1
|
Manning MC, Holcomb RE, Payne RW, Stillahn JM, Connolly BD, Katayama DS, Liu H, Matsuura JE, Murphy BM, Henry CS, Crommelin DJA. Stability of Protein Pharmaceuticals: Recent Advances. Pharm Res 2024; 41:1301-1367. [PMID: 38937372 DOI: 10.1007/s11095-024-03726-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
There have been significant advances in the formulation and stabilization of proteins in the liquid state over the past years since our previous review. Our mechanistic understanding of protein-excipient interactions has increased, allowing one to develop formulations in a more rational fashion. The field has moved towards more complex and challenging formulations, such as high concentration formulations to allow for subcutaneous administration and co-formulation. While much of the published work has focused on mAbs, the principles appear to apply to any therapeutic protein, although mAbs clearly have some distinctive features. In this review, we first discuss chemical degradation reactions. This is followed by a section on physical instability issues. Then, more specific topics are addressed: instability induced by interactions with interfaces, predictive methods for physical stability and interplay between chemical and physical instability. The final parts are devoted to discussions how all the above impacts (co-)formulation strategies, in particular for high protein concentration solutions.'
Collapse
Affiliation(s)
- Mark Cornell Manning
- Legacy BioDesign LLC, Johnstown, CO, USA.
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | - Ryan E Holcomb
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Robert W Payne
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Joshua M Stillahn
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | | | | | | | | | | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | |
Collapse
|
2
|
Hipper E, Lehmann F, Kaiser W, Hübner G, Buske J, Blech M, Hinderberger D, Garidel P. Protein photodegradation in the visible range? Insights into protein photooxidation with respect to protein concentration. Int J Pharm X 2022; 5:100155. [PMID: 36798831 PMCID: PMC9926095 DOI: 10.1016/j.ijpx.2022.100155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022] Open
Abstract
Visible light (400-800 nm) can lead to photooxidation of protein formulations, which might impair protein integrity. However, the relevant mechanism of photooxidation upon visible light exposure is still unclear for therapeutic proteins, since proteinogenic structures do not absorb light in the visible range. Here, we show that exposure of monoclonal antibody formulations to visible light, lead to the formation of reactive oxygen species (ROS), which subsequently induce specific protein degradations. The formation of ROS and singlet oxygen upon visible light exposure is investigated using electron paramagnetic resonance (EPR) spectroscopy. We describe the initial formation of ROS, most likely after direct reaction of molecular oxygen with a triplet state photosensitizer, generated from intersystem crossing of the excited singlet state. Since these radicals affect the oxygen content in the headspace of the vial, we monitored photooxidation of these mAb formulations. With increasing protein concentrations, we found (i) a decreasing headspace oxygen content in the sample, (ii) a higher relative number of radicals in solution and (iii) a higher protein degradation. Thus, the protein concentration dependence indicates the presence of higher concentration of a currently unknown photosensitizer.
Collapse
Affiliation(s)
- Elena Hipper
- Institute of Chemistry, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle, Germany
| | - Florian Lehmann
- Institute of Chemistry, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle, Germany
| | - Wolfgang Kaiser
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB-TIP, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany
| | - Göran Hübner
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, ADB, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany
| | - Julia Buske
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB-TIP, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany
| | - Michaela Blech
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB-TIP, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany
| | - Dariush Hinderberger
- Institute of Chemistry, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle, Germany
| | - Patrick Garidel
- Institute of Chemistry, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle, Germany,Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB-TIP, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany,Corresponding author at: Institute of Chemistry, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle, Germany; Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB-TIP, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany.
| |
Collapse
|
3
|
Protein folding stabilities are a major determinant of oxidation rates for buried methionine residues. J Biol Chem 2022; 298:101872. [PMID: 35346688 PMCID: PMC9062257 DOI: 10.1016/j.jbc.2022.101872] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 12/20/2022] Open
Abstract
The oxidation of protein-bound methionines to form methionine sulfoxides has a broad range of biological ramifications, making it important to delineate factors that influence methionine oxidation rates within a given protein. This is especially important for biopharmaceuticals, where oxidation can lead to deactivation and degradation. Previously, neighboring residue effects and solvent accessibility have been shown to impact the susceptibility of methionine residues to oxidation. In this study, we provide proteome-wide evidence that oxidation rates of buried methionine residues are also strongly influenced by the thermodynamic folding stability of proteins. We surveyed the Escherichia coli proteome using several proteomic methodologies and globally measured oxidation rates of methionine residues in the presence and absence of tertiary structure, as well as the folding stabilities of methionine-containing domains. These data indicated that buried methionines have a wide range of protection factors against oxidation that correlate strongly with folding stabilities. Consistent with this, we show that in comparison to E. coli, the proteome of the thermophile Thermus thermophilus is significantly more stable and thus more resistant to methionine oxidation. To demonstrate the utility of this correlation, we used native methionine oxidation rates to survey the folding stabilities of E. coli and T. thermophilus proteomes at various temperatures and propose a model that relates the temperature dependence of the folding stabilities of these two species to their optimal growth temperatures. Overall, these results indicate that oxidation rates of buried methionines from the native state of proteins can be used as a metric of folding stability.
Collapse
|
4
|
Long-term stability predictions of therapeutic monoclonal antibodies in solution using Arrhenius-based kinetics. Sci Rep 2021; 11:20534. [PMID: 34654882 PMCID: PMC8519954 DOI: 10.1038/s41598-021-99875-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/01/2021] [Indexed: 11/08/2022] Open
Abstract
Long-term stability of monoclonal antibodies to be used as biologics is a key aspect in their development. Therefore, its possible early prediction from accelerated stability studies is of major interest, despite currently being regarded as not sufficiently robust. In this work, using a combination of accelerated stability studies (up to 6 months) and first order degradation kinetic model, we are able to predict the long-term stability (up to 3 years) of multiple monoclonal antibody formulations. More specifically, we can robustly predict the long-term stability behaviour of a protein at the intended storage condition (5 °C), based on up to six months of data obtained for multiple quality attributes from different temperatures, usually from intended (5 °C), accelerated (25 °C) and stress conditions (40 °C). We have performed stability studies and evaluated the stability data of several mAbs including IgG1, IgG2, and fusion proteins, and validated our model by overlaying the 95% prediction interval and experimental stability data from up to 36 months. We demonstrated improved robustness, speed and accuracy of kinetic long-term stability prediction as compared to classical linear extrapolation used today, which justifies long-term stability prediction and shelf-life extrapolation for some biologics such as monoclonal antibodies. This work aims to contribute towards further development and refinement of the regulatory landscape that could steer toward allowing extrapolation for biologics during the developmental phase, clinical phase, and also in marketing authorisation applications, as already established today for small molecules.
Collapse
|
5
|
Delmar JA, Buehler E, Chetty AK, Das A, Quesada GM, Wang J, Chen X. Machine learning prediction of methionine and tryptophan photooxidation susceptibility. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 21:466-477. [PMID: 33898635 PMCID: PMC8060516 DOI: 10.1016/j.omtm.2021.03.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/26/2021] [Indexed: 12/01/2022]
Abstract
Photooxidation of methionine (Met) and tryptophan (Trp) residues is common and includes major degradation pathways that often pose a serious threat to the success of therapeutic proteins. Oxidation impacts all steps of protein production, manufacturing, and shelf life. Prediction of oxidation liability as early as possible in development is important because many more candidate drugs are discovered than can be tested experimentally. Undetected oxidation liabilities necessitate expensive and time-consuming remediation strategies in development and may lead to good drugs reaching patients slowly. Conversely, sites mischaracterized as oxidation liabilities could result in overengineering and lead to good drugs never reaching patients. To our knowledge, no predictive model for photooxidation of Met or Trp is currently available. We applied the random forest machine learning algorithm to in-house liquid chromatography-tandem mass spectrometry (LC-MS/MS) datasets (Met, n = 421; Trp, n = 342) of tryptic therapeutic protein peptides to create computational models for Met and Trp photooxidation. We show that our machine learning models predict Met and Trp photooxidation likelihood with 0.926 and 0.860 area under the curve (AUC), respectively, and Met photooxidation rate with a correlation coefficient (Q2) of 0.511 and root-mean-square error (RMSE) of 10.9%. We further identify important physical, chemical, and formulation parameters that influence photooxidation. Improvement of biopharmaceutical liability predictions will result in better, more stable drugs, increasing development throughput, product quality, and likelihood of clinical success.
Collapse
Affiliation(s)
- Jared A Delmar
- Biopharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Eugen Buehler
- Data Sciences and AI, R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Ashwin K Chetty
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Agastya Das
- Khoury College of Computer Sciences, Northeastern University, Boston, MA 02115, USA
| | | | - Jihong Wang
- Biopharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Xiaoyu Chen
- Biopharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| |
Collapse
|
6
|
Jain D, Mahammad SS, Singh PP, Kodipyaka R. A review on parenteral delivery of peptides and proteins. Drug Dev Ind Pharm 2019; 45:1403-1420. [DOI: 10.1080/03639045.2019.1628770] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Divisha Jain
- Custom Pharma Services (CPS), Dr. Reddy’s Laboratories Ltd, Hyderabad, India
| | - S. Shahe Mahammad
- Custom Pharma Services (CPS), Dr. Reddy’s Laboratories Ltd, Hyderabad, India
| | - Pirthi Pal Singh
- Custom Pharma Services (CPS), Dr. Reddy’s Laboratories Ltd, Hyderabad, India
| | - Ravinder Kodipyaka
- Custom Pharma Services (CPS), Dr. Reddy’s Laboratories Ltd, Hyderabad, India
| |
Collapse
|
7
|
Effect of Peroxide- Versus Alkoxyl-Induced Chemical Oxidation on the Structure, Stability, Aggregation, and Function of a Therapeutic Monoclonal Antibody. J Pharm Sci 2018; 107:2789-2803. [DOI: 10.1016/j.xphs.2018.07.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/25/2018] [Accepted: 07/24/2018] [Indexed: 11/22/2022]
|
8
|
Effect of Chemical Oxidation on the Higher Order Structure, Stability, Aggregation, and Biological Function of Interferon Alpha-2a: Role of Local Structural Changes Detected by 2D NMR. Pharm Res 2018; 35:232. [PMID: 30324266 DOI: 10.1007/s11095-018-2518-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 10/03/2018] [Indexed: 12/12/2022]
Abstract
PURPOSE Oxidized interferons have been shown to aggregate and cause immunogenicity. In this study, the structural mechanisms underlying oxidation-induced interferon alpha-2a (IFNA2a) aggregation and loss of function were examined. METHODS IFNA2a was oxidized using 0.037% vol/vol hydrogen peroxide. Oxidized protein was probed using biophysical methods that include denaturant melts, particle counting, proteolysis-coupled mass spectrometry, and 2D NMR. RESULTS Oxidized IFNA2a did not show major changes in its secondary structure, but showed minor changes in tertiary structure when compared to the unoxidized protein. In addition, a significant loss of conformational stability was observed upon oxidation. Correspondingly, increased protein aggregation was observed resulting in the formation of sub-visible particles. Oxidized protein showed decreased biological function in terms of its anti-viral potency and cytopathic inhibition efficacy. Proteolysis-coupled mass spectrometry identified five methionine residues that were oxidized with no correlation between the extent of oxidation and their accessible surface area. 2D 15N-1H HSQC NMR identified residue-level local structural changes in the protein upon oxidation, which were not detectable by global probes such as far-UV circular dichroism and fluorescence. CONCLUSIONS Increased protein aggregation and decreased function of IFNA2a upon oxidation correlated with the site of modification identified by proteolysis-coupled mass spectrometry and local structural changes in the protein detected by 2D NMR.
Collapse
|
9
|
Yang L, Hansen Falkesgaard M, Thulstrup PW, Walmod PS, Lo Leggio L, Krighaar Rasmussen K. Expression, refolding and spectroscopic characterization of fibronectin type III (FnIII)-homology domains derived from human fibronectin leucine rich transmembrane protein (FLRT)-1, -2, and -3. PeerJ 2017; 5:e3550. [PMID: 28698826 PMCID: PMC5502089 DOI: 10.7717/peerj.3550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/15/2017] [Indexed: 12/28/2022] Open
Abstract
The fibronectin leucine rich transmembrane (FLRT) protein family consists in humans of 3 proteins, FLRT1, -2, and -3. The FLRT proteins contain two extracellular domains separated by an unstructured linker. The most membrane distal part is a leucine rich repeat (LRR) domain responsible for both cis- and trans-interactions, whereas the membrane proximal part is a fibronectin type III (FnIII) domain responsible for a cis-interaction with members of the fibroblast growth factor receptor 1 (FGFR1) family, which results in FGFR tyrosine kinase activation. Whereas the structures of FLRT LRR domains from various species have been determined, the expression and purification of recombinant FLRT FnIII domains, important steps for further structural and functional characterizations of the proteins, have not yet been described. Here we present a protocol for expressing recombinant FLRT-FnIII domains in inclusion bodies in Escherichia coli. His-tags permitted affinity purification of the domains, which subsequently were refolded on a Ni-NTA agarose column by reducing the concentration of urea. The refolding was confirmed by circular dichroism (CD) and 1H-NMR. By thermal unfolding experiments we show that a strand-strand cystine bridge has significant effect on the stability of the FLRT FnIII fold. We further show by Surface Plasmon Resonance that all three FnIII domains bind to FGFR1, and roughly estimate a Kd for each domain, all Kds being in the µM range.
Collapse
Affiliation(s)
- Lila Yang
- Biological Chemistry, Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Maria Hansen Falkesgaard
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Waaben Thulstrup
- Biological Chemistry, Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Peter Schledermann Walmod
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Leila Lo Leggio
- Biological Chemistry, Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Kim Krighaar Rasmussen
- Biological Chemistry, Department of Chemistry, University of Copenhagen, Copenhagen, Denmark.,Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Yang R, Jain T, Lynaugh H, Nobrega RP, Lu X, Boland T, Burnina I, Sun T, Caffry I, Brown M, Zhi X, Lilov A, Xu Y. Rapid assessment of oxidation via middle-down LCMS correlates with methionine side-chain solvent-accessible surface area for 121 clinical stage monoclonal antibodies. MAbs 2017; 9:646-653. [PMID: 28281887 DOI: 10.1080/19420862.2017.1290753] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Susceptibility of methionine to oxidation is an important concern for chemical stability during the development of a monoclonal antibody (mAb) therapeutic. To minimize downstream risks, leading candidates are usually screened under forced oxidation conditions to identify oxidation-labile molecules. Here we report results of forced oxidation on a large set of in-house expressed and purified mAbs with variable region sequences corresponding to 121 clinical stage mAbs. These mAb samples were treated with 0.1% H2O2 for 24 hours before enzymatic cleavage below the hinge, followed by reduction of inter-chain disulfide bonds for the detection of the light chain, Fab portion of heavy chain (Fd) and Fc by liquid chromatography-mass spectrometry. This high-throughput, middle-down approach allows detection of oxidation site(s) at the resolution of 3 distinct segments. The experimental oxidation data correlates well with theoretical predictions based on the solvent-accessible surface area of the methionine side-chains within these segments. These results validate the use of upstream computational modeling to predict mAb oxidation susceptibility at the sequence level.
Collapse
Affiliation(s)
- Rong Yang
- a Protein Analytics, Adimab , Lebanon , NH , USA
| | - Tushar Jain
- b Computational Biology, Adimab , Palo Alto , CA , USA
| | | | | | - Xiaojun Lu
- a Protein Analytics, Adimab , Lebanon , NH , USA
| | - Todd Boland
- b Computational Biology, Adimab , Palo Alto , CA , USA
| | | | - Tingwan Sun
- a Protein Analytics, Adimab , Lebanon , NH , USA
| | | | | | - Xiaoyong Zhi
- a Protein Analytics, Adimab , Lebanon , NH , USA
| | | | - Yingda Xu
- a Protein Analytics, Adimab , Lebanon , NH , USA
| |
Collapse
|
11
|
Cheng W, Zheng X, Yang M. Hydrogen Peroxide Induced Protein Oxidation During Storage and Lyophilization Process. J Pharm Sci 2016; 105:1837-1842. [DOI: 10.1016/j.xphs.2016.03.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 03/16/2016] [Accepted: 03/22/2016] [Indexed: 11/16/2022]
|
12
|
Masato A, Kiichi F, Uchiyama S. Suppression of Methionine Oxidation of a Pharmaceutical Antibody Stored in a Polymer-Based Syringe. J Pharm Sci 2016; 105:623-629. [DOI: 10.1002/jps.24675] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/01/2015] [Accepted: 09/15/2015] [Indexed: 12/28/2022]
|
13
|
Aledo JC, Cantón FR, Veredas FJ. Sulphur Atoms from Methionines Interacting with Aromatic Residues Are Less Prone to Oxidation. Sci Rep 2015; 5:16955. [PMID: 26597773 PMCID: PMC4657052 DOI: 10.1038/srep16955] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/22/2015] [Indexed: 11/25/2022] Open
Abstract
Methionine residues exhibit different degrees of susceptibility to oxidation.
Although solvent accessibility is a relevant factor, oxidation at particular sites
cannot be unequivocally explained by accessibility alone. To explore other possible
structural determinants, we assembled different sets of oxidation-sensitive and
oxidation-resistant methionines contained in human proteins. Comparisons of the
proteins containing oxidized methionines with all proteins in the human proteome led
to the conclusion that the former exhibit a significantly higher mean value of
methionine content than the latter. Within a given protein, an examination of the
sequence surrounding the non-oxidized methionine revealed a preference for
neighbouring tyrosine and tryptophan residues, but not for phenylalanine residues.
However, because the interaction between sulphur atoms and aromatic residues has
been reported to be important for the stabilization of protein structure, we carried
out an analysis of the spatial interatomic distances between methionines and
aromatic residues, including phenylalanine. The results of these analyses uncovered
a new determinant for methionine oxidation: the S-aromatic motif, which decreases
the reactivity of the involved sulphur towards oxidants.
Collapse
Affiliation(s)
- Juan C Aledo
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, 29071-Málaga, Spain
| | - Francisco R Cantón
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, 29071-Málaga, Spain
| | - Francisco J Veredas
- Departamento de Lenguajes y Ciencias de la Computación, Universidad de Málaga, 29071-Málaga, Spain
| |
Collapse
|
14
|
Evaluation of etanercept degradation under oxidative stress and potential protective effects of various amino acids. Int J Pharm 2015; 492:127-36. [DOI: 10.1016/j.ijpharm.2015.07.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 06/19/2015] [Accepted: 07/07/2015] [Indexed: 01/04/2023]
|
15
|
Chennamsetty N, Quan Y, Nashine V, Sadineni I, Lyngberg O, Krystek S. Modeling the Oxidation of Methionine Residues by Peroxides in Proteins. J Pharm Sci 2015; 104:1246-55. [DOI: 10.1002/jps.24340] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/18/2014] [Accepted: 12/01/2014] [Indexed: 11/10/2022]
|
16
|
Geng J, Davis I, Liu A. Probing bis-Fe(IV) MauG: experimental evidence for the long-range charge-resonance model. Angew Chem Int Ed Engl 2015; 54:3692-6. [PMID: 25631460 PMCID: PMC4363735 DOI: 10.1002/anie.201410247] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/14/2014] [Indexed: 11/08/2022]
Abstract
The biosynthesis of tryptophan tryptophylquinone, a protein-derived cofactor, involves a long-range reaction mediated by a bis-Fe(IV) intermediate of a diheme enzyme, MauG. Recently, a unique charge-resonance (CR) phenomenon was discovered in this intermediate, and a biological, long-distance CR model was proposed. This model suggests that the chemical nature of the bis-Fe(IV) species is not as simple as it appears; rather, it is composed of a collection of resonance structures in a dynamic equilibrium. Here, we experimentally evaluated the proposed CR model by introducing small molecules to, and measuring the temperature dependence of, bis-Fe(IV) MauG. Spectroscopic evidence was presented to demonstrate that the selected compounds increase the decay rate of the bis-Fe(IV) species by disrupting the equilibrium of the resonance structures that constitutes the proposed CR model. The results support this new CR model and bring a fresh concept to the classical CR theory.
Collapse
Affiliation(s)
- Jiafeng Geng
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, Georgia, United States, Homepage: http://Feradical.gsu.edu
| | - Ian Davis
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, Georgia, United States, Homepage: http://Feradical.gsu.edu
| | - Aimin Liu
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, Georgia, United States, Homepage: http://Feradical.gsu.edu
| |
Collapse
|
17
|
Geng J, Davis I, Liu A. Probing Bis-FeIVMauG: Experimental Evidence for the Long-Range Charge-Resonance Model. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201410247] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Fazeli A, Haji-Abdolvahab M, Shojaosadati SA, Schellekens H, Khalifeh K, Moosavi-Movahedi AA, Fazeli MR. Effect of arginine on pre-nucleus stage of interferon beta-1b aggregation. AAPS PharmSciTech 2014; 15:1619-29. [PMID: 25142823 DOI: 10.1208/s12249-014-0192-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 07/29/2014] [Indexed: 12/16/2022] Open
Abstract
Understanding the mechanism of aggregation of a therapeutic protein would not only ease the manufacturing processing but could also lead to a more stable finished product. Aggregation of recombinant interferon (IFNβ-1b) was studied by heating, oxidizing, or seeding of unformulated monomeric solution. The formation of aggregates was monitored by dynamic light scattering (DLS) and UV spectroscopy. The autocatalytic monomer loss model was used to fit the data on aggregation rates. The influence of pre-nucleation on aggregation step was demonstrated by inducing the liquid samples containing a monomer form of folded IFNβ-1b by heat and also an oxidizing agent. Results tend to suggest that the nucleus includes a single protein molecule which has been probably deformed. Seeding tests showed that aggregation of IFNβ-1b was probably initiated when 1.0% (w/w) of monomers converted to nucleus form. Chemiluminescence spectroscopy analysis of the sample indicated the generation of 3.0 μM of hydrogen peroxide (H2O2) during nucleation stage of IFNβ-1b aggregation. Arginine with a concentration of 200 mM was sufficient to suppress aggregation of IFNβ-1b by decreasing the rate of pre-nucleation step. We proposed the formation of pre-nucleus structures prior to nucleation as the mechanism of aggregation of IFNβ-1b. Furthermore, we have showed the positive anti-aggregation effect of arginine on pre-nucleation step.
Collapse
|
19
|
Stracke J, Emrich T, Rueger P, Schlothauer T, Kling L, Knaupp A, Hertenberger H, Wolfert A, Spick C, Lau W, Drabner G, Reiff U, Koll H, Papadimitriou A. A novel approach to investigate the effect of methionine oxidation on pharmacokinetic properties of therapeutic antibodies. MAbs 2014; 6:1229-42. [PMID: 25517308 PMCID: PMC4622569 DOI: 10.4161/mabs.29601] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Preserving the chemical and structural integrity of therapeutic antibodies during manufacturing and storage is a major challenge during pharmaceutical development. Oxidation of Fc methionines Met252 and Met428 is frequently observed, which leads to reduced affinity to FcRn and faster plasma clearance if present at high levels. Because oxidation occurs in both positions simultaneously, their individual contribution to the concomitant changes in pharmacokinetic properties has not been clearly established. A novel pH-gradient FcRn affinity chromatography method was applied to isolate three antibody oxidation variants from an oxidized IgG1 preparation based on their FcRn binding properties. Physico-chemical characterization revealed that the three oxidation variants differed predominantly in the number of oxMet252 per IgG (0, 1, or 2), but not significantly in the content of oxMet428. Corresponding to the increase in oxMet252 content, stepwise reduction of FcRn affinity in vitro, as well as faster clearance and shorter terminal half-life, in huFcRn-transgenic mice were observed. A single Met252 oxidation per antibody had no significant effect on pharmacokinetics (PK) compared with unmodified IgG. Importantly, only molecules with both heavy chains oxidized at Met252 exhibited significantly faster clearance. In contrast, Met428 oxidation had no apparent negative effect on PK and even led to somewhat improved FcRn binding and slower clearance. This minor effect, however, seemed to be abrogated by the dominant effect of Met252 oxidation. The novel approach of functional chromatographic separation of IgG oxidation variants followed by physico-chemical and biological characterization has yielded the first experimentally-backed explanation for the unaltered PK properties of antibody preparations containing relatively high Met252 and Met428 oxidation levels.
Collapse
Key Words
- AUC, area under the concentration-time curve
- Antibody
- ESI-MS, electrospray ionization mass spectrometry
- Fab, antigen-binding fragment
- Fc, crystallizable fragment
- FcRn
- FcRn, neonatal Fc receptor
- HRP, horseradish peroxidase
- IgG, immunoglobulin G
- Met, methionine
- Met252
- Met428
- PK, pharmacokinetic
- RU, response units
- SEC, size exclusion chromatography
- SPR, surface plasmon resonance
- affinity chromatography
- column
- degradation
- m/z, mass-to-charge ratio
- mAb, monoclonal antibody
- methionine oxidation
- neonatal Fc receptor
- pH gradient
- pharmacokinetics
Collapse
Affiliation(s)
- Jan Stracke
- a Biochemical and Analytical Research; Large Molecule Research ; Roche Pharma Research and Early Development (pRED); Roche Innovation Center ; Penzberg , Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Mulinacci F, Poirier E, Capelle MA, Gurny R, Arvinte T. Influence of methionine oxidation on the aggregation of recombinant human growth hormone. Eur J Pharm Biopharm 2013; 85:42-52. [DOI: 10.1016/j.ejpb.2013.03.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 03/14/2013] [Accepted: 03/19/2013] [Indexed: 10/26/2022]
|
21
|
Wang W, Roberts CJ. Non-Arrhenius protein aggregation. AAPS JOURNAL 2013; 15:840-51. [PMID: 23615748 DOI: 10.1208/s12248-013-9485-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 04/02/2013] [Indexed: 01/31/2023]
Abstract
Protein aggregation presents one of the key challenges in the development of protein biotherapeutics. It affects not only product quality but also potentially impacts safety, as protein aggregates have been shown to be linked with cytotoxicity and patient immunogenicity. Therefore, investigations of protein aggregation remain a major focus in pharmaceutical companies and academic institutions. Due to the complexity of the aggregation process and temperature-dependent conformational stability, temperature-induced protein aggregation is often non-Arrhenius over even relatively small temperature windows relevant for product development, and this makes low-temperature extrapolation difficult based simply on accelerated stability studies at high temperatures. This review discusses the non-Arrhenius nature of the temperature dependence of protein aggregation, explores possible causes, and considers inherent hurdles for accurately extrapolating aggregation rates from conventional industrial approaches for selecting accelerated conditions and from conventional or more advanced methods of analyzing the resulting rate data.
Collapse
Affiliation(s)
- Wei Wang
- Pfizer Inc., BioTherapeutics Pharmaceutical Sciences, 700 Chesterfield Parkway West, Chesterfield, MO 63017, USA.
| | | |
Collapse
|
22
|
Jiang XG, Apostol I, Luo Q, Lewis J, Keener R, Luo S, Jerums M, Zhang X, Wypych J, Huang G. Quantification of protein posttranslational modifications using stable isotope and mass spectrometry. Anal Biochem 2012; 421:506-16. [DOI: 10.1016/j.ab.2011.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 11/22/2011] [Accepted: 12/02/2011] [Indexed: 01/14/2023]
|
23
|
Hawe A, Wiggenhorn M, van de Weert M, Garbe JHO, Mahler HC, Jiskoot W. Forced degradation of therapeutic proteins. J Pharm Sci 2011; 101:895-913. [PMID: 22083792 DOI: 10.1002/jps.22812] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 10/17/2011] [Accepted: 10/18/2011] [Indexed: 01/16/2023]
Abstract
The scope of this paper is to review approaches used for forced degradation (synonym, stress testing) of therapeutic proteins. Forced degradation studies play a central role in the development of therapeutic proteins, for example, for candidate selection, molecule characterization, formulation development, assay development, and comparability studies. Typical stress methods are addressed within this review, such as exposure to elevated temperatures, freeze-thawing, mechanical stress, oxidation, light, as well as various materials and devices used in the clinics during final administration. Stability testing is briefly described as far as relevant to the discussion of forced degradation studies. Whereas stability-testing requirements are defined in regulatory guidelines, standard procedures for forced degradation of therapeutic proteins are largely unavailable, except for photostability. Possible selection criteria to identify appropriate stress conditions and recommendations for setting up forced degradation studies for the different phases of development of therapeutic proteins are presented.
Collapse
Affiliation(s)
- Andrea Hawe
- Division of Drug Delivery Technology, Leiden/Amsterdam Center for Drug Research, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
24
|
Dasnoy S, Le Bras V, Préat V, Lemoine D. High-throughput assessment of antigen conformational stability by ultraviolet absorption spectroscopy and its application to excipient screening. Biotechnol Bioeng 2011; 109:502-16. [DOI: 10.1002/bit.23336] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 08/31/2011] [Accepted: 09/06/2011] [Indexed: 11/11/2022]
|
25
|
Zhou L, Elias RJ. Investigating the hydrogen peroxide quenching capacity of proteins in polyphenol-rich foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:8915-8922. [PMID: 21751811 DOI: 10.1021/jf201491k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Polyphenols are widely regarded as antioxidants, due in large part to their free radical scavenging activities and their ability to disrupt radical chain propagation. However, recent studies have demonstrated that the oxidation of some polyphenolic compounds, such as the tea-derived compound (-)-epigallocatechin-3-gallate (EGCG), results in the generation of reactive oxygen species that can potentially compromise the oxidative stability of food lipids under some conditions. In this present study, the rate of hydrogen peroxide (H(2)O(2)) generation and its stability, resulting from EGCG oxidation in Tween 80- and sodium caseinate-stabilized oil-in-water (O/W) emulsions in the presence of iron (25 μM Fe(3+) from FeCl(3)), were examined. Observed H(2)O(2) levels in protein-stabilized emulsions were significantly lower across all treatments as compared to surfactant-stabilized emulsions. The lower observed H(2)O(2) concentrations seen in the protein system are likely due to the antioxidant effects of the added proteins, which either prevented the generation of or more likely scavenged the peroxide. All protein-stabilized emulsions containing EGCG showed increases in carbonyl concentrations, a marker of protein oxidation, throughout the study. The H(2)O(2) scavenging activity of aqueous phase and interfacial caseinate and whey protein isolate (WPI) was also evaluated. Both proteins showed concentration-dependent scavenging of H(2)O(2) with caseinate displaying significantly higher scavenging abilities at all concentrations. These results suggest that food proteins may play an important role in mitigating the pro-oxidant effects of polyphenols.
Collapse
Affiliation(s)
- Lisa Zhou
- Department of Food Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | | |
Collapse
|
26
|
Wang W, Vlasak J, Li Y, Pristatsky P, Fang Y, Pittman T, Roman J, Wang Y, Prueksaritanont T, Ionescu R. Impact of methionine oxidation in human IgG1 Fc on serum half-life of monoclonal antibodies. Mol Immunol 2011; 48:860-6. [PMID: 21256596 DOI: 10.1016/j.molimm.2010.12.009] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 12/10/2010] [Accepted: 12/11/2010] [Indexed: 10/18/2022]
Abstract
IgG monoclonal antibodies (mAbs) consist of two Fab fragments and one Fc fragment. The Fab fragments contain the variable regions and are responsible for drug specificity (via antigen binding); the Fc fragment contains constant regions and is responsible for effector functions (via interactions with Fcγ receptors) and extended serum half-life (via interaction with the neonatal Fc receptor, FcRn). There are two conserved methionine (Met) residues located in the FcRn binding site of the Fc fragment. It has been shown previously that oxidation of these two Met residues decreases the binding affinity to FcRn. We have further evaluated the impact of Met oxidation on serum half-lives of two humanized IgG1 mAbs in transgenic mice with human FcRn. Variable oxidation levels were obtained by several procedures: exposure to an oxidizing agent, accumulation during extended refrigerated storage, or chromatographic separation. Our results show that Met oxidation can result in a significant reduction of the serum circulation half-life and the magnitude of the change correlates well with the extent of Met oxidation and changes in FcRn binding affinities. The relatively low levels of Met oxidation accumulated during 3 years of refrigerated storage had minimal impact on FcRn binding and no detectable impact on the serum half-life.
Collapse
Affiliation(s)
- Weirong Wang
- Preclinical DMPK Department, Merck Research Laboratories, Merck Sharp and Dohme Corp., West Point, PA 19486, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Bee JS, Davis M, Freund E, Carpenter JF, Randolph TW. Aggregation of a monoclonal antibody induced by adsorption to stainless steel. Biotechnol Bioeng 2010; 105:121-9. [PMID: 19725039 DOI: 10.1002/bit.22525] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Stainless steel is a ubiquitous surface in therapeutic protein production equipment and is also present as the needle in pre-filled syringe biopharmaceutical products. Stainless steel microparticles can cause the aggregation of a monoclonal antibody (mAb). The initial rate of mAb aggregation was second order in steel surface area and zero order in mAb concentration, generally consistent with a bimolecular surface aggregation being the rate-limiting step. Polysorbate 20 (PS20) suppressed the aggregation yet was unable to desorb the firmly bound first layer of protein that adsorbs to the stainless steel surface. Also, there was no exchange of mAb from the first adsorbed layer to the bulk phase, suggesting that the aggregation process actually occurs on subsequent adsorption layers. No oxidized Met residues were detected in the mass spectrum of a digest of a highly aggregated mAb, although there was a fourfold increase in carbonyl groups due to protein oxidation.
Collapse
Affiliation(s)
- Jared S Bee
- Department of Chemical and Biological Engineering, University of Colorado, Room: ECCH 111, Campus Box 0424, 1111 Engineers Dr, Boulder, Colorado 80309-0424, USA
| | | | | | | | | |
Collapse
|
28
|
Manning MC, Chou DK, Murphy BM, Payne RW, Katayama DS. Stability of protein pharmaceuticals: an update. Pharm Res 2010; 27:544-75. [PMID: 20143256 DOI: 10.1007/s11095-009-0045-6] [Citation(s) in RCA: 753] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 12/27/2009] [Indexed: 12/16/2022]
Abstract
In 1989, Manning, Patel, and Borchardt wrote a review of protein stability (Manning et al., Pharm. Res. 6:903-918, 1989), which has been widely referenced ever since. At the time, recombinant protein therapy was still in its infancy. This review summarizes the advances that have been made since then regarding protein stabilization and formulation. In addition to a discussion of the current understanding of chemical and physical instability, sections are included on stabilization in aqueous solution and the dried state, the use of chemical modification and mutagenesis to improve stability, and the interrelationship between chemical and physical instability.
Collapse
|
29
|
Glass RS, Hug GL, Schöneich C, Wilson GS, Kuznetsova L, Lee TM, Ammam M, Lorance E, Nauser T, Nichol GS, Yamamoto T. Neighboring amide participation in thioether oxidation: relevance to biological oxidation. J Am Chem Soc 2009; 131:13791-805. [PMID: 19772365 DOI: 10.1021/ja904895u] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
To investigate neighboring amide participation in thioether oxidation, which may be relevant to brain oxidative stress accompanying beta-amyloid peptide aggregation, conformationally constrained methylthionorbornyl derivatives with amido moieties were synthesized and characterized, including an X-ray crystallographic study of one of them. Electrochemical oxidation of these compounds, studied by cyclic voltammetry, revealed that their oxidation peak potentials were less positive for those compounds in which neighboring group participation was geometrically possible. Pulse radiolysis studies provided evidence for bond formation between the amide moiety and sulfur on one-electron oxidation in cases where the moieties are juxtaposed. Furthermore, molecular constraints in spiro analogues revealed that S-O bonds are formed on one-electron oxidation. DFT calculations suggest that isomeric sigma*(SO) radicals are formed in these systems.
Collapse
Affiliation(s)
- Richard S Glass
- Department of Chemistry, The University of Arizona, Tucson, Arizona 85721, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Estey T, Vessely C, Randolph TW, Henderson I, Braun LJ, Nayar R, Carpenter JF. Evaluation of chemical degradation of a trivalent recombinant protein vaccine against botulinum neurotoxin by LysC peptide mapping and MALDI-TOF mass spectrometry. J Pharm Sci 2009; 98:2994-3012. [PMID: 18781606 DOI: 10.1002/jps.21543] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Vaccines utilizing recombinant protein antigens typically require an adjuvant to enhance immune response in the recipients. However, the consequences of antigen binding to adjuvant on both the short- and long-term stability of the protein remain poorly defined. In our companion paper (Vessely et al., in press, J Pharm Sci), we characterized the effects of binding to adjuvant on the conformation and thermodynamic stability of three antigen variants for botulinum vaccines: rBoNTA(H(c)), rBoNTB(H(c)), and rBoNTE(H(c)). In the current study, we evaluated the effect of binding to adjuvant (Alhydrogel, aluminum hydroxide) on chemical stability of these antigens during long-term storage in aqueous suspension. We developed methods that employ LysC peptide mapping in conjunction with MALDI-TOF mass spectrometry. Peptide maps were developed for the proteins for a vaccine formulation of rBoNTE(H(c)) as well as a trivalent rBoNT(H(c)) vaccine formulation. This method provided high sequence coverage for the proteins in part due to the implementation of a postdigestion elution fractionation method during sample preparation, and was also successfully utilized to evaluate the chemical integrity of adjuvant-bound rBoNT(H(c)) protein antigens. We found that all three of the rBoNT(H(c)) proteins were susceptible to degradation via both oxidation and deamidation. In many cases, such reactions occurred earlier with the adjuvant-bound protein formulations when compared to the proteins in control samples that were not bound to adjuvant. Additionally, some chemical modifications were found in the adjuvant-bound protein formulations but were not detected in the unbound solution controls. Our studies indicate that binding to aluminum-based adjuvants can impact the chemical stability and/or the chemical degradation pathways of protein during long-term storage in aqueous suspension. Furthermore, the methods we developed should be widely useful for assessing chemical stability of adjuvant-bound recombinant protein antigens.
Collapse
Affiliation(s)
- Tia Estey
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Health Sciences Center, SOP-215, Campus Box C238, Denver, Colorado 80262, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Ramos I, Fabris D, Qi W, Fernandez EJ, Good TA. Kinetic study of beta-amyloid residue accessibility using reductive alkylation and mass spectrometry. Biotechnol Bioeng 2009; 104:181-92. [PMID: 19418563 DOI: 10.1002/bit.22367] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Beta-amyloid peptide (Abeta) is the major protein constituent found in senile plaques in Alzheimer's disease (AD). It is believed that Abeta plays a role in neurodegeneration associated with AD and that its toxicity is related to its structure or aggregation state. In this study, an approach based on chemical modification of primary amines and mass spectrometric (MS) detection was used to identify residues on Abeta peptide that were exposed or buried upon changes in peptide structure associated with aggregation. Results indicate that the N terminus was the most accessible primary amine in the fibril, followed by lysine 28, then lysine 16. A kinetic analysis of the data was then performed to quantify differences in accessibility between these modification sites. We estimated apparent equilibrium unfolding constants for each modified site of the peptide, and determined that the unfolding constant for the N terminus was approximately 100 times greater than that for K28, which was about six times greater than that for K16. Understanding Abeta peptide structure at the residue level is a first step in designing novel therapies for prevention of Abeta structural transitions and/or cell interactions associated with neurotoxicity in Alzheimer's disease.
Collapse
Affiliation(s)
- Irina Ramos
- Department of Chemical and Biochemical Engineering, University of Maryland Baltimore County, Baltimore Maryland 21250, USA
| | | | | | | | | |
Collapse
|
32
|
West GM, Tang L, Fitzgerald MC. Thermodynamic Analysis of Protein Stability and Ligand Binding Using a Chemical Modification- and Mass Spectrometry-Based Strategy. Anal Chem 2008; 80:4175-85. [DOI: 10.1021/ac702610a] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Graham M. West
- Department of Chemistry, Duke University, Durham, North Carolina 27708
| | - Liangjie Tang
- Department of Chemistry, Duke University, Durham, North Carolina 27708
| | | |
Collapse
|
33
|
Tummala M, Hu P, Lee SM, Robinson A, Chess E. Characterization of pertussis toxin by LC–MS/MS. Anal Biochem 2008; 374:16-24. [DOI: 10.1016/j.ab.2007.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 10/01/2007] [Accepted: 10/02/2007] [Indexed: 11/28/2022]
|
34
|
Kowalik-Jankowska T, Rajewska A, Jankowska E, Grzonka Z. Products of Cu(ii)-catalyzed oxidation of α-synuclein fragments containing M1-D2and H50residues in the presence of hydrogen peroxide. Dalton Trans 2008:832-8. [DOI: 10.1039/b714440g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|