1
|
Zhou Q, Ghorasaini M, Cornelis FMF, Assi R, de Roover A, Giera M, Monteagudo S, Lories RJ. Lipidomics unravels lipid changes in osteoarthritis articular cartilage. Ann Rheum Dis 2025:S0003-4967(25)00054-8. [PMID: 39894691 DOI: 10.1016/j.ard.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/01/2025] [Accepted: 01/03/2025] [Indexed: 02/04/2025]
Abstract
OBJECTIVES Osteoarthritis (OA) is linked to disrupted lipid metabolism. We aimed to profile the lipid composition of human articular cartilage, investigate OA-associated lipidome changes, and explore biological effects. METHODS Lipidomic profiling and computational analyses were performed on human articular chondrocytes (hACs) from non-OA (n = 13) and OA (n = 14) hips. Lipid changes were confirmed in the destabilisation of the medial meniscus (DMM) mouse model. The effect of specific lipids was evaluated by in vitro supplementation and gene silencing. RESULTS We identified 573 lipid species covering 11 lipid classes in hACs. OA and non-OA hACs showed distinct lipid profiles. Most ceramides and dihydroceramides were increased, while cholesteryl esters, diacylglycerols, triacylglycerols, sphingomyelins, hexosylceramides, and lactosylceramides were predominantly decreased in OA chondrocytes. Most upregulated lipids in OA contained C18:1, C20:4, or C22:4 side chains. Many downregulated lipids contained C18:2 or odd-chain C17:0. Lipid profiling of articular cartilage from the DMM mouse model paralleled changes in OA hACs, including odd-chain C17:0 reduction. Further analysis showed that deficiency in enzyme 2-hydroxyacyl-CoA lyase 1 (HACL1), responsible for odd-chain fatty acid synthesis, leads to accumulation of 2-hydroxy C18:0, precursor of C17:0, which results in a shift in hACs from an anabolic to a catabolic state. CONCLUSIONS Our study maps the hAC lipid composition and highlights changes in lipid profiles associated with OA. Dysregulation of certain lipids, especially odd-chain fatty acids, linked to a deficiency in the enzyme HACL1, leads to pathological changes. This understanding opens potential avenues for therapies aimed at targeting lipid imbalances to slow down or treat OA.
Collapse
Affiliation(s)
- Qiongfei Zhou
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Centre, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Mohan Ghorasaini
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Frederique M F Cornelis
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Centre, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Reem Assi
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Centre, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Astrid de Roover
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Centre, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Silvia Monteagudo
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Centre, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
| | - Rik J Lories
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Centre, Department of Development and Regeneration, KU Leuven, Leuven, Belgium; Division of Rheumatology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Nageswari P, Swathi K. In silico docking and Molecular Dynamic (MD) simulations studies of selected phytochemicals against Human Glycolate Oxidase (hGOX) and Oxalate oxidase (OxO). Drug Res (Stuttg) 2023; 73:459-464. [PMID: 37487522 DOI: 10.1055/a-2088-3889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Globally, Urolithiasis is the most prevalent urological problem which affects the populations across the ages and races. In recent years, several phytochemicals are being investigated to improve the efficacy and safety of anti-urolithiasis formulations. To develop drugs based on traditional medicines, it is essential to understand the molecular mechanism of action of these drugs. We present the results of in silico docking and molecular dynamic (MD) simulation studies on selected phytochemical including catechin, epicatechin, gallic acid, gallocatechin, epigallocatechin, epigallocatechin 3-o-gallate, 4-methoxy-nor-securine, nor-securinine, and fisetin with human glycolate oxidase (hGOX) and oxalate oxidase (OxO). Gallic acid, gallocatechin and fisetin showed better docking scores than the rest. In MD simulation analysis, stable interactions of the gallic acid with hGOX and OxO; gallocatechin and fisetin with hGOX were observed. It was found that, gallic acid stably interacts withTYR26, LYS 236, ARG 315, and ASP 291 residues of hGOX. On other hand, gallic acid stably interacs with GLU 58 residue of OxO. Gallocatechin, forms stable interactions with TYR 26, ASP 170, ARG 167 and THR 161 of HGOX. In MD simulations, fisetin stably interacted with TYR 26, TRP110 and ARG 263 as we predicted in molecular docking. None of the interactions was formed during the MD simulation of OxO with gallocatechin and fisetin. Together, these results suggest that gallic acid, gallocatechin and fisetin are the potential candidates for the development of phytochemicals for the management of urolithiasis in humans.
Collapse
Affiliation(s)
- Patnam Nageswari
- Institute of Pharmaceutical Technology, Sri Padmavati Mahila Viswavidyalayam, Tirupati, Sri Padmavathi Mahila Viswavidyalayam, India
| | - K Swathi
- Institute of Pharmaceutical Technology, Sri Padmavati Mahila ViswavidyalayamSri Padmavathi Mahila Viswavidyalayam, India
| |
Collapse
|
3
|
Feng Y, Shao S, Zhou X, Wei W, Liu X, Tang Y, Hua Y, Zheng J, Zhang Y, Ying X. Enhancing the Catalytic Activity of Glycolate Oxidase from Chlamydomonas reinhardtii through Semi-Rational Design. Microorganisms 2023; 11:1689. [PMID: 37512862 PMCID: PMC10385363 DOI: 10.3390/microorganisms11071689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Glycolate oxidase is a peroxisomal flavoprotein catalyzing the oxidation of glycolate to glyoxylate and plays crucial metabolic roles in green algae, plants, and animals. It could serve as a biocatalyst for enzymatic production of glyoxylate, a fine chemical with a wide variety of applications in perfumery, flavor, and the pharmaceutical and agrochemical industries. However, the low catalytic activity of native glycolate oxidase and low levels of active enzyme in heterologous expression limit its practical use in industrial biocatalysis. Herein, the glycolate oxidase from Chlamydomonas reinhardtii (CreGO) was selected through phylogenetic tree analysis, and its low level of soluble expression in E. coli BL21(DE3) was improved through the use of the glutathione thioltransferase (GST), the choice of the vector pET22b and the optimization of induction conditions. The semi-rational design of the fusion enzyme GST-Gly-Ser-Gly-CreGO led to the superior variant GST-Gly-Ser-Gly-CreGO-Y27S/V111G/V212R with the kcat/Km value of 29.2 s-1·mM-1, which was six times higher than that of the wild type. In contrast to GST-Gly-Ser-Gly-CreGO, 5 mg/mL of crude enzyme GST-Gly-Ser-Gly-CreGO-Y27S/V111G/V212R together with 25 μg/mL of catalase catalyzed the oxidation of 300 mM of methyl glycolate for 8 h, increasing the yield from 50.4 to 93.5%.
Collapse
Affiliation(s)
- Yingting Feng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shuai Shao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xueting Zhou
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wan Wei
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xun Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yi Tang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuhao Hua
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianyong Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yinjun Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangxian Ying
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
4
|
Boehm T, Martin-Higueras C, Friesser E, Zitta C, Wallner S, Walli A, Kovacevic K, Hubmann H, Klavins K, Macheroux P, Hoppe B, Jilma B. Simple, fast and inexpensive quantification of glycolate in the urine of patients with primary hyperoxaluria type 1. Urolithiasis 2023; 51:49. [PMID: 36920530 PMCID: PMC10017573 DOI: 10.1007/s00240-023-01426-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
In primary hyperoxaluria type 1 excessive endogenous production of oxalate and glycolate leads to increased urinary excretion of these metabolites. Although genetic testing is the most definitive and preferred diagnostic method, quantification of these metabolites is important for the diagnosis and evaluation of potential therapeutic interventions. Current metabolite quantification methods use laborious, technically highly complex and expensive liquid, gas or ion chromatography tandem mass spectrometry, which are available only in selected laboratories worldwide. Incubation of ortho-aminobenzaldehyde (oABA) with glyoxylate generated from glycolate using recombinant mouse glycolate oxidase (GO) and glycine leads to the formation of a stable dihydroquinazoline double aromatic ring chromophore with specific peak absorption at 440 nm. The urinary limit of detection and estimated limit of quantification derived from eight standard curves were 14.3 and 28.7 µmol glycolate per mmol creatinine, respectively. High concentrations of oxalate, lactate and L-glycerate do not interfere in this assay format. The correlation coefficient between the absorption and an ion chromatography tandem mass spectrometry method is 93% with a p value < 0.00001. The Bland-Altmann plot indicates acceptable agreement between the two methods. The glycolate quantification method using conversion of glycolate via recombinant mouse GO and fusion of oABA and glycine with glyoxylate is fast, simple, robust and inexpensive. Furthermore this method might be readily implemented into routine clinical diagnostic laboratories for glycolate measurements in primary hyperoxaluria type 1.
Collapse
Affiliation(s)
- Thomas Boehm
- Department of Clinical Pharmacology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| | | | - Eva Friesser
- Institute of Biochemistry, Graz University of Technology, Graz, Austria
| | - Clara Zitta
- Institute of Biochemistry, Graz University of Technology, Graz, Austria
| | - Silvia Wallner
- Institute of Biochemistry, Graz University of Technology, Graz, Austria
| | - Adam Walli
- Laboratory Dr. Wisplinghoff, Forensic and Clinical Toxicology, Cologne, Germany
| | - Katarina Kovacevic
- Department of Clinical Pharmacology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Holger Hubmann
- Department of Paediatrics and Adolescent Medicine, Division of General Paediatrics, Medical University of Graz, Graz, Austria
| | - Kristaps Klavins
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
| | - Peter Macheroux
- Institute of Biochemistry, Graz University of Technology, Graz, Austria
| | | | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| |
Collapse
|
5
|
Jung DY, Li X, Li Z. Engineering of Hydroxymandelate Oxidase and Cascade Reactions for High-Yielding Conversion of Racemic Mandelic Acids to Phenylglyoxylic Acids and ( R)- and ( S)-Phenylglycines. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Do-Yun Jung
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Xirui Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| |
Collapse
|
6
|
Searching glycolate oxidase inhibitors based on QSAR, molecular docking, and molecular dynamic simulation approaches. Sci Rep 2022; 12:19969. [PMID: 36402831 PMCID: PMC9675741 DOI: 10.1038/s41598-022-24196-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/11/2022] [Indexed: 11/21/2022] Open
Abstract
Primary hyperoxaluria type 1 (PHT1) treatment is mainly focused on inhibiting the enzyme glycolate oxidase, which plays a pivotal role in the production of glyoxylate, which undergoes oxidation to produce oxalate. When the renal secretion capacity exceeds, calcium oxalate forms stones that accumulate in the kidneys. In this respect, detailed QSAR analysis, molecular docking, and dynamics simulations of a series of inhibitors containing glycolic, glyoxylic, and salicylic acid groups have been performed employing different regression machine learning techniques. Three robust models with less than 9 descriptors-based on a tenfold cross (Q2 CV) and external (Q2 EXT) validation-were found i.e., MLR1 (Q2 CV = 0.893, Q2 EXT = 0.897), RF1 (Q2 CV = 0.889, Q2 EXT = 0.907), and IBK1 (Q2 CV = 0.891, Q2 EXT = 0.907). An ensemble model was built by averaging the predicted pIC50 of the three models, obtaining a Q2 EXT = 0.933. Physicochemical properties such as charge, electronegativity, hardness, softness, van der Waals volume, and polarizability were considered as attributes to build the models. To get more insight into the potential biological activity of the compouds studied herein, docking and dynamic analysis were carried out, finding the hydrophobic and polar residues show important interactions with the ligands. A screening of the DrugBank database V.5.1.7 was performed, leading to the proposal of seven commercial drugs within the applicability domain of the models, that can be suggested as possible PHT1 treatment.
Collapse
|
7
|
Hiraka K, Yoshida H, Tsugawa W, Asano R, La Belle JT, Ikebukuro K, Sode K. Structure of lactate oxidase from Enterococcus hirae revealed new aspects of active site loop function: Product-inhibition mechanism and oxygen gatekeeper. Protein Sci 2022; 31:e4434. [PMID: 36173159 PMCID: PMC9490804 DOI: 10.1002/pro.4434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 11/09/2022]
Abstract
l-Lactate oxidase (LOx) is a flavin mononucleotide (FMN)-dependent triose phosphate isomerase (TIM) barrel fold enzyme that catalyzes the oxidation of l-lactate using oxygen as a primary electron acceptor. Although reductive half-reaction mechanism of LOx has been studied by structure-based kinetic studies, oxidative half-reaction and substrate/product-inhibition mechanisms were yet to be elucidated. In this study, the structure and enzymatic properties of wild-type and mutant LOxs from Enterococcus hirae (EhLOx) were investigated. EhLOx structure showed the common TIM-barrel fold with flexible loop region. Noteworthy observations were that the EhLOx crystal structures prepared by co-crystallization with product, pyruvate, revealed the complex structures with "d-lactate form ligand," which was covalently bonded with a Tyr211 side chain. This observation provided direct evidence to suggest the product-inhibition mode of EhLOx. Moreover, this structure also revealed a flip motion of Met207 side chain, which is located on the flexible loop region as well as Tyr211. Through a saturation mutagenesis study of Met207, one of the mutants Met207Leu showed the drastically decreased oxidase activity but maintained dye-mediated dehydrogenase activity. The structure analysis of EhLOx Met207Leu revealed the absence of flipping in the vicinity of FMN, unlike the wild-type Met207 side chain. Together with the simulation of the oxygen-accessible channel prediction, Met207 may play as an oxygen gatekeeper residue, which contributes oxygen uptake from external enzyme to FMN. Three clades of LOxs are proposed based on the difference of the Met207 position and they have different oxygen migration pathway from external enzyme to active center FMN.
Collapse
Affiliation(s)
- Kentaro Hiraka
- Department of Biotechnology and Life Science, Graduate School of EngineeringTokyo University of Agriculture and TechnologyTokyoJapan
- College of Science, Engineering and TechnologyGrand Canyon UniversityPhoenixArizonaUSA
| | - Hiromi Yoshida
- Department of Basic Life Science, Faculty of MedicineKagawa UniversityKagawaJapan
| | - Wakako Tsugawa
- Department of Biotechnology and Life Science, Graduate School of EngineeringTokyo University of Agriculture and TechnologyTokyoJapan
| | - Ryutaro Asano
- Department of Biotechnology and Life Science, Graduate School of EngineeringTokyo University of Agriculture and TechnologyTokyoJapan
| | - Jeffrey T. La Belle
- College of Science, Engineering and TechnologyGrand Canyon UniversityPhoenixArizonaUSA
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Graduate School of EngineeringTokyo University of Agriculture and TechnologyTokyoJapan
| | - Koji Sode
- Joint Department of Biomedical EngineeringThe University of North Carolina at Chapel Hill and North Carolina State UniversityChapel HillNorth CarolinaUSA
| |
Collapse
|
8
|
Alejo-Armijo A, Cuadrado C, Altarejos J, Fernandes MX, Salido E, Diaz-Gavilan M, Salido S. Lactate dehydrogenase A inhibitors with a 2,8-dioxabicyclo[3.3.1]nonane scaffold: A contribution to molecular therapies for primary hyperoxalurias. Bioorg Chem 2022; 129:106127. [PMID: 36113265 DOI: 10.1016/j.bioorg.2022.106127] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/22/2022] [Accepted: 09/02/2022] [Indexed: 12/12/2022]
Abstract
Human lactate dehydrogenase A (hLDHA) is one of the main enzymes involved in the pathway of oxalate synthesis in human liver and seems to contribute to the pathogenesis of disorders with endogenous oxalate overproduction, such as primary hyperoxaluria (PH), a rare life-threatening genetic disease. Recent published results on the knockdown of LDHA gene expression as a safe strategy to ameliorate oxalate build-up in PH patients are encouraging for an approach of hLDHA inhibition by small molecules as a potential pharmacological treatment. Thus, we now report on the synthesis and hLDHA inhibitory activity of a new family of compounds with 2,8-dioxabicyclo[3.3.1]nonane core (23-42), a series of twenty analogues to A-type proanthocyanidin natural products. Nine of them (25-27, 29-34) have shown IC50 values in the range of 8.7-26.7 µM, based on a UV spectrophotometric assay, where the hLDHA inhibition is measured according to the decrease in absorbance of the cofactor β-NADH (340 nm). Compounds 25, 29, and 31 were the most active hLDHA inhibitors. In addition, the inhibitory activities of those nine compounds against the hLDHB isoform were also evaluated, finding that all of them were more selective inhibitors of hLDHA versus hLDHB. Among them, compounds 32 and 34 showed the highest selectivity. Moreover, the most active hLDHA inhibitors (25, 29, 31) were evaluated for their ability to decrease the oxalate production by hyperoxaluric mouse hepatocytes (PH1, PH2 and PH3) in vitro, and the relative oxalate output at 24 h was 16% and 19 % for compounds 25 and 31, respectively, in Hoga1-/- mouse primary hepatocyte cells (a model for PH3). These values improve those of the reference compound used (stiripentol). Compounds 25 and 31 have in common the presence of two hydroxyl groups at rings B and D and an electron-withdrawing group (NO2 or Br) at ring A, pointing to the structural features to be taken into account in future structural optimization.
Collapse
Affiliation(s)
- Alfonso Alejo-Armijo
- Departamento de Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus de Excelencia Internacional Agroalimentario ceiA3, 23071 Jaén, Spain
| | - Cristina Cuadrado
- Departamento de Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus de Excelencia Internacional Agroalimentario ceiA3, 23071 Jaén, Spain
| | - Joaquin Altarejos
- Departamento de Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus de Excelencia Internacional Agroalimentario ceiA3, 23071 Jaén, Spain
| | - Miguel X Fernandes
- Instituto Universitario de Bioorgánica, Universidad de La Laguna, 38206 La Laguna, Spain
| | - Eduardo Salido
- Hospital Universitario de Canarias & Center for Rare Diseases (CIBERER), 38320 Tenerife, Spain.
| | - Monica Diaz-Gavilan
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, 18071 Granada, Spain
| | - Sofia Salido
- Departamento de Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus de Excelencia Internacional Agroalimentario ceiA3, 23071 Jaén, Spain.
| |
Collapse
|
9
|
Moya-Garzon MD, Rodriguez-Rodriguez B, Martin-Higueras C, Franco-Montalban F, Fernandes MX, Gomez-Vidal JA, Pey AL, Salido E, Diaz-Gavilan M. New salicylic acid derivatives, double inhibitors of glycolate oxidase and lactate dehydrogenase, as effective agents decreasing oxalate production. Eur J Med Chem 2022; 237:114396. [DOI: 10.1016/j.ejmech.2022.114396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 04/02/2022] [Accepted: 04/13/2022] [Indexed: 11/04/2022]
|
10
|
Mackinnon SR, Bezerra GA, Krojer T, Szommer T, von Delft F, Brennan PE, Yue WW. Novel Starting Points for Human Glycolate Oxidase Inhibitors, Revealed by Crystallography-Based Fragment Screening. Front Chem 2022; 10:844598. [PMID: 35601556 PMCID: PMC9114433 DOI: 10.3389/fchem.2022.844598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Primary hyperoxaluria type I (PH1) is caused by AGXT gene mutations that decrease the functional activity of alanine:glyoxylate aminotransferase. A build-up of the enzyme’s substrate, glyoxylate, results in excessive deposition of calcium oxalate crystals in the renal tract, leading to debilitating renal failure. Oxidation of glycolate by glycolate oxidase (or hydroxy acid oxidase 1, HAO1) is a major cellular source of glyoxylate, and siRNA studies have shown phenotypic rescue of PH1 by the knockdown of HAO1, representing a promising inhibitor target. Here, we report the discovery and optimization of six low-molecular-weight fragments, identified by crystallography-based fragment screening, that bind to two different sites on the HAO1 structure: at the active site and an allosteric pocket above the active site. The active site fragments expand known scaffolds for substrate-mimetic inhibitors to include more chemically attractive molecules. The allosteric fragments represent the first report of non-orthosteric inhibition of any hydroxy acid oxidase and hold significant promise for improving inhibitor selectivity. The fragment hits were verified to bind and inhibit HAO1 in solution by fluorescence-based activity assay and surface plasmon resonance. Further optimization cycle by crystallography and biophysical assays have generated two hit compounds of micromolar (44 and 158 µM) potency that do not compete with the substrate and provide attractive starting points for the development of potent and selective HAO1 inhibitors.
Collapse
Affiliation(s)
- Sabrina R. Mackinnon
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Gustavo A. Bezerra
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Tobias Krojer
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Tamas Szommer
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Frank von Delft
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, United Kingdom
| | - Paul E. Brennan
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Target Discovery Institute, University of Oxford, Oxford, United Kingdom
- *Correspondence: Paul E. Brennan, ; Wyatt W. Yue,
| | - Wyatt W. Yue
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- *Correspondence: Paul E. Brennan, ; Wyatt W. Yue,
| |
Collapse
|
11
|
Trisrivirat D, Sutthaphirom C, Pimviriyakul P, Chaiyen P. Dual activities of oxidation and oxidative decarboxylation by flavoenzymes. Chembiochem 2022; 23:e202100666. [PMID: 35040514 DOI: 10.1002/cbic.202100666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/17/2022] [Indexed: 11/07/2022]
Abstract
Specific flavoenzyme oxidases catalyze oxidative decarboxylation in addition to their classical oxidation reactions in the same active sites. The mechanisms underlying oxidative decarboxylation by these enzymes and how they control their two activities are not clearly known. This article reviews the current state of knowledge of four enzymes from the l-amino acid oxidase and l-hydroxy acid oxidase families, including l-tryptophan 2-monooxygenase, l-phenylalanine 2-oxidase and l-lysine oxidase/monooxygenase and lactate monooxygenase which catalyze substrate oxidation and oxidative decarboxylation. Apart from specific interactions to allow substrate oxidation by the flavin cofactor, specific binding of oxidized product in the active sites appears to be important for enabling subsequent decarboxylation by these enzymes. Based on recent findings of l-lysine oxidase/monooxygenase, we propose that nucleophilic attack of H2O2 on the imino acid product is the mechanism enabling oxidative decarboxylation.
Collapse
Affiliation(s)
- Duangthip Trisrivirat
- VISTEC: Vidyasirimedhi Institute of Science and Technology, Biomolecular Science and Engineering, THAILAND
| | - Chalermroj Sutthaphirom
- VISTEC: Vidyasirimedhi Institute of Science and Technology, Biomolecular Science and Engineering, THAILAND
| | | | - Pimchai Chaiyen
- Vidyasirimedhi Institute of Science and Technology (VISTEC), School of Biomolecular Science and Engineering, 555 Moo 1 Payupnai, 21210, Wangchan District, THAILAND
| |
Collapse
|
12
|
Cauwenberghs N, Prunicki M, Sabovčik F, Perelman D, Contrepois K, Li X, Snyder MP, Nadeau KC, Kuznetsova T, Haddad F, Gardner CD. Temporal changes in soluble angiotensin-converting enzyme 2 associated with metabolic health, body composition, and proteome dynamics during a weight loss diet intervention: a randomized trial with implications for the COVID-19 pandemic. Am J Clin Nutr 2021; 114:1655-1665. [PMID: 34375388 PMCID: PMC8574695 DOI: 10.1093/ajcn/nqab243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Angiotensin-converting enzyme 2 (ACE2) serves protective functions in metabolic, cardiovascular, renal, and pulmonary diseases and is linked to COVID-19 pathology. The correlates of temporal changes in soluble ACE2 (sACE2) remain understudied. OBJECTIVES We explored the associations of sACE2 with metabolic health and proteome dynamics during a weight loss diet intervention. METHODS We analyzed 457 healthy individuals (mean ± SD age: 39.8 ± 6.6 y) with BMI 28-40 kg/m2 in the DIETFITS (Diet Intervention Examining the Factors Interacting with Treatment Success) study. Biochemical markers of metabolic health and 236 proteins were measured by Olink CVDII, CVDIII, and Inflammation I arrays at baseline and at 6 mo during the dietary intervention. We determined clinical and routine biochemical correlates of the diet-induced change in sACE2 (ΔsACE2) using stepwise linear regression. We combined feature selection models and multivariable-adjusted linear regression to identify protein dynamics associated with ΔsACE2. RESULTS sACE2 decreased on average at 6 mo during the diet intervention. Stronger decline in sACE2 during the diet intervention was independently associated with female sex, lower HOMA-IR and LDL cholesterol at baseline, and a stronger decline in HOMA-IR, triglycerides, HDL cholesterol, and fat mass. Participants with decreasing HOMA-IR (OR: 1.97; 95% CI: 1.28, 3.03) and triglycerides (OR: 2.71; 95% CI: 1.72, 4.26) had significantly higher odds for a decrease in sACE2 during the diet intervention than those without (P ≤ 0.0073). Feature selection models linked ΔsACE2 to changes in α-1-microglobulin/bikunin precursor, E-selectin, hydroxyacid oxidase 1, kidney injury molecule 1, tyrosine-protein kinase Mer, placental growth factor, thrombomodulin, and TNF receptor superfamily member 10B. ΔsACE2 remained associated with these protein changes in multivariable-adjusted linear regression. CONCLUSIONS Decrease in sACE2 during a weight loss diet intervention was associated with improvements in metabolic health, fat mass, and markers of angiotensin peptide metabolism, hepatic and vascular injury, renal function, chronic inflammation, and oxidative stress. Our findings may improve the risk stratification, prevention, and management of cardiometabolic complications.This trial was registered at clinicaltrials.gov as NCT01826591.
Collapse
Affiliation(s)
- Nicholas Cauwenberghs
- Stanford Cardiovascular Institute, Department of Medicine, Stanford University, Stanford, CA, USA
- Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Mary Prunicki
- Sean N Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - František Sabovčik
- Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Dalia Perelman
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Kévin Contrepois
- Stanford Cardiovascular Institute, Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Xiao Li
- Department of Biochemistry, The Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Computer and Data Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Michael P Snyder
- Stanford Cardiovascular Institute, Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
| | - Kari C Nadeau
- Sean N Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Tatiana Kuznetsova
- Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Francois Haddad
- Stanford Cardiovascular Institute, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Christopher D Gardner
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
- Stanford Prevention Research Center, Department of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
13
|
Ding J, Gumpena R, Boily MO, Caron A, Chong O, Cox JH, Dumais V, Gaudreault S, Graff AH, King A, Knight J, Oballa R, Surendradoss J, Tang T, Wu J, Lowther WT, Powell DA. Dual Glycolate Oxidase/Lactate Dehydrogenase A Inhibitors for Primary Hyperoxaluria. ACS Med Chem Lett 2021; 12:1116-1123. [PMID: 34267881 DOI: 10.1021/acsmedchemlett.1c00196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
Both glycolate oxidase (GO) and lactate dehydrogenase A (LDHA) influence the endogenous synthesis of oxalate and are clinically validated targets for treatment of primary hyperoxaluria (PH). We investigated whether dual inhibition of GO and LDHA may provide advantage over single agents in treating PH. Utilizing a structure-based drug design (SBDD) approach, we developed a series of novel, potent, dual GO/LDHA inhibitors. X-ray crystal structures of compound 15 bound to individual GO and LDHA proteins validated our SBDD strategy. Dual inhibitor 7 demonstrated an IC50 of 88 nM for oxalate reduction in an Agxt-knockdown mouse hepatocyte assay. Limited by poor liver exposure, this series of dual inhibitors failed to demonstrate significant PD modulation in an in vivo mouse model. This work highlights the challenges in optimizing in vivo liver exposures for diacid containing compounds and limited benefit seen with dual GO/LDHA inhibitors over single agents alone in an in vitro setting.
Collapse
Affiliation(s)
- Jinyue Ding
- Chinook Therapeutics, 210-887 Great
Northern Way, Vancouver, British Columbia, V5T 4T5, Canada and 1600 Fairview Avenue E, Suite #100, Seattle, Washington 98102, United States
| | - Rajesh Gumpena
- Center for Structural Biology, Department of Biochemistry, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157, United States
| | - Marc-Olivier Boily
- Chinook Therapeutics, 210-887 Great
Northern Way, Vancouver, British Columbia, V5T 4T5, Canada and 1600 Fairview Avenue E, Suite #100, Seattle, Washington 98102, United States
| | - Alexandre Caron
- Chinook Therapeutics, 210-887 Great
Northern Way, Vancouver, British Columbia, V5T 4T5, Canada and 1600 Fairview Avenue E, Suite #100, Seattle, Washington 98102, United States
| | - Oliver Chong
- Chinook Therapeutics, 210-887 Great
Northern Way, Vancouver, British Columbia, V5T 4T5, Canada and 1600 Fairview Avenue E, Suite #100, Seattle, Washington 98102, United States
| | - Jennifer H. Cox
- Chinook Therapeutics, 210-887 Great
Northern Way, Vancouver, British Columbia, V5T 4T5, Canada and 1600 Fairview Avenue E, Suite #100, Seattle, Washington 98102, United States
| | - Valerie Dumais
- Chinook Therapeutics, 210-887 Great
Northern Way, Vancouver, British Columbia, V5T 4T5, Canada and 1600 Fairview Avenue E, Suite #100, Seattle, Washington 98102, United States
| | - Samuel Gaudreault
- Chinook Therapeutics, 210-887 Great
Northern Way, Vancouver, British Columbia, V5T 4T5, Canada and 1600 Fairview Avenue E, Suite #100, Seattle, Washington 98102, United States
| | - Aaron H. Graff
- Center for Structural Biology, Department of Biochemistry, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157, United States
| | - Andrew King
- Chinook Therapeutics, 210-887 Great
Northern Way, Vancouver, British Columbia, V5T 4T5, Canada and 1600 Fairview Avenue E, Suite #100, Seattle, Washington 98102, United States
| | - John Knight
- Department of Urology, University of Alabama at Birmingham, 720 20th Street South, Birmingham, Alabama 35294, United States
| | - Renata Oballa
- Chinook Therapeutics, 210-887 Great
Northern Way, Vancouver, British Columbia, V5T 4T5, Canada and 1600 Fairview Avenue E, Suite #100, Seattle, Washington 98102, United States
| | - Jayakumar Surendradoss
- Chinook Therapeutics, 210-887 Great
Northern Way, Vancouver, British Columbia, V5T 4T5, Canada and 1600 Fairview Avenue E, Suite #100, Seattle, Washington 98102, United States
| | - Tim Tang
- Chinook Therapeutics, 210-887 Great
Northern Way, Vancouver, British Columbia, V5T 4T5, Canada and 1600 Fairview Avenue E, Suite #100, Seattle, Washington 98102, United States
| | - Joyce Wu
- Chinook Therapeutics, 210-887 Great
Northern Way, Vancouver, British Columbia, V5T 4T5, Canada and 1600 Fairview Avenue E, Suite #100, Seattle, Washington 98102, United States
| | - W. Todd Lowther
- Center for Structural Biology, Department of Biochemistry, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157, United States
| | - David A. Powell
- Chinook Therapeutics, 210-887 Great
Northern Way, Vancouver, British Columbia, V5T 4T5, Canada and 1600 Fairview Avenue E, Suite #100, Seattle, Washington 98102, United States
| |
Collapse
|
14
|
Lee ECY, McRiner AJ, Georgiadis KE, Liu J, Wang Z, Ferguson AD, Levin B, von Rechenberg M, Hupp CD, Monteiro MI, Keefe AD, Olszewski A, Eyermann CJ, Centrella P, Liu Y, Arora S, Cuozzo JW, Zhang Y, Clark MA, Huguet C, Kohlmann A. Discovery of Novel, Potent Inhibitors of Hydroxy Acid Oxidase 1 (HAO1) Using DNA-Encoded Chemical Library Screening. J Med Chem 2021; 64:6730-6744. [PMID: 33955740 DOI: 10.1021/acs.jmedchem.0c02271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inhibition of hydroxy acid oxidase 1 (HAO1) is a strategy to mitigate the accumulation of toxic oxalate that results from reduced activity of alanine-glyoxylate aminotransferase (AGXT) in primary hyperoxaluria 1 (PH1) patients. DNA-Encoded Chemical Library (DECL) screening provided two novel chemical series of potent HAO1 inhibitors, represented by compounds 3-6. Compound 5 was further optimized via various structure-activity relationship (SAR) exploration methods to 29, a compound with improved potency and absorption, distribution, metabolism, and excretion (ADME)/pharmacokinetic (PK) properties. Since carboxylic acid-containing compounds are often poorly permeable and have potential active glucuronide metabolites, we undertook a brief, initial exploration of acid replacements with the aim of identifying non-acid-containing HAO1 inhibitors. Structure-based drug design initiated with Compound 5 led to the identification of a nonacid inhibitor of HAO1, 31, which has weaker potency and increased permeability.
Collapse
Affiliation(s)
- Esther C Y Lee
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Andrew J McRiner
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Katy E Georgiadis
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Julie Liu
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Zooey Wang
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Andrew D Ferguson
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Benjamin Levin
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | | | - Christopher D Hupp
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Michael I Monteiro
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Anthony D Keefe
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Allison Olszewski
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Charles J Eyermann
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Paolo Centrella
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Yanbin Liu
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Shilpi Arora
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - John W Cuozzo
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Ying Zhang
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Matthew A Clark
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Christelle Huguet
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Anna Kohlmann
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| |
Collapse
|
15
|
Small Molecule-Based Enzyme Inhibitors in the Treatment of Primary Hyperoxalurias. J Pers Med 2021; 11:jpm11020074. [PMID: 33513899 PMCID: PMC7912158 DOI: 10.3390/jpm11020074] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Primary hyperoxalurias (PHs) are a group of inherited alterations of the hepatic glyoxylate metabolism. PHs classification based on gene mutations parallel a variety of enzymatic defects, and all involve the harmful accumulation of calcium oxalate crystals that produce systemic damage. These geographically widespread rare diseases have a deep impact in the life quality of the patients. Until recently, treatments were limited to palliative measures and kidney/liver transplants in the most severe forms. Efforts made to develop pharmacological treatments succeeded with the biotechnological agent lumasiran, a siRNA product against glycolate oxidase, which has become the first effective therapy to treat PH1. However, small molecule drugs have classically been preferred since they benefit from experience and have better pharmacological properties. The development of small molecule inhibitors designed against key enzymes of glyoxylate metabolism is on the focus of research. Enzyme inhibitors are successful and widely used in several diseases and their pharmacokinetic advantages are well known. In PHs, effective enzymatic targets have been determined and characterized for drug design and interesting inhibitory activities have been achieved both in vitro and in vivo. This review describes the most recent advances towards the development of small molecule enzyme inhibitors in the treatment of PHs, introducing the multi-target approach as a more effective and safe therapeutic option.
Collapse
|
16
|
Chornyi S, IJlst L, van Roermund CWT, Wanders RJA, Waterham HR. Peroxisomal Metabolite and Cofactor Transport in Humans. Front Cell Dev Biol 2021; 8:613892. [PMID: 33505966 PMCID: PMC7829553 DOI: 10.3389/fcell.2020.613892] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022] Open
Abstract
Peroxisomes are membrane-bound organelles involved in many metabolic pathways and essential for human health. They harbor a large number of enzymes involved in the different pathways, thus requiring transport of substrates, products and cofactors involved across the peroxisomal membrane. Although much progress has been made in understanding the permeability properties of peroxisomes, there are still important gaps in our knowledge about the peroxisomal transport of metabolites and cofactors. In this review, we discuss the different modes of transport of metabolites and essential cofactors, including CoA, NAD+, NADP+, FAD, FMN, ATP, heme, pyridoxal phosphate, and thiamine pyrophosphate across the peroxisomal membrane. This transport can be mediated by non-selective pore-forming proteins, selective transport proteins, membrane contact sites between organelles, and co-import of cofactors with proteins. We also discuss modes of transport mediated by shuttle systems described for NAD+/NADH and NADP+/NADPH. We mainly focus on current knowledge on human peroxisomal metabolite and cofactor transport, but also include knowledge from studies in plants, yeast, fruit fly, zebrafish, and mice, which has been exemplary in understanding peroxisomal transport mechanisms in general.
Collapse
Affiliation(s)
- Serhii Chornyi
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Lodewijk IJlst
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Carlo W T van Roermund
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
17
|
Quaye JA, Gadda G. Kinetic and Bioinformatic Characterization of d-2-Hydroxyglutarate Dehydrogenase from Pseudomonas aeruginosa PAO1. Biochemistry 2020; 59:4833-4844. [PMID: 33301690 DOI: 10.1021/acs.biochem.0c00832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
d-2-Hydroxyglutarate dehydrogenase from Pseudomonas aeruginosa PAO1 (PaD2HGDH) catalyzes the oxidation of d-2-hydroxyglutarate to 2-ketoglutarate, which is a necessary step in the serine biosynthetic pathway. The dependence of P. aeruginosa on PaD2HGDH makes the enzyme a potential therapeutic target against P. aeruginosa. In this study, recombinant His-tagged PaD2HGDH was expressed and purified to high levels from gene PA0317, which was previously annotated as an FAD-binding PCMH-type domain-containing protein. The enzyme cofactor was identified as FAD with fluorescence emission after phosphodiesterase treatment and with mass spectrometry analysis. PaD2HGDH had a kcat value of 11 s-1 and a Km value of 60 μM with d-2-hydroxyglutarate at pH 7.4 and 25 °C. The enzyme was also active with d-malate but did not react with molecular oxygen. Steady-state kinetics with d-malate and phenazine methosulfate as an electron acceptor established a mechanism that was consistent with ping-pong bi-bi steady-state kinetics at pH 7.4. A comparison of the kcat/Km values with d-2-hydroxyglutarate and d-malate suggested that the C5 carboxylate of d-2-hydroxyglutarate is important for the substrate specificity of the enzyme. Other homologues of the enzyme have been previously grouped in the VAO/PMCH family of flavoproteins. PaD2HGDH shares fully conserved residues with other α-hydroxy acid oxidizing enzymes, and these conserved residues are found in the active site of the PaD2HDGH homology model. An Enzyme Function Initiative-Enzyme Similarity Tool Sequence Similarity Network analysis suggests a functional difference between PaD2HGDH and human D2HGDH, and no relationship with VAO. A phylogenetic tree analysis of PaD2HGDH, VAO, and human D2HGDH establishes genetic diversity among these enzymes.
Collapse
|
18
|
Su D, Aguillon C, Gadda G. Characterization of conserved active site residues in class I nitronate monooxygenase. Arch Biochem Biophys 2019; 672:108058. [PMID: 31356775 DOI: 10.1016/j.abb.2019.07.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 01/08/2023]
Abstract
Propionate 3-nitronate (P3N) is a natural toxin that irreversibly inhibits mitochondrial succinate dehydrogenase. P3N poisoning leads to a variety of neurological disorders and even death. Nitronate monooxygenase (NMO) from Pseudomonas aeruginosa PAO1 was the first NMO characterized in bacteria and serves as a paradigm for Class I NMO. Here, we hypothesized that the carboxylate group of P3N might form a hydrogen bond with one or more of the four tyrosine or a lysine residues that are conserved in the active site of the enzyme. In the wild-type enzyme, the kcat value was pH independent between pH 6.0 and 11.0, while the kcat/KP3N value decreased at high pH, suggesting that a protonated group with a pKa value of 9.5 is required for binding the anionic substrate. A pH titration of the UV-visible absorption spectrum of the enzyme showed an increased absorbance at 297 nm with increasing pH, defining a pKa value of 9.5 and a Δε297 nm of 2.4 M-1cm-1, consistent with a tyrosine being important for substrate binding. The N3 atom of the oxidized flavin, instead, did not ionize likely because its pKa was perturbed by the ionization of a tyrosine in the active site of the enzyme. The Y109F, Y254F, Y299F, Y303F, and K307 M, substitutions had small effects (i.e., <3.5-fold) on the steady-state kinetic parameters of the enzyme. With all mutated enzymes, the kcat/KP3N value was less than 2.5-fold different from the wild-type enzyme, suggesting that none of the residues is solely essential for substrate binding.
Collapse
|
19
|
Yeh HW, Lin KH, Lyu SY, Li YS, Huang CM, Wang YL, Shih HW, Hsu NS, Wu CJ, Li TL. Biochemical and structural explorations of α-hydroxyacid oxidases reveal a four-electron oxidative decarboxylation reaction. Acta Crystallogr D Struct Biol 2019; 75:733-742. [PMID: 31373572 PMCID: PMC6677016 DOI: 10.1107/s2059798319009574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/03/2019] [Indexed: 11/05/2022] Open
Abstract
p-Hydroxymandelate oxidase (Hmo) is a flavin mononucleotide (FMN)-dependent enzyme that oxidizes mandelate to benzoylformate. How the FMN-dependent oxidation is executed by Hmo remains unclear at the molecular level. A continuum of snapshots from crystal structures of Hmo and its mutants in complex with physiological/nonphysiological substrates, products and inhibitors provides a rationale for its substrate enantioselectivity/promiscuity, its active-site geometry/reactivity and its direct hydride-transfer mechanism. A single mutant, Y128F, that extends the two-electron oxidation reaction to a four-electron oxidative decarboxylation reaction was unexpectedly observed. Biochemical and structural approaches, including biochemistry, kinetics, stable isotope labeling and X-ray crystallography, were exploited to reach these conclusions and provide additional insights.
Collapse
Affiliation(s)
- Hsien-Wei Yeh
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Kuan-Hung Lin
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan
| | - Syue-Yi Lyu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yi-Shan Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chun-Man Huang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yung-Lin Wang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Hao-Wei Shih
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Ning-Shian Hsu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chang-Jer Wu
- Department of Food Science, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Tsung-Lin Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung City 402, Taiwan
| |
Collapse
|
20
|
Han Q, Yang C, Lu J, Zhang Y, Li J. Metabolism of Oxalate in Humans: A Potential Role Kynurenine Aminotransferase/Glutamine Transaminase/Cysteine Conjugate Beta-lyase Plays in Hyperoxaluria. Curr Med Chem 2019; 26:4944-4963. [PMID: 30907303 DOI: 10.2174/0929867326666190325095223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/17/2019] [Accepted: 02/22/2019] [Indexed: 11/22/2022]
Abstract
Hyperoxaluria, excessive urinary oxalate excretion, is a significant health problem worldwide. Disrupted oxalate metabolism has been implicated in hyperoxaluria and accordingly, an enzymatic disturbance in oxalate biosynthesis can result in the primary hyperoxaluria. Alanine glyoxylate aminotransferase-1 and glyoxylate reductase, the enzymes involving glyoxylate (precursor for oxalate) metabolism, have been related to primary hyperoxalurias. Some studies suggest that other enzymes such as glycolate oxidase and alanine glyoxylate aminotransferase-2 might be associated with primary hyperoxaluria as well, but evidence of a definitive link is not strong between the clinical cases and gene mutations. There are still some idiopathic hyperoxalurias, which require a further study for the etiologies. Some aminotransferases, particularly kynurenine aminotransferases, can convert glyoxylate to glycine. Based on biochemical and structural characteristics, expression level, subcellular localization of some aminotransferases, a number of them appear able to catalyze the transamination of glyoxylate to glycine more efficiently than alanine glyoxylate aminotransferase-1. The aim of this minireview is to explore other undermining causes of primary hyperoxaluria and stimulate research toward achieving a comprehensive understanding of underlying mechanisms leading to the disease. Herein, we reviewed all aminotransferases in the liver for their functions in glyoxylate metabolism. Particularly, kynurenine aminotransferase-I and III were carefully discussed regarding their biochemical and structural characteristics, cellular localization, and enzyme inhibition. Kynurenine aminotransferase-III is, so far, the most efficient putative mitochondrial enzyme to transaminate glyoxylate to glycine in mammalian livers, might be an interesting enzyme to look over in hyperoxaluria etiology of primary hyperoxaluria and should be carefully investigated for its involvement in oxalate metabolism.
Collapse
Affiliation(s)
- Qian Han
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, Hainan 570228. China
| | - Cihan Yang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, Hainan 570228. China
| | - Jun Lu
- Central South University Xiangya School of Medicine Affiliated Haikou People's Hospital, Haikou, Hainan 570208. China
| | - Yinai Zhang
- Central South University Xiangya School of Medicine Affiliated Haikou People's Hospital, Haikou, Hainan 570208. China
| | - Jianyong Li
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061. United States
| |
Collapse
|
21
|
Dindo M, Conter C, Oppici E, Ceccarelli V, Marinucci L, Cellini B. Molecular basis of primary hyperoxaluria: clues to innovative treatments. Urolithiasis 2018; 47:67-78. [PMID: 30430197 DOI: 10.1007/s00240-018-1089-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 11/08/2018] [Indexed: 12/21/2022]
Abstract
Primary hyperoxalurias (PHs) are rare inherited disorders of liver glyoxylate metabolism, characterized by the abnormal production of endogenous oxalate, a metabolic end-product that is eliminated by urine. The main symptoms are related to the precipitation of calcium oxalate crystals in the urinary tract with progressive renal damage and, in the most severe form named Primary Hyperoxaluria Type I (PH1), to systemic oxalosis. The therapies currently available for PH are either poorly effective, because they address the symptoms and not the causes of the disease, or highly invasive. In the last years, advances in our understanding of the molecular bases of PH have paved the way for the development of new therapeutic strategies. They include (i) substrate-reduction therapies based on small-molecule inhibitors or the RNA interference technology, (ii) gene therapy, (iii) enzyme administration approaches, (iv) colonization with oxalate-degrading intestinal microorganisms, and, in PH1, (v) design of pharmacological chaperones. This paper reviews the basic principles of these new therapeutic strategies and what is currently known about their application to PH.
Collapse
Affiliation(s)
- Mirco Dindo
- Department of Experimental Medicine, University of Perugia, P.le Gambuli 1, 06132, Perugia, Italy
| | - Carolina Conter
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Strada le Grazie 8, 37134, Verona, VR, Italy
| | - Elisa Oppici
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Strada le Grazie 8, 37134, Verona, VR, Italy
| | - Veronica Ceccarelli
- Department of Experimental Medicine, University of Perugia, P.le Gambuli 1, 06132, Perugia, Italy
| | - Lorella Marinucci
- Department of Experimental Medicine, University of Perugia, P.le Gambuli 1, 06132, Perugia, Italy
| | - Barbara Cellini
- Department of Experimental Medicine, University of Perugia, P.le Gambuli 1, 06132, Perugia, Italy.
| |
Collapse
|
22
|
Kean KM, Karplus PA. Structure and role for active site lid of lactate monooxygenase from Mycobacterium smegmatis. Protein Sci 2018; 28:135-149. [PMID: 30207005 DOI: 10.1002/pro.3506] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/30/2018] [Accepted: 09/05/2018] [Indexed: 12/17/2022]
Abstract
Lactate monooxygenase (LMO) catalyzes the FMN-dependent "coupled" oxidation of lactate and O2 to acetate, carbon dioxide, and water, involving pyruvate and hydrogen peroxide as enzyme-bound intermediates. Other α-hydroxy acid oxidase family members follow an "uncoupled pathway," wherein the α-keto acid product quickly dissociates before the reduced flavin reacts with oxygen. Here, we report the structures of Mycobacterium smegmatis wild-type LMO and a wild-type-like C203A variant at 2.1 Å and 1.7 Å resolution, respectively. The overall LMO fold and active site organization, including a bound sulfate mimicking substrate, resemble those of other α-hydroxy acid oxidases. Based on structural similarity, LMO is similarly distant from lactate oxidase, glycolate oxidase, mandelate dehydrogenase, and flavocytochrome b2 and is the first representative enzyme of its type. Comparisons with other α-hydroxy acid oxidases reveal that LMO has a longer and more compact folded active site loop (Loop 4), which is known in related flavoenzymes to undergo order/disorder transitions to allow substrate/product binding and release. We propose that LMO's Loop 4 has an enhanced stability that is responsible for the slow product release requisite for the coupled pathway. We also note electrostatic features of the LMO active site that promote substrate binding. Whereas the physiological role of LMO remains unknown, we document what can currently be assessed of LMO's distribution in nature, including its unexpected occurrence, presumably through horizontal gene transfer, in halophilic archaea and in a limited group of fungi of the genus Beauveria. BROAD STATEMENT OF IMPACT: This first crystal structure of the FMN-dependent α-hydroxy acid oxidase family member lactate monooxygenase (LMO) reveals it has a uniquely large active site lid that we hypothesize is stable enough to explain the slow dissociation of pyruvate that leads to its "coupled" oxidation of lactate and O2 to produce acetate, carbon dioxide, and water. Also, the relatively widespread distribution of putative LMOs supports their importance and provides new motivation for their further study.
Collapse
Affiliation(s)
- Kelsey M Kean
- Department of Biochemistry and Biophysics, 2011 Agriculture and Life Sciences Building, Oregon State University, Corvallis, Oregon 97331
| | - P Andrew Karplus
- Department of Biochemistry and Biophysics, 2011 Agriculture and Life Sciences Building, Oregon State University, Corvallis, Oregon 97331
| |
Collapse
|
23
|
Liu Y, Wu W, Chen Z. Structures of glycolate oxidase from Nicotiana benthamiana reveal a conserved pH sensor affecting the binding of FMN. Biochem Biophys Res Commun 2018; 503:3050-3056. [PMID: 30143257 DOI: 10.1016/j.bbrc.2018.08.092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 08/12/2018] [Indexed: 11/16/2022]
Abstract
Glycolate oxidase (GOX), a flavin mononucleotide (FMN)-dependent enzyme, modulates reactive oxygen species-mediated signal transduction in green plants. It has been a target protein for crop improvement because of performing a key step in photorespiration that causes the energy losses. In human, GOX is involved in the production of oxalate, which is a key metabolite in the formation of kidney stone. Here, we report the first apo-GOX structure and its complex structure with cofactor FMN from Nicotiana benthamiana by X-ray crystallography. The binding of FMN induces a pronounced conformational change of GOX tetramer. Interestingly, a conserved pH sensor found among different species might directly regulate the binding of FMN and the enzyme activity. Combined with enzymatic experiments and biophysical analyses, we provide new insights in the molecular mechanism of regulating GOX biological activity reversibly and new methods of agricultural production and clinical application.
Collapse
Affiliation(s)
- Yujie Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Wei Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Zhongzhou Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
24
|
Moya-Garzón MD, Martín Higueras C, Peñalver P, Romera M, Fernandes MX, Franco-Montalbán F, Gómez-Vidal JA, Salido E, Díaz-Gavilán M. Salicylic Acid Derivatives Inhibit Oxalate Production in Mouse Hepatocytes with Primary Hyperoxaluria Type 1. J Med Chem 2018; 61:7144-7167. [DOI: 10.1021/acs.jmedchem.8b00399] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- María Dolores Moya-Garzón
- Departamento de Química Farmacéutica y Orgánica, Universidad de Granada, Campus de Cartuja s/n, 18071 Granada, Spain
| | - Cristina Martín Higueras
- Hospital Universitario de Canarias, Universidad La Laguna & Center for Rare Diseases (CIBERER), 38320 Tenerife, Spain
| | - Pablo Peñalver
- Departamento de Química Farmacéutica y Orgánica, Universidad de Granada, Campus de Cartuja s/n, 18071 Granada, Spain
| | - Manuela Romera
- Departamento de Química Farmacéutica y Orgánica, Universidad de Granada, Campus de Cartuja s/n, 18071 Granada, Spain
| | - Miguel X. Fernandes
- Hospital Universitario de Canarias, Universidad La Laguna & Center for Rare Diseases (CIBERER), 38320 Tenerife, Spain
| | - Francisco Franco-Montalbán
- Departamento de Química Farmacéutica y Orgánica, Universidad de Granada, Campus de Cartuja s/n, 18071 Granada, Spain
| | - José A. Gómez-Vidal
- Departamento de Química Farmacéutica y Orgánica, Universidad de Granada, Campus de Cartuja s/n, 18071 Granada, Spain
| | - Eduardo Salido
- Hospital Universitario de Canarias, Universidad La Laguna & Center for Rare Diseases (CIBERER), 38320 Tenerife, Spain
| | - Mónica Díaz-Gavilán
- Departamento de Química Farmacéutica y Orgánica, Universidad de Granada, Campus de Cartuja s/n, 18071 Granada, Spain
| |
Collapse
|
25
|
Glycolate oxidase deficiency in a patient with congenital hyperinsulinism and unexplained hyperoxaluria. Pediatr Nephrol 2017; 32:2159-2163. [PMID: 28752386 DOI: 10.1007/s00467-017-3741-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND A baby girl was born at 39 weeks gestation to consanguineous Asian parents. From day 1 of life she had severe hypoglycaemia with an inappropriately elevated insulin concentration consistent with congenital hyperinsulinism (CHI), confirmed by the finding of a homozygous mutation in ABCC8 (encoding the sulfonylurea receptor 1). CASE DIAGNOSIS/TREATMENT Urine organic acid analysis showed an incidentally elevated excretion of glycolate. Whilst this was unlikely to contribute to the hypoglycaemia, hyperglycolic aciduria is a known feature of primary hyperoxaluria type 1 (PH1); therefore oxalate was also measured in urine and found to be elevated. Sequence analysis of the genes involved in PH1 and also the two other known forms of primary hyperoxaluria revealed no pathological variants. PH1 was definitively excluded by enzyme activity analysis on a liver biopsy, which confirmed normal glyoxylate aminotransferase (AGT) activity and positive AGT immunoreactivity. Glycolate oxidase (GO) deficiency was considered, and thus gene sequencing of HAO1, which encodes GO, was performed. A homozygous change (c.493G>T p.(Gly165Cys)) was found in exon 3 of HAO1, predicted to be deleterious to protein function. Further analysis of the liver biopsy demonstrated absent GO enzyme activity, confirming GO deficiency in this case. CONCLUSIONS The results lead to the conclusion that this baby has two unrelated autosomal recessive conditions, CHI and GO deficiency, and also hyperoxaluria of unknown aetiology. Deficiency of GO is a very rare disorder with only two previously published cases. It is considered to be an essentially benign inborn error of metabolism. The present case is unique in that GO deficiency is associated with persistent hyperoxaluria.
Collapse
|
26
|
Liebow A, Li X, Racie T, Hettinger J, Bettencourt BR, Najafian N, Haslett P, Fitzgerald K, Holmes RP, Erbe D, Querbes W, Knight J. An Investigational RNAi Therapeutic Targeting Glycolate Oxidase Reduces Oxalate Production in Models of Primary Hyperoxaluria. J Am Soc Nephrol 2016; 28:494-503. [PMID: 27432743 DOI: 10.1681/asn.2016030338] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/06/2016] [Indexed: 01/07/2023] Open
Abstract
Primary hyperoxaluria type 1 (PH1), an inherited rare disease of glyoxylate metabolism, arises from mutations in the enzyme alanine-glyoxylate aminotransferase. The resulting deficiency in this enzyme leads to abnormally high oxalate production resulting in calcium oxalate crystal formation and deposition in the kidney and many other tissues, with systemic oxalosis and ESRD being a common outcome. Although a small subset of patients manages the disease with vitamin B6 treatments, the only effective treatment for most is a combined liver-kidney transplant, which requires life-long immune suppression and carries significant mortality risk. In this report, we discuss the development of ALN-GO1, an investigational RNA interference (RNAi) therapeutic targeting glycolate oxidase, to deplete the substrate for oxalate synthesis. Subcutaneous administration of ALN-GO1 resulted in potent, dose-dependent, and durable silencing of the mRNA encoding glycolate oxidase and increased serum glycolate concentrations in wild-type mice, rats, and nonhuman primates. ALN-GO1 also increased urinary glycolate concentrations in normal nonhuman primates and in a genetic mouse model of PH1. Notably, ALN-GO1 reduced urinary oxalate concentration up to 50% after a single dose in the genetic mouse model of PH1, and up to 98% after multiple doses in a rat model of hyperoxaluria. These data demonstrate the ability of ALN-GO1 to reduce oxalate production in preclinical models of PH1 across multiple species and provide a clear rationale for clinical trials with this compound.
Collapse
Affiliation(s)
- Abigail Liebow
- Alnylam Pharmaceuticals, Departments of Research and Development, Cambridge, Massachusetts; and
| | - Xingsheng Li
- Department of Urology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Timothy Racie
- Alnylam Pharmaceuticals, Departments of Research and Development, Cambridge, Massachusetts; and
| | - Julia Hettinger
- Alnylam Pharmaceuticals, Departments of Research and Development, Cambridge, Massachusetts; and
| | - Brian R Bettencourt
- Alnylam Pharmaceuticals, Departments of Research and Development, Cambridge, Massachusetts; and
| | - Nader Najafian
- Alnylam Pharmaceuticals, Departments of Research and Development, Cambridge, Massachusetts; and
| | - Patrick Haslett
- Alnylam Pharmaceuticals, Departments of Research and Development, Cambridge, Massachusetts; and
| | - Kevin Fitzgerald
- Alnylam Pharmaceuticals, Departments of Research and Development, Cambridge, Massachusetts; and
| | - Ross P Holmes
- Department of Urology, University of Alabama at Birmingham, Birmingham, Alabama
| | - David Erbe
- Alnylam Pharmaceuticals, Departments of Research and Development, Cambridge, Massachusetts; and
| | - William Querbes
- Alnylam Pharmaceuticals, Departments of Research and Development, Cambridge, Massachusetts; and
| | - John Knight
- Department of Urology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
27
|
Effects of alanine:glyoxylate aminotransferase variants and pyridoxine sensitivity on oxalate metabolism in a cell-based cytotoxicity assay. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1055-62. [PMID: 26854734 DOI: 10.1016/j.bbadis.2016.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 12/20/2022]
Abstract
The hereditary kidney stone disease primary hyperoxaluria type 1 (PH1) is caused by a functional deficiency of the liver-specific, peroxisomal, pyridoxal-phosphate-dependent enzyme, alanine:glyoxylate aminotransferase (AGT). One third of PH1 patients, particularly those expressing the p.[(Pro11Leu; Gly170Arg; Ile340Met)] mutant allele, respond clinically to pharmacological doses of pyridoxine. To gain further insight into the metabolic effects of AGT dysfunction in PH1 and the effect of pyridoxine, we established an "indirect" glycolate cytotoxicity assay using CHO cells expressing glycolate oxidase (GO) and various normal and mutant forms of AGT. In cells expressing GO the great majority of glycolate was converted to oxalate and glyoxylate, with the latter causing the greater decrease in cell survival. Co-expression of normal AGTs and some, but not all, mutant AGT variants partially counteracted this cytotoxicity and led to decreased synthesis of oxalate and glyoxylate. Increasing the extracellular pyridoxine up to 0.3μM led to an increased metabolic effectiveness of normal AGTs and the AGT-Gly170Arg variant. The increased survival seen with AGT-Gly170Arg was paralleled by a 40% decrease in oxalate and glyoxylate levels. These data support the suggestion that the effectiveness of pharmacological doses of pyridoxine results from an improved metabolic effectiveness of AGT; that is the increased rate of transamination of glyoxylate to glycine. The indirect glycolate toxicity assay used in the present study has potential to be used in cell-based drug screening protocols to identify chemotherapeutics that might enhance or decrease the activity and metabolic effectiveness of AGT and GO, respectively, and be useful in the treatment of PH1.
Collapse
|
28
|
Glycolate Oxidase Is a Safe and Efficient Target for Substrate Reduction Therapy in a Mouse Model of Primary Hyperoxaluria Type I. Mol Ther 2015; 24:719-25. [PMID: 26689264 DOI: 10.1038/mt.2015.224] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/10/2015] [Indexed: 11/08/2022] Open
Abstract
Primary hyperoxaluria type 1 (PH1) is caused by deficient alanine-glyoxylate aminotransferase, the human peroxisomal enzyme that detoxifies glyoxylate. Glycolate is one of the best-known substrates leading to glyoxylate production, via peroxisomal glycolate oxidase (GO). Using genetically modified mice, we herein report GO as a safe and efficient target for substrate reduction therapy (SRT) in PH1. We first generated a GO-deficient mouse (Hao1(-/-)) that presented high urine glycolate levels but no additional phenotype. Next, we produced double KO mice (Agxt1(-/-) Hao1(-/-)) that showed low levels of oxalate excretion compared with hyperoxaluric mice model (Agxt1(-/-)). Previous studies have identified some GO inhibitors, such as 4-carboxy-5-[(4-chlorophenyl)sulfanyl]-1,2,3-thiadiazole (CCPST). We herein report that CCPST inhibits GO in Agxt1(-/-) hepatocytes and significantly reduces their oxalate production, starting at 25 µM. We also tested the ability of orally administered CCPST to reduce oxalate excretion in Agxt1(-/-) mice, showing that 30-50% reduction in urine oxalate can be achieved. In summary, we present proof-of-concept evidence for SRT in PH1. These encouraging results should be followed by a medicinal chemistry programme that might yield more potent GO inhibitors and eventually could result in a pharmacological treatment for this rare and severe inborn error of metabolism.
Collapse
|
29
|
Li X, Knight J, Fargue S, Buchalski B, Guan Z, Inscho EW, Liebow A, Fitzgerald K, Querbes W, Todd Lowther W, Holmes RP. Metabolism of (13)C5-hydroxyproline in mouse models of Primary Hyperoxaluria and its inhibition by RNAi therapeutics targeting liver glycolate oxidase and hydroxyproline dehydrogenase. Biochim Biophys Acta Mol Basis Dis 2015; 1862:233-9. [PMID: 26655602 DOI: 10.1016/j.bbadis.2015.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/13/2015] [Accepted: 12/01/2015] [Indexed: 12/28/2022]
Abstract
Excessive endogenous oxalate synthesis can result in calcium oxalate kidney stone formation and renal failure. Hydroxyproline catabolism in the liver and kidney contributes to endogenous oxalate production in mammals. To quantify this contribution we have infused Wt mice, Agxt KO mice deficient in liver alanine:glyoxylate aminotransferase, and Grhpr KO mice deficient in glyoxylate reductase, with (13)C5-hydroxyproline. The contribution of hydroxyproline metabolism to urinary oxalate excretion in Wt mice was 22±2%, 42±8% in Agxt KO mice, and 36%±9% in Grhpr KO mice. To determine if blocking steps in hydroxyproline and glycolate metabolism would decrease urinary oxalate excretion, mice were injected with siRNA targeting the liver enzymes glycolate oxidase and hydroxyproline dehydrogenase. These siRNAs decreased the expression of both enzymes and reduced urinary oxalate excretion in Agxt KO mice, when compared to mice infused with a luciferase control preparation. These results suggest that siRNA approaches could be useful for decreasing the oxalate burden on the kidney in individuals with Primary Hyperoxaluria.
Collapse
Affiliation(s)
- Xingsheng Li
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - John Knight
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Sonia Fargue
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Brianna Buchalski
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Zhengrong Guan
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Edward W Inscho
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | | | | | | | - W Todd Lowther
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Ross P Holmes
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| |
Collapse
|
30
|
Li X, Knight J, Todd Lowther W, Holmes RP. Hydroxyproline metabolism in a mouse model of Primary Hyperoxaluria Type 3. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2700-5. [PMID: 26428388 DOI: 10.1016/j.bbadis.2015.09.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/16/2015] [Accepted: 09/25/2015] [Indexed: 12/29/2022]
Abstract
Primary Hyperoxaluria Type 3 is a recently discovered form of this autosomal recessive disease that results from mutations in the gene coding for 4-hydroxy-2-oxoglutarate aldolase (HOGA1). This enzyme is one of the 2 unique enzymes in the hydroxyproline catabolism pathway. Affected individuals have increased urinary excretions of oxalate, 4-hydroxy-L-glutamate (4-OH-Glu), 4-hydroxy-2-oxoglutarate (HOG), and 2,4-dihydroxyglutarate (DHG). While 4-OH-Glu and HOG are precursor substrates of HOGA1 and increases in their concentrations are expected, how DHG is formed and how HOG to oxalate are unclear. To resolve these important questions and to provide insight into possible therapeutic avenues for treating this disease, an animal model of the disease would be invaluable. We have developed a mouse model of this disease which has null mutations in the Hoga1 gene and have characterized its phenotype. It shares many characteristics of the human disease, particularly when challenged by the inclusion of hydroxyproline in the diet. An increased oxalate excretion is not observed in the KO mice which may be consistent with the recent recognition that only a small fraction of the individuals with the genotype for HOGA deficiency develop PH.
Collapse
Affiliation(s)
- Xingsheng Li
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - John Knight
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - W Todd Lowther
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| | - Ross P Holmes
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
31
|
Romero E, Gadda G. Alcohol oxidation by flavoenzymes. Biomol Concepts 2014; 5:299-318. [DOI: 10.1515/bmc-2014-0016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/05/2014] [Indexed: 12/26/2022] Open
Abstract
AbstractThis review article describes the occurrence, general properties, and substrate specificity of the flavoenzymes belonging to the glucose-methanol-choline oxidoreductase superfamily and the l-α-hydroxyacid dehydrogenase family. Most of these enzymes catalyze the oxidations of hydroxyl groups, yielding carbonyl moieties. Over the years, carbanion, hydride transfer, and radical mechanisms have been discussed for these enzymes, and the main experimental evidences supporting these mechanisms are presented here. Regardless of the chemical nature of the organic substrate (i.e., activated and non-activated alcohols), a hydride transfer mechanism appears to be the most plausible for the flavoenzymes acting on CH-OH groups. The reaction of most of these enzymes likely starts with proton abstraction from the substrate hydroxyl group by a conserved active site histidine. Among the different approaches carried out to determine the chemical mechanisms with physiological substrates, primary substrate and solvent deuterium kinetic isotope effect studies have provided the most unambiguous evidences. It is expected that the numerous studies reported for these enzymes over the years will be instrumental in devising efficient industrial biocatalysts and drugs.
Collapse
Affiliation(s)
- Elvira Romero
- 1Department of Chemistry, Georgia State University, Atlanta, GA 30302-3965, USA
| | | |
Collapse
|
32
|
Frishberg Y, Zeharia A, Lyakhovetsky R, Bargal R, Belostotsky R. Mutations inHAO1encoding glycolate oxidase cause isolated glycolic aciduria. J Med Genet 2014; 51:526-9. [DOI: 10.1136/jmedgenet-2014-102529] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Cao Y, Han S, Yu L, Qian H, Chen JZ. MD and QM/MM studies on long-chain L-α-hydroxy acid oxidase: substrate binding features and oxidation mechanism. J Phys Chem B 2014; 118:5406-17. [PMID: 24801764 DOI: 10.1021/jp5022399] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Long-chain L-α-hydroxy acid oxidase (LCHAO) is a flavin mononucleotide (FMN)-dependent oxidase that dehydrogenates l-α-hydroxy acids to keto acids. There were two different mechanisms, named as hydride transfer (HT) mechanism and carbanion (CA) mechanism, respectively, proposed about the catalytic process for the FMN-dependent L-α-hydroxy acid oxidases on the basis of biochemical data. However, crystallographic and kinetic studies could not provide enough evidence to prove one of the mechanisms or eliminate the alternative. In the present studies, theoretical computations were carried out to study the molecular mechanism for LCHAO-catalyzed dehydrogenation of L-lactate. Our molecular dynamics (MD) simulations indicated that L-lactate prefers to bind with LCHAO in a hydride transfer mode rather than a carbanion mode. Quantum mechanics/molecular mechanics (QM/MM) calculations were further carried out to obtain the optimized structures of reactants, transition states, and products at the level of ONIOM-EE (B3LYP/6-311++G(d,p)//B3LYP/6-31G(d,p):AMBER). Quantum chemical studies indicated that LCHAO-catalyzed dehydrogenation of L-lactate would be a stepwise catalytic reaction in a hydride transfer mechanism but not a carbanion mechanism. MD simulations, binding free energy calculations, and QM/MM computations were also implemented on the complex between L-lactate and Y129F mutant LCHAO. By comparing the Y129F mutant system with the wild-type system, it was further confirmed that the key residue Tyr129 in the active site of LCHAO would not affect L-lactate's binding to LCHAO but play an important role on the catalytic reaction process through an H-bond interaction.
Collapse
Affiliation(s)
- Yang Cao
- Institute of Materia Medica, College of Pharmaceutical Sciences, Zijingang Campus, Zhejiang University , 866 Yuhangtang Rd., Hangzhou, Zhejiang 310058, China
| | | | | | | | | |
Collapse
|
34
|
Rungroj N, Nettuwakul C, Sudtachat N, Praditsap O, Sawasdee N, Sritippayawan S, Chuawattana D, Yenchitsomanus PT. A whole genome SNP genotyping by DNA microarray and candidate gene association study for kidney stone disease. BMC MEDICAL GENETICS 2014; 15:50. [PMID: 24886237 PMCID: PMC4031563 DOI: 10.1186/1471-2350-15-50] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 04/28/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND Kidney stone disease (KSD) is a complex disorder with unknown etiology in majority of the patients. Genetic and environmental factors may cause the disease. In the present study, we used DNA microarray to genotype single nucleotide polymorphisms (SNP) and performed candidate gene association analysis to determine genetic variations associated with the disease. METHODS A whole genome SNP genotyping by DNA microarray was initially conducted in 101 patients and 105 control subjects. A set of 104 candidate genes reported to be involved in KSD, gathered from public databases and candidate gene association study databases, were evaluated for their variations associated with KSD. RESULTS Altogether 82 SNPs distributed within 22 candidate gene regions showed significant differences in SNP allele frequencies between the patient and control groups (P < 0.05). Of these, 4 genes including BGLAP, AHSG, CD44, and HAO1, encoding osteocalcin, fetuin-A, CD44-molecule and glycolate oxidase 1, respectively, were further assessed for their associations with the disease because they carried high proportion of SNPs with statistical differences of allele frequencies between the patient and control groups within the gene. The total of 26 SNPs showed significant differences of allele frequencies between the patient and control groups and haplotypes associated with disease risk were identified. The SNP rs759330 located 144 bp downstream of BGLAP where it is a predicted microRNA binding site at 3'UTR of PAQR6 - a gene encoding progestin and adipoQ receptor family member VI, was genotyped in 216 patients and 216 control subjects and found to have significant differences in its genotype and allele frequencies (P = 0.0007, OR 2.02 and P = 0.0001, OR 2.02, respectively). CONCLUSIONS Our results suggest that these candidate genes are associated with KSD and PAQR6 comes into our view as the most potent candidate since associated SNP rs759330 is located in the miRNA binding site and may affect mRNA expression level.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Pa-Thai Yenchitsomanus
- Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
35
|
Esser C, Kuhn A, Groth G, Lercher MJ, Maurino VG. Plant and animal glycolate oxidases have a common eukaryotic ancestor and convergently duplicated to evolve long-chain 2-hydroxy acid oxidases. Mol Biol Evol 2014; 31:1089-101. [PMID: 24408912 DOI: 10.1093/molbev/msu041] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Glycolate oxidase (GOX) is a crucial enzyme of plant photorespiration. The encoding gene is thought to have originated from endosymbiotic gene transfer between the eukaryotic host and the cyanobacterial endosymbiont at the base of plantae. However, animals also possess GOX activities. Plant and animal GOX belong to the gene family of (L)-2-hydroxyacid-oxidases ((L)-2-HAOX). We find that all (L)-2-HAOX proteins in animals and archaeplastida go back to one ancestral eukaryotic sequence; the sole exceptions are green algae of the chlorophyta lineage. Chlorophyta replaced the ancestral eukaryotic (L)-2-HAOX with a bacterial ortholog, a lactate oxidase that may have been obtained through the primary endosymbiosis at the base of plantae; independent losses of this gene may explain its absence in other algal lineages (glaucophyta, rhodophyta, and charophyta). We also show that in addition to GOX, plants possess (L)-2-HAOX proteins with different specificities for medium- and long-chain hydroxyacids (lHAOX), likely involved in fatty acid and protein catabolism. Vertebrates possess lHAOX proteins acting on similar substrates as plant lHAOX; however, the existence of GOX and lHAOX subfamilies in both plants and animals is not due to shared ancestry but is the result of convergent evolution in the two most complex eukaryotic lineages. On the basis of targeting sequences and predicted substrate specificities, we conclude that the biological role of plantae (L)-2-HAOX in photorespiration evolved by co-opting an existing peroxisomal protein.
Collapse
Affiliation(s)
- Christian Esser
- Institute for Computer Science, Heinrich-Heine-University, Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
36
|
Zolotukhin P, Kozlova Y, Dovzhik A, Kovalenko K, Kutsyn K, Aleksandrova A, Shkurat T. Oxidative status interactome map: towards novel approaches in experiment planning, data analysis, diagnostics and therapy. MOLECULAR BIOSYSTEMS 2013; 9:2085-96. [PMID: 23698602 DOI: 10.1039/c3mb70096h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Experimental evidence suggests an immense variety of processes associated with and aimed at producing reactive oxygen and/or nitrogen species. Clinical studies implicate an enormous range of pathologies associated with reactive oxygen/nitrogen species metabolism deregulation, particularly oxidative stress. Recent advances in biochemistry, proteomics and molecular biology/biophysics of cells suggest oxidative stress to be an endpoint of complex dysregulation events of conjugated pathways consolidated under the term, proposed here, "oxidative status". The oxidative status concept, in order to allow for novel diagnostic and therapeutic approaches, requires elaboration of a new logic system comprehending all the features, versatility and complexity of cellular pro- and antioxidative components of different nature. We have developed a curated and regularly updated interactive interactome map of human cellular-level oxidative status allowing for systematization of the related most up-to-date experimental data. A total of more than 600 papers were selected for the initial creation of the map. The map comprises more than 300 individual factors with respective interactions, all subdivided hierarchically for logical analysis purposes. The pilot application of the interactome map suggested several points for further development of oxidative status-based technologies.
Collapse
Affiliation(s)
- Peter Zolotukhin
- Southern Federal University, Stachki av., 194/1, Rostov-on-Don, Russia.
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Accidental or intentional ingestion of substances containing methanol and ethylene glycol can result in death, and some survivors are left with blindness, renal dysfunction, and chronic brain injury. However, even in large ingestions, a favorable outcome is possible if the patient arrives at the hospital early enough and the poisoning is identified and appropriately treated in a timely manner. This review covers the common circumstances of exposure, the involved toxic mechanisms, and the clinical manifestations, laboratory findings, and treatment of methanol and ethylene glycol intoxication.
Collapse
|
38
|
Gadda G. Oxygen Activation in Flavoprotein Oxidases: The Importance of Being Positive. Biochemistry 2012; 51:2662-9. [DOI: 10.1021/bi300227d] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Giovanni Gadda
- Department
of Chemistry, ‡Department of Biology, and §The Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia
30302-4098, United States
| |
Collapse
|
39
|
Jiang J, Johnson LC, Knight J, Callahan MF, Riedel TJ, Holmes RP, Lowther WT. Metabolism of [13C5]hydroxyproline in vitro and in vivo: implications for primary hyperoxaluria. Am J Physiol Gastrointest Liver Physiol 2012; 302:G637-43. [PMID: 22207577 PMCID: PMC3311310 DOI: 10.1152/ajpgi.00331.2011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hydroxyproline (Hyp) metabolism is a key source of glyoxylate production in the body and may be a major contributor to excessive oxalate production in the primary hyperoxalurias where glyoxylate metabolism is impaired. Important gaps in our knowledge include identification of the tissues with the capacity to degrade Hyp and the development of model systems to study this metabolism and how to suppress it. The expression of mRNA for enzymes in the pathway was examined in 15 different human tissues. Expression of the complete pathway was identified in liver, kidney, pancreas, and small intestine. HepG2 cells also expressed these mRNAs and enzymes and were shown to metabolize Hyp in the culture medium to glycolate, glycine, and oxalate. [(18)O]- and [(13)C(5)]Hyp were synthesized and evaluated for their use with in vitro and in vivo models. [(18)O]Hyp was not suitable because of an apparent tautomerism of [(18)O]glyoxylate between enol and hydrated forms, which resulted in a loss of isotope. [(13)C(5)]Hyp, however, was metabolized to [(13)C(2)]glycolate, [(13)C(2)]glycine, and [(13)C(2)]oxalate in vitro in HepG2 cells and in vivo in mice infused with [(13)C(5)]Hyp. These model systems should be valuable tools for exploring various aspects of Hyp metabolism and will be useful in determining whether blocking Hyp catabolism is an effective therapy in the treatment of primary hyperoxaluria.
Collapse
Affiliation(s)
| | | | | | - Michael F. Callahan
- 3Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | | | | | | |
Collapse
|
40
|
Salido E, Pey AL, Rodriguez R, Lorenzo V. Primary hyperoxalurias: disorders of glyoxylate detoxification. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1453-64. [PMID: 22446032 DOI: 10.1016/j.bbadis.2012.03.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/17/2012] [Accepted: 03/06/2012] [Indexed: 12/15/2022]
Abstract
Glyoxylate detoxification is an important function of human peroxisomes. Glyoxylate is a highly reactive molecule, generated in the intermediary metabolism of glycine, hydroxyproline and glycolate mainly. Glyoxylate accumulation in the cytosol is readily transformed by lactate dehydrogenase into oxalate, a dicarboxylic acid that cannot be metabolized by mammals and forms tissue-damaging calcium oxalate crystals. Alanine-glyoxylate aminotransferase, a peroxisomal enzyme in humans, converts glyoxylate into glycine, playing a central role in glyoxylate detoxification. Cytosolic and mitochondrial glyoxylate reductase also contributes to limit oxalate production from glyoxylate. Mitochondrial hydroxyoxoglutarate aldolase is an important enzyme of hydroxyproline metabolism. Genetic defect of any of these enzymes of glyoxylate metabolism results in primary hyperoxalurias, severe human diseases in which toxic levels of oxalate are produced by the liver, resulting in progressive renal damage. Significant advances in the pathophysiology of primary hyperoxalurias have led to better diagnosis and treatment of these patients, but current treatment relies mainly on organ transplantation. It is reasonable to expect that recent advances in the understanding of the molecular mechanisms of disease will result into better targeted therapeutic options in the future.
Collapse
Affiliation(s)
- Eduardo Salido
- Hospital Universitario de Canarias, Universidad La Laguna, Tenerife, Spain.
| | | | | | | |
Collapse
|
41
|
High resolution crystal structure of rat long chain hydroxy acid oxidase in complex with the inhibitor 4-carboxy-5-[(4-chlorophenyl)sulfanyl]-1, 2, 3-thiadiazole. Implications for inhibitor specificity and drug design. Biochimie 2012; 94:1172-9. [PMID: 22342614 DOI: 10.1016/j.biochi.2012.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 02/02/2012] [Indexed: 11/23/2022]
Abstract
Long chain hydroxy acid oxidase (LCHAO) is responsible for the formation of methylguanidine, a toxic compound with elevated serum levels in patients with chronic renal failure. Its isozyme glycolate oxidase (GOX), has a role in the formation of oxalate, which can lead to pathological deposits of calcium oxalate, in particular in the disease primary hyperoxaluria. Inhibitors of these two enzymes may have therapeutic value. These enzymes are the only human members of the family of FMN-dependent l-2-hydroxy acid-oxidizing enzymes, with yeast flavocytochrome b(2) (Fcb2) among its well studied members. We screened a chemical library for inhibitors, using in parallel rat LCHAO, human GOX and the Fcb2 flavodehydrogenase domain (FDH). Among the hits was an inhibitor, CCPST, with an IC(50) in the micromolar range for all three enzymes. We report here the crystal structure of a complex between this compound and LCHAO at 1.3 Å resolution. In comparison with a lower resolution structure of this enzyme, binding of the inhibitor induces a conformational change in part of the TIM barrel loop 4, as well as protonation of the active site histidine. The CCPST interactions are compared with those it forms with human GOX and those formed by two other inhibitors with human GOX and spinach GOX. These compounds differ from CCPST in having the sulfur replaced with a nitrogen in the five-membered ring as well as different hydrophobic substituents. The possible reason for the ∼100-fold difference in affinity between these two series of inhibitors is discussed. The present results indicate that specificity is an issue in the quest for therapeutic inhibitors of either LCHAO or GOX, but they may give leads for this quest.
Collapse
|
42
|
Yuan H, Xin Y, Hamelberg D, Gadda G. Insights on the Mechanism of Amine Oxidation Catalyzed by d-Arginine Dehydrogenase Through pH and Kinetic Isotope Effects. J Am Chem Soc 2011; 133:18957-65. [DOI: 10.1021/ja2082729] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hongling Yuan
- Department of Chemistry, ‡Department of Biology, and §The Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30302-4098, United States
| | - Yao Xin
- Department of Chemistry, ‡Department of Biology, and §The Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30302-4098, United States
| | - Donald Hamelberg
- Department of Chemistry, ‡Department of Biology, and §The Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30302-4098, United States
| | - Giovanni Gadda
- Department of Chemistry, ‡Department of Biology, and §The Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30302-4098, United States
| |
Collapse
|
43
|
Lederer F. Another look at the interaction between mitochondrial cytochrome c and flavocytochrome b (2). EUROPEAN BIOPHYSICS JOURNAL: EBJ 2011; 40:1283-99. [PMID: 21503671 DOI: 10.1007/s00249-011-0697-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 02/28/2011] [Accepted: 03/16/2011] [Indexed: 11/29/2022]
Abstract
Yeast flavocytochrome b (2) tranfers reducing equivalents from lactate to oxygen via cytochrome c and cytochrome c oxidase. The enzyme catalytic cycle includes FMN reduction by lactate and reoxidation by intramolecular electron transfer to heme b (2). Each subunit of the soluble tetrameric enzyme consists of an N terminal b (5)-like heme-binding domain and a C terminal flavodehydrogenase. In the crystal structure, FMN and heme are face to face, and appear to be in a suitable orientation and at a suitable distance for exchanging electrons. But in one subunit out of two, the heme domain is disordered and invisible. This raises a central question: is this mobility required for interaction with the physiological acceptor cytochrome c, which only receives electrons from the heme and not from the FMN? The present review summarizes the results of the variety of methods used over the years that shed light on the interactions between the flavin and heme domains and between the enzyme and cytochrome c. The conclusion is that one should consider the interaction between the flavin and heme domains as a transient one, and that the cytochrome c and the flavin domain docking areas on the heme b (2) domain must overlap at least in part. The heme domain mobility is an essential component of the flavocytochrome b (2) functioning. In this respect, the enzyme bears similarity to a variety of redox enzyme systems, in particular those in which a cytochrome b (5)-like domain is fused to proteins carrying other redox functions.
Collapse
Affiliation(s)
- Florence Lederer
- Laboratoire de Chimie Physique, Université Paris-Sud, Orsay Cedex, France.
| |
Collapse
|
44
|
Effect of Sex Hormones on Crystal Formation in a Stone-forming Rat Model. Urology 2010; 75:907-13. [DOI: 10.1016/j.urology.2009.09.094] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 08/31/2009] [Accepted: 09/25/2009] [Indexed: 11/20/2022]
|
45
|
Bourhis JM, Vignaud C, Pietrancosta N, Guéritte F, Guénard D, Lederer F, Lindqvist Y. Structure of human glycolate oxidase in complex with the inhibitor 4-carboxy-5-[(4-chlorophenyl)sulfanyl]-1,2,3-thiadiazole. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:1246-53. [PMID: 20054120 PMCID: PMC2802872 DOI: 10.1107/s1744309109041670] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 10/12/2009] [Indexed: 11/10/2022]
Abstract
Glycolate oxidase, a peroxisomal flavoenzyme, generates glyoxylate at the expense of oxygen. When the normal metabolism of glyoxylate is impaired by the mutations that are responsible for the genetic diseases hyperoxaluria types 1 and 2, glyoxylate yields oxalate, which forms insoluble calcium deposits, particularly in the kidneys. Glycolate oxidase could thus be an interesting therapeutic target. The crystal structure of human glycolate oxidase (hGOX) in complex with 4-carboxy-5-[(4-chlorophenyl)sulfanyl]-1,2,3-thiadiazole (CCPST) has been determined at 2.8 A resolution. The inhibitor heteroatoms interact with five active-site residues that have been implicated in catalysis in homologous flavodehydrogenases of L-2-hydroxy acids. In addition, the chlorophenyl substituent is surrounded by nonconserved hydrophobic residues. The present study highlights the role of mobility in ligand binding by glycolate oxidase. In addition, it pinpoints several structural differences between members of the highly conserved family of flavodehydrogenases of L-2-hydroxy acids.
Collapse
Affiliation(s)
- Jean-Marie Bourhis
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Caroline Vignaud
- Laboratoire d’Enzymologie et Biochimie Structurales, CNRS FRE 2930, Gif-sur-Yvette, France
| | - Nicolas Pietrancosta
- Laboratoire d’Enzymologie et Biochimie Structurales, CNRS FRE 2930, Gif-sur-Yvette, France
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette, France
| | - Françoise Guéritte
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette, France
| | - Daniel Guénard
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette, France
| | - Florence Lederer
- Laboratoire de Chimie Physique, CNRS UMR 8000, Université Paris-Sud, Orsay, France
| | - Ylva Lindqvist
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| |
Collapse
|
46
|
Pennati A, Gadda G. Involvement of ionizable groups in catalysis of human liver glycolate oxidase. J Biol Chem 2009; 284:31214-22. [PMID: 19758989 PMCID: PMC2781520 DOI: 10.1074/jbc.m109.040063] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 09/04/2009] [Indexed: 11/06/2022] Open
Abstract
Glycolate oxidase is a flavin-dependent, peroxisomal enzyme that oxidizes alpha-hydroxy acids to the corresponding alpha-keto acids, with reduction of oxygen to H(2)O(2). In plants, the enzyme participates in photorespiration. In humans, it is a potential drug target for treatment of primary hyperoxaluria, a genetic disorder where overproduction of oxalate results in the formation of kidney stones. In this study, steady-state and pre-steady-state kinetic approaches have been used to determine how pH affects the kinetic steps of the catalytic mechanism of human glycolate oxidase. The enzyme showed a Ping-Pong Bi-Bi kinetic mechanism between pH 6.0 and 10.0. Both the overall turnover of the enzyme (k(cat)) and the rate constant for anaerobic substrate reduction of the flavin were pH-independent at pH values above 7.0 and decreased slightly at lower pH, suggesting the involvement of an unprotonated group acting as a base in the chemical step of glycolate oxidation. The second-order rate constant for capture of glycolate (k(cat)/K(glycolate)) and the K(d)((app)) for the formation of the enzyme-substrate complex suggested the presence of a protonated group with apparent pK(a) of 8.5 participating in substrate binding. The k(cat)/K(oxygen) values were an order of magnitude faster when a group with pK(a) of 6.8 was unprotonated. These results are discussed in the context of the available three-dimensional structure of GOX.
Collapse
Affiliation(s)
| | - Giovanni Gadda
- From the Departments of Chemistry and
- Biologyand
- Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30302-4098
| |
Collapse
|
47
|
Recombinant production of eight human cytosolic aminotransferases and assessment of their potential involvement in glyoxylate metabolism. Biochem J 2009; 422:265-72. [PMID: 19545238 DOI: 10.1042/bj20090748] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PH1 (primary hyperoxaluria type 1) is a severe inborn disorder of glyoxylate metabolism caused by a functional deficiency of the peroxisomal enzyme AGXT (alanine-glyoxylate aminotransferase), which converts glyoxylate into glycine using L-alanine as the amino-group donor. Even though pre-genomic studies indicate that other human transaminases can convert glyoxylate into glycine, in PH1 patients these enzymes are apparently unable to compensate for the lack of AGXT, perhaps due to their limited levels of expression, their localization in an inappropriate cell compartment or the scarcity of the required amino-group donor. In the present paper, we describe the cloning of eight human cytosolic aminotransferases, their recombinant expression as His6-tagged proteins and a comparative study on their ability to transaminate glyoxylate, using any standard amino acid as an amino-group donor. To selectively quantify the glycine formed, we have developed and validated an assay based on bacterial GO (glycine oxidase); this assay allows the detection of enzymes that produce glycine by transamination in the presence of mixtures of potential amino-group donors and without separation of the product from the substrates. We show that among the eight enzymes tested, only GPT (alanine transaminase) and PSAT1 (phosphoserine aminotransferase 1) can transaminate glyoxylate with good efficiency, using L-glutamate (and, for GPT, also L-alanine) as the best amino-group donor. These findings confirm that glyoxylate transamination can occur in the cytosol, in direct competition with the conversion of glyoxylate into oxalate. The potential implications for the treatment of primary hyperoxaluria are discussed.
Collapse
|
48
|
Gadda G. Hydride transfer made easy in the reaction of alcohol oxidation catalyzed by flavin-dependent oxidases. Biochemistry 2009; 47:13745-53. [PMID: 19053234 DOI: 10.1021/bi801994c] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Choline oxidase (E.C. 1.1.3.17; choline-oxygen 1-oxidoreductase) catalyzes the two-step, four-electron oxidation of choline to glycine betaine with betaine aldehyde as enzyme-associated intermediate and molecular oxygen as final electron acceptor. Biochemical, structural, and mechanistic studies on the wild-type and a number of mutant forms of choline oxidase from Arthrobacter globiformis have recently been carried out, allowing for the delineation at molecular and atomic levels of the mechanism of alcohol oxidation catalyzed by the enzyme. First, the alcohol substrate is activated to its alkoxide species by the removal of the hydroxyl proton in the enzyme-substrate complex. The resulting activated alkoxide is correctly positioned for catalysis through electrostatic and hydrogen bonding interactions with a number of active site residues. After substrate activation and correct positioning are attained, alcohol oxidation occurs in a highly preorganized enzyme-substrate complex through quantum mechanical transfer of a hydride ion from the alpha-carbon of the chelated, alkoxide species to the N(5) atom of the enzyme-bound flavin. This mechanism in its essence is shared by another class of alcohol oxidizing enzymes that utilize a catalytic zinc to stabilize an alkoxide intermediate and NAD(P)(+) as the organic cofactor that accepts the hydride ion, whose paradigm example is alcohol dehydrogenase. It will be interesting to experimentally evaluate the attractive hypothesis of whether the mechanism of choline oxidase can be extended to other flavin-dependent enzymes as well as enzymes that utilize cofactors other than flavins in the oxidation of alcohols.
Collapse
Affiliation(s)
- Giovanni Gadda
- Departments of Chemistry and Biology, and The Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30302-4098, USA.
| |
Collapse
|