1
|
Sánchez-Hernández R, Benítez-Angeles M, Hernández-Vega AM, Rosenbaum T. Recent advances on the structure and the function relationships of the TRPV4 ion channel. Channels (Austin) 2024; 18:2313323. [PMID: 38354101 PMCID: PMC10868539 DOI: 10.1080/19336950.2024.2313323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/18/2024] [Indexed: 02/16/2024] Open
Abstract
The members of the superfamily of Transient Receptor Potential (TRP) ion channels are physiologically important molecules that have been studied for many years and are still being intensively researched. Among the vanilloid TRP subfamily, the TRPV4 ion channel is an interesting protein due to its involvement in several essential physiological processes and in the development of various diseases. As in other proteins, changes in its function that lead to the development of pathological states, have been closely associated with modification of its regulation by different molecules, but also by the appearance of mutations which affect the structure and gating of the channel. In the last few years, some structures for the TRPV4 channel have been solved. Due to the importance of this protein in physiology, here we discuss the recent progress in determining the structure of the TRPV4 channel, which has been achieved in three species of animals (Xenopus tropicalis, Mus musculus, and Homo sapiens), highlighting conserved features as well as key differences among them and emphasizing the binding sites for some ligands that play crucial roles in its regulation.
Collapse
Affiliation(s)
- Raúl Sánchez-Hernández
- Departamento de Neurociencia Cognitiva, División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Miguel Benítez-Angeles
- Departamento de Neurociencia Cognitiva, División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Ana M. Hernández-Vega
- Departamento de Neurociencia Cognitiva, División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Tamara Rosenbaum
- Departamento de Neurociencia Cognitiva, División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico, Mexico
| |
Collapse
|
2
|
Wu KC, Leong IL, Leung YM. Ca 2+-sensing receptor-TRP channel-mediated Ca 2+ signaling: Functional diversity and pharmacological complexity. Eur J Pharmacol 2024; 977:176717. [PMID: 38857682 DOI: 10.1016/j.ejphar.2024.176717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/07/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
The Ca2+-sensing receptor (CaSR) is a G-protein-coupled receptor activated by elevated concentrations of extracellular Ca2+, and was initially known for its regulation of parathyroid hormone (PTH) release. Ubiquitous expression of CaSR in different tissues and organs was later noted and CaSR participation in various physiological functions was demonstrated. Accumulating evidence has suggested that CaSR functionally interacts with transient receptor potential (TRP) channels, which are mostly non-selective cation channels involved in sensing temperature, pain and stress. This review describes the interactions of CaSR with TRP channels in diverse cell types to trigger a variety of biological responses. CaSR has been known to interact with different types of G proteins. Possible involvements of G proteins, other signaling and scaffolding protein intermediates in CaSR-TRP interaction are discussed. In addition, an attempt will be made to extend the current understanding of biased agonism of CaSR.
Collapse
Affiliation(s)
- King-Chuen Wu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Chiayi, Taiwan; Chang Gung University of Science and Technology, Chiayi, Taiwan; Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
| | - Iat-Lon Leong
- Division of Cardiology, University Hospital, Macau University of Science and Technology, Macau
| | - Yuk-Man Leung
- Department of Physiology, China Medical University, Taichung, Taiwan.
| |
Collapse
|
3
|
Sanganna Gari RR, Tagiltsev G, Pumroy RA, Jiang Y, Blackledge M, Moiseenkova-Bell VY, Scheuring S. Intrinsically disordered regions in TRPV2 mediate protein-protein interactions. Commun Biol 2023; 6:966. [PMID: 37736816 PMCID: PMC10516966 DOI: 10.1038/s42003-023-05343-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023] Open
Abstract
Transient receptor potential (TRP) ion channels are gated by diverse intra- and extracellular stimuli leading to cation inflow (Na+, Ca2+) regulating many cellular processes and initiating organismic somatosensation. Structures of most TRP channels have been solved. However, structural and sequence analysis showed that ~30% of the TRP channel sequences, mainly the N- and C-termini, are intrinsically disordered regions (IDRs). Unfortunately, very little is known about IDR 'structure', dynamics and function, though it has been shown that they are essential for native channel function. Here, we imaged TRPV2 channels in membranes using high-speed atomic force microscopy (HS-AFM). The dynamic single molecule imaging capability of HS-AFM allowed us to visualize IDRs and revealed that N-terminal IDRs were involved in intermolecular interactions. Our work provides evidence about the 'structure' of the TRPV2 IDRs, and that the IDRs may mediate protein-protein interactions.
Collapse
Affiliation(s)
| | - Grigory Tagiltsev
- Department of Anesthesiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Ruth A Pumroy
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute of Structural Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yining Jiang
- Department of Anesthesiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Biochemistry & Structural Biology, Cell & Developmental Biology, and Molecular Biology (BCMB) Program, Weill Cornell Graduate School of Biomedical Sciences, New York, USA
| | - Martin Blackledge
- Université Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Institut de Biologie Structurale (IBS), 38000, Grenoble, France
| | - Vera Y Moiseenkova-Bell
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute of Structural Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Simon Scheuring
- Department of Anesthesiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
- Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
4
|
Zhang M, Ma Y, Ye X, Zhang N, Pan L, Wang B. TRP (transient receptor potential) ion channel family: structures, biological functions and therapeutic interventions for diseases. Signal Transduct Target Ther 2023; 8:261. [PMID: 37402746 DOI: 10.1038/s41392-023-01464-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/26/2023] [Accepted: 04/25/2023] [Indexed: 07/06/2023] Open
Abstract
Transient receptor potential (TRP) channels are sensors for a variety of cellular and environmental signals. Mammals express a total of 28 different TRP channel proteins, which can be divided into seven subfamilies based on amino acid sequence homology: TRPA (Ankyrin), TRPC (Canonical), TRPM (Melastatin), TRPML (Mucolipin), TRPN (NO-mechano-potential, NOMP), TRPP (Polycystin), TRPV (Vanilloid). They are a class of ion channels found in numerous tissues and cell types and are permeable to a wide range of cations such as Ca2+, Mg2+, Na+, K+, and others. TRP channels are responsible for various sensory responses including heat, cold, pain, stress, vision and taste and can be activated by a number of stimuli. Their predominantly location on the cell surface, their interaction with numerous physiological signaling pathways, and the unique crystal structure of TRP channels make TRPs attractive drug targets and implicate them in the treatment of a wide range of diseases. Here, we review the history of TRP channel discovery, summarize the structures and functions of the TRP ion channel family, and highlight the current understanding of the role of TRP channels in the pathogenesis of human disease. Most importantly, we describe TRP channel-related drug discovery, therapeutic interventions for diseases and the limitations of targeting TRP channels in potential clinical applications.
Collapse
Affiliation(s)
- Miao Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- The Center for Microbes, Development and Health; Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yueming Ma
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xianglu Ye
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ning Zhang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Lei Pan
- The Center for Microbes, Development and Health; Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Bing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
5
|
TRPV3: Structure, Diseases and Modulators. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020774. [PMID: 36677834 PMCID: PMC9865980 DOI: 10.3390/molecules28020774] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/04/2023] [Accepted: 01/08/2023] [Indexed: 01/15/2023]
Abstract
Transient receptor potential vanillin 3 (TRPV3) is a member of the transient receptor potential (TRP) superfamily. As a Ca2+-permeable nonselective cation channel, TRPV3 can recognize thermal stimulation (31-39 °C), and it plays an important regulatory role in temperature perception, pain transduction, skin physiology, inflammation, cancer and other diseases. TRPV3 is not only activated by the changes in the temperature, but it also can be activated by a variety of chemical and physical stimuli. Selective TRPV3 agonists and antagonists with regulatory effects and the physiological functions for clinical application are highly demanded. In recent years, significant progress has been made in the study of TRPV3, but there is still a lack of modulators with a strong affinity and excellent selectivity. This paper reviews the functional characteristics of TRPV3 in terms of the structure, diseases and the research on TRPV3 modulators.
Collapse
|
6
|
TRPV6 channel mediates alcohol-induced gut barrier dysfunction and systemic response. Cell Rep 2022; 39:110937. [PMID: 35705057 PMCID: PMC9250449 DOI: 10.1016/j.celrep.2022.110937] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 02/20/2022] [Accepted: 05/18/2022] [Indexed: 11/22/2022] Open
Abstract
Intestinal epithelial tight junction disruption is a primary contributing factor in alcohol-associated endotoxemia, systemic inflammation, and multiple organ damage. Ethanol and acetaldehyde disrupt tight junctions by elevating intracellular Ca2+. Here we identify TRPV6, a Ca2+-permeable channel, as responsible for alcohol-induced elevation of intracellular Ca2+, intestinal barrier dysfunction, and systemic inflammation. Ethanol and acetaldehyde elicit TRPV6 ionic currents in Caco-2 cells. Studies in Caco-2 cell monolayers and mouse intestinal organoids show that TRPV6 deficiency or inhibition attenuates ethanol- and acetaldehyde-induced Ca2+ influx, tight junction disruption, and barrier dysfunction. Moreover, Trpv6−/− mice are resistant to alcohol-induced intestinal barrier dysfunction. Photoaffinity labeling of 3-azibutanol identifies a histidine as a potential alcohol-binding site in TRPV6. The substitution of this histidine, and a nearby arginine, reduces ethanol-activated currents. Our findings reveal that TRPV6 is required for alcohol-induced gut barrier dysfunction and inflammation. Molecules that decrease TRPV6 function have the potential to attenuate alcohol-associated tissue injury. Meena et al. show that the mechanism of alcohol-induced gut permeability, endotoxemia, and systemic inflammation requires the TRPV6 channel. They show that ethanol activates TRPV6, induces calcium influx, and disrupts intestinal epithelial tight junctions. Furthermore, specific histidine and arginine residues at the N terminus fine-tune the alcohol-induced activation of TRPV6.
Collapse
|
7
|
Khattar V, Wang L, Peng JB. Calcium selective channel TRPV6: Structure, function, and implications in health and disease. Gene 2022; 817:146192. [PMID: 35031425 PMCID: PMC8950124 DOI: 10.1016/j.gene.2022.146192] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/20/2021] [Accepted: 01/07/2022] [Indexed: 12/14/2022]
Abstract
Calcium-selective channel TRPV6 (Transient Receptor Potential channel family, Vanilloid subfamily member 6) belongs to the TRP family of cation channels and plays critical roles in transcellular calcium (Ca2+) transport, reuptake of Ca2+ into cells, and maintaining a local low Ca2+ environment for certain biological processes. Recent crystal and cryo-electron microscopy-based structures of TRPV6 have revealed mechanistic insights on how the protein achieves Ca2+ selectivity, permeation, and inactivation by calmodulin. The TRPV6 protein is expressed in a range of epithelial tissues such as the intestine, kidney, placenta, epididymis, and exocrine glands such as the pancreas, prostate and salivary, sweat, and mammary glands. The TRPV6 gene is a direct transcriptional target of the active form of vitamin D and is efficiently regulated to meet the body's need for Ca2+ demand. In addition, TRPV6 is also regulated by the level of dietary Ca2+ and under physiological conditions such as pregnancy and lactation. Genetic models of loss of function in TRPV6 display hypercalciuria, decreased bone marrow density, deficient weight gain, reduced fertility, and in some cases alopecia. The models also reveal that the channel plays an indispensable role in maintaining maternal-fetal Ca2+ transport and low Ca2+ environment in the epididymal lumen that is critical for male fertility. Most recently, loss of function mutations in TRPV6 gene is linked to transient neonatal hyperparathyroidism and early onset chronic pancreatitis. TRPV6 is overexpressed in a wide range of human malignancies and its upregulation is strongly correlated to tumor aggressiveness, metastasis, and poor survival in selected cancers. This review summarizes the current state of knowledge on the expression, structure, biophysical properties, function, polymorphisms, and regulation of TRPV6. The aberrant expression, polymorphisms, and dysfunction of this protein linked to human diseases are also discussed.
Collapse
Affiliation(s)
- Vinayak Khattar
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, Department of Urology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lingyun Wang
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, Department of Urology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ji-Bin Peng
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, Department of Urology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
8
|
Morini M, Bergqvist CA, Asturiano JF, Larhammar D, Dufour S. Dynamic evolution of transient receptor potential vanilloid (TRPV) ion channel family with numerous gene duplications and losses. Front Endocrinol (Lausanne) 2022; 13:1013868. [PMID: 36387917 PMCID: PMC9664204 DOI: 10.3389/fendo.2022.1013868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/11/2022] [Indexed: 01/25/2023] Open
Abstract
The transient receptor potential vanilloid (TRPV) ion channel family is involved in multiple sensory and physiological functions including thermosensing and temperature-dependent neuroendocrine regulation. The objective of the present study was to investigate the number, origin and evolution of TRPV genes in metazoans, with special focus on the impact of the vertebrate whole-genome duplications (WGD). Gene searches followed by phylogenetic and synteny analyses revealed multiple previously undescribed TRPV genes. The common ancestor of Cnidaria and Bilateria had three TRPV genes that became four in the deuterostome ancestor. Two of these were lost in the vertebrate ancestor. The remaining two genes gave rise to two TRPV subfamilies in vertebrates, consisting of subtypes 1, 2, 3, 4, 9 and 5, 6, 7, 8, respectively. This gene expansion resulted from the two basal vertebrate WGD events (1R and 2R) and three local duplications before the radiation of gnathostomes. TRPV1, 4 and 5 have been retained in all gnathostomes investigated, presumably reflecting important functions. TRPV7 and 8 have been lost independently in various lineages but are still retained in cyclostomes, actinistians (coelacanth), amphibians, prototherians and basal actinopterygians (Polypteridae). TRPV3 and 9 are present in extant elasmobranchs, while TRPV9 was lost in the osteichthyan ancestor and TRPV3 in the actinopterygian ancestor. The coelacanth has retained the ancestral osteichthyan repertoire of TRPV1, 3, 4, 5, 7 and 8. TRPV2 arose in the tetrapod ancestor. Duplications of TRPV5 occurred independently in various lineages, such as cyclostomes, chondrichthyans, anuran amphibians, sauropsids, mammals (where the duplicate is called TRPV6), and actinopterygians (Polypteridae and Esocidae). After the teleost-specific WGD (3R) only TRPV1 retained its duplicate, whereas TRPV4 and 5 remained as single genes. Both 3R-paralogs of TRPV1 were kept in some teleost species, while one paralog was lost in others. The salmonid-specific WGD (4R) duplicated TRPV1, 4, and 5 leading to six TRPV genes. The largest number was found in Xenopus tropicalis with no less than 15 TRPV genes. This study provides a comprehensive evolutionary scenario for the vertebrate TRPV family, revealing additional TRPV types and proposing a phylogeny-based classification of TRPV across metazoans.
Collapse
Affiliation(s)
- Marina Morini
- Laboratory Biology of Aquatic Organisms and Ecosystems (BOREA), National Museum of Natural History (MNHN), CNRS, IRD, Sorbonne University, Paris, France
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, Valencia, Spain
- *Correspondence: Marina Morini, ; Sylvie Dufour,
| | - Christina A. Bergqvist
- Department of Medical Cell Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Juan F. Asturiano
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, Valencia, Spain
| | - Dan Larhammar
- Department of Medical Cell Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Sylvie Dufour
- Laboratory Biology of Aquatic Organisms and Ecosystems (BOREA), National Museum of Natural History (MNHN), CNRS, IRD, Sorbonne University, Paris, France
- *Correspondence: Marina Morini, ; Sylvie Dufour,
| |
Collapse
|
9
|
Abstract
The alveolo-capillary barrier is relatively impermeable, and facilitates gas exchange via the large alveolar surface in the lung. Disruption of alveolo-capillary barrier leads to accumulation of edema fluid in lung injury. Studies in animal models of various forms of lung injury provide evidence that TRPV4 channels play a critical role in disruption of the alveolo-capillary barrier and pathogenesis of lung injury. TRPV4 channels from capillary endothelial cells, alveolar epithelial cells, and immune cells have been implicated in the pathogenesis of lung injury. Recent studies in endothelium-specific TRPV4 knockout mice point to a central role for endothelial TRPV4 channels in lung injury. In this chapter, we review the findings on the pathological roles of endothelial TRPV4 channels in different forms of lung injury and future directions for further investigation.
Collapse
|
10
|
Oracz G, Zaród M, Ewers M, Laumen H, Gambin T, Kamiński P, Grabowska I, Drożak A, Kwiatkowski S, Wertheim-Tysarowska K, Kołodziejczyk E, Domaszewicz A, Dorożko B, Kosińska J, Głuszek S, Kozieł D, Płoski R, Rosendahl J, Witt H, Drożak J, Rygiel AM. Loss of function TRPV6 variants are associated with chronic pancreatitis in nonalcoholic early-onset Polish and German patients. Pancreatology 2021; 21:1434-1442. [PMID: 34538581 DOI: 10.1016/j.pan.2021.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/26/2021] [Accepted: 09/07/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE Loss of function variants of the transient receptor potential cation channel, subfamily V, member 6 (TRPV6) have been recently associated with chronic pancreatitis (CP) in Japanese, German and French patients. Here, we investigated the association of TRPV6 variants with CP in independent European cohorts of early-onset CP patients from Poland and Germany. PATIENTS AND METHODS We enrolled 152 pediatric CP patients (median age 8.6 yrs) with no history of alcohol/smoking abuse and 472 controls from Poland as well as 157 nonalcoholic young CP patients (median age 20 yrs) and 750 controls from Germany. Coding regions of TRPV6 were screened by Sanger and next generation sequencing. Selected, potentially pathogenic TRPV6 variants were expressed in HEK293T cells and TRPV6 activity was analyzed using ratiometric Ca2+ measurements. RESULTS Overall, we identified 10 novel (3 nonsense and 7 missenses) TRPV6 variants in CP patients. TRPV6 p.V239SfsX53 nonsense variant and the variants showing significant decrease in intracellular Ca2+ concentration in HEK293T cells (p.R174X, p.L576R, p.R342Q), were significantly overrepresented in Polish patients as compared to controls (6/152, 3.9% vs. 0/358, 0%; P = 0,0007). Nonsense TRPV6 variants predicted as loss of function (p.V239SfsX53 and p.R624X) were also significantly overrepresented in German patients (3/157; 2.0% vs 0/750; 0%, P = 0.005). CONCLUSIONS We showed that TRPV6 loss of function variants are associated with elevated CP risk in early-onset Polish and German patients confirming that TRPV6 is a novel CP susceptibility gene.
Collapse
Affiliation(s)
- Grzegorz Oracz
- Department of Gastroenterology, Hepatology, Feeding Disorders and Pediatrics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Michał Zaród
- Department of Metabolic Regulation, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Maren Ewers
- Pediatric Nutritional Medicine & Else Kröner-Fresenius-Centre for Nutritional Medicine (EKFZ), Technical University Munich (TUM), Munich, Germany
| | - Helmut Laumen
- Pediatric Nutritional Medicine & Else Kröner-Fresenius-Centre for Nutritional Medicine (EKFZ), Technical University Munich (TUM), Munich, Germany; Department of Internal Medicine I, Martin Luther University, Halle, Germany
| | - Tomasz Gambin
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland; Institute of Computer Science, Warsaw University of Technology, Warsaw, Poland
| | - Paweł Kamiński
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | - Iwona Grabowska
- Department of Cytology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Anna Drożak
- Department of Molecular Plant Physiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Sebastian Kwiatkowski
- Department of Metabolic Regulation, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Elwira Kołodziejczyk
- Department of Gastroenterology, Hepatology, Feeding Disorders and Pediatrics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Alicja Domaszewicz
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | - Barbara Dorożko
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | - Joanna Kosińska
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | | | - Dorota Kozieł
- Collegium Medicum Jan Kochanowski University, Kielce, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Jonas Rosendahl
- Department of Internal Medicine I, Martin Luther University, Halle, Germany
| | - Heiko Witt
- Pediatric Nutritional Medicine & Else Kröner-Fresenius-Centre for Nutritional Medicine (EKFZ), Technical University Munich (TUM), Munich, Germany
| | - Jakub Drożak
- Department of Metabolic Regulation, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | | |
Collapse
|
11
|
Alvarado MG, Thakore P, Earley S. Transient Receptor Potential Channel Ankyrin 1: A Unique Regulator of Vascular Function. Cells 2021; 10:cells10051167. [PMID: 34064835 PMCID: PMC8151290 DOI: 10.3390/cells10051167] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/05/2021] [Accepted: 05/09/2021] [Indexed: 12/27/2022] Open
Abstract
TRPA1 (transient receptor potential ankyrin 1), the lone member of the mammalian ankyrin TRP subfamily, is a Ca2+-permeable, non-selective cation channel. TRPA1 channels are localized to the plasma membranes of various cells types, including sensory neurons and vascular endothelial cells. The channel is endogenously activated by byproducts of reactive oxygen species, such as 4-hydroxy-2-noneal, as well as aromatic, dietary molecules including allyl isothiocyanate, a derivative of mustard oil. Several studies have implicated TRPA1 as a regulator of vascular tone that acts through distinct mechanisms. First, TRPA1 on adventitial sensory nerve fibers mediates neurogenic vasodilation by stimulating the release of the vasodilator, calcitonin gene-related peptide. Second, TRPA1 is expressed in the endothelium of the cerebral vasculature, but not in other vascular beds, and its activation results in localized Ca2+ signals that drive endothelium-dependent vasodilation. Finally, TRPA1 is functionally present on brain capillary endothelial cells, where its activation orchestrates a unique biphasic propagation mechanism that dilates upstream arterioles. This response is vital for neurovascular coupling and functional hyperemia in the brain. This review provides a brief overview of the biophysical and pharmacological properties of TRPA1 and discusses the importance of the channel in vascular control and pathophysiology.
Collapse
|
12
|
TRPing to the Point of Clarity: Understanding the Function of the Complex TRPV4 Ion Channel. Cells 2021; 10:cells10010165. [PMID: 33467654 PMCID: PMC7830798 DOI: 10.3390/cells10010165] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 02/07/2023] Open
Abstract
The transient receptor potential vanilloid 4 channel (TRPV4) belongs to the mammalian TRP superfamily of cation channels. TRPV4 is ubiquitously expressed, activated by a disparate array of stimuli, interacts with a multitude of proteins, and is modulated by a range of post-translational modifications, the majority of which we are only just beginning to understand. Not surprisingly, a great number of physiological roles have emerged for TRPV4, as have various disease states that are attributable to the absence, or abnormal functioning, of this ion channel. This review will highlight structural features of TRPV4, endogenous and exogenous activators of the channel, and discuss the reported roles of TRPV4 in health and disease.
Collapse
|
13
|
Grossi V, Hyams JS, Glidden NC, Knight BE, Young EE. Characterizing Clinical Features and Creating a Gene Expression Profile Associated With Pain Burden in Children With Inflammatory Bowel Disease. Inflamm Bowel Dis 2020; 26:1283-1290. [PMID: 31627210 DOI: 10.1093/ibd/izz240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND There is often dissociation between inflammatory activity and abdominal pain in children with inflammatory bowel disease (IBD), suggesting other factors may play a role in the pain experience. METHODS Patients (8 to 17 years) newly diagnosed with IBD were enrolled in the ALLAY Study: Assessing Risk Factors for Abdominal Pain in Children with Inflammatory Bowel Disease (NCT02984059). At diagnostic colonoscopy, 3 rectal biopsies were collected, and gene expression analysis was performed using Qiagen RT2 Profiler Neuropathic and Inflammatory Pain PCR Array. Relative fold difference in gene expression for 84 pain-associated genes was calculated using the 2-ΔΔ Cq method compared with pain-free controls. Factors affecting pain burden (Pain Burden Interview; PBI) were analyzed, including age, sex, rectal inflammation, and gene expression. Data were analyzed using multiple stepwise linear regression and 2-tailed t tests (P ≤ 0.05). RESULTS Thirty-nine newly diagnosed IBD patients were included (65% male, mean age 12.75 years [SD 2.63], 23 Crohn's disease, 16 ulcerative colitis), along with 3 controls. Mean PBI score was 7.73 (SD 6.4, range 0 to 23) for all patients. Age and sex were not predictive of pain burden, but disease activity score was (P = 0.03). Expression of TRPV3, OPRM1, P2X3, SCN9A, PTGS2, and MAPK14 were associated with PBI score. Subsequent 2-tailed t tests comparing patients with no pain (PBI score ≦ 2, N = 11) to those with pain (PBI > 2, N = 28) confirmed differential expression of TRPV3, PTGS2, and MAPK14 was in patients with pain (all P < 0.05). CONCLUSION Pain burden in newly diagnosed IBD patients may be linked to TRPV3, PTGS2, and MAPK14 expression, suggesting potential therapeutic targets for managing pain in IBD.
Collapse
Affiliation(s)
- Victoria Grossi
- Division of Digestive Diseases, Hepatology, and Nutrition, Connecticut Children's Medical Center, Hartford, Connecticut, USA.,Department of Pediatrics, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Jeffrey S Hyams
- Division of Digestive Diseases, Hepatology, and Nutrition, Connecticut Children's Medical Center, Hartford, Connecticut, USA.,Department of Pediatrics, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Nicole C Glidden
- Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Brittany E Knight
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Erin E Young
- Department of Anesthesiology, University of Kansas School of Medicine, Kansas City, Kansas, USA
| |
Collapse
|
14
|
Pumroy RA, Fluck EC, Ahmed T, Moiseenkova-Bell VY. Structural insights into the gating mechanisms of TRPV channels. Cell Calcium 2020; 87:102168. [PMID: 32004816 DOI: 10.1016/j.ceca.2020.102168] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 02/06/2023]
Abstract
Transient Receptor Potential channels from the vanilloid subfamily (TRPV) are a group of cation channels modulated by a variety of endogenous stimuli as well as a range of natural and synthetic compounds. Their roles in human health make them of keen interest, particularly from a pharmacological perspective. However, despite this interest, the complexity of these channels has made it difficult to obtain high resolution structures until recently. With the cryo-EM resolution revolution, TRPV channel structural biology has blossomed to produce dozens of structures, covering every TRPV family member and a variety of approaches to examining channel modulation. Here, we review all currently available TRPV structures and the mechanistic insights into gating that they reveal.
Collapse
Affiliation(s)
- Ruth A Pumroy
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Edwin C Fluck
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Tofayel Ahmed
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Vera Y Moiseenkova-Bell
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA.
| |
Collapse
|
15
|
Abstract
Transient receptor potential (TRP) ion channels are molecular sensors of a large variety of stimuli including temperature, mechanical stress, voltage, small molecules including capsaicin and menthol, and lipids such as phosphatidylinositol 4,5-bisphosphate (PIP2). Since the same TRP channels may respond to different physical and chemical stimuli, they can serve as signal integrators. Many TRP channels are calcium permeable and contribute to Ca2+ homeostasis and signaling. Although the TRP channel family was discovered decades ago, only recently have the structures of many of these channels been solved, largely by cryo-electron microscopy (cryo-EM). Complimentary to cryo-EM, X-ray crystallography provides unique tools to unambiguously identify specific atoms and can be used to study ion binding in channel pores. In this review we describe crystallographic studies of the TRP channel TRPV6. The methodology used in these studies may serve as a template for future structural analyses of different types of TRP and other ion channels.
Collapse
Affiliation(s)
- Appu K Singh
- a Department of Biochemistry and Molecular Biophysics , Columbia University , New York , NY
| | - Luke L McGoldrick
- a Department of Biochemistry and Molecular Biophysics , Columbia University , New York , NY.,b Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University , New York , NY
| | - Kei Saotome
- a Department of Biochemistry and Molecular Biophysics , Columbia University , New York , NY
| | - Alexander I Sobolevsky
- a Department of Biochemistry and Molecular Biophysics , Columbia University , New York , NY
| |
Collapse
|
16
|
Wen H, Zheng W. Decrypting the Heat Activation Mechanism of TRPV1 Channel by Molecular Dynamics Simulation. Biophys J 2019; 114:40-52. [PMID: 29320695 DOI: 10.1016/j.bpj.2017.10.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/11/2017] [Accepted: 10/23/2017] [Indexed: 11/29/2022] Open
Abstract
As a prototype cellular sensor, the TRPV1 cation channel undergoes a closed-to-open gating transition in response to various physical and chemical stimuli including noxious heat. Despite recent progress, the molecular mechanism of heat activation of TRPV1 gating remains enigmatic. Toward decrypting the structural basis of TRPV1 heat activation, we performed extensive molecular dynamics simulations (with cumulative simulation time of ∼11 μs) for the wild-type channel and a constitutively active double mutant at different temperatures (30, 60, and 72°C), starting from a high-resolution closed-channel structure of TRPV1 solved by cryo-electron microscopy. In the wild-type simulations, we observed heat-activated conformational changes (e.g., expansion or contraction) in various key domains of TRPV1 (e.g., the S2-S3 and S4-S5 linkers) to prime the channel for gating. These conformational changes involve a number of dynamic hydrogen-bond interactions that were validated with previous mutational studies. Next, our mutant simulations observed channel opening after a series of conformational changes that propagate from the channel periphery to the channel pore via key intermediate domains (including the S2-S3 and S4-S5 linkers). The gating transition is accompanied by a large increase in the protein-water electrostatic interaction energy, which supports the contribution of desolvation of polar/charged residues to the temperature-sensitive TRPV1 gating. Taken together, our molecular dynamics simulations and analyses offered, to our knowledge, new structural, dynamic, and energetic information to guide future mutagenesis and functional studies of the TRPV1 channels and development of TRPV1-targeting drugs.
Collapse
Affiliation(s)
- Han Wen
- Department of Physics, State University of New York at Buffalo, Buffalo, New York
| | - Wenjun Zheng
- Department of Physics, State University of New York at Buffalo, Buffalo, New York.
| |
Collapse
|
17
|
Zheng W, Wen H. Heat activation mechanism of TRPV1: New insights from molecular dynamics simulation. Temperature (Austin) 2019; 6:120-131. [PMID: 31286023 DOI: 10.1080/23328940.2019.1578634] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/30/2018] [Accepted: 01/30/2019] [Indexed: 02/07/2023] Open
Abstract
As a member of the transient receptor potential (TRP) channels superfamily, the TRPV1 channel undergoes a closed-to-open gating transition in response to various physical and chemical stimuli including heat. Thanks to recent progress in cryo-electron microscopy, high-resolution structures are becoming available for various TRP channels including TRPV1. This has enabled us to study the molecular mechanism of TRPV1 channel gating by using molecular simulation. Here we review recent progress in molecular simulations of TRPV1 channel by us and others, with focus on our molecular dynamics (MD) simulations of TRPV1 at different temperatures. While no consensus has been reached on the heat activation mechanism of TRPV1, the simulations have offered specific predictions and models for future experimental studies to test.
Collapse
Affiliation(s)
- Wenjun Zheng
- Department of Physics, State University of New York at Buffalo, Buffalo, NY, USA
| | - Han Wen
- Department of Physics, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
18
|
Singh AK, McGoldrick LL, Sobolevsky AI. Expression, Purification, and Crystallization of the Transient Receptor Potential Channel TRPV6. Methods Mol Biol 2019; 1987:23-37. [PMID: 31028671 DOI: 10.1007/978-1-4939-9446-5_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Transient receptor potential (TRP) channels are polymodal sensory transducers that respond to chemicals, temperature, mechanical stress, and membrane voltage and are involved in vision, taste, olfaction, hearing, touch, thermal perception, and nociception. TRP channels are implicated in numerous devastating diseases, including various forms of cancer, and represent important drug targets. The large sizes, low expression levels, and conformational dynamics of TRP channels make them challenging targets for structural biology. Here, we present the methodology used in structural studies of TRPV6, a TRP channel that is highly selective for calcium and mediates Ca2+ uptake in epithelial tissues. We provide a protocol for the expression, purification, and crystallization of TRPV6. Similar approaches can be used to determine crystal structures of other membrane proteins, including different members of the TRP channel family.
Collapse
Affiliation(s)
- Appu K Singh
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Luke L McGoldrick
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.,Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University, New York, NY, USA
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
19
|
Jardin I, Lopez JJ, Salido GM, Rosado JA. Store-Operated Ca 2+ Entry in Breast Cancer Cells: Remodeling and Functional Role. Int J Mol Sci 2018; 19:ijms19124053. [PMID: 30558192 PMCID: PMC6321005 DOI: 10.3390/ijms19124053] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/03/2018] [Accepted: 12/11/2018] [Indexed: 12/22/2022] Open
Abstract
Breast cancer is the most common type of cancer in women. It is a heterogeneous disease that ranges from the less undifferentiated luminal A to the more aggressive basal or triple negative breast cancer molecular subtype. Ca2+ influx from the extracellular medium, but more specifically store-operated Ca2+ entry (SOCE), has been reported to play an important role in tumorigenesis and the maintenance of a variety of cancer hallmarks, including cell migration, proliferation, invasion or epithelial to mesenchymal transition. Breast cancer cells remodel the expression and functional role of the molecular components of SOCE. This review focuses on the functional role and remodeling of SOCE in breast cancer cells. The current studies suggest the need to deepen our understanding of SOCE in the biology of the different breast cancer subtypes in order to develop new and specific therapeutic strategies.
Collapse
Affiliation(s)
- Isaac Jardin
- Department of Physiology, (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain.
| | - Jose J Lopez
- Department of Physiology, (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain.
| | - Gines M Salido
- Department of Physiology, (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain.
| | - Juan A Rosado
- Department of Physiology, (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain.
| |
Collapse
|
20
|
TRPV6 Variants Interfere with Maternal-Fetal Calcium Transport through the Placenta and Cause Transient Neonatal Hyperparathyroidism. Am J Hum Genet 2018; 102:1104-1114. [PMID: 29861107 DOI: 10.1016/j.ajhg.2018.04.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 04/06/2018] [Indexed: 11/22/2022] Open
Abstract
Transient neonatal hyperparathyroidism (TNHP) is etiologically a heterogeneous condition. One of the etiologies is an insufficient maternal-fetal calcium transport through the placenta. We report six subjects with homozygous and/or compound-heterozygous mutations in the gene encoding the transient receptor potential cation channel, subfamily V, member 6 (TRPV6), an epithelial Ca2+-selective channel associated with this condition. Exome sequencing on two neonates with skeletal findings consistent with neonatal hyperparathyroidism identified homozygous frameshift mutations before the first transmembrane domain in a subject born to first-cousins parents of Pakistani descent as well as compound-heterozygous mutations (a combination of a frameshift mutation and an intronic mutation that alters mRNA splicing) in an individual born to a non-consanguineous couple of African descent. Subsequently, targeted mutation analysis of TRPV6 performed on four other individuals (born to non-consanguineous Japanese parents) with similar X-rays findings identified compound-heterozygous mutations. The skeletal findings improved or resolved in most subjects during the first few months of life. We identified three missense variants (at the outer edges of the second and third transmembrane domains) that alter the localization of the TRPV6: one recurrent variant at the S2-S3 loop and two recurrent variants (in the fourth ankyrin repeat domain) that impair TRPV6 stability. Compound heterozygous loss-of-function mutations for the pathogenic frameshift allele and the allele with an intronic c.607+5G>A mutation resulted in the most severe phenotype. These results suggest that TNHP is an autosomal-recessive disease caused by TRPV6 mutations that affect maternal-fetal calcium transport.
Collapse
|
21
|
Hughes TET, Lodowski DT, Huynh KW, Yazici A, Del Rosario J, Kapoor A, Basak S, Samanta A, Han X, Chakrapani S, Zhou ZH, Filizola M, Rohacs T, Han S, Moiseenkova-Bell VY. Structural basis of TRPV5 channel inhibition by econazole revealed by cryo-EM. Nat Struct Mol Biol 2018; 25:53-60. [PMID: 29323279 PMCID: PMC5951624 DOI: 10.1038/s41594-017-0009-1] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 11/13/2017] [Indexed: 12/18/2022]
Abstract
The transient receptor potential vanilloid 5 (TRPV5) channel is a member of the transient receptor potential (TRP) channel family, which is highly selective for Ca2+, that is present primarily at the apical membrane of distal tubule epithelial cells in the kidney and plays a key role in Ca2+ reabsorption. Here we present the structure of the full-length rabbit TRPV5 channel as determined using cryo-EM in complex with its inhibitor econazole. This structure reveals that econazole resides in a hydrophobic pocket analogous to that occupied by phosphatidylinositides and vanilloids in TRPV1, thus suggesting conserved mechanisms for ligand recognition and lipid binding among TRPV channels. The econazole-bound TRPV5 structure adopts a closed conformation with a distinct lower gate that occludes Ca2+ permeation through the channel. Structural comparisons between TRPV5 and other TRPV channels, complemented with molecular dynamics (MD) simulations of the econazole-bound TRPV5 structure, allowed us to gain mechanistic insight into TRPV5 channel inhibition by small molecules.
Collapse
Affiliation(s)
- Taylor E T Hughes
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - David T Lodowski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Kevin W Huynh
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Aysenur Yazici
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - John Del Rosario
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Abhijeet Kapoor
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sandip Basak
- Department of Physiology and Biophysics School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Amrita Samanta
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Physiology and Biophysics School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Xu Han
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Sudha Chakrapani
- Department of Physiology and Biophysics School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Z Hong Zhou
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Marta Filizola
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tibor Rohacs
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Seungil Han
- Pfizer Research and Development, Groton, CT, USA
| | - Vera Y Moiseenkova-Bell
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Department of Physiology and Biophysics School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
22
|
Bieganski T, Beighton P, Lukaszewski M, Bik K, Kuszel L, Wasilewska E, Kozlowski K, Czarny-Ratajczak M. SMD Kozlowski type caused by p.Arg594His substitution in TRPV4 reveals abnormal ossification and notochordal remnants in discs and vertebrae. Eur J Med Genet 2017; 60:509-516. [PMID: 28687525 DOI: 10.1016/j.ejmg.2017.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 06/09/2017] [Accepted: 07/03/2017] [Indexed: 10/19/2022]
Abstract
Spondylometaphyseal dysplasia Kozlowski type (SMDK) is a monogenic disorder within the TRPV4 dysplasia spectrum and has characteristic spinal and metaphyseal changes. We report skeletal MR imaging in a two-year-old patient who manifested typical clinical and radiographic features of SMDK. The diagnosis was confirmed by molecular analysis which revealed a mutation NM_021625.4:c.1781G > A - p.(Arg594His) in exon 11 of the TRPV4 gene. We have documented abnormalities in endochondral formation of the long and short tubular bones as well as round bones of the wrists and feet. The vertebral bodies had increased thickness of hyaline cartilage which enveloped ossification centers. The vertebrae and discs also had abnormalities in size, shape and structure. These anomalies were most likely the consequence of notochordal remnants presence within the intervertebral discs and in the vertebral bodies. The advantages of MR imaging in bone dysplasias caused by TRPV4 mutations are emphasized in this article.
Collapse
Affiliation(s)
- Tadeusz Bieganski
- Department of Diagnostic Imaging, Polish Mother(')s Memorial Hospital - Research Institute, Lodz, Poland
| | - Peter Beighton
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Maciej Lukaszewski
- Department of Diagnostic Imaging, Polish Mother(')s Memorial Hospital - Research Institute, Lodz, Poland
| | - Krzysztof Bik
- Department of Orthopaedics, Polish Mother(')s Memorial Hospital - Research Institute, Lodz, Poland
| | - Lukasz Kuszel
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Ewa Wasilewska
- Department of Radiology, Children's Hospital, New Orleans, USA
| | - Kazimierz Kozlowski
- Department of Medical Imaging, The Children's Hospital at Westmead, Sydney, Australia
| | - Malwina Czarny-Ratajczak
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland; Department of Medicine, Center for Aging, Tulane University, School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
23
|
Fecher-Trost C, Wissenbach U, Weissgerber P. TRPV6: From identification to function. Cell Calcium 2017; 67:116-122. [PMID: 28501141 DOI: 10.1016/j.ceca.2017.04.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 04/26/2017] [Accepted: 04/26/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Claudia Fecher-Trost
- Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, Building 46, 66421 Homburg, Germany.
| | - Ulrich Wissenbach
- Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, Building 46, 66421 Homburg, Germany
| | - Petra Weissgerber
- Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, Building 46, 66421 Homburg, Germany.
| |
Collapse
|
24
|
Wang G, Wang K. The Ca2+-Permeable Cation Transient Receptor Potential TRPV3 Channel: An Emerging Pivotal Target for Itch and Skin Diseases. Mol Pharmacol 2017; 92:193-200. [DOI: 10.1124/mol.116.107946] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/31/2017] [Indexed: 12/15/2022] Open
|
25
|
Understand spiciness: mechanism of TRPV1 channel activation by capsaicin. Protein Cell 2017; 8:169-177. [PMID: 28044278 PMCID: PMC5326624 DOI: 10.1007/s13238-016-0353-7] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/22/2016] [Indexed: 11/06/2022] Open
Abstract
Capsaicin in chili peppers bestows the sensation of spiciness. Since the discovery of its receptor, transient receptor potential vanilloid 1 (TRPV1) ion channel, how capsaicin activates this channel has been under extensive investigation using a variety of experimental techniques including mutagenesis, patch-clamp recording, crystallography, cryo-electron microscopy, computational docking and molecular dynamic simulation. A framework of how capsaicin binds and activates TRPV1 has started to merge: capsaicin binds to a pocket formed by the channel’s transmembrane segments, where it takes a “tail-up, head-down” configuration. Binding is mediated by both hydrogen bonds and van der Waals interactions. Upon binding, capsaicin stabilizes the open state of TRPV1 by “pull-and-contact” with the S4-S5 linker. Understanding the ligand-host interaction will greatly facilitate pharmaceutical efforts to develop novel analgesics targeting TRPV1.
Collapse
|
26
|
van Goor MKC, Hoenderop JGJ, van der Wijst J. TRP channels in calcium homeostasis: from hormonal control to structure-function relationship of TRPV5 and TRPV6. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:883-893. [PMID: 27913205 DOI: 10.1016/j.bbamcr.2016.11.027] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 11/23/2016] [Indexed: 12/16/2022]
Abstract
Maintaining plasma calcium levels within a narrow range is of vital importance for many physiological functions. Therefore, calcium transport processes in the intestine, bone and kidney are tightly regulated to fine-tune the rate of absorption, storage and excretion. The TRPV5 and TRPV6 calcium channels are viewed as the gatekeepers of epithelial calcium transport. Several calciotropic hormones control the channels at the level of transcription, membrane expression, and function. Recent technological advances have provided the first near-atomic resolution structural models of several TRPV channels, allowing insight into their architecture. While this field is still in its infancy, it has increased our understanding of molecular channel regulation and holds great promise for future structure-function studies of these ion channels. This review will summarize the mechanisms that control the systemic calcium balance, as well as extrapolate structural views to the molecular functioning of TRPV5/6 channels in epithelial calcium transport.
Collapse
Affiliation(s)
- Mark K C van Goor
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Joost G J Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands.
| | - Jenny van der Wijst
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands.
| |
Collapse
|
27
|
Wen H, Qin F, Zheng W. Toward elucidating the heat activation mechanism of the TRPV1 channel gating by molecular dynamics simulation. Proteins 2016; 84:1938-1949. [PMID: 27699868 DOI: 10.1002/prot.25177] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/03/2016] [Accepted: 09/24/2016] [Indexed: 01/01/2023]
Abstract
As a key cellular sensor, the TRPV1 cation channel undergoes a gating transition from a closed state to an open state in response to various physical and chemical stimuli including noxious heat. Despite years of study, the heat activation mechanism of TRPV1 gating remains enigmatic at the molecular level. Toward elucidating the structural and energetic basis of TRPV1 gating, we have performed molecular dynamics (MD) simulations (with cumulative simulation time of 3 μs), starting from the high-resolution closed and open structures of TRPV1 solved by cryo-electron microscopy. In the closed-state simulations at 30°C, we observed a stably closed channel constricted at the lower gate (near residue I679), while the upper gate (near residues G643 and M644) is dynamic and undergoes flickery opening/closing. In the open-state simulations at 60°C, we found higher conformational variation consistent with a large entropy increase required for the heat activation, and both the lower and upper gates are dynamic with transient opening/closing. Through ensemble-based structural analyses of the closed state versus the open state, we revealed pronounced closed-to-open conformational changes involving the membrane proximal domain (MPD) linker, the outer pore, and the TRP helix, which are accompanied by breaking/forming of a network of closed/open-state specific hydrogen bonds. By comparing the closed-state simulations at 30°C and 60°C, we observed heat-activated conformational changes in the MPD linker, the outer pore, and the TRP helix that resemble the closed-to-open conformational changes, along with partial formation of the open-state specific hydrogen bonds. Some of the residues involved in the above key hydrogen bonds were validated by previous mutational studies. Taken together, our MD simulations have offered rich structural and dynamic details beyond the static structures of TRPV1, and promising targets for future mutagenesis and functional studies of the TRPV1 channel. Proteins 2016; 84:1938-1949. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Han Wen
- Department of Physics, State University of New York at Buffalo, Buffalo, New York, 14260
| | - Feng Qin
- Department of Physiology and Biophysical Sciences, State University of New York at Buffalo, Buffalo, New York, 14260
| | - Wenjun Zheng
- Department of Physics, State University of New York at Buffalo, Buffalo, New York, 14260
| |
Collapse
|
28
|
Saotome K, Singh AK, Yelshanskaya MV, Sobolevsky AI. Crystal structure of the epithelial calcium channel TRPV6. Nature 2016; 534:506-11. [PMID: 27296226 PMCID: PMC4919205 DOI: 10.1038/nature17975] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/06/2016] [Indexed: 12/11/2022]
Abstract
Precise regulation of calcium homeostasis is essential for many physiological functions. The Ca(2+)-selective transient receptor potential (TRP) channels TRPV5 and TRPV6 play vital roles in calcium homeostasis as Ca(2+) uptake channels in epithelial tissues. Detailed structural bases for their assembly and Ca(2+) permeation remain obscure. Here we report the crystal structure of rat TRPV6 at 3.25 Å resolution. The overall architecture of TRPV6 reveals shared and unique features compared with other TRP channels. Intracellular domains engage in extensive interactions to form an intracellular 'skirt' involved in allosteric modulation. In the K(+) channel-like transmembrane domain, Ca(2+) selectivity is determined by direct coordination of Ca(2+) by a ring of aspartate side chains in the selectivity filter. On the basis of crystallographically identified cation-binding sites at the pore axis and extracellular vestibule, we propose a Ca(2+) permeation mechanism. Our results provide a structural foundation for understanding the regulation of epithelial Ca(2+) uptake and its role in pathophysiology.
Collapse
Affiliation(s)
- Kei Saotome
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, New York 10032, USA
| | - Appu K Singh
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, New York 10032, USA
| | - Maria V Yelshanskaya
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, New York 10032, USA
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, New York 10032, USA
| |
Collapse
|
29
|
Zheng W, Qin F. A combined coarse-grained and all-atom simulation of TRPV1 channel gating and heat activation. ACTA ACUST UNITED AC 2016; 145:443-56. [PMID: 25918362 PMCID: PMC4411258 DOI: 10.1085/jgp.201411335] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Coarse-grained modeling and all-atom molecular dynamics simulation provide insight into the mechanism for heat activation of TRPV1 gating. The transient receptor potential (TRP) channels act as key sensors of various chemical and physical stimuli in eukaryotic cells. Despite years of study, the molecular mechanisms of TRP channel activation remain unclear. To elucidate the structural, dynamic, and energetic basis of gating in TRPV1 (a founding member of the TRPV subfamily), we performed coarse-grained modeling and all-atom molecular dynamics (MD) simulation based on the recently solved high resolution structures of the open and closed form of TRPV1. Our coarse-grained normal mode analysis captures two key modes of collective motions involved in the TRPV1 gating transition, featuring a quaternary twist motion of the transmembrane domains (TMDs) relative to the intracellular domains (ICDs). Our transition pathway modeling predicts a sequence of structural movements that propagate from the ICDs to the TMDs via key interface domains (including the membrane proximal domain and the C-terminal domain), leading to sequential opening of the selectivity filter followed by the lower gate in the channel pore (confirmed by modeling conformational changes induced by the activation of ICDs). The above findings of coarse-grained modeling are robust to perturbation by lipids. Finally, our MD simulation of the ICD identifies key residues that contribute differently to the nonpolar energy of the open and closed state, and these residues are predicted to control the temperature sensitivity of TRPV1 gating. These computational predictions offer new insights to the mechanism for heat activation of TRPV1 gating, and will guide our future electrophysiology and mutagenesis studies.
Collapse
Affiliation(s)
- Wenjun Zheng
- Department of Physics and Department of Physiology and Biophysical Sciences, State University of New York at Buffalo, Buffalo, NY 14260
| | - Feng Qin
- Department of Physics and Department of Physiology and Biophysical Sciences, State University of New York at Buffalo, Buffalo, NY 14260
| |
Collapse
|
30
|
Calcium Entry Through Thermosensory Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:265-304. [PMID: 27161233 DOI: 10.1007/978-3-319-26974-0_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
ThermoTRPs are unique channels that mediate Na(+) and Ca(2+) currents in response to changes in ambient temperature. In combination with their activation by other physical and chemical stimuli, they are considered key integrators of environmental cues into neuronal excitability. Furthermore, roles of thermoTRPs in non-neuronal tissues are currently emerging such as insulin secretion in pancreatic β-cells, and links to cancer. Calcium permeability through thermoTRPs appears a central hallmark for their physiological and pathological activities. Moreover, it is currently being proposed that beyond working as a second messenger, Ca(2+) can function locally by acting on protein complexes near the membrane. Interestingly, thermoTRPs can enhance and expand the inherent plasticity of signalplexes by conferring them temperature, pH and lipid regulation through Ca(2+) signalling. Thus, unveiling the local role of Ca(2+) fluxes induced by thermoTRPs on the dynamics of membrane-attached signalling complexes as well as their significance in cellular processes, are central issues that will expand the opportunities for therapeutic intervention in disorders involving dysfunction of thermoTRP channels.
Collapse
|
31
|
Bousova K, Jirku M, Bumba L, Bednarova L, Sulc M, Franek M, Vyklicky L, Vondrasek J, Teisinger J. PIP2 and PIP3 interact with N-terminus region of TRPM4 channel. Biophys Chem 2015; 205:24-32. [PMID: 26071843 DOI: 10.1016/j.bpc.2015.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/04/2015] [Accepted: 06/06/2015] [Indexed: 01/07/2023]
Abstract
The transient receptor potential melastatin 4 (TRPM4) is a calcium-activated non-selective ion channel broadly expressed in a variety of tissues. Receptor has been identified as a crucial modulator of numerous calcium dependent mechanisms in the cell such as immune response, cardiac conduction, neurotransmission and insulin secretion. It is known that phosphoinositide lipids (PIPs) play a unique role in the regulation of TRP channel function. However the molecular mechanism of this process is still unknown. We characterized the binding site of PIP2 and its structural analogue PIP3 in the E733-W772 proximal region of the TRPM4 N-terminus via biophysical and molecular modeling methods. The specific positions R755 and R767 in this domain were identified as being important for interactions with PIP2/PIP3 ligands. Their mutations caused a partial loss of PIP2/PIP3 binding specificity. The interaction of PIP3 with TRPM4 channels has never been described before. These findings provide new insight into the ligand binding domains of the TRPM4 channel.
Collapse
Affiliation(s)
- Kristyna Bousova
- 2nd Faculty of Medicine, Charles University in Prague, 15006 Prague, Czech Republic; Institute of Physiology, Academy of Sciences of the Czech Republic, 14220 Prague, Czech Republic
| | - Michaela Jirku
- Institute of Physiology, Academy of Sciences of the Czech Republic, 14220 Prague, Czech Republic; Faculty of Science, Charles University in Prague, 12843 Prague, Czech Republic
| | - Ladislav Bumba
- Institute of Microbiology, Academy of Sciences of the Czech Republic, 14220 Prague, Czech Republic
| | - Lucie Bednarova
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 16610 Prague, Czech Republic
| | - Miroslav Sulc
- Institute of Microbiology, Academy of Sciences of the Czech Republic, 14220 Prague, Czech Republic
| | - Miloslav Franek
- 3rd Faculty of Medicine, Charles University in Prague, 10000 Prague, Czech Republic
| | - Ladislav Vyklicky
- Institute of Physiology, Academy of Sciences of the Czech Republic, 14220 Prague, Czech Republic
| | - Jiri Vondrasek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 16610 Prague, Czech Republic
| | - Jan Teisinger
- Institute of Physiology, Academy of Sciences of the Czech Republic, 14220 Prague, Czech Republic.
| |
Collapse
|
32
|
Hilton JK, Rath P, Helsell CVM, Beckstein O, Van Horn WD. Understanding Thermosensitive Transient Receptor Potential Channels as Versatile Polymodal Cellular Sensors. Biochemistry 2015; 54:2401-13. [DOI: 10.1021/acs.biochem.5b00071] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jacob K. Hilton
- Center
for Personalized Diagnostics, Magnetic Resonance Research Center,
and Department of Chemistry and Biochemistry, Arizona State University, 551 East University Drive, PSG-106, Tempe, Arizona 85287, United States
| | - Parthasarathi Rath
- Center
for Personalized Diagnostics, Magnetic Resonance Research Center,
and Department of Chemistry and Biochemistry, Arizona State University, 551 East University Drive, PSG-106, Tempe, Arizona 85287, United States
| | - Cole V. M. Helsell
- Center
for Personalized Diagnostics, Magnetic Resonance Research Center,
and Department of Chemistry and Biochemistry, Arizona State University, 551 East University Drive, PSG-106, Tempe, Arizona 85287, United States
| | - Oliver Beckstein
- Center
for Biological Physics and Department of Physics, Arizona State University, 550 East Tyler Mall, Tempe, Arizona 85287, United States
| | - Wade D. Van Horn
- Center
for Personalized Diagnostics, Magnetic Resonance Research Center,
and Department of Chemistry and Biochemistry, Arizona State University, 551 East University Drive, PSG-106, Tempe, Arizona 85287, United States
| |
Collapse
|
33
|
Billen B, Brams M, Debaveye S, Remeeva A, Alpizar YA, Waelkens E, Kreir M, Brüggemann A, Talavera K, Nilius B, Voets T, Ulens C. Different ligands of the TRPV3 cation channel cause distinct conformational changes as revealed by intrinsic tryptophan fluorescence quenching. J Biol Chem 2015; 290:12964-74. [PMID: 25829496 PMCID: PMC4432310 DOI: 10.1074/jbc.m114.628925] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Indexed: 11/26/2022] Open
Abstract
TRPV3 is a thermosensitive ion channel primarily expressed in epithelial tissues of the skin, nose, and tongue. The channel has been implicated in environmental thermosensation, hyperalgesia in inflamed tissues, skin sensitization, and hair growth. Although transient receptor potential (TRP) channel research has vastly increased our understanding of the physiological mechanisms of nociception and thermosensation, the molecular mechanics of these ion channels are still largely elusive. In order to better comprehend the functional properties and the mechanism of action in TRP channels, high-resolution three-dimensional structures are indispensable, because they will yield the necessary insights into architectural intimacies at the atomic level. However, structural studies of membrane proteins are currently hampered by difficulties in protein purification and in establishing suitable crystallization conditions. In this report, we present a novel protocol for the purification of membrane proteins, which takes advantage of a C-terminal GFP fusion. Using this protocol, we purified human TRPV3. We show that the purified protein is a fully functional ion channel with properties akin to the native channel using planar patch clamp on reconstituted channels and intrinsic tryptophan fluorescence spectroscopy. Using intrinsic tryptophan fluorescence spectroscopy, we reveal clear distinctions in the molecular interaction of different ligands with the channel. Altogether, this study provides powerful tools to broaden our understanding of ligand interaction with TRPV channels, and the availability of purified human TRPV3 opens up perspectives for further structural and functional studies.
Collapse
Affiliation(s)
- Bert Billen
- From the Laboratory of Structural Neurobiology and TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, University of Leuven, Herestraat 49 Box 601, 3000 Leuven, Belgium,
| | - Marijke Brams
- From the Laboratory of Structural Neurobiology and TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, University of Leuven, Herestraat 49 Box 601, 3000 Leuven, Belgium
| | - Sarah Debaveye
- From the Laboratory of Structural Neurobiology and TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, University of Leuven, Herestraat 49 Box 601, 3000 Leuven, Belgium
| | - Alina Remeeva
- From the Laboratory of Structural Neurobiology and TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, University of Leuven, Herestraat 49 Box 601, 3000 Leuven, Belgium
| | - Yeranddy A Alpizar
- the Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, University of Leuven, Herestraat 49 Box 802, 3000 Leuven, Belgium
| | - Etienne Waelkens
- the Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, University of Leuven, Herestraat 49 Box 901, 3000 Leuven, Belgium, and
| | - Mohamed Kreir
- Nanion Technologies GmbH, Gabrielenstrasse 9, D-80636 Munich, Germany
| | - Andrea Brüggemann
- Nanion Technologies GmbH, Gabrielenstrasse 9, D-80636 Munich, Germany
| | - Karel Talavera
- the Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, University of Leuven, Herestraat 49 Box 802, 3000 Leuven, Belgium
| | - Bernd Nilius
- the Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, University of Leuven, Herestraat 49 Box 802, 3000 Leuven, Belgium
| | - Thomas Voets
- the Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, University of Leuven, Herestraat 49 Box 802, 3000 Leuven, Belgium
| | - Chris Ulens
- From the Laboratory of Structural Neurobiology and TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, University of Leuven, Herestraat 49 Box 601, 3000 Leuven, Belgium
| |
Collapse
|
34
|
Taberner FJ, Fernández-Ballester G, Fernández-Carvajal A, Ferrer-Montiel A. TRP channels interaction with lipids and its implications in disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1818-27. [PMID: 25838124 DOI: 10.1016/j.bbamem.2015.03.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/21/2015] [Accepted: 03/23/2015] [Indexed: 01/21/2023]
Abstract
Transient receptor potential (TRP) proteins are a family of ion channels central for sensory signaling. These receptors and, in particular, those involved in thermal sensing are also involved in pain signaling. Noteworthy, thermosensory receptors are polymodal ion channels that respond to both physical and chemical stimuli, thus integrating different environmental clues. In addition, their activity is modulated by algesic agents and lipidergic substances that are primarily released in pathological states. Lipids and lipid-like molecules have been found that can directly activate some thermosensory channels or modulate their activity by either potentiating or inhibiting it. To date, more than 50 endogenous lipids that can regulate TRP channel activity in sensory neurons have been described, thus representing the majority of known endogenous TRP channel modulators. Lipid modulators of TRP channels comprise lipids from a variety of metabolic pathways, including metabolites of the cyclooxygenase, lipoxygenase and cytochrome-P450 pathways, phospholipids and lysophospholipids. Therefore, TRP-channels are able to integrate and interpret incoming signals from the different metabolic lipid pathways. Taken together, the large number of lipids that can activate, sensitize or inhibit neuronal TRP-channels highlights the pivotal role of these molecules in sensory biology as well as in pain transduction and perception. This article is part of a Special Issue entitled: Lipid-protein interactions. Guest Editors: Amitabha Chattopadhyay and Jean-Marie Ruysschaert.
Collapse
Affiliation(s)
- Francisco J Taberner
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Alicante, Spain
| | | | | | - Antonio Ferrer-Montiel
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Alicante, Spain.
| |
Collapse
|
35
|
Fan H, Shen YX, Yuan YF. Expression and prognostic roles of TRPV5 and TRPV6 in non-small cell lung cancer after curative resection. Asian Pac J Cancer Prev 2015; 15:2559-63. [PMID: 24761864 DOI: 10.7314/apjcp.2014.15.6.2559] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
PURPOSE We investigated the expression of epithelial Ca2+ channel transient receptor potential vanilloid (TRPV) 5 and 6 in non-small-cell lung cancer (NSCLC) and assessed their prognostic role in patients after surgical resection. MATERIALS AND METHODS From January 2008 to January 2009, 145 patients who had undergone surgical resection of NSCLCs were enrolled in the study. Patient clinical characteristics were retrospectively reviewed. Fresh tumor samples as well as peritumor tissues were analyzed for TRPV5/6 expression using immune-histochemistry (IHC) and quantitative reverse transcriptase-polymerase chain reaction (RT-PCR). Patients were grouped based on their TRPV5 and TRPV6 levels in the tumor tissues, followed up after surgery, and statistically analyzed to examine the prognostic roles of TRPV5 and TRPV6 on patients' survival after surgical resection of NSCLCs. RESULTS Using IHC, among the 145 patients who had undergone surgical resection of NSCLCs, strong protein expression (grade ≥ 2) of TRPV5 and TRPV6 was observed in a lower percentage of primary tumor tissues than in non-tumor tissues of same patients. Similar findings were obtained with the RT-PCR test for mRNA levels. Decreased overall mRNA levels of TRPV5 and TRPV6 were associated with a worse overall survival rate (p=0.004 and p=0.003 respectively) and shorter recurrence-free survival (p?0.001 and p?0.001 respectively). The combining effect of TRPV5 and TRPV6 on survival was further investigated using multivariate analysis. The results showed that a combination of low expression of TRPV5 and TRPV6 could be an independent predictor of poor recurrence-free survival (p=0.002). CONCLUSIONS Decreased expression of TRPV5/6 in tumor tissues was observed in NSCLC patients and was associated with shorter median survival time after surgical resection. Combined expression of TRPV5 and TRPV6 in tumor tissues demonstrated promising prognostic value in NSCLC patients.
Collapse
Affiliation(s)
- Hong Fan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Fudan, PR China E-mail :
| | | | | |
Collapse
|
36
|
Kumari S, Kumar A, Sardar P, Yadav M, Majhi RK, Kumar A, Goswami C. Influence of membrane cholesterol in the molecular evolution and functional regulation of TRPV4. Biochem Biophys Res Commun 2015; 456:312-9. [DOI: 10.1016/j.bbrc.2014.11.077] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 11/20/2014] [Indexed: 12/19/2022]
|
37
|
Huynh KW, Cohen MR, Moiseenkova-Bell VY. Application of amphipols for structure-functional analysis of TRP channels. J Membr Biol 2014; 247:843-51. [PMID: 24894720 DOI: 10.1007/s00232-014-9684-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 05/13/2014] [Indexed: 11/25/2022]
Abstract
Amphipathic polymers (amphipols), such as A8-35 and SApol, are a new tool for stabilizing integral membrane proteins in detergent-free conditions for structural and functional studies. Transient receptor potential (TRP) ion channels function as tetrameric protein complexes in a diverse range of cellular processes including sensory transduction. Mammalian TRP channels share ~20 % sequence similarity and are categorized into six subfamilies: TRPC (canonical), TRPV (vanilloid), TRPA (ankyrin), TRPM (melastatin), TRPP (polycystin), and TRPML (mucolipin). Due to the inherent difficulties in purifying eukaryotic membrane proteins, structural studies of TRP channels have been limited. Recently, A8-35 was essential in resolving the molecular architecture of the nociceptor TRPA1 and led to the determination of a high-resolution structure of the thermosensitive TRPV1 channel by cryo-EM. Newly developed maltose-neopentyl glycol (MNG) detergents have also proven to be useful in stabilizing TRP channels for structural analysis. In this review, we will discuss the impacts of amphipols and MNG detergents on structural studies of TRP channels by cryo-EM. We will compare how A8-35 and MNG detergents interact with the hydrophobic transmembrane domains of TRP channels. In addition, we will discuss what these cryo-EM studies reveal on the importance of screening different types of surfactants toward determining high-resolution structures of TRP channels.
Collapse
Affiliation(s)
- Kevin W Huynh
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | | | | |
Collapse
|
38
|
Schilling J, Schöppe J, Plückthun A. From DARPins to LoopDARPins: novel LoopDARPin design allows the selection of low picomolar binders in a single round of ribosome display. J Mol Biol 2014; 426:691-721. [PMID: 24513107 DOI: 10.1016/j.jmb.2013.10.026] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 10/17/2013] [Accepted: 10/17/2013] [Indexed: 12/19/2022]
Abstract
Antibodies are the most versatile binding proteins in nature with six loops creating a flexible continuous interaction surface. However, in some molecular formats, antibodies are aggregation prone. Designed ankyrin repeat proteins (DARPins) were successfully created as alternative design solutions. Nevertheless, their concave shape, rigidity and incompletely randomized binding surface may limit the epitopes that can be targeted by this extremely stable scaffold. Combining conformational diversity and a continuous convex paratope found in many antibodies with the beneficial biophysical properties of DARPins, we created LoopDARPins, a next generation of DARPins with extended epitope binding properties. We employed X-ray structure determination of a LoopDARPin for design validation. Biophysical characterizations show that the introduction of an elongated loop through consensus design does not decrease the stability of the scaffold,consistent with molecular dynamics simulations. Ribosome-display selections against extracellular signal-regulated kinase 2 (ERK2) and four members of the BCL-2 family (BCL-2, BCL-XL, BCL-W and MCL-1) of anti-apoptotic regulators yielded LoopDARPins with affinities in the mid-picomolar to low nanomol arrange against all targets. The BCL-2 family binders block the interaction with their natural interaction partner and will be valuable reagents to test the apoptotic response in functional assays. With the LoopDARPin scaffold, binders for BCL-2 with an affinity of 30 pM were isolated with only a single round of ribosome display,an enrichment that has not been described for any scaffold. Identical stringent one-round selections with conventional DARPins without loop yielded no binders. The LoopDARPin scaffold may become a highly valuable tool for biotechnological high-throughput applications.
Collapse
|
39
|
Abstract
TRPV5 is one of the two channels in the TRPV family that exhibit high selectivity to Ca(2+) ions. TRPV5 mediates Ca(2+) influx into cells as the first step to transport Ca(2+) across epithelia. The specialized distribution in the distal tubule of the kidney positions TRPV5 as a key player in Ca(2+) reabsorption. The responsiveness in expression and/or activity of TRPV5 to hormones such as 1,25-dihydroxyvitamin D3, parathyroid hormone, estrogen, and testosterone makes TRPV5 suitable for its role in the fine-tuning of Ca(2+) reabsorption. This role is further optimized by the modulation of TRPV5 trafficking and activity via its binding partners; co-expressed proteins; tubular factors such as calbindin-D28k, calmodulin, klotho, uromodulin, and plasmin; extracellular and intracellular factors such as proton, Mg(2+), Ca(2+), and phosphatidylinositol-4,5-bisphosphate; and fluid flow. These regulations allow TRPV5 to adjust its overall activity in response to the body's demand for Ca(2+) and to prevent kidney stone formation. A point mutation in mouse Trpv5 gene leads to hypercalciuria similar to Trpv5 knockout mice, suggesting a possible role of TRPV5 in hypercalciuric disorders in humans. In addition, the single nucleotide polymorphisms in Trpv5 gene prevalently present in African descents may contribute to the efficient renal Ca(2+) reabsorption among African descendants. TRPV5 represents a potential therapeutic target for disorders with altered Ca(2+) homeostasis.
Collapse
Affiliation(s)
- Tao Na
- Cell Collection and Research Center, Institute for Biological Product Control, National Institutes for Food and Drug Control, Beijing, China
| | | |
Collapse
|
40
|
Abstract
Membrane proteins remain challenging targets for structural biologists, despite recent technical developments regarding sample preparation and structure determination. We review recent progress towards a structural understanding of TRP channels and the techniques used to that end. We discuss available low-resolution structures from electron microscopy (EM), X-ray crystallography, and nuclear magnetic resonance (NMR) and review the resulting insights into TRP channel function for various subfamily members. The recent high-resolution structure of TRPV1 is discussed in more detail in Chapter 11. We also consider the opportunities and challenges of using the accumulating structural information on TRPs and homologous proteins for deducing full-length structures of different TRP channel subfamilies, such as building homology models. Finally, we close by summarizing the outlook of the "holy grail" of understanding in atomic detail the diverse functions of TRP channels.
Collapse
|
41
|
Cohen MR, Moiseenkova-Bell VY. Structure of thermally activated TRP channels. CURRENT TOPICS IN MEMBRANES 2014; 74:181-211. [PMID: 25366237 DOI: 10.1016/b978-0-12-800181-3.00007-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Temperature sensation is important for adaptation and survival of organisms. While temperature has the potential to affect all biological macromolecules, organisms have evolved specific thermosensitive molecular detectors that are able to transduce temperature changes into physiologically relevant signals. Among these thermosensors are ion channels from the transient receptor potential (TRP) family. Prime candidates include TRPV1-4, TRPA1, and TRPM8 (the so-called "thermoTRP" channels), which are expressed in sensory neurons and gated at specific temperatures. Electrophysiological and thermodynamic approaches have been employed to determine the nature by which thermoTRPs detect temperature and couple temperature changes to channel gating. To further understand how thermoTRPs sense temperature, high-resolution structures of full-length thermoTRPs channels will be required. Here, we will discuss current progress in unraveling the structures of thermoTRP channels.
Collapse
Affiliation(s)
- Matthew R Cohen
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Vera Y Moiseenkova-Bell
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
42
|
Abstract
TRPV6 (former synonyms ECAC2, CaT1, CaT-like) displays several specific features which makes it unique among the members of the mammalian Trp gene family (1) TRPV6 (and its closest relative, TRPV5) are the only highly Ca(2+)-selective channels of the entire TRP superfamily (Peng et al. 1999; Wissenbach et al. 2001; Voets et al. 2004). (2) Translation of Trpv6 initiates at a non-AUG codon, at ACG, located upstream of the annotated AUG, which is not used for initiation (Fecher-Trost et al. 2013). The ACG codon is nevertheless decoded by methionine. Not only a very rare event in eukaryotic biology, the full-length TRPV6 protein existing in vivo comprises an amino terminus extended by 40 amino acid residues compared to the annotated truncated TRPV6 protein which has been used in most studies on TRPV6 channel activity so far. (In the following numbering occurs according to this full-length protein, with the numbers of the so far annotated truncated protein in brackets). (3) Only in humans a coupled polymorphism of Trpv6 exists causing three amino acid exchanges and resulting in an ancestral Trpv6 haplotype and a so-called derived Trpv6 haplotype (Wissenbach et al. 2001). The ancestral allele encodes the amino acid residues C197(157), M418(378) and M721(681) and the derived alleles R197(157), V418(378) and T721(681). The ancestral haplotype is found in all species, the derived Trpv6 haplotype has only been identified in humans, and its frequency increases with the distance to the African continent. Apparently the Trpv6 gene has been a strong target for selection in humans, and its derived variant is one of the few examples showing consistently differences to the orthologues genes of other primates (Akey et al. 2004, 2006; Stajich and Hahn 2005; Hughes et al. 2008). (4) The Trpv6 gene expression is significantly upregulated in several human malignancies including the most common cancers, prostate and breast cancer (Wissenbach et al. 2001; Zhuang et al. 2002; Fixemer et al. 2003; Bolanz et al. 2008). (5) Male mice lacking functional TRPV6 channels are hypo-/infertile making TRPV6 one of the very few channels essential for male fertility (Weissgerber et al. 2011, 2012).
Collapse
Affiliation(s)
- Claudia Fecher-Trost
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421, Homburg, Germany
| | | | | |
Collapse
|
43
|
Nilius B, Flockerzi V. What do we really know and what do we need to know: some controversies, perspectives, and surprises. Handb Exp Pharmacol 2014; 223:1239-80. [PMID: 24961986 DOI: 10.1007/978-3-319-05161-1_20] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
TRP channels comprise one of the most rapid growing research topics in ion channel research, in fields related to ion channels including channelopathies and translational medicine. We provide here a critical survey on our current knowledge of TRP channels and highlight some of the still open or controversial questions. This comprises questions related to evolution of TRP channels; biophysics, i.e., permeation; pore properties and gating; modulation; the still-elusive 3D structure; and channel subunits but also their role as general sensory channels and in human diseases. We will conclude that our knowledge on TRP channels is still at the very beginning of an exciting research journey.
Collapse
Affiliation(s)
- Bernd Nilius
- Department Cell Mol Medicine, Laboratory Ion Channel Research, KU Leuven, Campus Gasthuisberg, O&N 1, Herestraat 49-Bus 802, 3000, Leuven, Belgium,
| | | |
Collapse
|
44
|
Huynh KW, Cohen MR, Chakrapani S, Holdaway HA, Stewart PL, Moiseenkova-Bell VY. Structural insight into the assembly of TRPV channels. Structure 2013; 22:260-8. [PMID: 24373766 DOI: 10.1016/j.str.2013.11.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/01/2013] [Accepted: 11/21/2013] [Indexed: 11/25/2022]
Abstract
Transient receptor potential (TRP) proteins are a large family of polymodal nonselective cation channels. The TRP vanilloid (TRPV) subfamily consists of six homologous members with diverse functions. TRPV1-TRPV4 are nonselective cation channels proposed to play a role in nociception, while TRPV5 and TRPV6 are involved in epithelial Ca²⁺ homeostasis. Here we present the cryo-electron microscopy (cryo-EM) structure of functional, full-length TRPV2 at 13.6 Å resolution. The map reveals that the TRPV2 cytoplasmic domain displays a 4-fold petal-like shape in which high-resolution N-terminal ankyrin repeat domain (ARD) structures can be unambiguously fitted. Fitting of the available ARD structures for other TRPV subfamily members into the TRPV2 EM map suggests that TRPV subfamily members have highly homologous structural topologies. These results allowed us to postulate a structural explanation for the functional diversity among TRPV channels and their differential regulation by proteins and ligands.
Collapse
Affiliation(s)
- Kevin W Huynh
- Department of Pharmacology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Matthew R Cohen
- Deparment of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Sudha Chakrapani
- Deparment of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Heather A Holdaway
- Department of Pharmacology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Phoebe L Stewart
- Department of Pharmacology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Vera Y Moiseenkova-Bell
- Department of Pharmacology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Deparment of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| |
Collapse
|
45
|
Abstract
Transient receptor potential (TRP) channels are cellular sensors for a wide spectrum of physical and chemical stimuli. They are involved in the formation of sight, hearing, touch, smell, taste, temperature, and pain sensation. TRP channels also play fundamental roles in cell signaling and allow the host cell to respond to benign or harmful environmental changes. As TRP channel activation is controlled by very diverse processes and, in many cases, exhibits complex polymodal properties, understanding how each TRP channel responds to its unique forms of activation energy is both crucial and challenging. The past two decades witnessed significant advances in understanding the molecular mechanisms that underlie TRP channels activation. This review focuses on our current understanding of the molecular determinants for TRP channel activation.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Physiology and Membrane Biology, University of California School of Medicine, Davis, California, USA.
| |
Collapse
|
46
|
Shi DJ, Ye S, Cao X, Zhang R, Wang K. Crystal structure of the N-terminal ankyrin repeat domain of TRPV3 reveals unique conformation of finger 3 loop critical for channel function. Protein Cell 2013; 4:942-50. [PMID: 24248473 DOI: 10.1007/s13238-013-3091-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 10/09/2013] [Indexed: 11/25/2022] Open
Abstract
In all six members of TRPV channel subfamily, there is an ankyrin repeat domain (ARD) in their intracellular N-termini. Ankyrin (ANK) repeat, a common motif with typically 33 residues in each repeat, is primarily involved in protein-protein interactions. Despite the sequence similarity among the ARDs of TRPV channels, the structure of TRPV3-ARD, however, remains unknown. Here, we report the crystal structure of TRPV3-ARD solved at 1.95 Å resolution, which reveals six-ankyrin repeats. While overall structure of TRPV3-ARD is similar to ARDs from other members of TRPV subfamily; it, however, features a noticeable finger 3 loop that bends over and is stabilized by a network of hydrogen bonds and hydrophobic packing, instead of being flexible as seen in known TRPV-ARD structures. Electrophysiological recordings demonstrated that mutating key residues R225, R226, Q255, and F249 of finger 3 loop altered the channel activities and pharmacology. Taken all together, our findings show that TRPV3-ARD with characteristic finger 3 loop likely plays an important role in channel function and pharmacology.
Collapse
Affiliation(s)
- Di-Jing Shi
- Department of Neurobiology, Neuroscience Research Institute, Peking University Health Science Center, Beijing, 100191, China
| | | | | | | | | |
Collapse
|
47
|
Abstract
TRP channels constitute a large superfamily of cation channel forming proteins, all related to the gene product of the transient receptor potential (trp) locus in Drosophila. In mammals, 28 different TRP channel genes have been identified, which exhibit a large variety of functional properties and play diverse cellular and physiological roles. In this article, we provide a brief and systematic summary of expression, function, and (patho)physiological role of the mammalian TRP channels.
Collapse
Affiliation(s)
- Maarten Gees
- Laboratory Ion Channel Research and TRP Research Platform Leuven (TRPLe), KU Leuven, Campus Gasthuisberg, Leuven, Belgium
| | | | | | | |
Collapse
|
48
|
Van Voorst JR, Finzel BC. Searching for likeness in a database of macromolecular complexes. J Chem Inf Model 2013; 53:2634-47. [PMID: 24047445 DOI: 10.1021/ci4002537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A software tool and workflow based on distance geometry is presented that can be used to search for local similarity in substructures in a comprehensive database of experimentally derived macromolecular structure. The method does not rely on fold annotation, specific secondary structure assignments, or sequence homology and may be used to locate compound substructures of multiple segments spanning different macromolecules that share a queried backbone geometry. This generalized substructure searching capability is intended to allow users to play an active part in exploring the role specific substructures play in larger protein domains, quaternary assemblies of proteins, and macromolecular complexes of proteins and polynucleotides. The user may select any portion or portions of an existing structure or complex to serve as a template for searching, and other structures that share the same structural features are identified, retrieved and overlaid to emphasize substructural likeness. Matching structures may be compared using a variety of integrated tools including molecular graphics for structure visualization and matching substructure sequence logos. A number of examples are provided that illustrate how generalized substructure searching may be used to understand both the similarity, and individuality of specific macromolecular structures. Web-based access to our substructure searching services is freely available at https://drugsite.msi.umn.edu.
Collapse
Affiliation(s)
- Jeffrey R Van Voorst
- Department of Medicinal Chemistry, University of Minnesota College of Pharmacy , Minneapolis, Minnesota 55455, United States
| | | |
Collapse
|
49
|
Fecher-Trost C, Wissenbach U, Beck A, Schalkowsky P, Stoerger C, Doerr J, Dembek A, Simon-Thomas M, Weber A, Wollenberg P, Ruppert T, Middendorff R, Maurer HH, Flockerzi V. The in vivo TRPV6 protein starts at a non-AUG triplet, decoded as methionine, upstream of canonical initiation at AUG. J Biol Chem 2013; 288:16629-16644. [PMID: 23612980 DOI: 10.1074/jbc.m113.469726] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TRPV6 channels function as epithelial Ca(2+) entry pathways in the epididymis, prostate, and placenta. However, the identity of the endogenous TRPV6 protein relies on predicted gene coding regions and is only known to a certain level of approximation. We show that in vivo the TRPV6 protein has an extended N terminus. Translation initiates at a non-AUG codon, at ACG, which is decoded by methionine and which is upstream of the annotated AUG, which is not used for initiation. The in vitro properties of channels formed by the extended full-length TRPV6 proteins and the so-far annotated and smaller TRPV6 are similar, but the extended N terminus increases trafficking to the plasma membrane and represents an additional scaffold for channel assembly. The increased translation of the smaller TRPV6 cDNA version may overestimate the in vivo situation where translation efficiency may represent an additional mechanism to tightly control the TRPV6-mediated Ca(2+) entry to prevent deleterious Ca(2+) overload.
Collapse
Affiliation(s)
- Claudia Fecher-Trost
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany.
| | - Ulrich Wissenbach
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany.
| | - Andreas Beck
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany
| | - Pascal Schalkowsky
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany
| | - Christof Stoerger
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany
| | - Janka Doerr
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany
| | - Anna Dembek
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany
| | - Martin Simon-Thomas
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany
| | - Armin Weber
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany
| | - Peter Wollenberg
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany
| | - Thomas Ruppert
- Zentrum für Molekulare Biologie der Universität Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Ralf Middendorff
- Institut für Anatomie und Zellbiologie, Justus Liebig Universität Gieβen, Aulweg 123, 35385 Giessen, Germany
| | - Hans H Maurer
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany
| | - Veit Flockerzi
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany.
| |
Collapse
|
50
|
Kopic S, Geibel JP. Gastric acid, calcium absorption, and their impact on bone health. Physiol Rev 2013; 93:189-268. [PMID: 23303909 DOI: 10.1152/physrev.00015.2012] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Calcium balance is essential for a multitude of physiological processes, ranging from cell signaling to maintenance of bone health. Adequate intestinal absorption of calcium is a major factor for maintaining systemic calcium homeostasis. Recent observations indicate that a reduction of gastric acidity may impair effective calcium uptake through the intestine. This article reviews the physiology of gastric acid secretion, intestinal calcium absorption, and their respective neuroendocrine regulation and explores the physiological basis of a potential link between these individual systems.
Collapse
Affiliation(s)
- Sascha Kopic
- Department of Surgery and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|