1
|
Thenmozhi Kulasekaran N, Vanlalrovi, Subramanian L, Lee JK, Gopal D, Marimuthu J. Molecular characterization and computational analysis of a highly specific L-glutaminase from a marine bacterium Bacillus australimaris NIOT30. Sci Rep 2024; 14:26676. [PMID: 39496784 PMCID: PMC11535052 DOI: 10.1038/s41598-024-77959-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/28/2024] [Indexed: 11/06/2024] Open
Abstract
An alkaline active L-glutaminase (BALG) producing bacterium was screened and identified from seamount sediment samples of the Arabian Sea. The isolate was confirmed to be Bacillus australimaris NIOT30 based on morphological characteristics and 16 S rRNA gene sequencing. The glutaminase gene, balg was PCR amplified, cloned and expressed in E. coli BL21 (DE3) host. The molecular weight of purified BALG was estimated to be 36 kDa and the enzyme showed a specific activity of 507 ± 27 Umg-1 against L-glutamine under optimal assay conditions of pH 7.0 and temperature at 37 °C for 15 min. The enzyme showed maximum activity at pH 7 and retained 95% activity at pH 10. BALG retained a relative activity of about 82% and 45% at 45 °C and 60 °C respectively. The kinetic parameters of BALG, Km and Kcat/Km were determined to be of 210 ± 11 mM and 4.4 × 102 M s-1 respectively. Homology modeling and substrate ligand interaction studies revealed the stability of the enzyme-substrate complex. The present study highlights the characterization of a highly active L-glutaminase from B. australimaris NIOT30. Further, mutational analyses of ligand binding residues would show insights into the affinity of L-Glutaminase.
Collapse
Affiliation(s)
| | - Vanlalrovi
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Lenin Subramanian
- Marine Biotechnology Division, National Institute of Ocean technology, Pallikaranai, Chennai, 600100, Tamilnadu, India
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Dharani Gopal
- Marine Biotechnology Division, National Institute of Ocean technology, Pallikaranai, Chennai, 600100, Tamilnadu, India.
| | - Jeya Marimuthu
- Marine Biotechnology Division, National Institute of Ocean technology, Pallikaranai, Chennai, 600100, Tamilnadu, India.
| |
Collapse
|
2
|
Kumar M, Leekha A, Nandy S, Kulkarni R, Martinez-Paniagua M, Rahman Sefat KMS, Willson RC, Varadarajan N. Enzymatic depletion of circulating glutamine is immunosuppressive in cancers. iScience 2024; 27:109817. [PMID: 38770139 PMCID: PMC11103382 DOI: 10.1016/j.isci.2024.109817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/13/2024] [Accepted: 04/24/2024] [Indexed: 05/22/2024] Open
Abstract
Although glutamine addiction in cancer cells is extensively reported, there is controversy on the impact of glutamine metabolism on the immune cells within the tumor microenvironment (TME). To address the role of extracellular glutamine, we enzymatically depleted circulating glutamine using PEGylated Helicobacter pylori gamma-glutamyl transferase (PEG-GGT) in syngeneic mouse models of breast and colon cancers. PEG-GGT treatment inhibits growth of cancer cells in vitro, but in vivo it increases myeloid-derived suppressor cells (MDSCs) and has no significant impact on tumor growth. By deriving a glutamine depletion signature, we analyze diverse human cancers within the TCGA and illustrate that glutamine depletion is not associated with favorable clinical outcomes and correlates with accumulation of MDSC. Broadly, our results help clarify the integrated impact of glutamine depletion within the TME and advance PEG-GGT as an enzymatic tool for the systemic and selective depletion (no asparaginase activity) of circulating glutamine in live animals.
Collapse
Affiliation(s)
- Monish Kumar
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Ankita Leekha
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Suman Nandy
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Rohan Kulkarni
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Melisa Martinez-Paniagua
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - K. M. Samiur Rahman Sefat
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Richard C. Willson
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Navin Varadarajan
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
3
|
Jasinska W, Dindo M, Cordoba SMC, Serohijos AWR, Laurino P, Brotman Y, Bershtein S. Non-consecutive enzyme interactions within TCA cycle supramolecular assembly regulate carbon-nitrogen metabolism. Nat Commun 2024; 15:5285. [PMID: 38902266 PMCID: PMC11189929 DOI: 10.1038/s41467-024-49646-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/14/2024] [Indexed: 06/22/2024] Open
Abstract
Enzymes of the central metabolism tend to assemble into transient supramolecular complexes. However, the functional significance of the interactions, particularly between enzymes catalyzing non-consecutive reactions, remains unclear. Here, by co-localizing two non-consecutive enzymes of the TCA cycle from Bacillus subtilis, malate dehydrogenase (MDH) and isocitrate dehydrogenase (ICD), in phase separated droplets we show that MDH-ICD interaction leads to enzyme agglomeration with a concomitant enhancement of ICD catalytic rate and an apparent sequestration of its reaction product, 2-oxoglutarate. Theory demonstrates that MDH-mediated clustering of ICD molecules explains the observed phenomena. In vivo analyses reveal that MDH overexpression leads to accumulation of 2-oxoglutarate and reduction of fluxes flowing through both the catabolic and anabolic branches of the carbon-nitrogen intersection occupied by 2-oxoglutarate, resulting in impeded ammonium assimilation and reduced biomass production. Our findings suggest that the MDH-ICD interaction is an important coordinator of carbon-nitrogen metabolism.
Collapse
Affiliation(s)
- Weronika Jasinska
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Mirco Dindo
- Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Department of Medicine and Surgery, Section of Physiology and Biochemistry, University of Perugia, Perugia, Italy
| | - Sandra M C Cordoba
- Max-Planck-Institut fur Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Adrian W R Serohijos
- Departement de Biochimie, Universite de Montreal, Quebec, Canada
- Centre Robert-Cedergren en Bio-informatique et Genomique, Universite de Montreal, Quebec, Canada
| | - Paola Laurino
- Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
- Institute for Protein Research, Osaka University, Suita, Japan.
| | - Yariv Brotman
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Shimon Bershtein
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
4
|
Feng S, Aplin C, Nguyen TTT, Milano SK, Cerione RA. Filament formation drives catalysis by glutaminase enzymes important in cancer progression. Nat Commun 2024; 15:1971. [PMID: 38438397 PMCID: PMC10912226 DOI: 10.1038/s41467-024-46351-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/22/2024] [Indexed: 03/06/2024] Open
Abstract
The glutaminase enzymes GAC and GLS2 catalyze the hydrolysis of glutamine to glutamate, satisfying the 'glutamine addiction' of cancer cells. They are the targets of anti-cancer drugs; however, their mechanisms of activation and catalytic activity have been unclear. Here we demonstrate that the ability of GAC and GLS2 to form filaments is directly coupled to their catalytic activity and present their cryo-EM structures which provide a view of the conformational states essential for catalysis. Filament formation guides an 'activation loop' to assume a specific conformation that works together with a 'lid' to close over the active site and position glutamine for nucleophilic attack by an essential serine. Our findings highlight how ankyrin repeats on GLS2 regulate enzymatic activity, while allosteric activators stabilize, and clinically relevant inhibitors block, filament formation that enables glutaminases to catalyze glutaminolysis and support cancer progression.
Collapse
Affiliation(s)
- Shi Feng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Cody Aplin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Thuy-Tien T Nguyen
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Shawn K Milano
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Richard A Cerione
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA.
- Department of Molecular Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
5
|
Zhou M, Wei L, Wu C, Chen W, Tang Z. Systematic Engineering of Escherichia coli for Efficient Production of Cytidine 5'-Monophosphate. ACS OMEGA 2024; 9:6663-6668. [PMID: 38371780 PMCID: PMC10870394 DOI: 10.1021/acsomega.3c07713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/05/2024] [Accepted: 01/19/2024] [Indexed: 02/20/2024]
Abstract
Cytidine 5'-monophosphate (CMP) was widely applied in the food and pharmaceutical industries. Currently, CMP is mainly produced by enzyme catalysis. However, the starting materials for enzyme catalysis were relatively expensive. Therefore, seeking a low-cost production process for CMP was attractive. In this study, Escherichia coli (E. coli) was systematically modified to produce CMP. First, a the cytidine-producing strain was constructed by deleting cdd, rihA, rihB, and rihC. Second, the genes involved in the pyrimidine precursor competing pathway and negative regulation were deleted to increase cyti dine biosynthesis. Third, the deletion of the genes that caused the loss of CMP phosphatase activity led to the accumulation of CMP, and the overexpression of the rate-limiting step genes and feedback inhibition resistance genes greatly increased the yield of CMP. The yield of CMP was further increased to 1013.6 mg/L by blocking CMP phosphorylation. Ultimately, the yield of CMP reached 15.3 g/L in a 50 L bioreactor. Overall, the engineered E. coli with a high yield of CMP was successfully constructed and showed the potential for industrial production.
Collapse
Affiliation(s)
- Min Zhou
- Institute
of Biopharmaceuticals, School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, China
| | - Liyuan Wei
- Institute
of Biopharmaceuticals, School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, China
| | - Chongzhi Wu
- Institute
of Biopharmaceuticals, School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, China
| | - Wei Chen
- Hangzhou
Hizyme Biotech Co., Ltd., Hangzhou 310011, China
| | - Zhengju Tang
- Taizhou
Central Hospital (Taizhou University Hospital), Taizhou 318000, China
| |
Collapse
|
6
|
Adamoski D, Dias MM, Quesñay JEN, Yang Z, Zagoriy I, Steyer AM, Rodrigues CT, da Silva Bastos AC, da Silva BN, Costa RKE, de Abreu FMO, Islam Z, Cassago A, van Heel MG, Consonni SR, Mattei S, Mahamid J, Portugal RV, Ambrosio ALB, Dias SMG. Molecular mechanism of glutaminase activation through filamentation and the role of filaments in mitophagy protection. Nat Struct Mol Biol 2023; 30:1902-1912. [PMID: 37857822 DOI: 10.1038/s41594-023-01118-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 09/06/2023] [Indexed: 10/21/2023]
Abstract
Glutaminase (GLS), which deaminates glutamine to form glutamate, is a mitochondrial tetrameric protein complex. Although inorganic phosphate (Pi) is known to promote GLS filamentation and activation, the molecular basis of this mechanism is unknown. Here we aimed to determine the molecular mechanism of Pi-induced mouse GLS filamentation and its impact on mitochondrial physiology. Single-particle cryogenic electron microscopy revealed an allosteric mechanism in which Pi binding at the tetramer interface and the activation loop is coupled to direct nucleophile activation at the active site. The active conformation is prone to enzyme filamentation. Notably, human GLS filaments form inside tubulated mitochondria following glutamine withdrawal, as shown by in situ cryo-electron tomography of cells thinned by cryo-focused ion beam milling. Mitochondria with GLS filaments exhibit increased protection from mitophagy. We reveal roles of filamentous GLS in mitochondrial morphology and recycling.
Collapse
Affiliation(s)
- Douglas Adamoski
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Marilia Meira Dias
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Jose Edwin Neciosup Quesñay
- Sao Carlos Institute of Physics, University of Sao Paulo, Sao Carlos, Brazil
- Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Zhengyi Yang
- EMBL Imaging Centre, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Ievgeniia Zagoriy
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Anna M Steyer
- EMBL Imaging Centre, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Camila Tanimoto Rodrigues
- Sao Carlos Institute of Physics, University of Sao Paulo, Sao Carlos, Brazil
- Biological Sciences Department, School of Science, Purdue University, Lafayette, IN, USA
| | - Alliny Cristiny da Silva Bastos
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
- Division of Medical Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Bianca Novaes da Silva
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Renna Karoline Eloi Costa
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | | | - Zeyaul Islam
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Alexandre Cassago
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
- SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, USA
| | - Marin Gerard van Heel
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Sílvio Roberto Consonni
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Simone Mattei
- EMBL Imaging Centre, European Molecular Biology Laboratory, Heidelberg, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Rodrigo Villares Portugal
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | | | - Sandra Martha Gomes Dias
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil.
| |
Collapse
|
7
|
Feng S, Aplin C, Nguyen TTT, Milano SK, Cerione RA. Filament formation drives catalysis by glutaminase enzymes important in cancer progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.16.528860. [PMID: 36824706 PMCID: PMC9949068 DOI: 10.1101/2023.02.16.528860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The glutaminase enzymes GAC and GLS2 catalyze the hydrolysis of glutamine to glutamate, satisfying the 'glutamine addiction' of cancer cells. They are the targets of anti-cancer drugs; however, their mechanisms of activation and catalytic activity have been unclear. Here we demonstrate that the ability of GAC and GLS2 to form filaments is directly coupled to their catalytic activity and present their cryo-EM structures which provide an unprecedented view of the conformational states essential for catalysis. Filament formation guides an 'activation loop' to assume a specific conformation that works together with a 'lid' to close over the active site and position glutamine for nucleophilic attack by an essential serine. Our findings highlight how ankyrin repeats on GLS2 regulate enzymatic activity, while allosteric activators stabilize, and clinically relevant inhibitors block, filament formation that enables glutaminases to catalyze glutaminolysis and support cancer progression.
Collapse
Affiliation(s)
- Shi Feng
- Department of Chemistry and Chemical Biology, Cornell University,
Ithaca, New York, 14853
| | - Cody Aplin
- Department of Chemistry and Chemical Biology, Cornell University,
Ithaca, New York, 14853
| | - Thuy-Tien T. Nguyen
- Department of Chemistry and Chemical Biology, Cornell University,
Ithaca, New York, 14853
| | - Shawn K. Milano
- Department of Chemistry and Chemical Biology, Cornell University,
Ithaca, New York, 14853
| | - Richard A. Cerione
- Department of Chemistry and Chemical Biology, Cornell University,
Ithaca, New York, 14853
- Department of Molecular Medicine, Cornell University, Ithaca, New
York, 14853
| |
Collapse
|
8
|
Rumping L, Pouwels PJW, Wolf NI, Rehmann H, Wamelink MMC, Waisfisz Q, Jans JJM, Prinsen HCMT, van de Kamp JM, van Hasselt PM. A second case of glutaminase hyperactivity: Expanding the phenotype with epilepsy. JIMD Rep 2023; 64:217-222. [PMID: 37151363 PMCID: PMC10159865 DOI: 10.1002/jmd2.12359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 02/27/2023] Open
Abstract
Glutaminase (GLS) hyperactivity was first described in 2019 in a patient with profound developmental delay and infantile cataract. Here, we describe a 4-year-old boy with GLS hyperactivity due to a de novo heterozygous missense variant in GLS, detected by trio whole exome sequencing. This boy also exhibits developmental delay without dysmorphic features, but does not have cataract. Additionally, he suffers from epilepsy with tonic clonic seizures. In line with the findings in the previously described patient with GLS hyperactivity, in vivo 3 T magnetic resonance spectroscopy (MRS) of the brain revealed an increased glutamate/glutamine ratio. This increased ratio was also found in urine with UPLC-MS/MS, however, inconsistently. This case indicates that the phenotypic spectrum evoked by GLS hyperactivity may include epilepsy. Clarifying this phenotypic spectrum is of importance for the prognosis and identification of these patients. The combination of phenotyping, genetic testing, and metabolic diagnostics with brain MRS and in urine is essential to identify new patients with GLS hyperactivity and to further extend the phenotypic spectrum of this disease.
Collapse
Affiliation(s)
- Lynne Rumping
- Department of Human GeneticsAmsterdam UMCAmsterdamthe Netherlands
| | - Petra J. W. Pouwels
- Department of Radiology and Nuclear Medicine and Amsterdam NeuroscienceAmsterdam UMCAmsterdamthe Netherlands
| | - Nicole I. Wolf
- Department of Child Neurology, Amsterdam Leukodystrophy CenterEmma Children's Hospital, Amsterdam UMCAmsterdamthe Netherlands
- Amsterdam Neuroscience, Cellular and Molecular MechanismsVrije Universiteit AmsterdamAmsterdamthe Netherlands
| | - Holger Rehmann
- Department of Energy and BiotechnologyFlensburg University of Applied SciencesFlensburgGermany
| | - Mirjam M. C. Wamelink
- Department of Clinical Chemistry, Metabolic Unit, Amsterdam Gastroenterology Endocrinology MetabolismAmsterdam UMC location Vrije UniversiteitAmsterdamthe Netherlands
| | - Quinten Waisfisz
- Department of Human GeneticsAmsterdam UMCAmsterdamthe Netherlands
| | - Judith J. M. Jans
- Department of Genetics, Section Metabolic DiagnosticsUMC UtrechtUtrechtthe Netherlands
| | | | | | - Peter M. van Hasselt
- Department of Genetics, Section Metabolic DiagnosticsUMC UtrechtUtrechtthe Netherlands
| |
Collapse
|
9
|
Cordovil K. Glutamine and sickle cell disease in Brazilian scenario. THE NORTH AFRICAN JOURNAL OF FOOD AND NUTRITION RESEARCH 2023; 7:43-51. [DOI: 10.51745/najfnr.7.15.43-51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/27/2023] [Indexed: 08/05/2024]
Affiliation(s)
- Karen Cordovil
- Oswaldo Cruz Foundation, Sergio Arouca National School of Public Health, Postgraduate Epidemiology Program in Public Health, Leopoldo Bulhões street, 1480 - Manguinhos, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Watanabe Y, Aoki W, Ueda M. Ammonia Production Using Bacteria and Yeast toward a Sustainable Society. Bioengineering (Basel) 2023; 10:82. [PMID: 36671654 PMCID: PMC9854848 DOI: 10.3390/bioengineering10010082] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Ammonia is an important chemical that is widely used in fertilizer applications as well as in the steel, chemical, textile, and pharmaceutical industries, which has attracted attention as a potential fuel. Thus, approaches to achieve sustainable ammonia production have attracted considerable attention. In particular, biological approaches are important for achieving a sustainable society because they can produce ammonia under mild conditions with minimal environmental impact compared with chemical methods. For example, nitrogen fixation by nitrogenase in heterogeneous hosts and ammonia production from food waste using microorganisms have been developed. In addition, crop production using nitrogen-fixing bacteria has been considered as a potential approach to achieving a sustainable ammonia economy. This review describes previous research on biological ammonia production and provides insights into achieving a sustainable society.
Collapse
Affiliation(s)
- Yukio Watanabe
- Biotechnology Research Center, Department of Biotechnology, Toyama Prefectural University, Toyama 939-0398, Japan
| | - Wataru Aoki
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8501, Japan
| | - Mitsuyoshi Ueda
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
11
|
Kalita A, Mishra RK, Kumar V, Arora A, Dutta D. An Intrinsic Alkalization Circuit Turns on mntP Riboswitch under Manganese Stress in Escherichia coli. Microbiol Spectr 2022; 10:e0336822. [PMID: 36190429 PMCID: PMC9603457 DOI: 10.1128/spectrum.03368-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/16/2022] [Indexed: 01/04/2023] Open
Abstract
The trace metal manganese in excess affects iron-sulfur cluster and heme-protein biogenesis, eliciting cellular toxicity. The manganese efflux protein MntP is crucial to evading manganese toxicity in bacteria. Recently, two Mn-sensing riboswitches upstream of mntP and alx in Escherichia coli have been reported to mediate the upregulation of their expression under manganese shock. As the alx riboswitch is also responsive to alkaline shock administered externally, it is intriguing whether the mntP riboswitch is also responsive to alkaline stress. Furthermore, how both manganese and alkaline pH simultaneously regulate these two riboswitches under physiological conditions is a puzzle. Using multiple approaches, we show that manganese shock activated glutamine synthetase (GlnA) and glutaminases (GlsA and GlsB) to spike ammonia production in E. coli. The elevated ammonia intrinsically alkalizes the cytoplasm. We establish that this alkalization under manganese stress is crucial for attaining the highest degree of riboswitch activation. Additional studies showed that alkaline pH promotes a 17- to 22-fold tighter interaction between manganese and the mntP riboswitch element. Our study uncovers a physiological linkage between manganese efflux and pH homeostasis that mediates enhanced manganese tolerance. IMPORTANCE Riboswitch RNAs are cis-acting elements that can adopt alternative conformations in the presence or absence of a specific ligand(s) to modulate transcription termination or translation initiation processes. In the present work, we show that manganese and alkaline pH are both necessary for maximal mntP riboswitch activation to mitigate the manganese toxicity. This study bridges the gap between earlier studies that separately emphasize the importance of alkaline pH and manganese in activating the riboswitches belonging to the yybP-ykoY family. This study also ascribes a physiological relevance as to how manganese can rewire cellular physiology to render cytoplasmic pH alkaline for its homeostasis.
Collapse
Affiliation(s)
- Arunima Kalita
- CSIR Institute of Microbial Technology, Chandigarh, India
| | | | - Vineet Kumar
- CSIR Institute of Microbial Technology, Chandigarh, India
| | - Amit Arora
- CSIR Institute of Microbial Technology, Chandigarh, India
| | - Dipak Dutta
- CSIR Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
12
|
L-Glutamine-, peptidyl- and protein-glutaminases: structural features and applications in the food industry. World J Microbiol Biotechnol 2022; 38:204. [PMID: 36002753 DOI: 10.1007/s11274-022-03391-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/15/2022] [Indexed: 10/15/2022]
Abstract
L-Glutaminases are enzymes that catalyze the cleavage of the gamma-amido bond of L-glutamine residues, producing ammonia and L-glutamate. These enzymes have several applications in food and pharmaceutical industries. However, the L-glutaminases that hydrolyze free L-glutamine (L-glutamine glutaminases, EC 3.5.1.2) have different structures and properties with respect to the L-glutaminases that hydrolyze the same amino acid covalently bound in peptides (peptidyl glutaminases, EC 3.5.1.43) and proteins (protein-glutamine glutaminase, EC 3.5.1.44). In the food industry, L-glutamine glutaminases are applied to enhance the flavor of foods, whereas protein glutaminases are useful to improve the functional properties of proteins. This review will focus on structural backgrounds and differences between these enzymes, the methodology available to measure the activity as well as strengths and limitations. Production methods, applications, and challenges in the food industry will be also discussed. This review will provide useful information to search and identify the suitable L-glutaminase that best fits to the intended application.
Collapse
|
13
|
Simay S, Akbarzadeh-Khiavi M, Pourseif MM, Barar J, Safary A, Omidi Y. Recombinant production and characterization of L-glutaminase (glsA) as a promiscuity therapeutic enzyme. Appl Microbiol Biotechnol 2022; 106:5511-5524. [PMID: 35876873 DOI: 10.1007/s00253-022-12058-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/14/2022] [Accepted: 06/28/2022] [Indexed: 11/02/2022]
Abstract
Because of the therapeutical impacts of hydrolytic enzymes in different diseases, in particular malignancies, we aimed to produce a recombinant putative L-glutaminase (GLS ASL-1) from a recently characterized halo-thermotolerant Bacillus sp. SL-1. For this purpose, the glsA gene was identified and efficiently overexpressed in the Origami™ B (DE3) strain. The yield of the purified GLS ASL-1 was ~ 20 mg/L, indicating a significant expression of recombinant enzyme in the Origami. The enzyme activity assay revealed a significant hydrolytic effect of the recombinant GLS ASL-1 on L-asparagine (Asn) (i.e., Km 39.8 μM, kcat 19.9 S-1) with a minimal affinity for L-glutamine (Gln). The GLS ASL-1 significantly suppressed the growth of leukemic Jurkat cells through apoptosis induction (47.5%) in the IC50 dosage of the enzyme. The GLS ASL-1 could also change the Bax/Bcl2 expression ratio, indicating its apoptotic effect on cancer cells. The in silico analysis was conducted to predict structural features related to the histidine-tag exposure in the N- or C-terminal of the recombinant GLS ASL-1. In addition, molecular docking simulation for substrate specificity revealed a greater binding affinity of Asn to the enzyme binding-site residues than Gln, which was confirmed in experimental procedures as well. In conclusion, the current study introduced a recombinant GLS ASL-1 with unique functional and structural features, highlighting its potential pharmaceutical and medical importance. GLS ASL-1 represents the first annotated enzyme from Bacillus with prominent asparaginase activity, which can be considered for developing alternative enzymes in therapeutic applications. KEY POINTS: • Hydrolytic enzymes have critical applications in different types of human malignancies. • A recombinant L-glutaminase (GLS ASL-1) was produced from halo-thermotolerant Bacillus sp. SL-1. • GLS ASL-1 displayed a marked hydrolytic activity on L-asparagine compared to the L-glutamine. • GLS ASL-1 with significant substrate promiscuity may be an alternative for developing novel pharmaceuticals.
Collapse
Affiliation(s)
- Shayan Simay
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Akbarzadeh-Khiavi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad M Pourseif
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azam Safary
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328, USA.
| |
Collapse
|
14
|
A Fast and Label-Free Potentiometric Method for Direct Detection of Glutamine with Silicon Nanowire Biosensors. BIOSENSORS 2022; 12:bios12060368. [PMID: 35735517 PMCID: PMC9221423 DOI: 10.3390/bios12060368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022]
Abstract
In this paper, a potentiometric method is used for monitoring the concentration of glutamine in the bioprocess by employing silicon nanowire biosensors. Just one hydrolyzation reaction was used, which is much more convenient compared with the two-stage reactions in the published papers. For the silicon nanowire biosensor, the Al2O3 sensing layer provides a highly sensitive to solution-pH, which has near-Nernstian sensitivity. The sensitive region to detect glutamine is from ≤40 μM to 20 mM. The Sigmoidal function was used to model the pH-signal variation versus the glutamine concentration. Compared with the amperometric methods, a consistent result from different devices could be directly obtained. It is a fast and direct method achieved with our real-time setup. Also, it is a label-free method because just the pH variation of the solution is monitored. The obtained results show the feasibility of the potentiometric method for monitoring the glutamine concentrations in fermentation processes. Our approach in this paper can be applied to various analytes.
Collapse
|
15
|
Amobonye A, Singh S, Mukherjee K, Jobichen C, Qureshi IA, Pillai S. Structural and functional insights into fungal glutaminase using a computational approach. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Shimada A, Ueno H, Inagaki M, Yoshimitsu H. Glutaminase inhibitory activity of umbelliferone isolated from kabosu ( Citrus sphaerocarpa Hort. ex Tanaka). Nat Prod Res 2022; 36:605-609. [DOI: 10.1080/14786419.2020.1788553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Atsumi Shimada
- Division of Food and Nutrition, Nakamura Gakuen University Junior College, Fukuoka, Japan
| | - Hiroshi Ueno
- Department of Medical Technology, Kawasaki University of Medical Welfare, Okayama, Japan
| | - Masanori Inagaki
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Yasuda Women’s University, Hiroshima, Japan
| | - Hitoshi Yoshimitsu
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| |
Collapse
|
17
|
Loch JI, Imiolczyk B, Sliwiak J, Wantuch A, Bejger M, Gilski M, Jaskolski M. Crystal structures of the elusive Rhizobium etli L-asparaginase reveal a peculiar active site. Nat Commun 2021; 12:6717. [PMID: 34795296 PMCID: PMC8602277 DOI: 10.1038/s41467-021-27105-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/01/2021] [Indexed: 12/04/2022] Open
Abstract
Rhizobium etli, a nitrogen-fixing bacterial symbiont of legume plants, encodes an essential L-asparaginase (ReAV) with no sequence homology to known enzymes with this activity. High-resolution crystal structures of ReAV show indeed a structurally distinct, dimeric enzyme, with some resemblance to glutaminases and β-lactamases. However, ReAV has no glutaminase or lactamase activity, and at pH 9 its allosteric asparaginase activity is relatively high, with Km for L-Asn at 4.2 mM and kcat of 438 s-1. The active site of ReAV, deduced from structural comparisons and confirmed by mutagenesis experiments, contains a highly specific Zn2+ binding site without a catalytic role. The extensive active site includes residues with unusual chemical properties. There are two Ser-Lys tandems, all connected through a network of H-bonds to the Zn center, and three tightly bound water molecules near Ser48, which clearly indicate the catalytic nucleophile.
Collapse
Affiliation(s)
- Joanna I Loch
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Barbara Imiolczyk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Joanna Sliwiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Anna Wantuch
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Magdalena Bejger
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Miroslaw Gilski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
| | - Mariusz Jaskolski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland.
| |
Collapse
|
18
|
Kambhampati S, Pajak A, Marsolais F. Evidence that class I glutamine amidotransferase, GAT1_2.1, acts as a glutaminase in roots of Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 312:111033. [PMID: 34620437 DOI: 10.1016/j.plantsci.2021.111033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
The glutamine amidotransferase gene GAT1_2.1 is a marker of N status in Arabidopsis root, linked to a shoot branching phenotype. The protein has an N-terminal glutamine amidotransferase domain and a C-terminal extension with no recognizable protein domain. A purified, recombinant version of the glutamine amidotransferase domain was catalytically active as a glutaminase, with apparent Km value of 0.66 mM and Vmax value of 2.6 μkatal per mg. This form complemented an E. coli glutaminase mutant, ΔYneH. Spiking of root metabolite extracts with either the N-terminal or full length form purified from transformed tobacco leaves led to reciprocal changes in glutamine and ammonia concentration. No product derived from amido-15N-labeled glutamine was identified. Visualization of GAT1_2.1-YPF transiently expressed in tobacco leaves confirmed its mitochondrial localization. gat1_2.1 exhibited reduced growth as compared with wild-type seedlings on media with glutamine as sole nitrogen source. Results of targeted metabolite profiling pointed to a possible activation of the GABA shunt in the mutant following glutamine treatments, with reduced levels of glutamic acid, 2-oxoglutarate and γ-aminobutyric acid and increased levels of succinic acid. GAT1_2.1 may act as a glutaminase, in concert with Glutamate Dehydrogenase 2, to hydrolyze glutamine and channel 2-oxoglutarate to the TCA cycle under high nitrogen conditions.
Collapse
Affiliation(s)
- Shrikaar Kambhampati
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario, N5V 4T3, Canada; Department of Biology, University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 5B7, Canada.
| | - Aga Pajak
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario, N5V 4T3, Canada.
| | - Frédéric Marsolais
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario, N5V 4T3, Canada; Department of Biology, University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 5B7, Canada.
| |
Collapse
|
19
|
Ferreira FV, Herrmann-Andrade AM, Binolfi A, Calabrese CD, Mac Cormack WP, Musumeci MA. Characteristics of a Cold-Adapted L-glutaminase with Potential Applications in the Food Industry. Appl Biochem Biotechnol 2021; 193:3121-3138. [PMID: 34085170 DOI: 10.1007/s12010-021-03596-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 05/28/2021] [Indexed: 11/24/2022]
Abstract
L-glutaminases are enzymes that catalyze the hydrolysis of L-glutamine, producing L-glutamate and ammonium, and they have promising applications in pharmaceutical and food industries. Several investigations have focused on thermo-tolerant L-glutaminases; however, studies on cold-adapted L-glutaminases have not been reported. These enzymes could be useful in the food industry because they display high catalytic activity at low and room temperatures, a valuable feature in processes aimed to save energy. Besides, they can be easily inactivated by warming and are suitable to prevent decomposition of thermo-labile compounds. The objectives of this work were to characterize the L-glutaminase from the Antarctic bacterium Bizionia argentinensis and analyze its capability as flavor enhancer of protein hydrolysates. The enzyme was heterologously expressed and purified from Escherichia coli, obtaining optimum and homogeneous yields. Kinetic parameters Km and Vmax were located at the lower and upper range of values reported for L-glutaminases, suggesting high catalytic efficiency. Optimum temperature was 25 °C, and the enzyme conserved around 90% of maximum activity at 0 °C and in presence of 15% (v/v) ethanol and methanol. In saline conditions, the enzyme conserved around 80% of maximum activity in 3 M NaCl. Analysis of structural model suggested cold-adaptation features such as low Arg/(Arg+Lys) ratio and fewer intramolecular interactions than mesophilic and thermo-tolerant L-glutaminases. This work provides a novel cold-adapted L-glutaminase with promising features in the food industry.
Collapse
Affiliation(s)
- Flavia V Ferreira
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Centro de Investigaciones y Transferencia de Entre Ríos (CITER), Monseñor Tavella 1450 (E3202 BCJ), Concordia, Entre Ríos, Argentina
| | - Andreina M Herrmann-Andrade
- Facultad de Ciencias de la Alimentación, Universidad Nacional de Entre Ríos, Monseñor Tavella 1450 (E3202 BCJ), Concordia, Entre Ríos, Argentina
| | - Andrés Binolfi
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Instituto de Biología Molecular y Celular de Rosario (IBR), Ocampo y Esmeralda (S2000EZP), Rosario, Santa Fe, Argentina
- Plataforma Argentina de Biología Estructural y Metabolómica (PLABEM), Ocampo y Esmeralda, 2000, Rosario, Argentina
| | - Carla D Calabrese
- Facultad de Ciencias de la Alimentación, Universidad Nacional de Entre Ríos, Monseñor Tavella 1450 (E3202 BCJ), Concordia, Entre Ríos, Argentina
| | - Walter P Mac Cormack
- Instituto NANOBIOTEC - Cátedra de Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, 956 (C1113AAZ), Junín, Buenos Aires, Argentina
- Instituto Antártico Argentino, 25 de Mayo 1143 (B1650HMK), San Martín, Provincia de Buenos Aires, Argentina
| | - Matías A Musumeci
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Centro de Investigaciones y Transferencia de Entre Ríos (CITER), Monseñor Tavella 1450 (E3202 BCJ), Concordia, Entre Ríos, Argentina.
- Facultad de Ciencias de la Alimentación, Universidad Nacional de Entre Ríos, Monseñor Tavella 1450 (E3202 BCJ), Concordia, Entre Ríos, Argentina.
| |
Collapse
|
20
|
Chen X, Fu W, Luo Y, Cui C, Suppavorasatit I, Liang L. Protein deamidation to produce processable ingredients and engineered colloids for emerging food applications. Compr Rev Food Sci Food Saf 2021; 20:3788-3817. [PMID: 34056849 DOI: 10.1111/1541-4337.12759] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/12/2021] [Accepted: 03/29/2021] [Indexed: 12/28/2022]
Abstract
With the ever-increasing demands for functional and sustainable foods from the general public, there is currently a paradigm shift in the food industry toward the production of novel protein-based diet. Food scientists are therefore motivated to search for natural protein sources and innovative technologies to modify their chemical structure for desirable functionality and thus utilization. Deamidation is a viable, efficient, and attractive approach for modifying proteins owing to its ease of operating, specificity, and cost-effective processes. Over the past three decades, the knowledge of protein deamidation for food applications has evolved drastically, including the development of novel approaches for deamidation, such as protein-glutaminase and ion exchange resin, and their practices in new protein substrate. Thanks to deamidation, enhanced functionalities of food proteins from cereals, legumes, milk, oil seeds and others, and thereby their processabilities as food ingredients have been achieved. Moreover, deamidated proteins have been used to fabricate engineered food colloids, including self-assembled protein particles, protein-metallic complexes, and protein-carbohydrate complexes, which have demonstrated tailored physicochemical properties to modulate oral perception, improve gastrointestinal digestion and bioavailability, and protect and/or deliver bioactive nutrients. Novel bioactivity, altered digestibility, and varied allergenicity of deamidated proteins are increasingly recognized. Therefore, deamidated proteins with novel techno-functional and biological properties hold both promise and challenges for future food applications, and a comprehensive review on this area is critically needed to update our knowledge and provide a better understanding on the protein deamidation and its emerging applications.
Collapse
Affiliation(s)
- Xing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenyan Fu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yangchao Luo
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Chun Cui
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | | | - Li Liang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
21
|
Shimada A, Ueno H, Inagaki M. Glutaminase inhibitory activities of pentacyclic triterpenes isolated from Thymus vulgaris L. Nat Prod Res 2021; 36:2864-2868. [PMID: 33957830 DOI: 10.1080/14786419.2021.1921766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Glutaminase is an important target that is often over expressed in neurodegenerative and lifestyle related diseases but few effective inhibitors of this enzyme have yet reached clinical trials. Ursolic acid (1), betulinic acid (2) and oleanolic acid (3), three pentacyclic triterpene acids, have been isolated from the leaves of Thymus vulgaris L. Enzyme inhibition experiments demonstrated their inhibitory effects against glutaminase activity. Compound 2 significantly inhibited the glutaminase activity with IC50 of 0.31 mM, stronger than the positive control 6-diazo-5-oxo-L-norleucine (DON) with IC50 of 0.57 mM. Compound 2 may serve as a potential lead compound for the prevention and treatment of neurodegenerative diseases and lifestyle related diseases by targeting glutaminase. This is the first report on glutaminase inhibitory activities of 1-3 isolated from T. vulgaris L.
Collapse
Affiliation(s)
- Atsumi Shimada
- Division of Food and Nutrition, Nakamura Gakuen University Junior College, Fukuoka, Japan
| | - Hiroshi Ueno
- Department of Medical Technology, Kawasaki University of Medical Welfare, Okayama, Japan
| | - Masanori Inagaki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan
| |
Collapse
|
22
|
Richts B, Lentes S, Poehlein A, Daniel R, Commichau FM. A Bacillus subtilis ΔpdxT mutant suppresses vitamin B6 limitation by acquiring mutations enhancing pdxS gene dosage and ammonium assimilation. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:218-233. [PMID: 33559288 DOI: 10.1111/1758-2229.12936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Pyridoxal-5'-phosphate (PLP), the biologically active form of vitamin B6, serves as a cofactor for many enzymes. The Gram-positive model bacterium Bacillus subtilis synthesizes PLP via the PdxST enzyme complex, consisting of the PdxT glutaminase and the PdxS PLP synthase subunits, respectively. PdxT converts glutamine to glutamate and ammonia of which the latter is channelled to PdxS. At high extracellular ammonium concentrations, the PdxS PLP synthase subunit does not depend on PdxT. Here, we assessed the potential of a B. subtilis ΔpdxT mutant to adapt to PLP limitation at the genome level. The majority of ΔpdxT suppressors had amplified a genomic region containing the pdxS gene. We also identified mutants having acquired as yet undescribed mutations in ammonium assimilation genes, indicating that the overproduction of PdxS and the NrgA ammonium transporter partially relieve vitamin B6 limitation in a ΔpdxT mutant when extracellular ammonium is scarce. Furthermore, we found that PdxS positively affects complex colony formation in B. subtilis. The catalytic mechanism of the PdxS PLP synthase subunit could be the reason for the limited evolution of the enzyme and why we could not identify a PdxS variant producing PLP independently of PdxT at low ammonium concentrations.
Collapse
Affiliation(s)
- Björn Richts
- Department of General Microbiology, Institute for Microbiology and Genetics, University of Goettingen, Göttingen, 37077, Germany
| | - Sabine Lentes
- Department of General Microbiology, Institute for Microbiology and Genetics, University of Goettingen, Göttingen, 37077, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology, Institute for Microbiology and Genetics, University of Goettingen, Göttingen, 37077, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology, Institute for Microbiology and Genetics, University of Goettingen, Göttingen, 37077, Germany
| | - Fabian M Commichau
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, 01968, Germany
| |
Collapse
|
23
|
da Silva LS, Doonan LB, Pessoa A, de Oliveira MA, Long PF. Structural and functional diversity of asparaginases: Overview and recommendations for a revised nomenclature. Biotechnol Appl Biochem 2021; 69:503-513. [PMID: 33624365 DOI: 10.1002/bab.2127] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/09/2021] [Indexed: 12/19/2022]
Abstract
Asparaginases (ASNases) are a large and structurally diverse group of enzymes ubiquitous amongst archaea, bacteria and eukaryotes, that catalyze hydrolysis of asparagine to aspartate and ammonia. Bacterial ASNases are important biopharmaceuticals for the treatment of acute lymphoblastic leukemia, although some patients experience adverse allergic side effects during treatment with these protein therapeutics. ASNases are currently divided into three families: plant-type ASNases, Rhizobium etli-type ASNases and bacterial-type ASNases. This system is outdated as both bacterial-type and plant-type families also include archaeal, bacterial and eukaryotic enzymes, each with their own distinct characteristics. Herein, phylogenetic studies allied to tertiary structural analyses are described with the aim of proposing a revised and more robust classification system that considers the biochemical diversity of ASNases. Accordingly, based on distinct peptide domains, phylogenetic data, structural analysis and functional characteristics, we recommend that ASNases now be divided into three new distinct classes containing subgroups according to structural and functional aspects. Using this new classification scheme, 25 ASNases were identified as candidates for future new lead discovery.
Collapse
Affiliation(s)
- Leonardo Schultz da Silva
- Instituto de Biociências, Universidade Estadual Paulista (UNESP), São Vicente, São Paulo, Brazil.,Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, UK
| | - Liam B Doonan
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, UK
| | - Adalberto Pessoa
- Departamento de Tecnologia Tecnologia Bioquímico-Farmacêuticas, Faculdade de Ciencias Farmaceuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | | | - Paul F Long
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, UK.,Departamento de Tecnologia Tecnologia Bioquímico-Farmacêuticas, Faculdade de Ciencias Farmaceuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
24
|
A new l-glutaminase from Kosakonia sp.: extracellular production, gene identification and structural analysis. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-020-00682-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Balmer ML, Ma EH, Thompson AJ, Epple R, Unterstab G, Lötscher J, Dehio P, Schürch CM, Warncke JD, Perrin G, Woischnig AK, Grählert J, Löliger J, Assmann N, Bantug GR, Schären OP, Khanna N, Egli A, Bubendorf L, Rentsch K, Hapfelmeier S, Jones RG, Hess C. Memory CD8 + T Cells Balance Pro- and Anti-inflammatory Activity by Reprogramming Cellular Acetate Handling at Sites of Infection. Cell Metab 2020; 32:457-467.e5. [PMID: 32738204 DOI: 10.1016/j.cmet.2020.07.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 04/21/2020] [Accepted: 07/12/2020] [Indexed: 12/31/2022]
Abstract
Serum acetate increases upon systemic infection. Acutely, assimilation of acetate expands the capacity of memory CD8+ T cells to produce IFN-γ. Whether acetate modulates memory CD8+ T cell metabolism and function during pathogen re-encounter remains unexplored. Here we show that at sites of infection, high acetate concentrations are being reached, yet memory CD8+ T cells shut down the acetate assimilating enzymes ACSS1 and ACSS2. Acetate, being thus largely excluded from incorporation into cellular metabolic pathways, now had different effects, namely (1) directly activating glutaminase, thereby augmenting glutaminolysis, cellular respiration, and survival, and (2) suppressing TCR-triggered calcium flux, and consequently cell activation and effector cell function. In vivo, high acetate abundance at sites of infection improved pathogen clearance while reducing immunopathology. This indicates that, during different stages of the immune response, the same metabolite-acetate-induces distinct immunometabolic programs within the same cell type.
Collapse
Affiliation(s)
- Maria L Balmer
- Department of Biomedicine, Immunobiology, University of Basel, 4031 Basel, Switzerland.
| | - Eric H Ma
- Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, MI, USA; Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada; Department of Physiology, McGill University, Montreal, QC, Canada
| | - Andrew J Thompson
- Department of Medicine, CITIID, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Raja Epple
- Department of Biomedicine, Immunobiology, University of Basel, 4031 Basel, Switzerland
| | - Gunhild Unterstab
- Department of Biomedicine, Immunobiology, University of Basel, 4031 Basel, Switzerland
| | - Jonas Lötscher
- Department of Biomedicine, Immunobiology, University of Basel, 4031 Basel, Switzerland
| | - Philippe Dehio
- Department of Biomedicine, Immunobiology, University of Basel, 4031 Basel, Switzerland
| | - Christian M Schürch
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, USA
| | - Jan D Warncke
- Department of Biomedicine, Immunobiology, University of Basel, 4031 Basel, Switzerland
| | - Gaëlle Perrin
- Department of Biomedicine, Immunobiology, University of Basel, 4031 Basel, Switzerland
| | - Anne-Kathrin Woischnig
- Department of Biomedicine, Laboratory of Infection Biology, University of Basel and University Hospital Basel, 4031 Basel, Switzerland
| | - Jasmin Grählert
- Department of Biomedicine, Immunobiology, University of Basel, 4031 Basel, Switzerland
| | - Jordan Löliger
- Department of Biomedicine, Immunobiology, University of Basel, 4031 Basel, Switzerland
| | - Nadine Assmann
- Department of Biomedicine, Immunobiology, University of Basel, 4031 Basel, Switzerland
| | - Glenn R Bantug
- Department of Biomedicine, Immunobiology, University of Basel, 4031 Basel, Switzerland
| | - Olivier P Schären
- Institute for Infectious Diseases, University of Bern, 3010 Bern, Switzerland
| | - Nina Khanna
- Department of Biomedicine, Laboratory of Infection Biology, University of Basel and University Hospital Basel, 4031 Basel, Switzerland
| | - Adrian Egli
- Clinical Microbiology, University Hospital Basel, 4031 Basel, Switzerland; Applied Microbiology Research, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Lukas Bubendorf
- Institute for Pathology, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Katharina Rentsch
- Department of Laboratory Medicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | | | - Russell G Jones
- Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, MI, USA; Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada; Department of Physiology, McGill University, Montreal, QC, Canada
| | - Christoph Hess
- Department of Biomedicine, Immunobiology, University of Basel, 4031 Basel, Switzerland; Department of Medicine, CITIID, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK.
| |
Collapse
|
26
|
Zhu J, Yang W, Wang B, Liu Q, Zhong X, Gao Q, Liu J, Huang J, Lin B, Tao Y. Metabolic engineering of Escherichia coli for efficient production of L-alanyl-L-glutamine. Microb Cell Fact 2020; 19:129. [PMID: 32527330 PMCID: PMC7291740 DOI: 10.1186/s12934-020-01369-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 05/16/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND L-Alanyl-L-glutamine (AQ) is a functional dipeptide with high water solubility, good thermal stability and high bioavailability. It is widely used in clinical treatment, post-operative rehabilitation, sports health care and other fields. AQ is mainly produced via chemical synthesis which is complicated, time-consuming, labor-intensive, and have a low yield accompanied with the generation of by-products. It is therefore highly desirable to develop an efficient biotechnological process for the industrial production of AQ. RESULTS A metabolically engineered E. coli strain for AQ production was developed by over-expressing L-amino acid α-ligase (BacD) from Bacillus subtilis, and inactivating the peptidases PepA, PepB, PepD, and PepN, as well as the dipeptide transport system Dpp. In order to use the more readily available substrate glutamic acid, a module for glutamine synthesis from glutamic acid was constructed by introducing glutamine synthetase (GlnA). Additionally, we knocked out glsA-glsB to block the first step in glutamine metabolism, and glnE-glnB involved in the ATP-dependent addition of AMP/UMP to a subunit of glutamine synthetase, which resulted in increased glutamine supply. Then the glutamine synthesis module was combined with the AQ synthesis module to develop the engineered strain that uses glutamic acid and alanine for AQ production. The expression of BacD and GlnA was further balanced to improve AQ production. Using the final engineered strain p15/AQ10 as a whole-cell biocatalyst, 71.7 mM AQ was produced with a productivity of 3.98 mM/h and conversion rate of 71.7%. CONCLUSION A metabolically engineered strain for AQ production was successfully developed via inactivation of peptidases, screening of BacD, introduction of glutamine synthesis module, and balancing the glutamine and AQ synthesis modules to improve the yield of AQ. This work provides a microbial cell factory for efficient production of AQ with industrial potential.
Collapse
Affiliation(s)
- Jiangming Zhu
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Wei Yang
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Bohua Wang
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Qun Liu
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiaotong Zhong
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Quanxiu Gao
- National Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, 350117 Fujian People’s Republic of China
| | - Jiezheng Liu
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jianzhong Huang
- National Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, 350117 Fujian People’s Republic of China
| | - Baixue Lin
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yong Tao
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
27
|
Watanabe Y, Kuroda K, Tatemichi Y, Nakahara T, Aoki W, Ueda M. Construction of engineered yeast producing ammonia from glutamine and soybean residues (okara). AMB Express 2020; 10:70. [PMID: 32296960 PMCID: PMC7158961 DOI: 10.1186/s13568-020-01011-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/07/2020] [Indexed: 11/10/2022] Open
Abstract
Ammonia is an essential substance for agriculture and the chemical industry. The intracellular production of ammonia in yeast (Saccharomyces cerevisiae) by metabolic engineering is difficult because yeast strongly assimilates ammonia, and the knockout of genes enabling this assimilation is lethal. Therefore, we attempted to produce ammonia outside the yeast cells by displaying a glutaminase (YbaS) from Escherichia coli on the yeast cell surface. YbaS-displaying yeast successfully produced 3.34 g/L ammonia from 32.6 g/L glutamine (83.2% conversion rate), providing it at a higher yield than in previous studies. Next, using YbaS-displaying yeast, we also succeeded in producing ammonia from glutamine in soybean residues (okara) produced as food waste from tofu production. Therefore, ammonia production outside cells by displaying ammonia-lyase on the cell surface is a promising strategy for producing ammonia from food waste as a novel energy resource, thereby preventing food loss.
Collapse
|
28
|
Novel halo- and thermo-tolerant Cohnella sp. A01 L-glutaminase: heterologous expression and biochemical characterization. Sci Rep 2019; 9:19062. [PMID: 31836796 PMCID: PMC6910923 DOI: 10.1038/s41598-019-55587-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 11/26/2019] [Indexed: 11/17/2022] Open
Abstract
L-glutaminase importance to use in the food industry and medicine has attracted much attention. Enzymes stability has always been a challenge while working with them. We heterologously expressed and characterized a novel stable L-glutaminase from an extremophile bacterium (Cohnella sp. A01, PTCC No: 1921). Km, Vmax, catalytic efficiency and specific activity of rSAM were respectively 1.8 mM, 49 µmol/min, 1851 1/(S.mM) and 9.2 IU/mg. Activation energy for substrate to product conversion and irreversible thermo-inactivation were respectively 4 kJ/mol and 105 kJ/mol from the linear Arrhenius plot. rSAM had the highest activity at temperature 50 °C, pH 8 and was resistant to a wide range of temperature and pH. In compare to the other characterized glutaminases, rSAM was the most resistant to NaCl. Mg2+, glycerol, DTT, and BME enhanced the enzyme activity and iodoacetate and iodoacetamide inhibited it. rSAM had only been partially digested by some proteases. According to the Fluorimetry and Circular dichroism analysis, rSAM in pH range from 4 to 11 and temperatures up to 60 °C had structural stability. A cysteine residue in the enzyme active site and a thiol bond were predicted upon the modeled tertiary structure of rSAM. Present structural studies also confirmed the presence of a thiol bond in its structure.
Collapse
|
29
|
Cruz-Munoz M, Munoz-Beristain A, Petrone JR, Robinson MA, Triplett EW. Growth parameters of Liberibacter crescens suggest ammonium and phosphate as essential molecules in the Liberibacter-plant host interface. BMC Microbiol 2019; 19:222. [PMID: 31606047 PMCID: PMC6790036 DOI: 10.1186/s12866-019-1599-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 09/20/2019] [Indexed: 12/25/2022] Open
Abstract
Background Liberibacter crescens is the closest cultured relative of four important uncultured crop pathogens. Candidatus. L. asiaticus, L. americanus, L. africanus cause citrus greening disease, while Ca. L. solanacearum causes potato Zebra chip disease. None of the pathogens grows in axenic culture. L. crescens grows in three media: a BM-7, a serum-free Hi® Grace’s Insect Medium (Hi-GI), and a chemically-defined medium called M15. To date, no optimal growth parameters of the model species L. crescens have been reported. Studying the main growth parameters of L. crescens in axenic culture will give us insights into the lifestyle of the Ca. Liberibacter pathogens. Results The evaluation of the growth parameters—pH, aeration, temperature, and buffering capacity—reflects the optimal living conditions of L. crescens. These variables revealed that L. crescens is an aerobic, neutrophilic bacterium, that grows optimally in broth in a pH range of 5.8 to 6.8, in a fully oxygenated environment (250 rpm), at 28 °C, and with monosodium phosphate (10 mM or 11.69 mM) as the preferred buffer for growth. The increase of pH in the external media likely results from the deamination activity within the cell, with the concomitant over-production of ammonium in the external medium. Conclusion L. crescens and the Ca. Liberibacter pathogens are metabolically similar and grow in similar environments—the phloem and the gut of their insect vectors. The evaluation of the growth parameters of L. crescens reveals the lifestyle of Liberibacter, elucidating ammonium and phosphate as essential molecules for colonization within the hosts. Ammonium is the main driver of pH modulation by active deamination of amino acids in the L. crescens amino acid rich media. In plants, excess ammonium induces ionic imbalances, oxidative stress, and pH disturbances across cell membranes, causing stunted root and shoot growth and chlorosis—the common symptoms of HLB-disease. Phosphate, which is also present in Ca. L. asiaticus hosts, is the preferred buffer for the growth of L. crescens. The interplay between ammonium, sucrose, potassium (K+), phosphate, nitrate (NO3−), light and other photosynthates might lead to develop better strategies for disease management.
Collapse
Affiliation(s)
- Maritsa Cruz-Munoz
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Alam Munoz-Beristain
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Joseph R Petrone
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Matthew A Robinson
- Biostatistics Department, College of Health Professions and College of Medicine, University of Florida, Gainesville, FL, USA
| | - Eric W Triplett
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
30
|
Li Q, Tao Q, Teixeira JS, Shu-Wei Su M, Gänzle MG. Contribution of glutaminases to glutamine metabolism and acid resistance in Lactobacillus reuteri and other vertebrate host adapted lactobacilli. Food Microbiol 2019; 86:103343. [PMID: 31703887 DOI: 10.1016/j.fm.2019.103343] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 09/17/2019] [Accepted: 09/27/2019] [Indexed: 01/13/2023]
Abstract
The bacterial conversion of glutamine to glutamate is catalyzed by glutamine-amidotransferases or glutaminases. Glutamine deamination contributes to the formation of the bioactive metabolites glutamate, γ-aminobutyrate (GABA) and γ-glutamyl peptides, and to acid resistance. This study aimed to investigate the distribution of glutaminase(s) in lactobacilli, and to evaluate their contribution in L. reuteri to amino acid metabolism and acid resistance. Phylogenetic analysis of the glutaminases gls1, gls2 and gls3 in the genus Lactobacillus demonstrated that glutaminase is exclusively present in host-adapted species of lactobacilli. The disruption gls1, gls2 and gls3 in L. reuteri 100-23 had only a limited effect on the conversion of glutamine to glutamate, GABA, or γ-glutamyl peptides in sourdough. The disruption of all glutaminases in L. reuteri 100-23Δgls1Δgls2Δgls3 but not disruption of gls2 and gls3 eliminated the protective effect of glutamine on the survival of the strain at pH 2.5. Glutamine also enhanced acid resistance of L. reuteri 100-23ΔgadB and L. taiwanensis 107q, strains without glutamate decarboxylase activity. Taken together, the study demonstrates that glutaminases of lactobacilli do not contribute substantially to glutamine metabolism but enhance acid resistance. Their exclusive presence in host-adapted lactobacilli provides an additional link between the adaptation of lactobacilli to specific habitats and their functionality when used as probiotics and starter cultures.
Collapse
Affiliation(s)
- Qing Li
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Alberta, Canada
| | - QianYing Tao
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Alberta, Canada
| | - Jaunana S Teixeira
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Alberta, Canada
| | - Marcia Shu-Wei Su
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Alberta, Canada
| | - Michael G Gänzle
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Alberta, Canada; Hubei University of Technology, College of Bioengineering and Food Science, Wuhan, Hubei, PR China.
| |
Collapse
|
31
|
Amobonye A, Singh S, Pillai S. Recent advances in microbial glutaminase production and applications-a concise review. Crit Rev Biotechnol 2019; 39:944-963. [PMID: 31327254 DOI: 10.1080/07388551.2019.1640659] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
This article focuses on significant advances in the production and applications of microbial glutaminases and provides insight into the structures of different glutaminases. Glutaminases catalyze the deamidation of glutamine to glutamic acid, and this unique ability forms the basis of their applications in various industries such as pharmaceutical and food organizations. Microbial glutaminases from bacteria, actinomycetes, yeast, and fungi are of greater significance than animal glutaminases because of their stability, affordability, and ease of production. Owing to these notable benefits, they are considered to possess considerable potential in anticancer and antiviral therapy, flavor enhancers in oriental foods, biosensors and in the production of a nutraceutical theanine. This review also aims to fully explore the potential of microbial glutaminases and to set the pace for future prospects.
Collapse
Affiliation(s)
- Ayodeji Amobonye
- a Department of Biotechnology and Food Technology, Faculty of Applied Sciences , Durban University of Technology , Durban , South Africa
| | - Suren Singh
- a Department of Biotechnology and Food Technology, Faculty of Applied Sciences , Durban University of Technology , Durban , South Africa
| | - Santhosh Pillai
- a Department of Biotechnology and Food Technology, Faculty of Applied Sciences , Durban University of Technology , Durban , South Africa
| |
Collapse
|
32
|
Finlay MRV, Anderton M, Bailey A, Boyd S, Brookfield J, Cairnduff C, Charles M, Cheasty A, Critchlow SE, Culshaw J, Ekwuru T, Hollingsworth I, Jones N, Leroux F, Littleson M, McCarron H, McKelvie J, Mooney L, Nissink JWM, Perkins D, Powell S, Quesada MJ, Raubo P, Sabin V, Smith J, Smith PD, Stark A, Ting A, Wang P, Wilson Z, Winter-Holt JJ, Wood JM, Wrigley GL, Yu G, Zhang P. Discovery of a Thiadiazole–Pyridazine-Based Allosteric Glutaminase 1 Inhibitor Series That Demonstrates Oral Bioavailability and Activity in Tumor Xenograft Models. J Med Chem 2019; 62:6540-6560. [DOI: 10.1021/acs.jmedchem.9b00260] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- M. Raymond V. Finlay
- Oncology, IMED Biotech Unit, AstraZeneca, 310, Cambridge Science Park, Milton Road, Cambridge CB4 0FZ, United Kingdom
| | - Mark Anderton
- Oncology, IMED Biotech Unit, AstraZeneca, 310, Cambridge Science Park, Milton Road, Cambridge CB4 0FZ, United Kingdom
| | - Andrew Bailey
- Oncology, IMED Biotech Unit, AstraZeneca, 310, Cambridge Science Park, Milton Road, Cambridge CB4 0FZ, United Kingdom
| | - Scott Boyd
- Oncology, IMED Biotech Unit, AstraZeneca, 310, Cambridge Science Park, Milton Road, Cambridge CB4 0FZ, United Kingdom
| | - Joanna Brookfield
- Cancer Research UK, Therapeutic Discovery Laboratories, Jonas Webb Building, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - Ceri Cairnduff
- Cancer Research UK, Therapeutic Discovery Laboratories, Jonas Webb Building, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - Mark Charles
- Cancer Research UK, Therapeutic Discovery Laboratories, Jonas Webb Building, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - Anne Cheasty
- Cancer Research UK, Therapeutic Discovery Laboratories, Jonas Webb Building, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - Susan E. Critchlow
- Oncology, IMED Biotech Unit, AstraZeneca, 310, Cambridge Science Park, Milton Road, Cambridge CB4 0FZ, United Kingdom
| | - Janet Culshaw
- Oncology, IMED Biotech Unit, AstraZeneca, 310, Cambridge Science Park, Milton Road, Cambridge CB4 0FZ, United Kingdom
| | - Tennyson Ekwuru
- Cancer Research UK, Therapeutic Discovery Laboratories, Jonas Webb Building, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - Ian Hollingsworth
- Oncology, IMED Biotech Unit, AstraZeneca, 310, Cambridge Science Park, Milton Road, Cambridge CB4 0FZ, United Kingdom
| | - Neil Jones
- Cancer Research UK, Therapeutic Discovery Laboratories, Jonas Webb Building, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - Fred Leroux
- Cancer Research UK, Therapeutic Discovery Laboratories, Jonas Webb Building, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - Mairi Littleson
- Oncology, IMED Biotech Unit, AstraZeneca, 310, Cambridge Science Park, Milton Road, Cambridge CB4 0FZ, United Kingdom
| | - Hollie McCarron
- Cancer Research UK, Therapeutic Discovery Laboratories, Jonas Webb Building, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - Jennifer McKelvie
- Cancer Research UK, Therapeutic Discovery Laboratories, Jonas Webb Building, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - Lorraine Mooney
- Oncology, IMED Biotech Unit, AstraZeneca, 310, Cambridge Science Park, Milton Road, Cambridge CB4 0FZ, United Kingdom
| | - J. Willem M. Nissink
- Oncology, IMED Biotech Unit, AstraZeneca, 310, Cambridge Science Park, Milton Road, Cambridge CB4 0FZ, United Kingdom
| | - David Perkins
- Oncology, IMED Biotech Unit, AstraZeneca, 310, Cambridge Science Park, Milton Road, Cambridge CB4 0FZ, United Kingdom
| | - Steve Powell
- Oncology, IMED Biotech Unit, AstraZeneca, 310, Cambridge Science Park, Milton Road, Cambridge CB4 0FZ, United Kingdom
| | - Mar Jimenez Quesada
- Cancer Research UK, Therapeutic Discovery Laboratories, Jonas Webb Building, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - Piotr Raubo
- Oncology, IMED Biotech Unit, AstraZeneca, 310, Cambridge Science Park, Milton Road, Cambridge CB4 0FZ, United Kingdom
| | - Verity Sabin
- Cancer Research UK, Therapeutic Discovery Laboratories, Jonas Webb Building, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - James Smith
- Cancer Research UK, Therapeutic Discovery Laboratories, Jonas Webb Building, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - Peter D. Smith
- Oncology, IMED Biotech Unit, AstraZeneca, 310, Cambridge Science Park, Milton Road, Cambridge CB4 0FZ, United Kingdom
| | - Andrew Stark
- Oncology, IMED Biotech Unit, AstraZeneca, 310, Cambridge Science Park, Milton Road, Cambridge CB4 0FZ, United Kingdom
| | - Attilla Ting
- Oncology, IMED Biotech Unit, AstraZeneca, 310, Cambridge Science Park, Milton Road, Cambridge CB4 0FZ, United Kingdom
| | - Peng Wang
- Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing 100176, P. R. China
| | - Zena Wilson
- Oncology, IMED Biotech Unit, AstraZeneca, 310, Cambridge Science Park, Milton Road, Cambridge CB4 0FZ, United Kingdom
| | - Jon J. Winter-Holt
- Oncology, IMED Biotech Unit, AstraZeneca, 310, Cambridge Science Park, Milton Road, Cambridge CB4 0FZ, United Kingdom
| | - J. Matthew Wood
- Oncology, IMED Biotech Unit, AstraZeneca, 310, Cambridge Science Park, Milton Road, Cambridge CB4 0FZ, United Kingdom
| | - Gail L. Wrigley
- Oncology, IMED Biotech Unit, AstraZeneca, 310, Cambridge Science Park, Milton Road, Cambridge CB4 0FZ, United Kingdom
| | - Guoqing Yu
- Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing 100176, P. R. China
| | - Peng Zhang
- Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing 100176, P. R. China
| |
Collapse
|
33
|
Devi S, Savitri, Raj T, Sharma N, Azmi W. In silicoAnalysis of L-Glutaminase from Extremophiles. CURR PROTEOMICS 2019. [DOI: 10.2174/1570164615666180911110606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:L-glutaminase enzyme belongs to the family of hydrolases, those acting on carbon-nitrogen bonds other than peptide bonds, specifically in linear amides. Protein L-glutaminase, which converts amino acid glutamine to a glutamate residue, is useful as antileukemic agent, antiretroviral agent and a new food-processing enzyme.Objective:The sequences representing L-glutaminase from extremophiles were analyzed for different physico-chemical properties and to relate these observed differences to their extremophilic properties, phylogenetic tree construction and the evolutionary relationship among them.Methods:In this work, in silico analysis of amino acid sequences of extremophilic (thermophile, halophile and psychrophiles) proteins has been done. The physiochemical properties of these four groups of proteins for L-glutaminase also differ in number of amino acids, aliphatic index and grand average of hydropathicity (GRAVY).Result:The GRAVY was found to be significantly high in thermophilic (2.29 fold) and psychrophilic bacteria (3.3 fold) as compare to mesophilic bacteria. The amino acid Cys (C) was found to be statistically significant in mesophilic bacteria (approximately or more than 3 fold) as compared to the abundance of this amino acid in extremophilic bacteria.Conclusion:Multiple sequence alignment revealed the domain/motif for glutaminase that consists of Ser-74, Lys-77, Asn-126, Lys-268, and Ser-269, which is highly conserved in all microorganisms.
Collapse
Affiliation(s)
- Sarita Devi
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, India
| | - Savitri
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, India
| | - Tilak Raj
- Sub-Distributed Information Centre, Himachal Pradesh University, Summer Hill, Shimla, India
| | - Nikhil Sharma
- Sub-Distributed Information Centre, Himachal Pradesh University, Summer Hill, Shimla, India
| | - Wamik Azmi
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, India
| |
Collapse
|
34
|
Maggi M, Scotti C. Enzymes in Metabolic Anticancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1148:173-199. [PMID: 31482500 DOI: 10.1007/978-981-13-7709-9_9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cancer treatment has greatly improved over the last 50 years, but it remains challenging in several cases. Useful therapeutic targets are normally unique peculiarities of cancer cells that distinguish them from normal cells and that can be tackled with appropriate drugs. It is now known that cell metabolism is rewired during tumorigenesis and metastasis as a consequence of oncogene activation and oncosuppressors inactivation, leading to a new cellular homeostasis typically directed towards anabolism. Because of these modifications, cells can become strongly or absolutely dependent on specific substrates, like sugars, lipids or amino acids. Cancer addictions are a relevant target for therapy, as removal of an essential substrate can lead to their selective cell-cycle arrest or even to cell death, leaving normal cells untouched. Enzymes can act as powerful agents in this respect, as demonstrated by asparaginase, which has been included in the treatment of Acute Lymphoblastic Leukemia for half a century. In this review, a short outline of cancer addictions will be provided, focusing on the main cancer amino acid dependencies described so far. Therapeutic enzymes which have been already experimented at the clinical level will be discussed, along with novel potential candidates that we propose as new promising molecules. The intrinsic limitations of their present molecular forms, along with molecular engineering solutions to explore, will also be presented.
Collapse
Affiliation(s)
- Maristella Maggi
- Department of Molecular Medicine, Unit of Immunology and General Pathology, University of Pavia, Pavia, Italy.
| | - Claudia Scotti
- Department of Molecular Medicine, Unit of Immunology and General Pathology, University of Pavia, Pavia, Italy
| |
Collapse
|
35
|
Fungal Enzymes for the Textile Industry. RECENT ADVANCEMENT IN WHITE BIOTECHNOLOGY THROUGH FUNGI 2019. [DOI: 10.1007/978-3-030-10480-1_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
36
|
Pennacchietti E, D'Alonzo C, Freddi L, Occhialini A, De Biase D. The Glutaminase-Dependent Acid Resistance System: Qualitative and Quantitative Assays and Analysis of Its Distribution in Enteric Bacteria. Front Microbiol 2018; 9:2869. [PMID: 30498489 PMCID: PMC6250119 DOI: 10.3389/fmicb.2018.02869] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/08/2018] [Indexed: 12/22/2022] Open
Abstract
Neutralophilic bacteria have developed several strategies to overcome the deleterious effects of acid stress. In particular, the amino acid-dependent systems are widespread, with their activities overlapping, covering a rather large pH range, from 6 to <2. Recent reports showed that an acid resistance (AR) system relying on the amino acid glutamine (AR2_Q), the most readily available amino acid in the free form, is operative in Escherichia coli, Lactobacillus reuteri, and some Brucella species. This system requires a glutaminase active at acidic pH and the antiporter GadC to import L-glutamine and export either glutamate (the glutamine deamination product) or GABA. The latter occurs when the deamination of glutamine to glutamate, via acid-glutaminase (YbaS/GlsA), is coupled to the decarboxylation of glutamate to GABA, via glutamate decarboxylase (GadB), a structural component of the glutamate-dependent AR (AR2) system, together with GadC. Taking into account that AR2_Q could be widespread in bacteria and that until now assays based on ammonium ion detection were typically employed, this work was undertaken with the aim to develop assays that allow a straightforward identification of the acid-glutaminase activity in permeabilized bacterial cells (qualitative assay) as well as a sensitive method (quantitative assay) to monitor in the pH range 2.5-4.0 the transport of the relevant amino acids in vivo. The qualitative assay is colorimetric, rapid and reliable and provides several additional information, such as co-occurrence of AR2 and AR2_Q in the same bacterial species and assessment of the growth conditions that support maximal expression of glutaminase at acidic pH. The quantitative assay is HPLC-based and allows to concomitantly measure the uptake of glutamine and the export of glutamate and/or GABA via GadC in vivo and depending on the external pH. Finally, an extensive bioinformatic genome analysis shows that the gene encoding the glutaminase involved in AR2_Q is often nearby or in operon arrangement with the genes coding for GadC and GadB. Overall, our results indicate that AR2_Q is likely to be of prominent importance in the AR of enteric bacteria and that it modulates the enzymatic as well as antiport activities depending on the imposed acidic stress.
Collapse
Affiliation(s)
- Eugenia Pennacchietti
- Department of Medico-Surgical Sciences and Biotechnologies, Laboratory Affiliated to the Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Latina, Italy
| | - Chiara D'Alonzo
- Department of Medico-Surgical Sciences and Biotechnologies, Laboratory Affiliated to the Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Latina, Italy
| | - Luca Freddi
- Institut de Recherche en Infectiologie de Montpellier, CNRS, University of Montpellier, Montpellier, France
| | - Alessandra Occhialini
- Institut de Recherche en Infectiologie de Montpellier, CNRS, University of Montpellier, Montpellier, France
| | - Daniela De Biase
- Department of Medico-Surgical Sciences and Biotechnologies, Laboratory Affiliated to the Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Latina, Italy
| |
Collapse
|
37
|
Rumping L, Tessadori F, Pouwels PJW, Vringer E, Wijnen JP, Bhogal AA, Savelberg SMC, Duran KJ, Bakkers MJG, Ramos RJJ, Schellekens PAW, Kroes HY, Klomp DWJ, Black GCM, Taylor RL, Bakkers JPW, Prinsen HCMT, van der Knaap MS, Dansen TB, Rehmann H, Zwartkruis FJT, Houwen RHJ, van Haaften G, Verhoeven-Duif NM, Jans JJM, van Hasselt PM. GLS hyperactivity causes glutamate excess, infantile cataract and profound developmental delay. Hum Mol Genet 2018; 28:96-104. [DOI: 10.1093/hmg/ddy330] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/12/2018] [Indexed: 11/14/2022] Open
Abstract
Abstract
Loss-of-function mutations in glutaminase (GLS), the enzyme converting glutamine into glutamate, and the counteracting enzyme glutamine synthetase (GS) cause disturbed glutamate homeostasis and severe neonatal encephalopathy. We report a de novo Ser482Cys gain-of-function variant in GLS encoding GLS associated with profound developmental delay and infantile cataract. Functional analysis demonstrated that this variant causes hyperactivity and compensatory downregulation of GLS expression combined with upregulation of the counteracting enzyme GS, supporting pathogenicity. Ser482Cys-GLS likely improves the electrostatic environment of the GLS catalytic site, thereby intrinsically inducing hyperactivity. Alignment of +/−12.000 GLS protein sequences from >1000 genera revealed extreme conservation of Ser482 to the same degree as catalytic residues. Together with the hyperactivity, this indicates that Ser482 is evolutionarily preserved to achieve optimal—but submaximal—GLS activity. In line with GLS hyperactivity, increased glutamate and decreased glutamine concentrations were measured in urine and fibroblasts. In the brain (both grey and white matter), glutamate was also extremely high and glutamine was almost undetectable, demonstrated with magnetic resonance spectroscopic imaging at clinical field strength and subsequently supported at ultra-high field strength. Considering the neurotoxicity of glutamate when present in excess, the strikingly high glutamate concentrations measured in the brain provide an explanation for the developmental delay. Cataract, a known consequence of oxidative stress, was evoked in zebrafish expressing the hypermorphic Ser482Cys-GLS and could be alleviated by inhibition of GLS. The capacity to detoxify reactive oxygen species was reduced upon Ser482Cys-GLS expression, providing an explanation for cataract formation. In conclusion, we describe an inborn error of glutamate metabolism caused by a GLS hyperactivity variant, illustrating the importance of balanced GLS activity.
Collapse
Affiliation(s)
- Lynne Rumping
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht CX, The Netherlands
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht CX, The Netherlands
- Department of Pediatrics, University Medical Center Utrecht, Utrecht University, Utrecht CX, The Netherlands
| | - Federico Tessadori
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht CX, The Netherlands
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht CX, The Netherlands
- Hubrecht Institute-KNAW, University Medical Center Utrecht, Utrecht University, Utrecht CT, The Netherlands
| | - Petra J W Pouwels
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam HV, The Netherlands
| | - Esmee Vringer
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht CX, The Netherlands
| | - Jannie P Wijnen
- Department of Radiology, University Medical Center Utrecht, Utrecht University, Utrecht CX, The Netherlands
| | - Alex A Bhogal
- Department of Radiology, University Medical Center Utrecht, Utrecht University, Utrecht CX, The Netherlands
| | - Sanne M C Savelberg
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht CX, The Netherlands
| | - Karen J Duran
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht CX, The Netherlands
| | - Mark J G Bakkers
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston MA, USA
| | - Rúben J J Ramos
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht CX, The Netherlands
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht CX, The Netherlands
| | - Peter A W Schellekens
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, Utrecht CX, The Netherlands
| | - Hester Y Kroes
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht CX, The Netherlands
| | - Dennis W J Klomp
- Department of Radiology, University Medical Center Utrecht, Utrecht University, Utrecht CX, The Netherlands
| | - Graeme C M Black
- Division of Evolution and Genomic Sciences, The University of Manchester, Manchester M139WL, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester M139WL, UK
| | - Rachel L Taylor
- Division of Evolution and Genomic Sciences, The University of Manchester, Manchester M139WL, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester M139WL, UK
| | - Jeroen P W Bakkers
- Hubrecht Institute-KNAW, University Medical Center Utrecht, Utrecht University, Utrecht CT, The Netherlands
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht University, Utrecht CX, The Netherlands
| | - Hubertus C M T Prinsen
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht CX, The Netherlands
| | - Marjo S van der Knaap
- Department of Child Neurology, VU University Medical Center, Amsterdam HV, The Netherlands
| | - Tobias B Dansen
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht CX, The Netherlands
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht University, Utrecht CX, The Netherlands
| | - Holger Rehmann
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht CX, The Netherlands
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht University, Utrecht CX, The Netherlands
| | - Fried J T Zwartkruis
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht CX, The Netherlands
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht University, Utrecht CX, The Netherlands
| | - Roderick H J Houwen
- Department of Pediatrics, University Medical Center Utrecht, Utrecht University, Utrecht CX, The Netherlands
| | - Gijs van Haaften
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht CX, The Netherlands
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht CX, The Netherlands
| | - Nanda M Verhoeven-Duif
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht CX, The Netherlands
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht CX, The Netherlands
| | - Judith J M Jans
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht CX, The Netherlands
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht CX, The Netherlands
| | - Peter M van Hasselt
- Department of Pediatrics, University Medical Center Utrecht, Utrecht University, Utrecht CX, The Netherlands
| |
Collapse
|
38
|
Baskaran R, Bandikari R, Zuo W, Qian J, Liu Z. Enhanced thermostability of halo-tolerant glutaminase from Bacillus licheniformis ATCC 14580 by immobilization onto nano magnetic cellulose sheet and its application in production of glutamic acid. Int J Biol Macromol 2018; 119:1256-1263. [PMID: 30096399 DOI: 10.1016/j.ijbiomac.2018.08.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/05/2018] [Accepted: 08/07/2018] [Indexed: 11/30/2022]
Abstract
A halo-tolerant glutaminase gene (BlglsA) was isolated from Bacillus licheniformis. Heterologous expression of BlglsA revealed that it encodes for a 36 kDa protein containing 327 amino acid residues. The purified enzyme showed optimal activity at a pH of 9.5 while 35 °C was found to be the optimum temperature. The enzyme retained about 92 and 97% stability at pH 12 and temperature (40 °C) respectively. Subsequent immobilization of BlglsA on nano magnetic cellulose sheet (NMCS) led to an enhanced tolerance to higher temperature. NMCS-BlglsA showed optimum activity at 45 °C, although it was stable even at 60 °C. NaCl tolerance (≥90% in 0.3 M) was almost similar to BlglsA and NMCS-BlglsA. The metal ions Fe2+ (5 mM) and Mn2+ (2.5 mM) improved the BlglsA relative activity by 61 and 48%, respectively. In contrast, 5 mM Mn2+ was found suitable to enhance the activity of NMCS-BlglsA up to 72%. The production of glutamic acid by NMCS-BlglsA was 1.61 g/l in 48 h. Reusability test of NMCS-BlglsA showed 76 and 35% retention of the actual activity after 4th and 7th cycle, respectively. Such remarkable biochemical properties of NMCS-BlglsA make it an attractive enzyme for food industries.
Collapse
Affiliation(s)
- Ram Baskaran
- College of Life Science and Technology, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ramesh Bandikari
- College of Life Science and Technology, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wu Zuo
- CAS Center for Excellence on Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, China
| | - Jiaxin Qian
- College of Life Science and Technology, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ziduo Liu
- College of Life Science and Technology, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
39
|
Hassanov T, Karunker I, Steinberg N, Erez A, Kolodkin-Gal I. Novel antibiofilm chemotherapies target nitrogen from glutamate and glutamine. Sci Rep 2018; 8:7097. [PMID: 29740028 PMCID: PMC5940852 DOI: 10.1038/s41598-018-25401-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 04/19/2018] [Indexed: 01/06/2023] Open
Abstract
Bacteria in nature often reside in differentiated communities termed biofilms, which are an active interphase between uni-cellular and multicellular life states for bacteria. Here we demonstrate that the development of B. subtilis biofilms is dependent on the use of glutamine or glutamate as a nitrogen source. We show a differential metabolic requirement within the biofilm; while glutamine is necessary for the dividing cells at the edges, the inner cell mass utilizes lactic acid. Our results indicate that biofilm cells preserve a short-term memory of glutamate metabolism. Finally, we establish that drugs that target glutamine and glutamate utilization restrict biofilm development. Overall, our work reveals a spatial regulation of nitrogen and carbon metabolism within the biofilm, which contributes to the fitness of bacterial complex communities. This acquired metabolic division of labor within biofilm can serve as a target for novel anti-biofilm chemotherapies
Collapse
Affiliation(s)
- Tal Hassanov
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Iris Karunker
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Nitai Steinberg
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ayelet Erez
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Ilana Kolodkin-Gal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
40
|
Sathish T, Kezia D, Bramhachari P, Prakasham RS. Multi-objective based superimposed optimization method for enhancement of l -glutaminase production by Bacillus subtilis RSP-GLU. KARBALA INTERNATIONAL JOURNAL OF MODERN SCIENCE 2018. [DOI: 10.1016/j.kijoms.2017.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
41
|
Tork SE, Aly MM, Elsemin O. A new l-glutaminase from Streptomyces pratensis NRC 10: Gene identification, enzyme purification, and characterization. Int J Biol Macromol 2018; 113:550-557. [PMID: 29458104 DOI: 10.1016/j.ijbiomac.2018.02.080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/10/2018] [Accepted: 02/12/2018] [Indexed: 12/01/2022]
Abstract
In the current study, the purified l-glutaminase from Streptomyces pratensis NRC10 (GenBank number KC857622) was characterized. Its molecular weight was estimated to be 46kDa and isoelectric point 7.4. Its Vmax was calculated to be 2.19U/mg/min, while Km was 0.175mM. The optimum pH and temperature were 9 and 45°C, respectively. It was thermostable at 45°C but thermally inactivated at 60°C after 50min. Moreover, its enzymatic activity was enhanced by K+ ions and inhibited by Mg2+, Cu2+, Ag+, Hg2+, Ni2+, Fe2+, Cr2, Na+, Ca2+, and EDTA. A PCR fragment of 1550bp of S. pratensis NRC10 l-glutaminase gene (glsA) was purified and its sequence was determined (GenBank number KJ567136). l-glutaminase from NRC10 was induced mainly by l-glutamic acid. Model 3-D structure was composed of two domains, the serine - dependent beta-lactamase dominant the small STAS domain (Sulphate Transporter and anti-sigma factor antagonist) which had probably functioned as a general NTP binding domain. The two domains are linked by a linker peptide (GLHLMRNPALPGST), but sequence alignment between salt-tolerant glutaminase and the obtained glutaminase showed 44.75% of identity and 57% of similarity. This enzyme appears to have a distinctive structure compared to the rest of glutaminase family, and seems to construct a new subgroup of glutaminase.
Collapse
Affiliation(s)
- Sanaa E Tork
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Microbial Genetics Department, National Research Centre, 33 Bohouth st. Dokki, Giza, Egypt.
| | - Magda M Aly
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Botany Department, Faculty of Science, Kafr El-Sheikh University, Egypt
| | - Omar Elsemin
- Montreal University, Faculty of Medicine, Montreal, Canada
| |
Collapse
|
42
|
Leistra AN, Amador P, Buvanendiran A, Moon-Walker A, Contreras LM. Rational Modular RNA Engineering Based on In Vivo Profiling of Structural Accessibility. ACS Synth Biol 2017; 6:2228-2240. [PMID: 28796489 DOI: 10.1021/acssynbio.7b00185] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bacterial small RNAs (sRNAs) have been established as powerful parts for controlling gene expression. However, development and application of engineered sRNAs has primarily focused on regulating novel synthetic targets. In this work, we demonstrate a rational modular RNA engineering approach that uses in vivo structural accessibility measurements to tune the regulatory activity of a multisubstrate sRNA for differential control of its native target network. Employing the CsrB global sRNA regulator as a model system, we use published in vivo structural accessibility data to infer the contribution of its local structures (substructures) to function and select a subset for engineering. We then modularly recombine the selected substructures, differentially representing those of presumed high or low functional contribution, to build a library of 21 CsrB variants. Using fluorescent translational reporter assays, we demonstrate that the CsrB variants achieve a 5-fold gradient of control of well-characterized Csr network targets. Interestingly, results suggest that less conserved local structures within long, multisubstrate sRNAs may represent better targets for rational engineering than their well-conserved counterparts. Lastly, mapping the impact of sRNA variants on a signature Csr network phenotype indicates the potential of this approach for tuning the activity of global sRNA regulators in the context of metabolic engineering applications.
Collapse
Affiliation(s)
- Abigail N. Leistra
- McKetta
Department of Chemical Engineering, University of Texas at Austin, 200
E. Dean Keeton Street Stop C0400, Austin, Texas 78712, United States
| | - Paul Amador
- Microbiology
Graduate Program, University of Texas at Austin, 100 E. 24th Street
Stop A6500, Austin, Texas 78712, United States
| | - Aishwarya Buvanendiran
- Biological
Sciences Program College of Natural Sciences, University of Texas at Austin, 120 Inner Campus Drive Stop G2500, Austin, Texas 78712, United States
| | - Alex Moon-Walker
- Biological
Sciences Program College of Natural Sciences, University of Texas at Austin, 120 Inner Campus Drive Stop G2500, Austin, Texas 78712, United States
| | - Lydia M. Contreras
- McKetta
Department of Chemical Engineering, University of Texas at Austin, 200
E. Dean Keeton Street Stop C0400, Austin, Texas 78712, United States
| |
Collapse
|
43
|
Yang J, Sun-Waterhouse D, Cui C, Dong K, Zhao M. γ
-Glu-Met synthesised using a bacterial glutaminase as a potential inhibitor of dipeptidyl peptidase IV. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13692] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Juan Yang
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
| | - Dongxiao Sun-Waterhouse
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
| | - Chun Cui
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
| | - Keming Dong
- Guangdong Weiwei Biotechnology Co., LTD.; Guangzhou 510640 China
| | - Mouming Zhao
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
| |
Collapse
|
44
|
Binod P, Sindhu R, Madhavan A, Abraham A, Mathew AK, Beevi US, Sukumaran RK, Singh SP, Pandey A. Recent developments in l-glutaminase production and applications - An overview. BIORESOURCE TECHNOLOGY 2017; 245:1766-1774. [PMID: 28549811 DOI: 10.1016/j.biortech.2017.05.059] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/04/2017] [Accepted: 05/10/2017] [Indexed: 06/07/2023]
Abstract
l-glutaminases is an important industrial enzyme which finds potential applications in different sectors ranging from therapeutic to food industry. It is widely distributed in bacteria, actinomycetes, yeast and fungi. l-Glutaminases are mostly produced by Bacillus and Pseudomonas sp. and few reports were available with fungal, actinomycete and yeast system. Modern biotechnological tools help in the improved production as well as with tailor made properties for specific applications. Most of the genetic engineering studies were carried out for the production of l-glutaminase with improved thermo-tolerance and salt tolerance. Considering the potential of in vitro applications of l-glutaminase, extracellular enzymes are important and most microbes produce this enzyme intracellularly. Several research and developmental activities are going on for the extracellular production of l-glutaminase. This review discusses recent trends and developments and applications of l-glutaminases.
Collapse
Affiliation(s)
- Parameswaran Binod
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Trivandrum 695 019, India.
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Trivandrum 695 019, India
| | - Aravind Madhavan
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Trivandrum 695 019, India; Rajiv Gandhi Centre for Biotechnology, Jagathy, Trivandrum 695 014, India
| | - Amith Abraham
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Trivandrum 695 019, India
| | - Anil Kuruvilla Mathew
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Trivandrum 695 019, India
| | - Ummalyma Sabeela Beevi
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Trivandrum 695 019, India; Institute of Bioresources and Sustainable Development, Takyelpat, Imphal 795 001, India
| | - Rajeev K Sukumaran
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Trivandrum 695 019, India
| | - Sudhir P Singh
- Center of Innovative and Applied Bioprocessing, Sector 81, Mohali 160 071, Punjab, India
| | - Ashok Pandey
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Trivandrum 695 019, India; Center of Innovative and Applied Bioprocessing, Sector 81, Mohali 160 071, Punjab, India
| |
Collapse
|
45
|
Freddi L, Damiano MA, Chaloin L, Pennacchietti E, Al Dahouk S, Köhler S, De Biase D, Occhialini A. The Glutaminase-Dependent System Confers Extreme Acid Resistance to New Species and Atypical Strains of Brucella. Front Microbiol 2017; 8:2236. [PMID: 29187839 PMCID: PMC5695133 DOI: 10.3389/fmicb.2017.02236] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/31/2017] [Indexed: 11/28/2022] Open
Abstract
Neutralophilic bacteria have developed specific mechanisms to cope with the acid stress encountered in environments such as soil, fermented foods, and host compartments. In Escherichia coli, the glutamate decarboxylase (Gad)-dependent system is extremely efficient: it requires the concerted action of glutamate decarboxylase (GadA/GadB) and of the glutamate (Glu)/γ-aminobutyrate antiporter, GadC. Notably, this system is operative also in new strains/species of Brucella, among which Brucella microti, but not in the “classical” species, with the exception of marine mammals strains. Recently, the glutaminase-dependent system (named AR2_Q), relying on the deamination of glutamine (Gln) into Glu and on GadC activity, was described in E. coli. In Brucella genomes, a putative glutaminase (glsA)-coding gene is located downstream of the gadBC genes. We found that in B. microti these genes are expressed as a polycistronic transcript. Moreover, using a panel of Brucella genus-representative strains, we show that the AR2_Q system protects from extreme acid stress (pH ≤2.5), in the sole presence of Gln, only the Brucella species/strains predicted to have functional glsA and gadC. Indeed, mutagenesis approaches confirmed the involvement of glsA and gadC of B. microti in AR2_Q and that the acid-sensitive phenotype of B. abortus can be ascribed to a Ser248Leu substitution in GlsA, leading to loss of glutaminase activity. Furthermore, we found that the gene BMI_II339, of unknown function and downstream of the gadBC–glsA operon, positively affects Gad- and GlsA-dependent AR. Thus, we identified novel determinants that allow newly discovered and marine mammals Brucella strains to be better adapted to face hostile acidic environments. As for significance, this work may contribute to the understanding of the host preferences of Brucella species and opens the way to alternative diagnostic targets in epidemiological surveillance of brucellosis.
Collapse
Affiliation(s)
- Luca Freddi
- Institut de Recherche en Infectiologie de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université de Montpellier, Montpellier, France
| | - Maria A Damiano
- Institut de Recherche en Infectiologie de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université de Montpellier, Montpellier, France
| | - Laurent Chaloin
- Institut de Recherche en Infectiologie de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université de Montpellier, Montpellier, France
| | - Eugenia Pennacchietti
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Laboratory Affiliated to the Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Latina, Italy
| | | | - Stephan Köhler
- Institut de Recherche en Infectiologie de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université de Montpellier, Montpellier, France
| | - Daniela De Biase
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Laboratory Affiliated to the Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Latina, Italy
| | - Alessandra Occhialini
- Institut de Recherche en Infectiologie de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université de Montpellier, Montpellier, France
| |
Collapse
|
46
|
Sousa JR, Silveira CM, Fontes P, Roma-Rodrigues C, Fernandes AR, Van Driessche G, Devreese B, Moura I, Moura JJ, Almeida MG. Understanding the response of Desulfovibrio desulfuricans ATCC 27774 to the electron acceptors nitrate and sulfate - biosynthetic costs modulate substrate selection. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1455-1469. [DOI: 10.1016/j.bbapap.2017.07.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/12/2017] [Accepted: 07/21/2017] [Indexed: 11/27/2022]
|
47
|
Cardoso MH, de Almeida KC, Cândido EDS, Murad AM, Dias SC, Franco OL. Comparative NanoUPLC-MS E analysis between magainin I-susceptible and -resistant Escherichia coli strains. Sci Rep 2017. [PMID: 28646205 PMCID: PMC5482854 DOI: 10.1038/s41598-017-04181-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In recent years the antimicrobial peptides (AMPs) have been prospected and designed as new alternatives to conventional antibiotics. Indeed, AMPs have presented great potential toward pathogenic bacterial strains by means of complex mechanisms of action. However, reports have increasingly emerged regarding the mechanisms by which bacteria resist AMP administration. In this context, we performed a comparative proteomic study by using the total bacterial lysate of magainin I-susceptible and –resistant E. coli strains. After nanoUPLC-MSE analyses we identified 742 proteins distributed among the experimental groups, and 25 proteins were differentially expressed in the resistant strains. Among them 10 proteins involved in bacterial resistance, homeostasis, nutrition and protein transport were upregulated, while 15 proteins related to bacterial surface modifications, genetic information and β-lactams binding-protein were downregulated. Moreover, 60 exclusive proteins were identified in the resistant strains, among which biofilm and cell wall formation and multidrug efflux pump proteins could be observed. Thus, differentially from previous studies that could only associate single proteins to AMP bacterial resistance, data here reported show that several metabolic pathways may be related to E. coli resistance to AMPs, revealing the crucial role of multiple “omics” studies in order to elucidate the global molecular mechanisms involved in this resistance.
Collapse
Affiliation(s)
- Marlon H Cardoso
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, 70.790-160, Brazil.,Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília-DF, 70.910-900, Brazil.,S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande-MS, 79.117-900, Brazil
| | - Keyla C de Almeida
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, 70.790-160, Brazil.,Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília-DF, 70.910-900, Brazil
| | - Elizabete de S Cândido
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, 70.790-160, Brazil.,S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande-MS, 79.117-900, Brazil
| | - André M Murad
- Embrapa Recursos Genéticos e Biotecnologia, Laboratório de Biologia Sintética, Parque Estação Biológica, Brasília-DF, 70.770-917, Brazil
| | - Simoni C Dias
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, 70.790-160, Brazil
| | - Octávio L Franco
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, 70.790-160, Brazil. .,Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília-DF, 70.910-900, Brazil. .,S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande-MS, 79.117-900, Brazil.
| |
Collapse
|
48
|
Interplay between tolerance mechanisms to copper and acid stress in Escherichia coli. Proc Natl Acad Sci U S A 2017; 114:6818-6823. [PMID: 28611214 DOI: 10.1073/pnas.1620232114] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Copper (Cu) is a key antibacterial component of the host innate immune system and almost all bacterial species possess systems that defend against the toxic effects of excess Cu. The Cu tolerance system in Gram-negative bacteria is composed minimally of a Cu sensor (CueR) and a Cu export pump (CopA). The cueR and copA genes are encoded on the chromosome typically as a divergent but contiguous operon. In Escherichia coli, cueR and copA are separated by two additional genes, ybaS and ybaT, which confer glutamine (Gln)-dependent acid tolerance and contribute to the glutamate (Glu)-dependent acid resistance system in this organism. Here we show that Cu strongly inhibits growth of a ∆copA mutant strain in acidic cultures. We further demonstrate that Cu stress impairs the pathway for Glu biosynthesis via glutamate synthase, leading to decreased intracellular levels of Glu. Addition of exogenous Glu rescues the ∆copA mutant from Cu stress in acidic conditions. Gln is also protective but this relies on the activities of YbaS and YbaT. Notably, expression of both enzymes is up-regulated during Cu stress. These results demonstrate a link between Cu stress, acid stress, and Glu/Gln metabolism, establish a role for YbaS and YbaT in Cu tolerance, and suggest that subtle changes in core metabolic pathways may contribute to overcoming host-imposed copper toxicity.
Collapse
|
49
|
Terzyan SS, Cook PF, Heroux A, Hanigan MH. Structure of 6-diazo-5-oxo-norleucine-bound human gamma-glutamyl transpeptidase 1, a novel mechanism of inactivation. Protein Sci 2017; 26:1196-1205. [PMID: 28378915 PMCID: PMC5441403 DOI: 10.1002/pro.3172] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 01/26/2023]
Abstract
Intense efforts are underway to identify inhibitors of the enzyme gamma-glutamyl transpeptidase 1 (GGT1) which cleaves extracellular gamma-glutamyl compounds and contributes to the pathology of asthma, reperfusion injury and cancer. The glutamate analog, 6-diazo-5-oxo-norleucine (DON), inhibits GGT1. DON also inhibits many essential glutamine metabolizing enzymes rendering it too toxic for use in the clinic as a GGT1 inhibitor. We investigated the molecular mechanism of human GGT1 (hGGT1) inhibition by DON to determine possible strategies for increasing its specificity for hGGT1. DON is an irreversible inhibitor of hGGT1. The second order rate constant of inactivation was 0.052 mM-1 min-1 and the Ki was 2.7 ± 0.7 mM. The crystal structure of DON-inactivated hGGT1 contained a molecule of DON without the diazo-nitrogen atoms in the active site. The overall structure of the hGGT1-DON complex resembled the structure of the apo-enzyme; however, shifts were detected in the loop forming the oxyanion hole and elements of the main chain that form the entrance to the active site. The structure of hGGT1-DON complex revealed two covalent bonds between the enzyme and inhibitor which were part of a six membered ring. The ring included the OG atom of Thr381, the reactive nucleophile of hGGT1 and the α-amine of Thr381. The structure of DON-bound hGGT1 has led to the discovery of a new mechanism of inactivation by DON that differs from its inactivation of other glutamine metabolizing enzymes, and insight into the activation of the catalytic nucleophile that initiates the hGGT1 reaction.
Collapse
Affiliation(s)
- Simon S. Terzyan
- Laboratory of Biomolecular Structure and FunctionUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahoma73104
| | - Paul F. Cook
- Department of Chemistry and BiochemistryUniversity of OklahomaNormanOklahoma73019
| | - Annie Heroux
- Energy Sciences Directorate/Photon Science DivisionBrookhaven National LaboratoryUptonNew York11973
| | - Marie H. Hanigan
- Department of Cell BiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahoma73104
| |
Collapse
|
50
|
Pasquali CC, Islam Z, Adamoski D, Ferreira IM, Righeto RD, Bettini J, Portugal RV, Yue WWY, Gonzalez A, Dias SMG, Ambrosio ALB. The origin and evolution of human glutaminases and their atypical C-terminal ankyrin repeats. J Biol Chem 2017; 292:11572-11585. [PMID: 28526749 DOI: 10.1074/jbc.m117.787291] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/11/2017] [Indexed: 12/14/2022] Open
Abstract
On the basis of tissue-specific enzyme activity and inhibition by catalytic products, Hans Krebs first demonstrated the existence of multiple glutaminases in mammals. Currently, two human genes are known to encode at least four glutaminase isoforms. However, the phylogeny of these medically relevant enzymes remains unclear, prompting us to investigate their origin and evolution. Using prokaryotic and eukaryotic glutaminase sequences, we built a phylogenetic tree whose topology suggested that the multidomain architecture was inherited from bacterial ancestors, probably simultaneously with the hosting of the proto-mitochondrion endosymbiont. We propose an evolutionary model wherein the appearance of the most active enzyme isoform, glutaminase C (GAC), which is expressed in many cancers, was a late retrotransposition event that occurred in fishes from the Chondrichthyes class. The ankyrin (ANK) repeats in the glutaminases were acquired early in their evolution. To obtain information on ANK folding, we solved two high-resolution structures of the ANK repeat-containing C termini of both kidney-type glutaminase (KGA) and GLS2 isoforms (glutaminase B and liver-type glutaminase). We found that the glutaminase ANK repeats form unique intramolecular contacts through two highly conserved motifs; curiously, this arrangement occludes a region usually involved in ANK-mediated protein-protein interactions. We also solved the crystal structure of full-length KGA and present a small-angle X-ray scattering model for full-length GLS2. These structures explain these proteins' compromised ability to assemble into catalytically active supra-tetrameric filaments, as previously shown for GAC. Collectively, these results provide information about glutaminases that may aid in the design of isoform-specific glutaminase inhibitors.
Collapse
Affiliation(s)
- Camila Cristina Pasquali
- From the Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo 13083-970, Brazil
| | - Zeyaul Islam
- From the Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo 13083-970, Brazil
| | - Douglas Adamoski
- From the Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo 13083-970, Brazil
| | - Igor Monteze Ferreira
- From the Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo 13083-970, Brazil.,the Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Ricardo Diogo Righeto
- the Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo 13083-970, Brazil.,the School of Electrical and Computer Engineering, University of Campinas, São Paulo 13083-852, Brazil, and
| | - Jefferson Bettini
- the Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo 13083-970, Brazil
| | - Rodrigo Villares Portugal
- the Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo 13083-970, Brazil
| | - Wyatt Wai-Yin Yue
- the Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Ana Gonzalez
- the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025
| | - Sandra Martha Gomes Dias
- From the Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo 13083-970, Brazil,
| | - Andre Luis Berteli Ambrosio
- From the Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo 13083-970, Brazil,
| |
Collapse
|