL structure and functionality. Numerous plasma factors disrupt HDL structure while inducing the release of lipid free apolipoprotein (apo) AI. Given that HDL is an unstable particle residing in a kinetic trap, we tested whether HDL could be stabilized by acylation with acetyl and hexanoyl anhydrides, giving AcHDL and HexHDL respectively. Lysine analysis with fluorescamine showed that AcHDL and HexHDL respectively contained 11 acetyl and 19 hexanoyl groups. Tests with biological and physicochemical perturbants showed that HexHDL was more stable than HDL to perturbant-induced lipid free apo AI formation. Like the reaction of streptococcal serum opacity factor against HDL, the interaction of HDL with its receptor, scavenger receptor class B member 1 (SR-B1), removes CE from HDL. Thus, we tested and validated the hypothesis that selective uptake of HexHDL-[3H]CE by Chinese Hamster Ovary cells expressing SR-B1 is less than that of HDL-[3H]CE; thus, selective SR-B1 uptake of HDL-CE depends on HDL instability. However, in mice, plasma clearance, hepatic uptake and sterol secretion into bile were faster from HexHDL-[3H]CE than from HDL-[3H]CE. Collectively, our data show that acylation increases HDL stability and that the reaction of plasma factors with HDL and SR-B1-mediated uptake are reduced by increased HDL stability. In vivo data suggest that HexHDL promotes charge-dependent reverse cholesterol transport, by a mechanism that increases hepatic sterol uptake via non SR-B1 receptors, thereby increasing bile acid output.
Collapse
Affiliation(s)
- Yaliu Yang
- Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA; Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China.
| | - Corina Rosales
- Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA; Weill Cornell Medicine, 1305 York Avenue, New York, NY 10065, USA.
| | - Baiba K Gillard
- Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA; Weill Cornell Medicine, 1305 York Avenue, New York, NY 10065, USA.
| | - Antonio M Gotto
- Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA; Weill Cornell Medicine, 1305 York Avenue, New York, NY 10065, USA.
| | - Henry J Pownall
- Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA; Weill Cornell Medicine, 1305 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
17
|
Soupene E, Borja MS, Borda M, Larkin SK, Kuypers FA. Featured Article: Alterations of lecithin cholesterol acyltransferase activity and apolipoprotein A-I functionality in human sickle blood. Exp Biol Med (Maywood) 2016; 241:1933-1942. [PMID: 27354333 DOI: 10.1177/1535370216657447] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/04/2016] [Indexed: 01/25/2023] Open
Abstract
In sickle cell disease (SCD) cholesterol metabolism appears dysfunctional as evidenced by abnormal plasma cholesterol content in a subpopulation of SCD patients. Specific activity of the high density lipoprotein (HDL)-bound lecithin cholesterol acyltransferase (LCAT) enzyme, which catalyzes esterification of cholesterol, and generates lysoPC (LPC) was significantly lower in sickle plasma compared to normal. Inhibitory amounts of LPC were present in sickle plasma, and the red blood cell (RBC) lysophosphatidylcholine acyltransferase (LPCAT), essential for the removal of LPC, displayed a broad range of activity. The functionality of sickle HDL appeared to be altered as evidenced by a decreased HDL-Apolipoprotein A-I exchange in sickle plasma as compared to control. Increased levels of oxidized proteins including ApoA-I were detected in sickle plasma. In vitro incubation of sickle plasma with washed erythrocytes affected the ApoA-I-exchange supporting the view that the RBC blood compartment can affect cholesterol metabolism in plasma. HDL functionality appeared to decrease during acute vaso-occlusive episodes in sickle patients and was associated with an increase of secretory PLA2, a marker for increased inflammation. Simvastatin treatment to improve the anti-inflammatory function of HDL did not ameliorate HDL-ApoA-I exchange in sickle patients. Thus, the cumulative effect of an inflammatory and highly oxidative environment in sickle blood contributes to a decrease in cholesterol esterification and HDL function, related to hypocholesterolemia in SCD.
Collapse
Affiliation(s)
- Eric Soupene
- Children's Hospital Oakland Research Institute, Oakland, California 94609, USA
| | - Mark S Borja
- Children's Hospital Oakland Research Institute, Oakland, California 94609, USA
| | - Mauricio Borda
- Children's Hospital Oakland Research Institute, Oakland, California 94609, USA
| | - Sandra K Larkin
- Children's Hospital Oakland Research Institute, Oakland, California 94609, USA
| | - Frans A Kuypers
- Children's Hospital Oakland Research Institute, Oakland, California 94609, USA
| |
Collapse
|
18
|
|
19
|
Mutharasan RK, Foit L, Thaxton CS. High-Density Lipoproteins for Therapeutic Delivery Systems. J Mater Chem B 2016; 4:188-197. [PMID: 27069624 PMCID: PMC4825811 DOI: 10.1039/c5tb01332a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
High-density lipoproteins (HDL) are a class of natural nanostructures found in the blood and are composed of lipids, proteins, and nucleic acids (e.g. microRNA). Their size, which appears to be well-suited for both tissue penetration/retention as well as payload delivery, long circulation half-life, avoidance of endosomal sequestration, and potential low toxicity are all excellent properties to model in a drug delivery vehicle. In this review, we consider high-density lipoproteins for therapeutic delivery systems. First we discuss the structure and function of natural HDL, describing in detail its biogenesis and transformation from immature, discoidal forms, to more mature, spherical forms. Next we consider features of HDL making them suitable vehicles for drug delivery. We then describe the use of natural HDL, discoidal HDL analogs, and spherical HDL analogs to deliver various classes of drugs, including small molecules, lipids, and oligonucleotides. We briefly consider the notion that the drug delivery vehicles themselves are therapeutic, constituting entities that exhibit "theralivery." Finally, we discuss challenges and future directions in the field.
Collapse
Affiliation(s)
- R. Kannan Mutharasan
- Feinberg Cardiovascular Research Institute, 303 E. Chicago Ave., Tarry 14-725, Chicago, IL 60611 United States
| | - Linda Foit
- Feinberg School of Medicine, Department of Urology, Northwestern University, Tarry 16-703, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - C. Shad Thaxton
- Feinberg School of Medicine, Department of Urology, Northwestern University, Tarry 16-703, 303 E. Chicago Ave, Chicago, IL 60611, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 E. Superior St, Chicago, IL 60611, USA
- International Institute for Nanotechnology (IIN), 2145 Sheridan Road, Evanston, IL 60208, USA
- Robert H Lurie Comprehensive Cancer Center (RHLCCC), Northwestern University, Feinberg School of Medicine, 303 E Superior, Chicago, IL 60611, USA
| |
Collapse
|
20
|
Pownall HJ, Gotto AM. New Insights into the High-Density Lipoprotein Dilemma. Trends Endocrinol Metab 2016; 27:44-53. [PMID: 26673122 PMCID: PMC4707953 DOI: 10.1016/j.tem.2015.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/07/2015] [Accepted: 11/09/2015] [Indexed: 12/21/2022]
Abstract
Although high-density lipoprotein-cholesterol (HDL-C) concentration is a negative risk factor for atherosclerotic cardiovascular disease (CVD), efforts to reduce CVD risk by raising HDL-C have not been uniformly successful. Many studies have shown that alcohol consumption, that increases plasma HDL-C concentration, reduces CVD incidence. However, recent genetic studies in large populations have not only removed HDL-C from the causal link between plasma HDL-C concentration and reduced CVD risk, but also suggest that the association is weak. We propose here that the cardioprotective effects of alcohol are mediated by the interaction of its terminal metabolite, acetate, with the adipocyte free fatty acid receptor 2 (FFAR2), which elicits a profound antilipolytic effect that may increase insulin sensitivity without necessarily raising plasma HDL-C concentration.
Collapse
Affiliation(s)
- Henry J. Pownall
- Houston Methodist Research Institute and Weill Cornell Medical College, 6670 Bertner Avenue, Houston TX 77030
| | - Antonio M. Gotto
- Houston Methodist Research Institute and Weill Cornell Medical College, 1305 York Avenue, New York, NY, USA
| |
Collapse
|
21
|
Structural stability and functional remodeling of high-density lipoproteins. FEBS Lett 2015; 589:2627-39. [PMID: 25749369 DOI: 10.1016/j.febslet.2015.02.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 02/16/2015] [Accepted: 02/23/2015] [Indexed: 12/28/2022]
Abstract
Lipoproteins are protein-lipid nanoparticles that transport lipids in circulation and are central in atherosclerosis and other disorders of lipid metabolism. Apolipoproteins form flexible structural scaffolds and important functional ligands on the particle surface and direct lipoprotein metabolism. Lipoproteins undergo multiple rounds of metabolic remodeling that is crucial to lipid transport. Important aspects of this remodeling, including apolipoprotein dissociation and particle fusion, are mimicked in thermal or chemical denaturation and are modulated by free energy barriers. Here we review the biophysical studies that revealed the kinetic mechanism of lipoprotein stabilization and unraveled its structural basis. The main focus is on high-density lipoprotein (HDL). An inverse correlation between stability and functions of various HDLs in cholesterol transport suggests the functional role of structural disorder. A mechanism for the conformational adaptation of the major HDL proteins, apoA-I and apoA-II, to the increasing lipid load is proposed. Together, these studies help understand why HDL forms discrete subclasses separated by kinetic barriers, which have distinct composition, conformation and functional properties. Understanding these properties may help improve HDL quality and develop novel therapies for cardiovascular disease.
Collapse
|