1
|
Boni FG, Hamdi I, Moukendza Koundi L, Dai Y, Shrestra K, Abokadoum MA, Ekomi Moure UA, Suleiman IM, Xie J. The Gene and Regulatory Network Involved in Ethambutol Resistance in Mycobacterium tuberculosis. Microb Drug Resist 2022; 29:175-189. [PMID: 35939307 DOI: 10.1089/mdr.2021.0239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ethambutol (EMB) is used in combination with isoniazid and rifampicin for the treatment of tuberculosis caused by Mycobacterium tuberculosis. However, the incidence of EMB resistance is alarming. The EMB targets the cell wall arabinan biosynthesis. It is important to comprehensively understand the molecular basis of EMB to slow down the drug resistance rate of EMB. This study summarized the genes implicated in EMB resistance, regulatory network and the pharmacoproteomic effect of EMB in M. tuberculosis. Many of the genes related to EMB are implicated in membrane components, drug efflux, lipid metabolism, ribosome, and detoxification. The differential response model may help to design a novel anti-tuberculosis antibiotic.
Collapse
Affiliation(s)
- Funmilayo Grâce Boni
- Institute of Modern Biopharmaceuticals State Key Laboratory, Breeding Base Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Insaf Hamdi
- Institute of Modern Biopharmaceuticals State Key Laboratory, Breeding Base Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Liadrine Moukendza Koundi
- Institute of Modern Biopharmaceuticals State Key Laboratory, Breeding Base Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Yongdong Dai
- Institute of Modern Biopharmaceuticals State Key Laboratory, Breeding Base Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Kanshan Shrestra
- Institute of Modern Biopharmaceuticals State Key Laboratory, Breeding Base Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Mohamed Abdellah Abokadoum
- Institute of Modern Biopharmaceuticals State Key Laboratory, Breeding Base Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China.,Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assuit, Egypt
| | - Ulrich Aymard Ekomi Moure
- Institute of Modern Biopharmaceuticals State Key Laboratory, Breeding Base Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Ismail Mohamed Suleiman
- Institute of Modern Biopharmaceuticals State Key Laboratory, Breeding Base Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals State Key Laboratory, Breeding Base Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Diversified amino acid-mediated allosteric regulation of phosphoglycerate dehydrogenase for serine biosynthesis in land plants. Biochem J 2021; 478:2217-2232. [PMID: 34032263 PMCID: PMC8238522 DOI: 10.1042/bcj20210191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 11/23/2022]
Abstract
The phosphorylated pathway of serine biosynthesis is initiated with 3-phosphoglycerate dehydrogenase (PGDH). The liverwort Marchantia polymorpha possesses an amino acid-sensitive MpPGDH which is inhibited by l-serine and activated by five proteinogenic amino acids, while the eudicot Arabidopsis thaliana has amino acid-sensitive AtPGDH1 and AtPGDH3 as well as amino acid-insensitive AtPGDH2. In this study, we analyzed PGDH isozymes of the representative land plants: the monocot Oryza sativa (OsPGDH1–3), basal angiosperm Amborella trichopoda (AmtriPGDH1–2), and moss Physcomitrium (Physcomitrella) patens (PpPGDH1–4). We demonstrated that OsPGDH1, AmtriPGDH1, PpPGDH1, and PpPGDH3 were amino acid-sensitive, whereas OsPGDH2, OsPGDH3, AmtriPGDH2, PpPGDH2, and PpPGDH4 were either sensitive to only some of the six effector amino acids or insensitive to all effectors. This indicates that PGDH sensitivity to effectors has been diversified among isozymes and that the land plant species examined, except for M. polymorpha, possess different isozyme types in terms of regulation. Phylogenetic analysis suggested that the different sensitivities convergently evolved in the bryophyte and angiosperm lineages. Site-directed mutagenesis of AtPGDH1 revealed that Asp538 and Asn556 residues in the ACT domain are involved in allosteric regulation by the effectors. These findings provide insight into the evolution of PGDH isozymes, highlighting the functional diversification of allosteric regulation in land plants.
Collapse
|
3
|
Watanabe M, Chiba Y, Hirai MY. Metabolism and Regulatory Functions of O-Acetylserine, S-Adenosylmethionine, Homocysteine, and Serine in Plant Development and Environmental Responses. FRONTIERS IN PLANT SCIENCE 2021; 12:643403. [PMID: 34025692 PMCID: PMC8137854 DOI: 10.3389/fpls.2021.643403] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/17/2021] [Indexed: 05/19/2023]
Abstract
The metabolism of an organism is closely related to both its internal and external environments. Metabolites can act as signal molecules that regulate the functions of genes and proteins, reflecting the status of these environments. This review discusses the metabolism and regulatory functions of O-acetylserine (OAS), S-adenosylmethionine (AdoMet), homocysteine (Hcy), and serine (Ser), which are key metabolites related to sulfur (S)-containing amino acids in plant metabolic networks, in comparison to microbial and animal metabolism. Plants are photosynthetic auxotrophs that have evolved a specific metabolic network different from those in other living organisms. Although amino acids are the building blocks of proteins and common metabolites in all living organisms, their metabolism and regulation in plants have specific features that differ from those in animals and bacteria. In plants, cysteine (Cys), an S-containing amino acid, is synthesized from sulfide and OAS derived from Ser. Methionine (Met), another S-containing amino acid, is also closely related to Ser metabolism because of its thiomethyl moiety. Its S atom is derived from Cys and its methyl group from folates, which are involved in one-carbon metabolism with Ser. One-carbon metabolism is also involved in the biosynthesis of AdoMet, which serves as a methyl donor in the methylation reactions of various biomolecules. Ser is synthesized in three pathways: the phosphorylated pathway found in all organisms and the glycolate and the glycerate pathways, which are specific to plants. Ser metabolism is not only important in Ser supply but also involved in many other functions. Among the metabolites in this network, OAS is known to function as a signal molecule to regulate the expression of OAS gene clusters in response to environmental factors. AdoMet regulates amino acid metabolism at enzymatic and translational levels and regulates gene expression as methyl donor in the DNA and histone methylation or after conversion into bioactive molecules such as polyamine and ethylene. Hcy is involved in Met-AdoMet metabolism and can regulate Ser biosynthesis at an enzymatic level. Ser metabolism is involved in development and stress responses. This review aims to summarize the metabolism and regulatory functions of OAS, AdoMet, Hcy, and Ser and compare the available knowledge for plants with that for animals and bacteria and propose a future perspective on plant research.
Collapse
Affiliation(s)
- Mutsumi Watanabe
- Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Yukako Chiba
- Graduate School of Life Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Masami Yokota Hirai
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
4
|
Singh RK, Kumar D, Gourinath S. Phosphoserine aminotransferase has conserved active site from microbes to higher eukaryotes with minor deviations. Protein Pept Lett 2021; 28:996-1008. [PMID: 33588715 DOI: 10.2174/0929866528666210215140231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/10/2020] [Accepted: 11/16/2020] [Indexed: 11/22/2022]
Abstract
Serine is ubiquitously synthesized in all living organisms from the glycolysis intermediate 3-phosphoglycerate (PGA) by phosphoserine biosynthetic pathway, consisting of three different enzymes, namely: 3-phosphoglycerate dehydrogenase (PGDH), phosphoserine aminotransferase (PSAT), and phosphoserine phosphatase (PSP). Any functional defect or mutation in these enzymes may cause deliberating conditions, such as colon cancer progression and chemoresistance in humans. Phosphoserine aminotransferase (PSAT) is the second enzyme in this pathway that converts phosphohydroxypyruvate (PHP) to O-phospho-L-serine (OPLS). Humans encode two isoforms of this enzyme: PSAT1 and PSAT2. PSAT1 exists as a functional dimer, where each protomer has a large and a small domain; each large domain contains a Lys residue that covalently binds PLP. The PLP-binding site of human PSAT1 and most of its active site residues are highly conserved in all known PSAT structures except for Cys-80. Interestingly, Two PSAT structures from different organisms show halide binding near their active site. While the human PSAT1 shows a water molecule at this site with different interacting residues, suggesting the inability of halide binding in the human enzyme. Analysis of the human PSAT1 structure showed a big patch of positive charge around the active site, in contrast to the bacterial PSATs. Compared to human PSAT1, the PSAT2 isoform lacks 46 residues at its C-terminal tail. This tail region is present at the opening of the active site as observed in the other PSAT structures. Further structural work on human PSAT2 may reveal the functional importance of these 46 residues.
Collapse
Affiliation(s)
- Rohit Kumar Singh
- Structural Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi - 110067. India
| | - Devbrat Kumar
- Structural Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi - 110067. India
| | - Samudrala Gourinath
- Structural Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi - 110067. India
| |
Collapse
|
5
|
Yoshida K, Ohtaka K, Hirai MY, Hisabori T. Biochemical insight into redox regulation of plastidial 3-phosphoglycerate dehydrogenase from Arabidopsis thaliana. J Biol Chem 2020; 295:14906-14915. [PMID: 32848019 PMCID: PMC7606689 DOI: 10.1074/jbc.ra120.014263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/22/2020] [Indexed: 12/22/2022] Open
Abstract
Thiol-based redox regulation is a post-translational protein modification for controlling enzyme activity by switching oxidation/reduction states of Cys residues. In plant cells, numerous proteins involved in a wide range of biological systems have been suggested as the target of redox regulation; however, our knowledge on this issue is still incomplete. Here we report that 3-phosphoglycerate dehydrogenase (PGDH) is a novel redox-regulated protein. PGDH catalyzes the first committed step of Ser biosynthetic pathway in plastids. Using an affinity chromatography-based method, we found that PGDH physically interacts with thioredoxin (Trx), a key factor of redox regulation. The in vitro studies using recombinant proteins from Arabidopsis thaliana showed that a specific PGDH isoform, PGDH1, forms the intramolecular disulfide bond under nonreducing conditions, which lowers PGDH enzyme activity. MS and site-directed mutagenesis analyses allowed us to identify the redox-active Cys pair that is mainly involved in disulfide bond formation in PGDH1; this Cys pair is uniquely found in land plant PGDH. Furthermore, we revealed that some plastidial Trx subtypes support the reductive activation of PGDH1. The present data show previously uncharacterized regulatory mechanisms of PGDH and expand our understanding of the Trx-mediated redox-regulatory network in plants.
Collapse
Affiliation(s)
- Keisuke Yoshida
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.
| | - Kinuka Ohtaka
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan; Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Tokyo, Japan
| | | | - Toru Hisabori
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
6
|
Liu H, Li X, Deng J, Dai L, Liu W, Pan B, Wang C, Zhang D, Li Z. Molecular mechanism of the response of Zygosaccharomyces rouxii to D-fructose stress by the glutathione metabolism pathway. FEMS Yeast Res 2020; 20:5859488. [PMID: 32556118 DOI: 10.1093/femsyr/foaa034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/12/2020] [Indexed: 12/16/2022] Open
Abstract
Zygosaccharomyces rouxii produces high levels of 4-hydroxy-2,5-dimethyl-3(2H)-furanone in YPD medium supplemented with 120 g/L D-fructose and 180 g/L NaCl after 5 d. D-fructose has a stress effect on Z. rouxii, and GSH-Px is a main enzyme involved in the defense of Z. rouxii against oxygen stress according to our previous report. In order to further explore the molecular mechanism of the glutathione metabolism pathway in Z. rouxii in response to D-fructose stress, changes in the expression of genes and proteins involved in the synthesis of glutathione precursor amino acids and enzymes were observed. In addition, changes in the intermediates related to glutathione synthesis in Z. rouxii were reported. The results indicated that some gene-encoding enzymes involved in the glutamate, cysteine and glycine biosynthesis pathways and key genes involved in glutathione synthesis were upregulated. The expression levels of other genes, except SHMT, were consistent with the qRT-PCR results. The contents of γ-glutamylcysteine and glutathione amide in the D-fructose group were higher than those in the control group. In the D-fructose stress groups, the metabolic flux towards glutathione synthesis was increased. These results might provide more in-depth and detailed theoretical support for the oxidative stress defense mechanism of Z. rouxii under D-fructose stress.
Collapse
Affiliation(s)
- Hong Liu
- Department of Food and Engineering, College of Food, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing 163319, China
| | - Xin Li
- Department of Food and Engineering, College of Food, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing 163319, China
| | - Jingzhi Deng
- Department of Food and Engineering, College of Food, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing 163319, China
| | - Lingyan Dai
- Department of Bioscience, College of Science and Biotechnology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing 163319, China
| | - Wei Liu
- Department of Food and Engineering, College of Food, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing 163319, China
| | - Bailing Pan
- Department of Food and Engineering, College of Food, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing 163319, China
| | - Chengtao Wang
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Dongjie Zhang
- Department of Food and Engineering, College of Food, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing 163319, China
| | - Zhijiang Li
- Department of Food and Engineering, College of Food, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing 163319, China
| |
Collapse
|
7
|
Haufroid M, Wouters J. Targeting the Serine Pathway: A Promising Approach against Tuberculosis? Pharmaceuticals (Basel) 2019; 12:E66. [PMID: 31052291 PMCID: PMC6630544 DOI: 10.3390/ph12020066] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 12/22/2022] Open
Abstract
Tuberculosis is still the leading cause of death by a single infectious agent. Effective chemotherapy has been used and improved since the 1950s, but strains resistant to this therapy and most antibacterial drugs on the market are emerging. Only 10 new drugs are in clinical trials, and two of them have already demonstrated resistance. This paper gives an overview of current treatment options against tuberculosis and points out a promising approach of discovering new effective drugs. The serine production pathway is composed of three enzymes (SerA1, SerC and SerB2), which are considered essential for bacterial growth, and all of them are considered as a therapeutic drug target. Their crystal structure are described and essential regulatory domains pointed out. Sequence alignment with similar enzymes in other host would help to identify key residues to target in order to achieve selective inhibition. Currently, only inhibitors of SerB2 are described in the literature. However, inhibitors of human enzymes are discussed, and could be used as a good starting point for a drug discovery program. The aim of this paper is to give some guidance for the design of new hits for every enzyme in this pathway.
Collapse
Affiliation(s)
- Marie Haufroid
- Laboratoire de Chimie Biologique Structurale (CBS), Namur Medicine and Drug Innovation Center (Namedic), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), B-5000 Namur, Belgium.
| | - Johan Wouters
- Laboratoire de Chimie Biologique Structurale (CBS), Namur Medicine and Drug Innovation Center (Namedic), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), B-5000 Namur, Belgium.
| |
Collapse
|
8
|
Paczia N, Becker-Kettern J, Conrotte JF, Cifuente JO, Guerin ME, Linster CL. 3-Phosphoglycerate Transhydrogenation Instead of Dehydrogenation Alleviates the Redox State Dependency of Yeast de Novo l-Serine Synthesis. Biochemistry 2019; 58:259-275. [PMID: 30668112 DOI: 10.1021/acs.biochem.8b00990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The enzymatic mechanism of 3-phosphoglycerate to 3-phosphohydroxypyruvate oxidation, which forms the first step of the main conserved de novo serine synthesis pathway, has been revisited recently in certain microorganisms. While this step is classically considered to be catalyzed by an NAD-dependent dehydrogenase (e.g., PHGDH in mammals), evidence has shown that in Pseudomonas, Escherichia coli, and Saccharomyces cerevisiae, the PHGDH homologues act as transhydrogenases. As such, they use α-ketoglutarate, rather than NAD+, as the final electron acceptor, thereby producing D-2-hydroxyglutarate in addition to 3-phosphohydroxypyruvate during 3-phosphoglycerate oxidation. Here, we provide a detailed biochemical and sequence-structure relationship characterization of the yeast PHGDH homologues, encoded by the paralogous SER3 and SER33 genes, in comparison to the human and other PHGDH enzymes. Using in vitro assays with purified recombinant enzymes as well as in vivo growth phenotyping and metabolome analyses of yeast strains engineered to depend on either Ser3, Ser33, or human PHGDH for serine synthesis, we confirmed that both yeast enzymes act as transhydrogenases, while the human enzyme is a dehydrogenase. In addition, we show that the yeast paralogs differ from the human enzyme in their sensitivity to inhibition by serine as well as hydrated NADH derivatives. Importantly, our in vivo data support the idea that a 3PGA transhydrogenase instead of dehydrogenase activity confers a growth advantage under conditions where the NAD+:NADH ratio is low. The results will help to elucidate why different species evolved different reaction mechanisms to carry out a widely conserved metabolic step in central carbon metabolism.
Collapse
Affiliation(s)
- Nicole Paczia
- Luxembourg Centre for Systems Biomedicine , University of Luxembourg , L-4367 Belvaux , Luxembourg
| | - Julia Becker-Kettern
- Luxembourg Centre for Systems Biomedicine , University of Luxembourg , L-4367 Belvaux , Luxembourg
| | - Jean-François Conrotte
- Luxembourg Centre for Systems Biomedicine , University of Luxembourg , L-4367 Belvaux , Luxembourg
| | - Javier O Cifuente
- Structural Biology Unit , CIC bioGUNE Technological Park of Bizkaia , 48160 Derio , Vizcaya , Spain
| | - Marcelo E Guerin
- Structural Biology Unit , CIC bioGUNE Technological Park of Bizkaia , 48160 Derio , Vizcaya , Spain.,IKERBASQUE , Basque Foundation for Science , 48013 Bilbao , Spain
| | - Carole L Linster
- Luxembourg Centre for Systems Biomedicine , University of Luxembourg , L-4367 Belvaux , Luxembourg
| |
Collapse
|
9
|
Ghiraldi-Lopes LD, Campanerut-Sá PAZ, Evaristo GPC, Meneguello JE, Fiorini A, Baldin VP, de Souza EM, de Lima Scodro RB, Siqueira VLD, Cardoso RF. New insights on Ethambutol Targets in Mycobacterium tuberculosis. Infect Disord Drug Targets 2019; 19:73-80. [PMID: 29366429 DOI: 10.2174/1871526518666180124140840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 01/18/2018] [Accepted: 01/22/2018] [Indexed: 06/07/2023]
Abstract
BACKGROUND In recent years, very few effective drugs against Mycobacterium tuberculosis have emerged, which motivates the research with drugs already used in the treatment of tuberculosis. Ethambutol is a bacteriostatic drug that affects cell wall integrity, but the effects of this drug on bacilli are not fully exploited. OBJECTIVE Based on the need to better investigate the complex mechanism of action of ethambutol, our study presented the proteome profile of M. tuberculosis after different times of ethambutol exposure, aiming to comprehend the dynamics of bacilli response to its effects. M. tuberculosis was exposed to ½ MIC of ethambutol at 24 and 48 hours. The proteins were identified by MALDI-TOF/TOF. RESULTS The main protein changes occurred in metabolic proteins as dihydrolipoyl dehydrogenase (Rv0462), glutamine synthetase1 (Rv2220), electron transfer flavoprotein subunit beta (Rv3029c) and adenosylhomocysteinase (Rv3248c). CONCLUSION Considering the functions of these proteins, our results support that the intermediary metabolism and respiration were affected by ethambutol and this disturbance provided proteins that could be explored as additional targets for this drug.
Collapse
Affiliation(s)
- Luciana D Ghiraldi-Lopes
- Universidade Estadual de Maringa - Departamento de Analises Clinicas e Biomedicina, Maringa, Parana, Brazil
| | | | - Geisa P Caprini Evaristo
- Laboratorio de Apoio ao Desenvolvimento Tecnologico - Instituto de Quimica, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jean E Meneguello
- Universidade Estadual de Maringa - Departamento de Analises Clinicas e Biomedicina, Maringa, Parana, Brazil
| | - Adriana Fiorini
- Universidade Estadual de Maringa - Departamento de Analises Clinicas e Biomedicina, Maringa, Parana, Brazil
| | - Vanessa P Baldin
- Universidade Estadual de Maringa - Departamento de Analises Clinicas e Biomedicina, Maringa, Parana, Brazil
| | | | | | - Vera L D Siqueira
- Universidade Estadual de Maringa - Departamento de Analises Clinicas e Biomedicina, Maringa, Parana, Brazil
| | - Rosilene F Cardoso
- Universidade Estadual de Maringa - Departamento de Analises Clinicas e Biomedicina, Maringa, Parana, Brazil
| |
Collapse
|
10
|
Abstract
l-Serine is the immediate precursor of d-serine, a major agonist of the N-methyl-d-aspartate (NMDA) receptor. l-Serine is a pivotal amino acid since it serves as a precursor to a large number of essential metabolites besides d-serine. In all non-photosynthetic organisms, including mammals, a major source of l-serine is the phosphorylated pathway of l-serine biosynthesis. The pathway consists of three enzymes, d-3-phosphoglycerate dehydrogenase (PGDH), phosphoserine amino transferase (PSAT), and l-phosphoserine phosphatase (PSP). PGDH catalyzes the first step in the pathway by converting d-3-phosphoglycerate (PGA), an intermediate in glycolysis, to phosphohydroxypyruvate (PHP) concomitant with the reduction of NAD+. In some, but not all organisms, the catalytic activity of PGDH can be regulated by feedback inhibition by l-serine. Three types of PGDH can be distinguished based on their domain structure. Type III PGDHs contain only a nucleotide binding and substrate binding domain. Type II PGDHs contain an additional regulatory domain (ACT domain), and Type I PGDHs contain a fourth domain, termed the ASB domain. There is no consistent pattern of domain content that correlates with organism type, and even when additional domains are present, they are not always functional. PGDH deficiency results in metabolic defects of the nervous system whose systems range from microcephaly at birth, seizures, and psychomotor retardation. Although deficiency of any of the pathway enzymes have similar outcomes, PGDH deficiency is predominant. Dietary or intravenous supplementation with l-serine is effective in controlling seizures but has little effect on psychomotor development. An increase in PGDH levels, due to overexpression, is also associated with a wide array of cancers. In culture, PGDH is required for tumor cell proliferation, but extracellular l-serine is not able to support cell proliferation. This has led to the hypothesis that the pathway is performing some function related to tumor growth other than supplying l-serine. The most well-studied PGDHs are bacterial, primarily from Escherichia coli and Mycobacterium tuberculosis, perhaps because they have been of most interest mechanistically. However, the relatively recent association of PGDH with neuronal defects and human cancers has provoked renewed interest in human PGDH.
Collapse
Affiliation(s)
- Gregory A Grant
- Departments of Developmental Biology and Medicine, Washington University School of Medicine, St. Louis, MO, United States.,Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
11
|
Akashi H, Okamura E, Nishihama R, Kohchi T, Hirai MY. Identification and Biochemical Characterization of the Serine Biosynthetic Enzyme 3-Phosphoglycerate Dehydrogenase in Marchantia polymorpha. FRONTIERS IN PLANT SCIENCE 2018; 9:956. [PMID: 30061906 PMCID: PMC6054995 DOI: 10.3389/fpls.2018.00956] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/13/2018] [Indexed: 05/29/2023]
Abstract
L-serine is an important molecule in all living organisms, and thus its biosynthesis is considered to be regulated according to demand. 3-Phosphoglycerate dehydrogenase (PGDH), the first committed enzyme of the phosphorylated pathway of L-serine biosynthesis, is regulated by negative feedback from L-serine in bacteria. In the case of the vascular plant Arabidopsis thaliana, two PGDH isozymes out of three are inhibited by L-serine and activated by L-alanine, L-valine, L-methionine, L-homoserine, and L-homocysteine, suggesting a more complicated regulatory mechanism of L-serine biosynthesis in A. thaliana than in bacteria. However, it remains to be clarified whether the activation mechanism of PGDH by amino acids is conserved in land plants. In this study, we identified the sole isozyme of PGDH in the liverwort Marchantia polymorpha (MpPGDH) and elucidated its biochemical characteristics. MpPGDH cDNA encodes a 65.6 kDa protein that contains a putative transit peptide for chloroplast localization. MpPGDH shares 75-80% identity with A. thaliana isozymes and forms a homotetramer in vitro. Recombinant MpPGDH exhibited an optimal pH of 9.0, apparent Michaelis constants of 0.49 ± 0.04 and 0.096 ± 0.010 mM for 3-PGA and NAD+, respectively, and apparent maximum velocity of 5.65 ± 0.10 μmol⋅min-1⋅mg-1, similar to those of A. thaliana isozymes. Phosphate ions were found to stabilize MpPGDH, suggesting that phosphate ions are also a crucial factor in the regulation of serine biosynthesis via the phosphorylated pathway in Marchantia polymorpha. MpPGDH was inhibited by L-serine in a cooperative manner and was activated by L-alanine, L-valine, L-methionine, L-homoserine, and L-homocysteine to a lesser extent than it is in A. thaliana. The results suggest that an ancestral PGDH of land plants was inhibited byL-serine and slightly activated by five other amino acids.
Collapse
Affiliation(s)
- Hiromichi Akashi
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Eiji Okamura
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | | | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Masami Y. Hirai
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
12
|
Grant GA. Elucidation of a Self-Sustaining Cycle in Escherichia coli l-Serine Biosynthesis That Results in the Conservation of the Coenzyme, NAD<sup/>. Biochemistry 2018; 57:1798-1806. [PMID: 29494135 DOI: 10.1021/acs.biochem.8b00074] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The equilibrium of the reaction catalyzed by d-3-phosphoglycerate dehydrogenase (PGDH), the first enzyme in the l-serine biosynthetic pathway, is far in the direction away from serine synthesis. As such, the enzyme is usually assayed in this direction. To easily assay it in the direction of l-serine synthesis, it can be coupled to the next enzyme in the pathway, phosphoserine aminotransferase (PSAT), with the activity monitored by the conversion of NAD+ to NADH by PGDH. However, when PGDHs from several different species were coupled to PSAT, it was found that one of them, ecPGDH, conserves the coenzyme in the production of l-serine by utilizing an intrinsic cycle of NAD+/NADH interconversion coupled with the conversion of α-ketoglutarate (αKG) to α-hydroxyglutarate. Furthermore, the cycle can be maintained by production of αKG by the second enzyme in the pathway, PSAT, and does not require any additional enzymes. This is not the case for PGDH from another bacterial source, Mycobacterium tuberculosis, and a mammalian source, human liver, where net consumption of NAD+ occurs. Both NAD+ and NADH appear to remain tightly bound to ecPGDH during the cycle, effectively removing a requirement for the presence of an exogenous coenzyme pool to maintain the pathway and significantly reducing the energy requirement needed to maintain this major metabolic pathway.
Collapse
Affiliation(s)
- Gregory A Grant
- Departments of Developmental Biology and Medicine , Washington University School of Medicine , 660 South Euclid Avenue , Box 8103, St. Louis , Missouri 63110 , United States
| |
Collapse
|
13
|
Grant GA. Regulatory Mechanism of Mycobacterium tuberculosis Phosphoserine Phosphatase SerB2. Biochemistry 2017; 56:6481-6490. [PMID: 29140686 DOI: 10.1021/acs.biochem.7b01082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Almost all organisms contain the same biosynthetic pathway for the synthesis of l-serine from the glycolytic intermediate, d-3-phosphoglycerate. However, regulation of this pathway varies from organism to organism. Many organisms control the activity of the first enzyme in the pathway, d-3-phosphoglycerate dehydrogenase (PGDH), by feedback inhibition through the interaction of l-serine with the ACT domains within the enzyme. The last enzyme in the pathway, phosphoserine phosphatase (PSP), has also been reported to be inhibited by l-serine. The high degree of sequence homology between Mycobacterium tuberculosis PSP (mtPSP) and Mycobacterium avium PSP (maPSP), which has recently been shown to contain ACT domains, suggested that the mtPSP also contained ACT domains. This raised the question of whether the ACT domains in mtPSP played a functional role similar to that of the ACT domains in PGDH. This investigation reveals that l-serine allosterically inhibits mtPSP by a mechanism of partial competitive inhibition by binding to the ACT domains. Therefore, in mtPSP, l-serine is an allosteric feedback inhibitor that acts by decreasing the affinity of the substrate for the enzyme. mtPGDH is also feedback inhibited by l-serine, but only in the presence of millimolar concentrations of phosphate. Therefore, the inhibition of mtPSP by l-serine would act as a secondary control point for the regulation of the l-serine biosynthetic pathway under physiological conditions where the level of phosphate would be below that needed for l-serine feedback inhibition of mtPGDH.
Collapse
Affiliation(s)
- Gregory A Grant
- Departments of Developmental Biology and Medicine, Washington University School of Medicine , 660 South Euclid Avenue, Box 8103, St. Louis, Missouri 63110, United States
| |
Collapse
|
14
|
Ghiraldi-Lopes LD, Campanerut-Sá PAZ, Meneguello JE, Seixas FAV, Lopes-Ortiz MA, Scodro RBL, Pires CTA, da Silva RZ, Siqueira VLD, Nakamura CV, Cardoso RF. Proteomic profile of Mycobacterium tuberculosis after eupomatenoid-5 induction reveals potential drug targets. Future Microbiol 2017; 12:867-879. [DOI: 10.2217/fmb-2017-0023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: We investigated a proteome profile, protein–protein interaction and morphological changes of Mycobacterium tuberculosis after different times of eupomatenoid-5 (EUP-5) induction to evaluate the cellular response to the drug-induced damages. Methods: The bacillus was induced to sub-minimal inhibitory concentration of EUP-5 at 12 h, 24 h and 48 h. The proteins were separated by 2D gel electrophoresis, identified by LC/MS-MS. Scanning electron microscopy and Search Tool for the Retrieval of Interacting Genes/Proteins analyses were performed. Results: EUP-5 impacts mainly in M. tuberculosis proteins of intermediary metabolism and interactome suggests a multisite disturbance that contributes to bacilli death. Scanning electron microscopy revealed the loss of bacillary form. Conclusion: Some of the differentially expressed proteins have the potential to be drug targets such as citrate synthase (Rv0896), phosphoglycerate kinase (Rv1437), ketol-acid reductoisomerase (Rv3001c) and ATP synthase alpha chain (Rv1308).
Collapse
Affiliation(s)
- Luciana D Ghiraldi-Lopes
- Postgraduate Program in Health Sciences, Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
- Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
| | - Paula AZ Campanerut-Sá
- Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
| | - Jean E Meneguello
- Postgraduate Program in Biosciences & Phisiopatology, Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
| | - Flávio AV Seixas
- Department of Biochemistry, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
| | - Mariana A Lopes-Ortiz
- Postgraduate Program in Biosciences & Phisiopatology, Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
- Uningá University Center, Rod PR 317, 6114, 87035-510, Maringá, Paraná, Brazil
| | - Regiane BL Scodro
- Postgraduate Program in Health Sciences, Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
- Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
| | - Claudia TA Pires
- Postgraduate Program in Biosciences & Phisiopatology, Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
| | - Rosi Z da Silva
- State University of Ponta Grossa, Avenida General Carlos Cavalcanti, 4748, 84030-900, Ponta Grossa, Paraná, Brazil
| | - Vera LD Siqueira
- Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
- Postgraduate Program in Biosciences & Phisiopatology, Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
| | - Celso V Nakamura
- Postgraduate Program in Pharmaceutical Sciences, Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
| | - Rosilene F Cardoso
- Postgraduate Program in Health Sciences, Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
- Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
- Postgraduate Program in Biosciences & Phisiopatology, Department of Clinical Analyses & Biomedicine, State University of Maringá, Avenida Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
| |
Collapse
|
15
|
Novel regulatory mechanism of serine biosynthesis associated with 3-phosphoglycerate dehydrogenase in Arabidopsis thaliana. Sci Rep 2017; 7:3533. [PMID: 28615699 PMCID: PMC5471267 DOI: 10.1038/s41598-017-03807-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 05/17/2017] [Indexed: 12/25/2022] Open
Abstract
The proteinogenic amino acid l-serine is a precursor for various essential biomolecules in all organisms. 3-Phosphoglycerate dehydrogenase (PGDH) is the first committed enzyme of the phosphorylated pathway of l-serine biosynthesis, and is regulated by negative feedback from l-serine in bacteria and plants. In the present study, two Arabidopsis PGDH isoforms were inhibited by l-serine but were activated by l-amino acids such as l-homocysteine in vitro. Activation and inhibition by these amino acids was cooperative, suggesting an allosteric mechanism. Moreover, the half maximal effective concentration of l-homocysteine was 2 orders of magnitude lower than that of l-serine, suggesting greater regulatory potency. These are the first data to show that PGDH is activated by various biomolecules and indicate that serine biosynthesis is regulated by multiple pathways.
Collapse
|
16
|
Xu XL, Grant GA. Mutagenic and chemical analyses provide new insight into enzyme activation and mechanism of the type 2 iron-sulfur l-serine dehydratase from Legionella pneumophila. Arch Biochem Biophys 2016; 596:108-17. [PMID: 26971469 DOI: 10.1016/j.abb.2016.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/18/2016] [Accepted: 03/05/2016] [Indexed: 11/28/2022]
Abstract
The crystal structure of the Type 2 l-serine dehydratase from Legionella pneumophila (lpLSD), revealed a "tail-in-mouth" configuration where the C-terminal residue acts as an intrinsic competitive inhibitor. This pre-catalytic structure undergoes an activation step prior to catalytic turnover. Mutagenic analysis of residues at or near the active site cleft is consistent with stabilization of substrate binding by many of the same residues that interact with the C-terminal cysteine and highlight the critical role of certain tail residues in activity. pH-rate profiles show that a residue with pK of 5.9 must be deprotonated and a residue with a pK of 8.5 must be protonated for activity. This supports an earlier suggestion that His 61 is the likely catalytic base. An additional residue with a pK of 8.5-9 increases cooperativity when it is deprotonated. This investigation also demonstrates that the Fe-S dehydratases convert the enamine/imine intermediates of the catalytic reaction to products on the enzyme prior to release. This is in contrast to pyridoxyl 5' phosphate based dehydratases that release an enamine/imine intermediate into solution, which then hydrolyzes to produce the ketoamine product.
Collapse
Affiliation(s)
- Xiao Lan Xu
- Developmental Biology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8103, St. Louis, MO 63110, USA
| | - Gregory A Grant
- Developmental Biology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8103, St. Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8103, St. Louis, MO 63110, USA.
| |
Collapse
|
17
|
Xu XL, Chen S, Salinas ND, Tolia NH, Grant GA. Comparison of Type 1 D-3-phosphoglycerate dehydrogenases reveals unique regulation in pathogenic Mycobacteria. Arch Biochem Biophys 2015; 570:32-9. [PMID: 25698123 DOI: 10.1016/j.abb.2015.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/30/2015] [Accepted: 02/09/2015] [Indexed: 10/24/2022]
Abstract
D-3-phosphoglycerate dehydrogenases (PGDH) from all organisms catalyze the conversion of D-3-phosphoglycerate to phosphohydroxypyruvate as the first step in the biosynthesis of l-serine. This investigation compares the properties of Type 1 PGDHs from seven different species and demonstrates that conserved residues in the ACT and ASB domains of some allow l-serine to act as a feedback inhibitor at low micromolar concentrations. In addition, the serine sensitivity is dependent on the presence of phosphate ions. These residues are most highly conserved among PGDHs from the actinomycetales family, but only certain pathogenic mycobacteria appear to have the full complement of residues required for high sensitivity to serine. These basic residues are also responsible for the presence of dual pH optima in the acidic region that is also phosphate dependent. Analytical ultracentrifugation analysis demonstrates that the dual pH optima do not require changes in oligomeric state. This study also demonstrates that substrate inhibition is a common feature of Type 1 PGDHs and that it is suppressed by phosphate, indicating that phosphate likely interacts at both the catalytic and regulatory sites. The unique features resulting from the complement of basic residues conserved in pathogenic mycobacteria may impart important metabolic advantages to these organisms.
Collapse
Affiliation(s)
- Xiao Lan Xu
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8103, St. Louis, MO 63110, United States
| | - Shawei Chen
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8103, St. Louis, MO 63110, United States
| | - Nichole D Salinas
- Department of Molecular Microbiology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8103, St. Louis, MO 63110, United States
| | - Niraj H Tolia
- Department of Molecular Microbiology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8103, St. Louis, MO 63110, United States
| | - Gregory A Grant
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8103, St. Louis, MO 63110, United States; Department of Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8103, St. Louis, MO 63110, United States.
| |
Collapse
|
18
|
Thoden JB, Holden HM, Grant GA. Structure of L-serine dehydratase from Legionella pneumophila: novel use of the C-terminal cysteine as an intrinsic competitive inhibitor. Biochemistry 2014; 53:7615-24. [PMID: 25380533 PMCID: PMC4263429 DOI: 10.1021/bi501253w] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here we report the first complete structure of a bacterial Fe-S l-serine dehydratase determined to 2.25 Å resolution. The structure is of the type 2 l-serine dehydratase from Legionella pneumophila that consists of a single polypeptide chain containing a catalytic α domain and a β domain that is structurally homologous to the "allosteric substrate binding" or ASB domain of d-3-phosphoglycerate dehydrogenase from Mycobacterium tuberculosis. The enzyme exists as a dimer of identical subunits, with each subunit exhibiting a bilobal architecture. The [4Fe-4S](2+) cluster is bound by residues from the C-terminal α domain and is situated between this domain and the N-terminal β domain. Remarkably, the model reveals that the C-terminal cysteine residue (Cys 458), which is conserved among the type 2 l-serine dehydratases, functions as a fourth ligand to the iron-sulfur cluster producing a "tail in mouth" configuration. The interaction of the sulfhydryl group of Cys 458 with the fourth iron of the cluster appears to mimic the position that the substrate would adopt prior to catalysis. A number of highly conserved or invariant residues found in the β domain are clustered around the iron-sulfur center. Ser 16, Ser 17, Ser 18, and Thr 290 form hydrogen bonds with the carboxylate group of Cys 458 and the carbonyl oxygen of Glu 457, whereas His 19 and His 61 are poised to potentially act as the catalytic base required for proton extraction. Mutation of His 61 produces an inactive enzyme, whereas the H19A protein variant retains substantial activity, suggesting that His 61 serves as the catalytic base. His 124 and Asn 126, found in an HXN sequence, point toward the Fe-S cluster. Mutational studies are consistent with these residues either binding a serine molecule that serves as an activator or functioning as a potential trap for Cys 458 as it moves out of the active site prior to catalysis.
Collapse
Affiliation(s)
- James B Thoden
- Department of Biochemistry, University of Wisconsin , Madison, Wisconsin 53706, United States
| | | | | |
Collapse
|
19
|
Singh RK, Raj I, Pujari R, Gourinath S. Crystal structures and kinetics of Type III 3-phosphoglycerate dehydrogenase reveal catalysis by lysine. FEBS J 2014; 281:5498-512. [PMID: 25294608 DOI: 10.1111/febs.13091] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/11/2014] [Accepted: 09/30/2014] [Indexed: 11/29/2022]
Abstract
D-Phosphoglycerate dehydrogenase (PGDH) catalyzes the first committed step of the phosphorylated serine biosynthesis pathway. Here, we report for the first time, the crystal structures of Type IIIK PGDH from Entamoeba histolytica in the apo form, as well as in complexes with substrate (3-phosphoglyceric acid) and cofactor (NAD(+) ) to 2.45, 1.8 and 2.2 Å resolution, respectively. Comparison of the apo structure with the substrate-bound structure shows that the substrate-binding domain is rotated by ~ 20° to close the active-site cleft. The cofactor-bound structure also shows a closed-cleft conformation, in which NAD(+) is bound to the nucleotide-binding domain and a formate ion occupies the substrate-binding site. Superposition of the substrate- and cofactor-bound structures represents a snapshot of the enzyme in the active form, where C2 of the substrate and C4N of the cofactor are 2.2 Å apart, and the amino group of Lys263 is close enough to the substrate to remove the proton from the hydroxyl group of PGA, indicating the role of Lys in the catalysis. Mutation of Lys263 to Ala yields just 0.8% of the specific activity of the wild-type enzyme, revealing that Lys263 indeed plays an integral role in the catalytic activity. The detectable activity of the mutant, however, indicates that after 20° rotation of the substrate-binding domain, the resulting positions of the substrate and cofactor are sufficiently close to make a productive reaction.
Collapse
Affiliation(s)
- Rohit K Singh
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | | | |
Collapse
|
20
|
Kumar SM, Pampa KJ, Manjula M, Hemantha Kumar G, Kunishima N, Lokanath NK. Crystal structures of type IIIH NAD-dependent D-3-phosphoglycerate dehydrogenase from two thermophiles. Biochem Biophys Res Commun 2014; 451:126-30. [PMID: 25065739 DOI: 10.1016/j.bbrc.2014.07.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 07/16/2014] [Indexed: 10/25/2022]
Abstract
In the L-Serine biosynthesis, D-3-phosphoglycerate dehydrogenase (PGDH) catalyzes the inter-conversion of D-3-phosphoglycerate to phosphohydroxypyruvate. PGDH belongs to 2-hydroxyacid dehydrogenases family. We have determined the crystal structures of PGDH from Sulfolobus tokodaii (StPGDH) and Pyrococcus horikoshii (PhPGDH) using X-ray diffraction to resolution of 1.77Å and 1.95Å, respectively. The PGDH protomer from both species exhibits identical structures, consisting of substrate binding domain and nucleotide binding domain. The residues and water molecules interacting with the NAD are identified. The catalytic triad residues Glu-His-Arg are highly conserved. The residues involved in the dimer interface and the structural features responsible for thermostability are evaluated. Overall, structures of PGDHs with two domains and histidine at the active site are categorized as type IIIH and such PGDHs structures having this type are reported for the first time.
Collapse
Affiliation(s)
- S M Kumar
- Department of Studies in Physics, University of Mysore, Mysore 570 006, India
| | - K J Pampa
- Department of Studies in Microbiology, University of Mysore, Mysore 570 006, India
| | - M Manjula
- Department of Studies in Physics, University of Mysore, Mysore 570 006, India
| | - G Hemantha Kumar
- Department of Studies in Computer Science, University of Mysore, Mysore 570 006, India
| | - Naoki Kunishima
- Advanced Protein Crystallography Research Group, RIKEN SPring-8 Center, Harima Institute, Hyogo 679-5148, Japan
| | - N K Lokanath
- Department of Studies in Physics, University of Mysore, Mysore 570 006, India.
| |
Collapse
|
21
|
Xu XL, Grant GA. Regulation of Mycobacterium tuberculosis D-3-phosphoglycerate dehydrogenase by phosphate-modulated quaternary structure dynamics and a potential role for polyphosphate in enzyme regulation. Biochemistry 2014; 53:4239-49. [PMID: 24956108 DOI: 10.1021/bi500469d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
D-3-phosphoglycerate dehydrogenase (PGDH) catalyzes the first reaction in the "phosphorylated" pathway of l-serine biosynthesis. In Mycobacterium tuberculosis, it is a type 1 enzyme (mtPGDH) in that it contains both an ACT domain and an ASB domain in addition to a catalytic domain. The published crystal structures (Protein Data Bank entries 1YGY and 3DC2) show a tartrate molecule interacting with cationic residues at the ASB-ACT domain interfaces and a serine molecule bound at the ACT domain interface. These sites have previously been shown to be involved in the mechanism of serine and substrate inhibition of catalytic activity. This investigation has revealed a mechanism of allosteric quaternary structure dynamics in mtPGDH that is modulated by physiologically relevant molecules, phosphate and polyphosphate. In the absence of phosphate and polyphosphate, the enzyme exists in equilibrium between an inactive dimer and an active tetramer that is insensitive to inhibition of catalytic activity by L-serine. Phosphate induces a conversion to an active tetramer and octamer that are sensitive to inhibition of catalytic activity by L-serine. Small polyphosphates (pyrophosphate and triphosphate) induce a conversion to an active dimer that is insensitive to L-serine inhibition. The difference in the tendency of each respective dimer to form a tetramer as well as slightly altered elution positions on size exclusion chromatography indicates that there is likely a conformational difference between the serine sensitive and insensitive states. This appears to constitute a unique mechanism in type 1 PGDHs that may be unique in pathogenic Mycobacterium species and may provide the organisms with a unique metabolic advantage.
Collapse
Affiliation(s)
- Xiao Lan Xu
- Department of Developmental Biology and ‡Department of Medicine, Washington University School of Medicine , 660 South Euclid Avenue, Box 8103, St. Louis, Missouri 63110, United States
| | | |
Collapse
|
22
|
Wang Q, Qi Y, Yin N, Lai L. Discovery of novel allosteric effectors based on the predicted allosteric sites for Escherichia coli D-3-phosphoglycerate dehydrogenase. PLoS One 2014; 9:e94829. [PMID: 24733054 PMCID: PMC3986399 DOI: 10.1371/journal.pone.0094829] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 03/20/2014] [Indexed: 01/10/2023] Open
Abstract
D-3-phosphoglycerate dehydrogenase (PGDH) from Escherichia coli catalyzes the first critical step in serine biosynthesis, and can be allosterically inhibited by serine. In a previous study, we developed a computational method for allosteric site prediction using a coarse-grained two-state Gō Model and perturbation. Two potential allosteric sites were predicted for E. coli PGDH, one close to the active site and the nucleotide binding site (Site I) and the other near the regulatory domain (Site II). In the present study, we discovered allosteric inhibitors and activators based on site I, using a high-throughput virtual screen, and followed by using surface plasmon resonance (SPR) to eliminate false positives. Compounds 1 and 2 demonstrated a low-concentration activation and high-concentration inhibition phenomenon, with IC50 values of 34.8 and 58.0 µM in enzymatic bioassays, respectively, comparable to that of the endogenous allosteric effector, L-serine. For its activation activity, compound 2 exhibited an AC50 value of 34.7 nM. The novel allosteric site discovered in PGDH was L-serine- and substrate-independent. Enzyme kinetics studies showed that these compounds influenced Km, kcat, and kcat/Km. We have also performed structure-activity relationship studies to discover high potency allosteric effectors. Compound 2-2, an analog of compound 2, showed the best in vitro activity with an IC50 of 22.3 µM. Compounds targeting this site can be used as new chemical probes to study metabolic regulation in E. coli. Our study not only identified a novel allosteric site and effectors for PGDH, but also provided a general strategy for designing new regulators for metabolic enzymes.
Collapse
Affiliation(s)
- Qian Wang
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yifei Qi
- Center for Quantitative Biology, Peking University, Beijing, China
| | - Ning Yin
- Center for Quantitative Biology, Peking University, Beijing, China
| | - Luhua Lai
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Center for Quantitative Biology, Peking University, Beijing, China
- * E-mail:
| |
Collapse
|
23
|
Toujani W, Muñoz-Bertomeu J, Flores-Tornero M, Rosa-Téllez S, Anoman AD, Alseekh S, Fernie AR, Ros R. Functional characterization of the plastidial 3-phosphoglycerate dehydrogenase family in Arabidopsis. PLANT PHYSIOLOGY 2013; 163:1164-78. [PMID: 24058165 PMCID: PMC3813641 DOI: 10.1104/pp.113.226720] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 09/19/2013] [Indexed: 05/17/2023]
Abstract
This work contributes to unraveling the role of the phosphorylated pathway of serine (Ser) biosynthesis in Arabidopsis (Arabidopsis thaliana) by functionally characterizing genes coding for the first enzyme of this pathway, 3-phosphoglycerate dehydrogenase (PGDH). We identified two Arabidopsis plastid-localized PGDH genes (3-PGDH and EMBRYO SAC DEVELOPMENT ARREST9 [EDA9]) with a high percentage of amino acid identity with a previously identified PGDH. All three genes displayed a different expression pattern indicating that they are not functionally redundant. pgdh and 3-pgdh mutants presented no drastic visual phenotypes, but eda9 displayed delayed embryo development, leading to aborted embryos that could be classified as early curled cotyledons. The embryo-lethal phenotype of eda9 was complemented with an EDA9 complementary DNA under the control of a 35S promoter (Pro-35S:EDA9). However, this construct, which is poorly expressed in the anther tapetum, did not complement mutant fertility. Microspore development in eda9.1eda9.1 Pro-35S:EDA9 was arrested at the polarized stage. Pollen from these lines lacked tryphine in the interstices of the exine layer, displayed shrunken and collapsed forms, and were unable to germinate when cultured in vitro. A metabolomic analysis of PGDH mutant and overexpressing plants revealed that all three PGDH family genes can regulate Ser homeostasis, with PGDH being quantitatively the most important in the process of Ser biosynthesis at the whole-plant level. By contrast, the essential role of EDA9 could be related to its expression in very specific cell types. We demonstrate the crucial role of EDA9 in embryo and pollen development, suggesting that the phosphorylated pathway of Ser biosynthesis is an important link connecting primary metabolism with development.
Collapse
|
24
|
Grant GA. Contrasting catalytic and allosteric mechanisms for phosphoglycerate dehydrogenases. Arch Biochem Biophys 2011; 519:175-85. [PMID: 22023909 DOI: 10.1016/j.abb.2011.10.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 10/06/2011] [Accepted: 10/10/2011] [Indexed: 11/26/2022]
Abstract
D-3-Phosphoglycerate dehydrogenases (PGDH) exist with at least three different structural motifs and the enzymes from different species display distinctly different mechanisms. In many species, particularly bacteria, the catalytic activity is regulated allosterically through binding of l-serine to a distinct structural domain, termed the ACT domain. Some species, such as Mycobacterium tuberculosis, contain an additional domain, called the "allosteric substrate binding" or ASB domain, that functions as a co-domain in the regulation of catalytic activity. That is, both substrate and effector function synergistically in the regulation of activity to give the enzyme some interesting properties that may have physiological relevance for the persistent state of tuberculosis. Both enzymes function through a V-type regulatory mechanism and, in the Escherichia coli enzyme, it has been demonstrated that this results from a dead-end complex that decreases the concentration of active species rather than a decrease in the velocity of the active species. This review compares and contrasts what we know about these enzymes and provides additional insight into their mechanism of allosteric regulation.
Collapse
Affiliation(s)
- Gregory A Grant
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8103, St. Louis, MO 63110, USA.
| |
Collapse
|
25
|
Xu XL, Chen S, Grant GA. Kinetic, mutagenic, and structural homology analysis of L-serine dehydratase from Legionella pneumophila. Arch Biochem Biophys 2011; 515:28-36. [PMID: 21878319 DOI: 10.1016/j.abb.2011.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 08/12/2011] [Accepted: 08/15/2011] [Indexed: 11/19/2022]
Abstract
A structural database search has revealed that the same fold found in the allosteric substrate binding (ASB) domain of Mycobacterium tuberculosis D-3-phosphoglycerate dehydrogenase (PGDH) is found in l-serine dehydratase from Legionella pneumophila. The M. tuberculosis PGDH ASB domain functions in the control of catalytic activity. Bacterial l-serine dehydratases are 4Fe-4S proteins that convert l-serine to pyruvate and ammonia. Sequence homology reveals two types depending on whether their α and β domains are on the same (Type 2) or separate (Type 1) polypeptides. The α domains contain the catalytic iron-sulfur center while the β domains do not yet have a described function, but the structural homology with PGDH suggests a regulatory role. Type 1 β domains also contain additional sequence homologous to PGDH ACT domains. A continuous assay for l-serine dehydratase is used to demonstrate homotropic cooperativity, a broad pH range, and essential irreversibility. Product inhibition analysis reveals a Uni-Bi ordered mechanism with ammonia dissociating before pyruvate. l-Threonine is a poor substrate and l-cysteine and d-serine are competitive inhibitors with K(i) values that differ by almost 10-fold from those reported for Escherichia colil-serine dehydratase. Mutagenesis identifies the three cysteine residues at the active site that anchor the iron-sulfur complex.
Collapse
Affiliation(s)
- Xiao Lan Xu
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
26
|
Yin J, Garen G, Garen C, James MNG. Expression, purification and preliminary crystallographic analysis of Rv3002c, the regulatory subunit of acetolactate synthase (IlvH) from Mycobacterium tuberculosis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:933-6. [PMID: 21821899 DOI: 10.1107/s1744309111021105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 06/01/2011] [Indexed: 11/10/2022]
Abstract
Branched amino-acid biosynthesis is important to bacterial pathogens such as Mycobacterium tuberculosis (Mtb), a microorganism that presently causes more deaths in humans than any other prokaryotic pathogen (http://www.who.int/tb). In this study, the molecular cloning, expression, purification, crystallization and preliminary crystallographic analysis of recombinant IlvH, the small regulatory subunit of acetohydroxylic acid synthase (AHAS) in Mtb, are reported. AHAS carries out the first common reaction in the biosynthesis of valine, leucine and isoleucine. AHAS is an essential enzyme in Mtb and its inactivation leads to a lethal phenotype [Sassetti et al. (2001), Proc. Natl Acad. Sci. USA, 98, 12712-12717]. Thus, inhibitors of AHAS could potentially be developed into novel anti-Mtb therapies.
Collapse
Affiliation(s)
- Jiang Yin
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
27
|
Axelrod HL, Das D, Abdubek P, Astakhova T, Bakolitsa C, Carlton D, Chen C, Chiu HJ, Clayton T, Deller MC, Duan L, Ellrott K, Farr CL, Feuerhelm J, Grant JC, Grzechnik A, Han GW, Jaroszewski L, Jin KK, Klock HE, Knuth MW, Kozbial P, Krishna SS, Kumar A, Lam WW, Marciano D, McMullan D, Miller MD, Morse AT, Nigoghossian E, Nopakun A, Okach L, Puckett C, Reyes R, Sefcovic N, Tien HJ, Trame CB, van den Bedem H, Weekes D, Wooten T, Xu Q, Hodgson KO, Wooley J, Elsliger MA, Deacon AM, Godzik A, Lesley SA, Wilson IA. Structures of three members of Pfam PF02663 (FmdE) implicated in microbial methanogenesis reveal a conserved α+β core domain and an auxiliary C-terminal treble-clef zinc finger. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:1335-46. [PMID: 20944230 PMCID: PMC2954224 DOI: 10.1107/s1744309110020166] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 05/27/2010] [Indexed: 11/29/2022]
Abstract
Examination of the genomic context for members of the FmdE Pfam family (PF02663), such as the protein encoded by the fmdE gene from the methanogenic archaeon Methanobacterium thermoautotrophicum, indicates that 13 of them are co-transcribed with genes encoding subunits of molybdenum formylmethanofuran dehydrogenase (EC 1.2.99.5), an enzyme that is involved in microbial methane production. Here, the first crystal structures from PF02663 are described, representing two bacterial and one archaeal species: B8FYU2_DESHY from the anaerobic dehalogenating bacterium Desulfitobacterium hafniense DCB-2, Q2LQ23_SYNAS from the syntrophic bacterium Syntrophus aciditrophicus SB and Q9HJ63_THEAC from the thermoacidophilic archaeon Thermoplasma acidophilum. Two of these proteins, Q9HJ63_THEAC and Q2LQ23_SYNAS, contain two domains: an N-terminal thioredoxin-like α+β core domain (NTD) consisting of a five-stranded, mixed β-sheet flanked by several α-helices and a C-terminal zinc-finger domain (CTD). B8FYU2_DESHY, on the other hand, is composed solely of the NTD. The CTD of Q9HJ63_THEAC and Q2LQ23_SYNAS is best characterized as a treble-clef zinc finger. Two significant structural differences between Q9HJ63_THEAC and Q2LQ23_SYNAS involve their metal binding. First, zinc is bound to the putative active site on the NTD of Q9HJ63_THEAC, but is absent from the NTD of Q2LQ23_SYNAS. Second, whereas the structure of the CTD of Q2LQ23_SYNAS shows four Cys side chains within coordination distance of the Zn atom, the structure of Q9HJ63_THEAC is atypical for a treble-cleft zinc finger in that three Cys side chains and an Asp side chain are within coordination distance of the zinc.
Collapse
Affiliation(s)
- Herbert L. Axelrod
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
| | - Debanu Das
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
| | - Polat Abdubek
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Tamara Astakhova
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
| | - Constantina Bakolitsa
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Program on Bioinformatics and Systems Biology, Sanford–Burnham Medical Research Institute, La Jolla, CA, USA
| | - Dennis Carlton
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Connie Chen
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Hsiu-Ju Chiu
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
| | - Thomas Clayton
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Marc C. Deller
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Lian Duan
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
| | - Kyle Ellrott
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
| | - Carol L. Farr
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Julie Feuerhelm
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Joanna C. Grant
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Anna Grzechnik
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Gye Won Han
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Lukasz Jaroszewski
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
- Program on Bioinformatics and Systems Biology, Sanford–Burnham Medical Research Institute, La Jolla, CA, USA
| | - Kevin K. Jin
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
| | - Heath E. Klock
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Mark W. Knuth
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Piotr Kozbial
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Program on Bioinformatics and Systems Biology, Sanford–Burnham Medical Research Institute, La Jolla, CA, USA
| | - S. Sri Krishna
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
- Program on Bioinformatics and Systems Biology, Sanford–Burnham Medical Research Institute, La Jolla, CA, USA
| | - Abhinav Kumar
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
| | - Winnie W. Lam
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
| | - David Marciano
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Daniel McMullan
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Therapeutics Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Mitchell D. Miller
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
| | - Andrew T. Morse
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
| | - Edward Nigoghossian
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Amanda Nopakun
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Linda Okach
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Christina Puckett
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Ron Reyes
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
| | - Natasha Sefcovic
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Program on Bioinformatics and Systems Biology, Sanford–Burnham Medical Research Institute, La Jolla, CA, USA
| | - Henry J. Tien
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Christine B. Trame
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
| | - Henry van den Bedem
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
| | - Dana Weekes
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Program on Bioinformatics and Systems Biology, Sanford–Burnham Medical Research Institute, La Jolla, CA, USA
| | - Tiffany Wooten
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Qingping Xu
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
| | - Keith O. Hodgson
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Photon Science, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - John Wooley
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
| | - Marc-André Elsliger
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ashley M. Deacon
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
| | - Adam Godzik
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
- Program on Bioinformatics and Systems Biology, Sanford–Burnham Medical Research Institute, La Jolla, CA, USA
| | - Scott A. Lesley
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ian A. Wilson
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
28
|
Tabatabaie L, Klomp LW, Berger R, de Koning TJ. L-serine synthesis in the central nervous system: a review on serine deficiency disorders. Mol Genet Metab 2010; 99:256-62. [PMID: 19963421 DOI: 10.1016/j.ymgme.2009.10.012] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 10/16/2009] [Accepted: 10/16/2009] [Indexed: 10/20/2022]
Abstract
The de novo synthesis of the amino acid L-serine plays an essential role in the development and functioning of the central nervous system (CNS). L-serine displays many metabolic functions during different developmental stages; among its functions providing precursors for amino acids, protein synthesis, nucleotide synthesis, neurotransmitter synthesis and L-serine derived lipids. Patients with congenital defects in the L-serine synthesizing enzymes present with severe neurological abnormalities and underscore the importance of this synthetic pathway. In this review, we will discuss the cellular functions of the L-serine pathway, structure and enzymatic properties of the enzymes involved and genetic defects associated with this pathway.
Collapse
Affiliation(s)
- L Tabatabaie
- Department of Metabolic and Endocrine Diseases, University Medical Center Utrecht and Netherlands Metabolomics Centre, The Netherlands.
| | | | | | | |
Collapse
|
29
|
Singaravelu R, Blais DR, McKay CS, Pezacki JP. Activity-based protein profiling of the hepatitis C virus replication in Huh-7 hepatoma cells using a non-directed active site probe. Proteome Sci 2010; 8:5. [PMID: 20181094 PMCID: PMC2832231 DOI: 10.1186/1477-5956-8-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 02/04/2010] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Hepatitis C virus (HCV) poses a growing threat to global health as it often leads to serious liver diseases and is one of the primary causes for liver transplantation. Currently, no vaccines are available to prevent HCV infection and clinical treatments have limited success. Since HCV has a small proteome, it relies on many host cell proteins to complete its life cycle. In this study, we used a non-directed phenyl sulfonate ester probe (PS4 identical with) to selectively target a broad range of enzyme families that show differential activity during HCV replication in Huh-7 cells. RESULTS The PS4 identical with probe successfully targeted 19 active proteins in nine distinct protein families, some that were predominantly labeled in situ compared to the in vitro labeled cell homogenate. Nine proteins revealed altered activity levels during HCV replication. Some candidates identified, such as heat shock 70 kDa protein 8 (or HSP70 cognate), have been shown to influence viral release and abundance of cellular lipid droplets. Other differentially active PS4 identical with targets, such as electron transfer flavoprotein alpha, protein disulfide isomerase A5, and nuclear distribution gene C homolog, constitute novel proteins that potentially mediate HCV propagation. CONCLUSIONS These findings demonstrate the practicality and versatility of non-directed activity-based protein profiling (ABPP) to complement directed methods and accelerate the discovery of altered protein activities associated with pathological states such as HCV replication. Collectively, these results highlight the ability of in situ ABPP approaches to facilitate the identification of enzymes that are either predominantly or exclusively labeled in living cells. Several of these differentially active enzymes represent possible HCV-host interactions that could be targeted for diagnostic or therapeutic purposes.
Collapse
Affiliation(s)
- Ragunath Singaravelu
- Steacie Institute for Molecular Sciences, National Research Council Canada, Ottawa, Ontario, K1A 0R6, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - David R Blais
- Steacie Institute for Molecular Sciences, National Research Council Canada, Ottawa, Ontario, K1A 0R6, Canada
| | - Craig S McKay
- Steacie Institute for Molecular Sciences, National Research Council Canada, Ottawa, Ontario, K1A 0R6, Canada.,Department of Chemistry, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - John Paul Pezacki
- Steacie Institute for Molecular Sciences, National Research Council Canada, Ottawa, Ontario, K1A 0R6, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada.,Department of Chemistry, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| |
Collapse
|
30
|
Burton RL, Chen S, Xu XL, Grant GA. Role of the anion-binding site in catalysis and regulation of Mycobacterium tuberculosis D-3-phosphoglycerate dehydrogenase. Biochemistry 2009; 48:4808-15. [PMID: 19388702 DOI: 10.1021/bi900172q] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
D-3-Phosphoglycerate dehydrogenase from Mycobacterium tuberculosis displays substantial substrate inhibition in the direction of NADH oxidation by its physiological substrate, hydroxypyruvic acid phosphate (HPAP). Previous investigations showed that plots of substrate concentration versus activity derived from steady state assays could be fit with the equation for complete uncompetitive inhibition and that the mechanism may be allosteric. This investigation uses a simulation of transient kinetic data to demonstrate that the mechanism is consistent with the interaction of substrate at a second site called the anion-binding site. While addition of substrate at the active site is ordered, with HPAP binding before NADH, NADH can compete with the substrate for binding to the allosteric site and thereby eliminate the substrate inhibition. Fluorescence resonance energy transfer analysis of mutants with specific tryptophan residues converted to phenylalanine residues demonstrates that the main interaction of NADH with the enzyme, in the absence of substrate, is at the allosteric anion-binding site. This is further confirmed by mutations of basic residues at the anion-binding site which also demonstrates that these residues are necessary for inhibition by l-serine when it binds to the regulatory domain. This may indicate that a ligand must be bound to the anion-binding site for l-serine inhibition, providing a potential mechanism for low levels of activity in the presence of high levels of inhibitor.
Collapse
Affiliation(s)
- Rodney L Burton
- Department of Developmental Biology, Washington University School of Medicine,660 South Euclid Avenue, Box 8103, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
31
|
de Carvalho LPS, Frantom PA, Argyrou A, Blanchard JS. Kinetic evidence for interdomain communication in the allosteric regulation of alpha-isopropylmalate synthase from Mycobacterium tuberculosis. Biochemistry 2009; 48:1996-2004. [PMID: 19166329 DOI: 10.1021/bi801707t] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The enzyme alpha-isopropylmalate synthase from Mycobacterium tuberculosis (MtIPMS) has been identified as a possible target for the design of new antitubercular therapeutics. Recently, it was shown that MtIPMS is subject to slow-onset, feedback inhibition by l-leucine, the first instance of an allosteric regulator utilizing this mechanism. Structural studies are inconsistent with canonical allosteric mechanisms, including changes to the quaternary structure or large, rigid-body conformational changes to the enzyme upon l-leucine binding. Thus, the allosteric regulation may result from a discrete inhibitory signal transmitted to the active site upon l-leucine binding in the regulatory domain, a distance of more than 50 A. To test this mechanism, site-directed mutagenesis was employed to construct enzymes with substitutions at phylogenetically conserved active site residues near the interface of the catalytic and linker domains. The substitutions had wide-ranging effects on the kinetics of l-leucine inhibition, with some modest effects on the kinetic parameters of catalysis. The most dramatic result was the finding that the Y410F mutant form of MtIPMS is insensitive to l-leucine inhibition, suggesting that this residue has completely uncoupled the inhibitory signal to the active site. Overall, the data are consistent with a mechanism of allosteric regulation described by the interdomain communication of the inhibitory signal from the regulatory to catalytic domain and implicate the interactions between the linker and catalytic domains as critical determinants of inhibitory signal transmission.
Collapse
Affiliation(s)
- Luiz Pedro S de Carvalho
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|