1
|
Bogomolova AP, Katrukha IA. Troponins and Skeletal Muscle Pathologies. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:2083-2106. [PMID: 39865025 DOI: 10.1134/s0006297924120010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/19/2024] [Accepted: 12/01/2024] [Indexed: 01/28/2025]
Abstract
Skeletal muscles account for ~30-40% of the total weight of human body and are responsible for its most important functions, including movement, respiration, thermogenesis, and glucose and protein metabolism. Skeletal muscle damage negatively impacts the whole-body functioning, leading to deterioration of the quality of life and, in severe cases, death. Therefore, timely diagnosis and therapy for skeletal muscle dysfunction are important goals of modern medicine. In this review, we focused on the skeletal troponins that are proteins in the thin filaments of muscle fibers. Skeletal troponins play a key role in regulation of muscle contraction. Biochemical properties of these proteins and their use as biomarkers of skeletal muscle damage are described in this review. One of the most convenient and sensitive methods of protein biomarker measurement in biological liquids is immunochemical analysis; hence, we examined the factors that influence immunochemical detection of skeletal troponins and should be taken into account when developing diagnostic test systems. Also, we reviewed the available data on the skeletal troponin mutations that are considered to be associated with pathologies leading to the development of diseases and discussed utilization of troponins as drug targets for treatment of the skeletal muscle disorders.
Collapse
Affiliation(s)
- Agnessa P Bogomolova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Hytest Ltd., Turku, Finland
| | - Ivan A Katrukha
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Hytest Ltd., Turku, Finland
| |
Collapse
|
2
|
Kukendrarajah K, Farmaki AE, Lambiase PD, Schilling R, Finan C, Floriaan Schmidt A, Providencia R. Advancing drug development for atrial fibrillation by prioritising findings from human genetic association studies. EBioMedicine 2024; 105:105194. [PMID: 38941956 PMCID: PMC11260865 DOI: 10.1016/j.ebiom.2024.105194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 05/14/2024] [Accepted: 05/28/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND Drug development for atrial fibrillation (AF) has failed to yield new approved compounds. We sought to identify and prioritise potential druggable targets with support from human genetics, by integrating the available evidence with bioinformatics sources relevant for AF drug development. METHODS Genetic hits for AF and related traits were identified through structured search of MEDLINE. Genes derived from each paper were cross-referenced with the OpenTargets platform for drug interactions. Confirmation/validation was demonstrated through structured searches and review of evidence on MEDLINE and ClinialTrials.gov for each drug and its association with AF. FINDINGS 613 unique drugs were identified, with 21 already included in AF Guidelines. Cardiovascular drugs from classes not currently used for AF (e.g. ranolazine and carperitide) and anti-inflammatory drugs (e.g. dexamethasone and mehylprednisolone) had evidence of potential benefit. Further targets were considered druggable but remain open for drug development. INTERPRETATION Our systematic approach, combining evidence from different bioinformatics platforms, identified drug repurposing opportunities and druggable targets for AF. FUNDING KK is supported by Barts Charity grant G-002089 and is mentored on the AFGen 2023-24 Fellowship funded by the AFGen NIH/NHLBI grant R01HL092577. RP is supported by the UCL BHF Research Accelerator AA/18/6/34223 and NIHR grant NIHR129463. AFS is supported by the BHF grants PG/18/5033837, PG/22/10989 and UCL BHF Accelerator AA/18/6/34223 as well as the UK Research and Innovation (UKRI) under the UK government's Horizon Europe funding guarantee EP/Z000211/1 and by the UKRI-NIHR grant MR/V033867/1 for the Multimorbidity Mechanism and Therapeutics Research Collaboration. AF is supported by UCL BHF Accelerator AA/18/6/34223. CF is supported by UCL BHF Accelerator AA/18/6/34223.
Collapse
Affiliation(s)
- Kishore Kukendrarajah
- Institute of Health Informatics, University College London, 222 Euston Road, NW1 2DA, United Kingdom; Barts Heart Centre, St Bartholomew's Hospital, West Smithfield, EC1A 7BE, United Kingdom.
| | - Aliki-Eleni Farmaki
- Institute of Health Informatics, University College London, 222 Euston Road, NW1 2DA, United Kingdom
| | - Pier D Lambiase
- Barts Heart Centre, St Bartholomew's Hospital, West Smithfield, EC1A 7BE, United Kingdom; Institute of Cardiovascular Science, University College London, Gower Street, WC1E 6HX, United Kingdom
| | - Richard Schilling
- Barts Heart Centre, St Bartholomew's Hospital, West Smithfield, EC1A 7BE, United Kingdom
| | - Chris Finan
- Institute of Cardiovascular Science, University College London, Gower Street, WC1E 6HX, United Kingdom; UCL British Heart Foundation Research Accelerator, United Kingdom; Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Amand Floriaan Schmidt
- Institute of Cardiovascular Science, University College London, Gower Street, WC1E 6HX, United Kingdom; UCL British Heart Foundation Research Accelerator, United Kingdom; Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, the Netherlands; Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centres, University of Amsterdam, the Netherlands
| | - Rui Providencia
- Institute of Health Informatics, University College London, 222 Euston Road, NW1 2DA, United Kingdom; Barts Heart Centre, St Bartholomew's Hospital, West Smithfield, EC1A 7BE, United Kingdom
| |
Collapse
|
3
|
Collibee SE, Romero A, Muci AR, Hwee DT, Chuang C, Hartman JJ, Motani AS, Ashcraft L, DeRosier A, Grillo M, Lu Q, Malik FI, Morgan BP. Cardiac Troponin Activator CK-963 Increases Cardiac Contractility in Rats. J Med Chem 2024; 67:7859-7869. [PMID: 38451215 PMCID: PMC11129196 DOI: 10.1021/acs.jmedchem.3c02412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/08/2024]
Abstract
Novel cardiac troponin activators were identified using a high throughput cardiac myofibril ATPase assay and confirmed using a series of biochemical and biophysical assays. HTS hit 2 increased rat cardiomyocyte fractional shortening without increasing intracellular calcium concentrations, and the biological target of 1 and 2 was determined to be the cardiac thin filament. Subsequent optimization to increase solubility and remove PDE-3 inhibition led to the discovery of CK-963 and enabled pharmacological evaluation of cardiac troponin activation without the competing effects of PDE-3 inhibition. Rat echocardiography studies using CK-963 demonstrated concentration-dependent increases in cardiac fractional shortening up to 95%. Isothermal calorimetry studies confirmed a direct interaction between CK-963 and a cardiac troponin chimera with a dissociation constant of 11.5 ± 3.2 μM. These results provide evidence that direct activation of cardiac troponin without the confounding effects of PDE-3 inhibition may provide benefit for patients with cardiovascular conditions where contractility is reduced.
Collapse
Affiliation(s)
- Scott E. Collibee
- Cytokinetics,
Inc., 350 Oyster Point Boulevard, South San Francisco, California 94080, United States
| | - Antonio Romero
- Cytokinetics,
Inc., 350 Oyster Point Boulevard, South San Francisco, California 94080, United States
| | - Alexander R. Muci
- Cytokinetics,
Inc., 350 Oyster Point Boulevard, South San Francisco, California 94080, United States
| | - Darren T. Hwee
- Cytokinetics,
Inc., 350 Oyster Point Boulevard, South San Francisco, California 94080, United States
| | - Chihyuan Chuang
- Cytokinetics,
Inc., 350 Oyster Point Boulevard, South San Francisco, California 94080, United States
| | - James J. Hartman
- Cytokinetics,
Inc., 350 Oyster Point Boulevard, South San Francisco, California 94080, United States
| | - Alykhan S. Motani
- Cytokinetics,
Inc., 350 Oyster Point Boulevard, South San Francisco, California 94080, United States
| | - Luke Ashcraft
- Cytokinetics,
Inc., 350 Oyster Point Boulevard, South San Francisco, California 94080, United States
| | - Andre DeRosier
- Cytokinetics,
Inc., 350 Oyster Point Boulevard, South San Francisco, California 94080, United States
| | - Mark Grillo
- Cytokinetics,
Inc., 350 Oyster Point Boulevard, South San Francisco, California 94080, United States
| | - Qing Lu
- Cytokinetics,
Inc., 350 Oyster Point Boulevard, South San Francisco, California 94080, United States
| | - Fady I. Malik
- Cytokinetics,
Inc., 350 Oyster Point Boulevard, South San Francisco, California 94080, United States
| | - Bradley P. Morgan
- Cytokinetics,
Inc., 350 Oyster Point Boulevard, South San Francisco, California 94080, United States
| |
Collapse
|
4
|
Hantz ER, Tikunova SB, Belevych N, Davis JP, Reiser PJ, Lindert S. Targeting Troponin C with Small Molecules Containing Diphenyl Moieties: Calcium Sensitivity Effects on Striated Muscles and Structure-Activity Relationship. J Chem Inf Model 2023; 63:3462-3473. [PMID: 37204863 PMCID: PMC10496875 DOI: 10.1021/acs.jcim.3c00196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Despite large investments from academia and industry, heart failure, which results from a disruption of the contractile apparatus, remains a leading cause of death. Cardiac muscle contraction is a calcium-dependent mechanism, which is regulated by the troponin protein complex (cTn) and specifically by the N-terminal domain of its calcium-binding subunit (cNTnC). There is an increasing need for the development of small molecules that increase calcium sensitivity without altering the systolic calcium concentration, thereby strengthening the cardiac function. Here, we examined the effect of our previously identified calcium-sensitizing small molecule, ChemBridge compound 7930079, in the context of several homologous muscle systems. The effect of this molecule on force generation in isolated cardiac trabeculae and slow skeletal muscle fibers was measured. Furthermore, we explored the use of Gaussian accelerated molecular dynamics in sampling highly predictive receptor conformations based on NMR-derived starting structures. Additionally, we took a rational computational approach for lead optimization based on lipophilic diphenyl moieties. This integrated structural-biochemical-physiological approach led to the identification of three novel low-affinity binders, which had similar binding affinities to the known positive inotrope trifluoperazine. The most potent identified calcium sensitizer was compound 16 with an apparent affinity of 117 ± 17 μM.
Collapse
Affiliation(s)
- Eric R. Hantz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210
| | - Svetlana B. Tikunova
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, 43210
| | - Natalya Belevych
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210
| | - Jonathan P. Davis
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, 43210
| | - Peter J. Reiser
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210
| |
Collapse
|
5
|
Hantz ER, Tikunova SB, Belevych N, Davis JP, Reiser PJ, Lindert S. Targeting Troponin C with Small Molecules Containing Diphenyl Moieties: Calcium Sensitivity Effects on Striated Muscle and Structure Activity Relationship. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.06.527323. [PMID: 36798160 PMCID: PMC9934531 DOI: 10.1101/2023.02.06.527323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Despite large investments from academia and industry, heart failure, which results from a disruption of the contractile apparatus, remains a leading cause of death. Cardiac muscle contraction is a calcium-dependent mechanism, which is regulated by the troponin protein complex (cTn) and specifically by the N-terminal domain of its calcium binding subunit (cNTnC). There is an increasing need for the development of small molecules that increase calcium sensitivity without altering systolic calcium concentration, thereby strengthening cardiac function. Here, we examined the effect of our previously identified calcium sensitizing small molecule, ChemBridge compound 7930079, in the context of several homologous muscle systems. The effect of this molecule on force generation in isolated cardiac trabeculae and slow skeletal muscle fibers was measured. Furthermore, we explored the use of Gaussian accelerated molecular dynamics in sampling highly predictive receptor conformations based on NMR derived starting structures. Additionally, we took a rational computational approach for lead optimization based on lipophilic diphenyl moieties. This led to the identification of three novel low affinity binders, which had similar binding affinities to known positive inotrope trifluoperazine. The most potent identified calcium sensitizer was compound 16 with an apparent affinity of 117 ± 17 μM .
Collapse
Affiliation(s)
- Eric R. Hantz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210
| | - Svetlana B. Tikunova
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, 43210
| | - Natalya Belevych
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210
| | - Jonathan P. Davis
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, 43210
| | - Peter J. Reiser
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210,Correspondence to: Department of Chemistry and Biochemistry, Ohio State University, 2114 Newman & Wolfrom Laboratory, 100 W. 18th Avenue, Columbus, OH 43210, 614-292-8284 (office), 614-292-1685 (fax),
| |
Collapse
|
6
|
Leivaditis V, Koletsis E, Tsopanoglou N, Charokopos N, D’Alessandro C, Grapatsas K, Apostolakis E, Choleva E, Plota M, Emmanuil A, Dahm M, Dougenis D. The Coadministration of Levosimendan and Exenatide Offers a Significant Cardioprotective Effect to Isolated Rat Hearts against Ischemia/Reperfusion Injury. J Cardiovasc Dev Dis 2022; 9:jcdd9080263. [PMID: 36005427 PMCID: PMC9409795 DOI: 10.3390/jcdd9080263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/04/2022] [Accepted: 08/11/2022] [Indexed: 11/25/2022] Open
Abstract
(1) Background: The present study aims to investigate the effect of administration of Levosimendan and Exenatide in various concentrations, as well as of the coadministration of those agents in an ischemia–reperfusion injury isolated heart model. (2) Methods: After 30 min of perfusion, the hearts underwent a 30 min period of regional ischemia followed by a 120 min period of reperfusion. All animals were randomly divided into 12 experimental groups of nine animals in each group: (1) Control, (2) Sham, (3) Digox (Negative control, Digoxin 1.67 μg/min), (4) Levo 1 (Levosimendan 0.01 μg/min), (5) Levo 2 (Levosimendan 0.03 μg/mL), (6) Levo 3 (Levosimendan 0.1 μg/min), (7) Levo 4 (Levosimendan 0.3 μg/min), (8) Levo 5 (Levosimendan 1 μg/min), (9) Exen 1 (Exenatide 0.001 μg/min), (10) Exen 2 (Exenatide 0.01 μg/min), (11) Exen 3 (Exenatide 0.1 μg/min) and (12) Combi (Levosimendan 0.1 µg/mL + Exenatide 0.001 μg/min). The hemodynamic parameters were recorded throughout the experiment. Arrhythmias and coronary flow were also evaluated. After every experiment the heart was suitably prepared and infarct size was measured. Markers of myocardial injury were also measured. Finally, oxidative stress was evaluated measuring reactive oxygen species. (3) Results: A dose-dependent improvement of the haemodynamic response was observed after the administration of both Levosimendan and Exenatide. The coadministration of both agents presented an even greater effect, improving the haemodynamic parameters further than the two agents separately. Levosimendan offered an increase of the coronary flow and both agents offered a reduction of arrhythmias. A dose-dependent reduction of the size of myocardial infarction and myocardial injury was observed after administration of Levosimendan and Exenatide. The coadministration of both agents offered a further improving the above parameters. Levosimendan also offered a significant reduction of oxidative stress. (4) Conclusions: The administration of Levosimendan and Exenatide offers a significant benefit by improving the haemodynamic response, increasing the coronary flow and reducing the occurrence of arrhythmias, the size of myocardial injury and myocardial oxidative stress in isolated rat hearts.
Collapse
Affiliation(s)
- Vasileios Leivaditis
- Department of Cardiothoracic and Vascular Surgery, Westpfalz-Klinikum, Hellmut-Hartert-Strasse 1, 67655 Kaiserslautern, Germany
- Department of Cardiothoracic Surgery, University Hospital of Patras, 26504 Patras, Greece
- Correspondence: ; Tel.: +49-151-50225145
| | - Efstratios Koletsis
- Department of Cardiothoracic Surgery, University Hospital of Patras, 26504 Patras, Greece
| | - Nikolaos Tsopanoglou
- Department of Pharmacology, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Nikolaos Charokopos
- Department of Cardiothoracic Surgery, University Hospital of Patras, 26504 Patras, Greece
| | - Cristian D’Alessandro
- Laboratory of Biomechanics & Biomedical Engineering, Department of Mechanical Engineering & Aeronautics, University of Patras, 26504 Patras, Greece
| | - Konstantinos Grapatsas
- Department of Thoracic Surgery, Medical Center-University of Freiburg, Faculty of Medicine, 79106 Freiburg, Germany
| | - Efstratios Apostolakis
- Department of Cardiothoracic Surgery, University Hospital of Ioannina, 45500 Ioannina, Greece
| | - Effrosyni Choleva
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, 26504 Patras, Greece
| | - Maria Plota
- Department of Microbiology, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Andreas Emmanuil
- Laboratory of Hematology, University Hospital of Patras, 26504 Patras, Greece
| | - Manfred Dahm
- Department of Cardiothoracic and Vascular Surgery, Westpfalz-Klinikum, Hellmut-Hartert-Strasse 1, 67655 Kaiserslautern, Germany
| | - Dimitrios Dougenis
- Department of Cardiothoracic Surgery, Attikon University Hospital of Athens, 12462 Athens, Greece
| |
Collapse
|
7
|
Lebedeva NB, Chesnokova LY. The Use of Levosimendan for the Treatment of Heart Failure and its Potential Organoprotective Effects. RATIONAL PHARMACOTHERAPY IN CARDIOLOGY 2022. [DOI: 10.20996/1819-6446-2022-04-12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The review article is aimed at providing a recent update on the use of levosimendan, an inotropic drug in current use for the treatment of heart failure. The review discusses its mechanisms of action, main hemodynamic effects, clinical trials and obtained evidences that have formed the basis of the current guidelines on its use, as well as the latest clinical and experimental trials evaluating its organ-protective effects. Conclusion: levosimendan has a promising potential for treating heart failure, prescribed even in low doses, and may be regarded as a drug with cerebroprotective and possible nephroprotective effects, requiring further large randomized clinical trials.
Collapse
Affiliation(s)
- N. B. Lebedeva
- Research Institute for Complex Issues of Cardiovascular Diseases
| | | |
Collapse
|
8
|
DFT study of 2D graphitic carbon nitride based preferential targeted delivery of levosimendan, a cardiovascular drug. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2021.113584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
Ma H, Cassedy A, Ó'Fágáin C, O'Kennedy R. Generation, selection and modification of anti-cardiac troponin I antibodies with high specificity and affinity. J Immunol Methods 2021; 500:113183. [PMID: 34774542 DOI: 10.1016/j.jim.2021.113183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 11/18/2022]
Abstract
Current diagnosis of acute myocardial infarction involves quantification of circulating cTn levels. This work endeavoured to generate and enhance recombinant antibody fragments targeting various epitopes on the N- and C-terminals of the cTnI molecule, thereby facilitating highly sensitive detection of the troponin molecule. From this approach, two anti-cTnI scFv antibodies were successfully selected using either phage display or structural reformatting of full length anti-cTnI IgG. Their antibody binding affinity was further optimised via chain shuffling and/or site directed mutagenesis, resulting in scFv with heightened sensitivity when compared to the wild-type scFv. If used in conjunction with existing anti-mid fragment cTnI antibodies, these N- and C- terminal-targeting scFvs show high potential for the enhancement of current cTnI detection assays by limiting the effects from cTnI degradation or troponin complex formation.
Collapse
Affiliation(s)
- Hui Ma
- School of Biotechnology, Dublin City University, Dublin 9, D09 V2O9, Ireland
| | - Arabelle Cassedy
- School of Biotechnology, Dublin City University, Dublin 9, D09 V2O9, Ireland
| | - Ciarán Ó'Fágáin
- School of Biotechnology, Dublin City University, Dublin 9, D09 V2O9, Ireland
| | - Richard O'Kennedy
- School of Biotechnology, Dublin City University, Dublin 9, D09 V2O9, Ireland; Qatar Foundation, Research, Development and Innovation, and Hamad Bin Khalifa University, Education City, Doha, Qatar.
| |
Collapse
|
10
|
Li MX, Mercier P, Hartman JJ, Sykes BD. Structural Basis of Tirasemtiv Activation of Fast Skeletal Muscle. J Med Chem 2021; 64:3026-3034. [PMID: 33703886 DOI: 10.1021/acs.jmedchem.0c01412] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Troponin regulates the calcium-mediated activation of skeletal muscle. Muscle weakness in diseases such as amyotrophic lateral sclerosis and spinal muscular atrophy occurs from diminished neuromuscular output. The first direct fast skeletal troponin activator, tirasemtiv, amplifies the response of muscle to neuromuscular input. Tirasemtiv binds selectively and strongly to fast skeletal troponin, slowing the rate of calcium release and sensitizing muscle to calcium. We report the solution NMR structure of tirasemtiv bound to a fast skeletal troponin C-troponin I chimera. The structure reveals that tirasemtiv binds in a hydrophobic pocket between the regulatory domain of troponin C and the switch region of troponin I, which overlaps with that of Anapoe in the X-ray structure of skeletal troponin. Multiple interactions stabilize the troponin C-troponin I interface, increase the affinity of troponin C for the switch region of fast skeletal troponin I, and drive the equilibrium toward the active state.
Collapse
Affiliation(s)
- Monica X Li
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Pascal Mercier
- National High Field NMR Centre, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - James J Hartman
- Cytokinetics, Inc., South San Francisco, California 94080, United States
| | - Brian D Sykes
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
11
|
Potential of the Cardiovascular Drug Levosimendan in the Management of Amyotrophic Lateral Sclerosis: An Overview of a Working Hypothesis. J Cardiovasc Pharmacol 2020; 74:389-399. [PMID: 31730560 DOI: 10.1097/fjc.0000000000000728] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Levosimendan is a calcium sensitizer that promotes myocyte contractility through its calcium-dependent interaction with cardiac troponin C. Administered intravenously, it has been used for nearly 2 decades to treat acute and advanced heart failure and to support the heart function in various therapy settings characterized by low cardiac output. Effects of levosimendan on noncardiac muscle suggest a possible new application in the treatment of people with amyotrophic lateral sclerosis (ALS), a neuromuscular disorder characterized by progressive weakness, and eventual paralysis. Previous attempts to improve the muscle response in ALS patients and thereby maintain respiratory function and delay progression of disability have produced some mixed results. Continuing this line of investigation, levosimendan has been shown to enhance in vitro the contractility of the diaphragm muscle fibers of non-ALS patients and to improve in vivo diaphragm neuromuscular efficiency in healthy subjects. Possible positive effects on respiratory function in people with ALS were seen in an exploratory phase 2 study, and a phase 3 clinical trial is now underway to evaluate the potential benefit of an oral form of levosimendan on both respiratory and overall functions in patients with ALS. Here, we will review the various known pharmacologic effects of levosimendan, considering their relevance to people living with ALS.
Collapse
|
12
|
Lewis TA, de Waal L, Wu X, Youngsaye W, Wengner A, Kopitz C, Lange M, Gradl S, Ellermann M, Lienau P, Schreiber SL, Greulich H, Meyerson M. Optimization of PDE3A Modulators for SLFN12-Dependent Cancer Cell Killing. ACS Med Chem Lett 2019; 10:1537-1542. [PMID: 31749907 DOI: 10.1021/acsmedchemlett.9b00360] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/18/2019] [Indexed: 02/06/2023] Open
Abstract
6-(4-(Diethylamino)-3-nitrophenyl)-5-methyl-4,5-dihydropyridazin-3(2H)-one, or DNMDP, potently and selectively inhibits phosphodiesterases 3A and 3B (PDE3A and PDE3B) and kills cancer cells by inducing PDE3A/B interactions with SFLN12. The structure-activity relationship (SAR) of DNMDP analogs was evaluated using a phenotypic viability assay, resulting in several compounds with suitable pharmacokinetic properties for in vivo analysis. One of these compounds, BRD9500, was active in an SK-MEL-3 xenograft model of cancer.
Collapse
Affiliation(s)
- Timothy A. Lewis
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Luc de Waal
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Dana-Farber Cancer Institute, Boston, Massachusetts 01255, United States
| | - Xiaoyun Wu
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Dana-Farber Cancer Institute, Boston, Massachusetts 01255, United States
| | - Willmen Youngsaye
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | | | | | | | | | | | | | - Stuart L. Schreiber
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Heidi Greulich
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Dana-Farber Cancer Institute, Boston, Massachusetts 01255, United States
| | - Matthew Meyerson
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Dana-Farber Cancer Institute, Boston, Massachusetts 01255, United States
| |
Collapse
|
13
|
Cai F, Hwang PM, Sykes BD. Structural Changes Induced by the Binding of the Calcium Desensitizer W7 to Cardiac Troponin. Biochemistry 2018; 57:6461-6469. [DOI: 10.1021/acs.biochem.8b00882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Fangze Cai
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Peter M. Hwang
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Brian D. Sykes
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| |
Collapse
|
14
|
Abstract
This article focuses on three "bins" that comprise sets of biophysical derangements elicited by cardiomyopathy-associated mutations in the myofilament. Current therapies focus on symptom palliation and do not address the disease at its core. We and others have proposed that a more nuanced classification could lead to direct interventions based on early dysregulation changing the trajectory of disease progression in the preclinical cohort. Continued research is necessary to address the complexity of cardiomyopathic progression and develop efficacious therapeutics.
Collapse
Affiliation(s)
- Melissa L Lynn
- Department of Medicine, University of Arizona, Room 317, 1656 East Mabel Street, Tucson, AZ 85724, USA
| | - Sarah J Lehman
- Department of Physiological Sciences, University of Arizona, Room 317, 1656 East Mabel Street, Tucson, AZ 85724, USA
| | - Jil C Tardiff
- Department of Medicine, University of Arizona, Room 312, 1656 East Mabel Street, Tucson, AZ 85724, USA.
| |
Collapse
|
15
|
Klein BA, Reiz B, Robertson IM, Irving M, Li L, Sun YB, Sykes BD. Reversible Covalent Reaction of Levosimendan with Cardiac Troponin C in Vitro and in Situ. Biochemistry 2018; 57:2256-2265. [DOI: 10.1021/acs.biochem.8b00109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Brittney A. Klein
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Béla Reiz
- Department of Chemistry, Faculty of Science, University of Alberta, Edmonton, Alberta T6H 2H7, Canada
| | - Ian M. Robertson
- Pharmaceutical and Health Benefits Branch, Ministry of Health, Government of Alberta, Edmonton, Alberta T5J 3Z5, Canada
| | - Malcolm Irving
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King’s College London, London SE1 1UL, U.K
| | - Liang Li
- Department of Chemistry, Faculty of Science, University of Alberta, Edmonton, Alberta T6H 2H7, Canada
| | - Yin-Biao Sun
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King’s College London, London SE1 1UL, U.K
| | - Brian D. Sykes
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| |
Collapse
|
16
|
Gambardella J, Trimarco B, Iaccarino G, Santulli G. New Insights in Cardiac Calcium Handling and Excitation-Contraction Coupling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1067:373-385. [PMID: 28956314 DOI: 10.1007/5584_2017_106] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Excitation-contraction (EC) coupling denotes the conversion of electric stimulus in mechanic output in contractile cells. Several studies have demonstrated that calcium (Ca2+) plays a pivotal role in this process. Here we present a comprehensive and updated description of the main systems involved in cardiac Ca2+ handling that ensure a functional EC coupling and their pathological alterations, mainly related to heart failure.
Collapse
Affiliation(s)
- Jessica Gambardella
- Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy.,Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Fisciano, Italy
| | - Bruno Trimarco
- Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy
| | - Guido Iaccarino
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Fisciano, Italy
| | - Gaetano Santulli
- Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy. .,Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave, Forch 525, 10461, New York, NY, USA.
| |
Collapse
|
17
|
Cai F, Li MX, Pineda-Sanabria SE, Gelozia S, Lindert S, West F, Sykes BD, Hwang PM. Structures reveal details of small molecule binding to cardiac troponin. J Mol Cell Cardiol 2016; 101:134-144. [PMID: 27825981 DOI: 10.1016/j.yjmcc.2016.10.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/22/2016] [Accepted: 10/25/2016] [Indexed: 11/27/2022]
Abstract
In cardiac and skeletal muscle, the troponin complex turns muscle contraction on and off in a calcium-dependent manner. Many small molecules are known to bind to the troponin complex to modulate its calcium binding affinity, and this may be useful in a broad range of conditions in which striated muscle function is compromised, such as congestive heart failure. As a tool for developing drugs specific for the cardiac isoform of troponin, we have designed a chimeric construct (cChimera) consisting of the regulatory N-terminal domain of cardiac troponin C (cNTnC) fused to the switch region of cardiac troponin I (cTnI), mimicking the key binding event that turns on muscle contraction. We demonstrate by solution NMR spectroscopy that cChimera faithfully reproduces the native interface between cTnI and cNTnC. We determined that small molecules based on diphenylamine can bind to cChimera with a KD as low as 10μM. Solution NMR structures show that minimal structural perturbations in cChimera are needed to accommodate 3-methyldiphenylamine (3-mDPA), which is probably why it binds with higher affinity than previously studied compounds like bepridil, despite its significantly smaller size. The unsubstituted aromatic ring of 3-mDPA binds to an inner hydrophobic pocket adjacent to the central beta sheet of cNTnC. However, the methyl-substituted ring is able to bind in two different orientations, either inserting into the cNTnC-cTnI interface or "flipping out" to form contacts primarily with helix C of cNTnC. Our work suggests that preservation of the native interaction between cNTnC and cTnI is key to the development of a high affinity cardiac troponin-specific drug.
Collapse
Affiliation(s)
- Fangze Cai
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Monica X Li
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | | | - Shorena Gelozia
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, USA
| | - Frederick West
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Brian D Sykes
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Peter M Hwang
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada; Department of Medicine, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
18
|
Robertson IM, Pineda-Sanabria SE, Yan Z, Kampourakis T, Sun YB, Sykes BD, Irving M. Reversible Covalent Binding to Cardiac Troponin C by the Ca2+-Sensitizer Levosimendan. Biochemistry 2016; 55:6032-6045. [DOI: 10.1021/acs.biochem.6b00758] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ian M. Robertson
- Randall
Division of Cell and Molecular Biophysics and British Heart Foundation
Centre of Research Excellence, King’s College London, New Hunt’s
House, Guy’s Campus, London, SE1 1UL, U.K
- Department
of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Sandra E. Pineda-Sanabria
- Department
of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Ziqian Yan
- Randall
Division of Cell and Molecular Biophysics and British Heart Foundation
Centre of Research Excellence, King’s College London, New Hunt’s
House, Guy’s Campus, London, SE1 1UL, U.K
| | - Thomas Kampourakis
- Randall
Division of Cell and Molecular Biophysics and British Heart Foundation
Centre of Research Excellence, King’s College London, New Hunt’s
House, Guy’s Campus, London, SE1 1UL, U.K
| | - Yin-Biao Sun
- Randall
Division of Cell and Molecular Biophysics and British Heart Foundation
Centre of Research Excellence, King’s College London, New Hunt’s
House, Guy’s Campus, London, SE1 1UL, U.K
| | - Brian D. Sykes
- Department
of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Malcolm Irving
- Randall
Division of Cell and Molecular Biophysics and British Heart Foundation
Centre of Research Excellence, King’s College London, New Hunt’s
House, Guy’s Campus, London, SE1 1UL, U.K
| |
Collapse
|
19
|
Marques MDA, de Oliveira GAP. Cardiac Troponin and Tropomyosin: Structural and Cellular Perspectives to Unveil the Hypertrophic Cardiomyopathy Phenotype. Front Physiol 2016; 7:429. [PMID: 27721798 PMCID: PMC5033975 DOI: 10.3389/fphys.2016.00429] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/09/2016] [Indexed: 12/12/2022] Open
Abstract
Inherited myopathies affect both skeletal and cardiac muscle and are commonly associated with genetic dysfunctions, leading to the production of anomalous proteins. In cardiomyopathies, mutations frequently occur in sarcomeric genes, but the cause-effect scenario between genetic alterations and pathological processes remains elusive. Hypertrophic cardiomyopathy (HCM) was the first cardiac disease associated with a genetic background. Since the discovery of the first mutation in the β-myosin heavy chain, more than 1400 new mutations in 11 sarcomeric genes have been reported, awarding HCM the title of the “disease of the sarcomere.” The most common macroscopic phenotypes are left ventricle and interventricular septal thickening, but because the clinical profile of this disease is quite heterogeneous, these phenotypes are not suitable for an accurate diagnosis. The development of genomic approaches for clinical investigation allows for diagnostic progress and understanding at the molecular level. Meanwhile, the lack of accurate in vivo models to better comprehend the cellular events triggered by this pathology has become a challenge. Notwithstanding, the imbalance of Ca2+ concentrations, altered signaling pathways, induction of apoptotic factors, and heart remodeling leading to abnormal anatomy have already been reported. Of note, a misbalance of signaling biomolecules, such as kinases and tumor suppressors (e.g., Akt and p53), seems to participate in apoptotic and fibrotic events. In HCM, structural and cellular information about defective sarcomeric proteins and their altered interactome is emerging but still represents a bottleneck for developing new concepts in basic research and for future therapeutic interventions. This review focuses on the structural and cellular alterations triggered by HCM-causing mutations in troponin and tropomyosin proteins and how structural biology can aid in the discovery of new platforms for therapeutics. We highlight the importance of a better understanding of allosteric communications within these thin-filament proteins to decipher the HCM pathological state.
Collapse
Affiliation(s)
- Mayra de A Marques
- Programa de Biologia Estrutural, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Guilherme A P de Oliveira
- Programa de Biologia Estrutural, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
20
|
Selvi T, Srinivasan K. Synthetic Applications of Aroyl- and Nitro-substituted 2-Aryl-Cyclopropane-1,1-Dicarboxylates. Isr J Chem 2016. [DOI: 10.1002/ijch.201500093] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Thangavel Selvi
- School of Chemistry; Bharathidasan University; Tiruchirappalli 620 024 Tamil Nadu India
| | - Kannupal Srinivasan
- School of Chemistry; Bharathidasan University; Tiruchirappalli 620 024 Tamil Nadu India
| |
Collapse
|
21
|
Schlecht W, Li KL, Hu D, Dong W. Fluorescence Based Characterization of Calcium Sensitizer Action on the Troponin Complex. Chem Biol Drug Des 2015; 87:171-81. [PMID: 26375298 DOI: 10.1111/cbdd.12651] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/15/2015] [Accepted: 08/05/2015] [Indexed: 11/29/2022]
Abstract
Calcium sensitizers enhance the transduction of the Ca(2+) signal into force within the heart and have found use in treating heart failure. However the mechanisms of action for most Ca(2+) sensitizers remain unclear. To address this issue an efficient fluorescence based approach to Ca(2+) sensitizer screening was developed which monitors cardiac troponin C's (cTnC's) hydrophobic cleft. This approach was tested on four common Ca(2+) -sensitizers, EMD 57033, levosimendan, bepridil and pimobendan with the aim of elucidating the mechanisms of action for each as well as proving the efficacy of the new screening method. Ca(2+) -titration experiments were employed to determine the effect on Ca(2+) sensitivity and cooperativity of cTnC opening, while stopped flow experiments were used to investigate the impact on cTnC relaxation kinetics. Bepridil was shown to increase the sensitivity of cTnC for Ca(2+) under all reconstitution conditions, sensitization by the other drugs was context dependent. Levosimendan and pimobendan reduced the rate of cTnC closing consistent with a stabilization of cTnC's open conformation while bepridil increased the rate of relaxation. Experiments were also run on samples containing cTnT(T204E), a known Ca(2+) -desensitizing phosphorylation mimic. Levosimendan, bepridil, and pimobendan were found to elevate the Ca(2+) -sensitivity of cTnT(T204E) containing samples in this context.
Collapse
Affiliation(s)
- William Schlecht
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, PO Box 646515, Washington State University, Pullman, WA 99164-6515, USA
| | - King-Lun Li
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, PO Box 646515, Washington State University, Pullman, WA 99164-6515, USA
| | - Dehong Hu
- The Environmental and Molecular Science Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Boulevard Richland, WA 99354, USA
| | - Wenji Dong
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, PO Box 646515, Washington State University, Pullman, WA 99164-6515, USA
| |
Collapse
|
22
|
Orstavik O, Ata SH, Riise J, Dahl CP, Andersen GØ, Levy FO, Skomedal T, Osnes JB, Qvigstad E. Inhibition of phosphodiesterase-3 by levosimendan is sufficient to account for its inotropic effect in failing human heart. Br J Pharmacol 2015; 171:5169-81. [PMID: 24547784 DOI: 10.1111/bph.12647] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 10/28/2013] [Accepted: 11/10/2013] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Levosimendan is known as a calcium sensitizer, although it is also known to inhibit PDE3. We aimed to isolate each component and estimate their contribution to the increased cardiac contractility induced by levosimendan. EXPERIMENTAL APPROACH Contractile force was measured in electrically stimulated ventricular strips from explanted failing human hearts and left ventricular strips from normal male Wistar rats. PDE activity was measured in a two-step PDE activity assay on failing human ventricle. KEY RESULTS Levosimendan exerted a positive inotropic effect (PIE) reaching maximum at 10(-5) M in ventricular strips from failing human hearts. In the presence of the selective PDE3 inhibitor cilostamide, the PIE of levosimendan was abolished. During treatment with a PDE4 inhibitor and a supra-threshold concentration of isoprenaline, levosimendan generated an amplified inotropic response. This effect was reversed by β-adrenoceptor blockade and undetectable in strips pretreated with cilostamide. Levosimendan (10(-6) M) increased the potency of β-adrenoceptor agonists by 0.5 log units in failing human myocardium, but not in the presence of cilostamide. Every inotropic response to levosimendan was associated with a lusitropic response. Levosimendan did not affect the concentration-response curve to calcium in rat ventricular strips, in contrast to the effects of a known calcium sensitizer, EMD57033 [5-(1-(3,4-dimethoxybenzoyl)-1,2,3,4-tetrahydroquinolin-6-yl)-6-methyl-3,6-dihydro-2H-1,3,4-thiadiazin-2-one]. PDE activity assays confirmed that levosimendan inhibited PDE3 as effectively as cilostamide. CONCLUSIONS AND IMPLICATIONS Our results indicate that the PDE3-inhibitory property of levosimendan was enough to account for its inotropic effect, leaving a minor, if any, effect to a calcium-sensitizing component.
Collapse
Affiliation(s)
- O Orstavik
- Department of Pharmacology, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway; K.G. Jebsen Cardiac Research Centre, Faculty of Medicine, University of Oslo, Oslo, Norway; Center for Heart Failure Research, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Selvi T, Srinivasan K. Boron Trifluoride-Promoted Indium(III) Triflate-Catalyzed Sequential One-Pot Synthesis of (1,2-Diaryl-2-oxoethyl)malonates fromtrans-2-Aryl-3-nitrocyclopropane-1,1-dicarboxylates and Activated Arenes. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500143] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Abstract
Various human diseases can disrupt the balance between muscle contraction and relaxation. Sarcomeric modulators can be used to readjust this balance either indirectly by intervening in signalling pathways or directly through interaction with the muscle proteins that control contraction. Such agents represent a novel approach to treating any condition in which striated muscle function is compromised, including heart failure, cardiomyopathies, skeletal myopathies and a wide range of neuromuscular conditions. Here, we review agents that modulate the mechanical function of the sarcomere, focusing on emerging compounds that target myosin or the troponin complex.
Collapse
|
25
|
Pineda-Sanabria SE, Robertson IM, Li MX, Sykes BD. Interaction between the regulatory domain of cardiac troponin C and the acidosis-resistant cardiac troponin I A162H. Cardiovasc Res 2012. [DOI: 10.1093/cvr/cvs348] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
26
|
Li AY, Lee J, Borek D, Otwinowski Z, Tibbits GF, Paetzel M. Crystal structure of cardiac troponin C regulatory domain in complex with cadmium and deoxycholic acid reveals novel conformation. J Mol Biol 2011; 413:699-711. [PMID: 21920370 PMCID: PMC4068330 DOI: 10.1016/j.jmb.2011.08.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 08/23/2011] [Accepted: 08/24/2011] [Indexed: 01/07/2023]
Abstract
The amino-terminal regulatory domain of cardiac troponin C (cNTnC) plays an important role as the calcium sensor for the troponin complex. Calcium binding to cNTnC results in conformational changes that trigger a cascade of events that lead to cardiac muscle contraction. The cardiac N-terminal domain of TnC consists of two EF-hand calcium binding motifs, one of which is dysfunctional in binding calcium. Nevertheless, the defunct EF-hand still maintains a role in cNTnC function. For its structural analysis by X-ray crystallography, human cNTnC with the wild-type primary sequence was crystallized under a novel crystallization condition. The crystal structure was solved by the single-wavelength anomalous dispersion method and refined to 2.2 Å resolution. The structure displays several novel features. Firstly, both EF-hand motifs coordinate cadmium ions derived from the crystallization milieu. Secondly, the ion coordination in the defunct EF-hand motif accompanies unusual changes in the protein conformation. Thirdly, deoxycholic acid, also derived from the crystallization milieu, is bound in the central hydrophobic cavity. This is reminiscent of the interactions observed for cardiac calcium sensitizer drugs that bind to the same core region and maintain the "open" conformational state of calcium-bound cNTnC. The cadmium ion coordination in the defunct EF-hand indicates that this vestigial calcium binding site retains the structural and functional elements that allow it to coordinate a cadmium ion. However, it is a result of, or concomitant with, large and unusual structural changes in cNTnC.
Collapse
Affiliation(s)
- Alison Yueh Li
- Department of Molecular Biology and Biochemistry, Simon Fraser University, South Science Building, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6
- Department of Biomedical Physiology and Kinesiology, Molecular Cardiac Physiology Group, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6
| | - Jaeyong Lee
- Department of Molecular Biology and Biochemistry, Simon Fraser University, South Science Building, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6
| | - Dominika Borek
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Zbyszek Otwinowski
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Glen F. Tibbits
- Department of Molecular Biology and Biochemistry, Simon Fraser University, South Science Building, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6
- Department of Biomedical Physiology and Kinesiology, Molecular Cardiac Physiology Group, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6
- Cardiovascular Sciences, Child and Family Research Institute, 950 West 28 Ave, Vancouver, BC, Canada V5Z 4H4
| | - Mark Paetzel
- Department of Molecular Biology and Biochemistry, Simon Fraser University, South Science Building, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6
- Department of Biomedical Physiology and Kinesiology, Molecular Cardiac Physiology Group, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6
- Address correspondence to: Dr. Mark Paetzel, Simon Fraser University, Department of Molecular Biology and Biochemistry, South Science Building, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6, Tel.: 778-782-4230, Fax.: 778-782-5583,
| |
Collapse
|
27
|
Huang RYC, Rempel DL, Gross ML. HD exchange and PLIMSTEX determine the affinities and order of binding of Ca2+ with troponin C. Biochemistry 2011; 50:5426-35. [PMID: 21574565 PMCID: PMC3115450 DOI: 10.1021/bi200377c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Troponin C (TnC), present in all striated muscle, is the Ca(2+)-activated trigger that initiates myocyte contraction. The binding of Ca(2+) to TnC initiates a cascade of conformational changes involving the constituent proteins of the thin filament. The functional properties of TnC and its ability to bind Ca(2+) have significant regulatory influence on the contractile reaction of muscle. Changes in TnC may also correlate with cardiac and various other muscle-related diseases. We report here the implementation of the PLIMSTEX strategy (protein ligand interaction by mass spectrometry, titration, and H/D exchange) to elucidate the binding affinity of TnC with Ca(2+) and, more importantly, to determine the order of Ca(2+) binding of the four EF hands of the protein. The four equilibrium constants, K(1) = (5 ± 5) × 10(7) M(-1), K(2) = (1.8 ± 0.8) × 10(7) M(-1), K(3) = (4.2 ± 0.9) × 10(6) M(-1), and K(4) = (1.6 ± 0.6) × 10(6) M(-1), agree well with determinations by other methods and serve to increase our confidence in the PLIMSTEX approach. We determined the order of binding to the four EF hands to be III, IV, II, and I by extracting from the H/DX results the deuterium patterns for each EF hand for each state of the protein (apo through fully Ca(2+) bound). This approach, demonstrated for the first time, may be general for determining binding orders of metal ions and other ligands to proteins.
Collapse
Affiliation(s)
- Richard Y-C. Huang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130
| | - Don L. Rempel
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130
| |
Collapse
|
28
|
Robertson IM, Sun YB, Li MX, Sykes BD. A structural and functional perspective into the mechanism of Ca2+-sensitizers that target the cardiac troponin complex. J Mol Cell Cardiol 2010; 49:1031-41. [PMID: 20801130 DOI: 10.1016/j.yjmcc.2010.08.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 08/17/2010] [Accepted: 08/19/2010] [Indexed: 11/25/2022]
Abstract
The Ca(2+) dependent interaction between troponin I (cTnI) and troponin C (cTnC) triggers contraction in heart muscle. Heart failure is characterized by a decrease in cardiac output, and compounds that increase the sensitivity of cardiac muscle to Ca(2+) have therapeutic potential. The Ca(2+)-sensitizer, levosimendan, targets cTnC; however, detailed understanding of its mechanism has been obscured by its instability. In order to understand how this class of positive inotropes function, we investigated the mode of action of two fluorine containing novel analogs of levosimendan; 2',4'-difluoro(1,1'-biphenyl)-4-yloxy acetic acid (dfbp-o) and 2',4'-difluoro(1,1'-biphenyl)-4-yl acetic acid (dfbp). The affinities of dfbp and dfbp-o for the regulatory domain of cTnC were measured in the absence and presence of cTnI by NMR spectroscopy, and dfbp-o was found to bind more strongly than dfbp. Dfbp-o also increased the affinity of cTnI for cTnC. Dfbp-o increased the Ca(2+)-sensitivity of demembranated cardiac trabeculae in a manner similar to levosimendan. The high resolution NMR solution structure of the cTnC-cTnI-dfbp-o ternary complex showed that dfbp-o bound at the hydrophobic interface formed by cTnC and cTnI making critical interactions with residues such as Arg147 of cTnI. In the absence of cTnI, docking localized dfbp-o to the same position in the hydrophobic groove of cTnC. The structural and functional data reveal that the levosimendan class of Ca(2+)-sensitizers work by binding to the regulatory domain of cTnC and stabilizing the pivotal cTnC-cTnI regulatory unit via a network of hydrophobic and electrostatic interactions, in contrast to the destabilizing effects of antagonists such as W7 at the same interface.
Collapse
Affiliation(s)
- Ian M Robertson
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
29
|
Oleszczuk M, Robertson IM, Li MX, Sykes BD. Solution structure of the regulatory domain of human cardiac troponin C in complex with the switch region of cardiac troponin I and W7: the basis of W7 as an inhibitor of cardiac muscle contraction. J Mol Cell Cardiol 2010; 48:925-33. [PMID: 20116385 DOI: 10.1016/j.yjmcc.2010.01.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 01/19/2010] [Accepted: 01/20/2010] [Indexed: 10/19/2022]
Abstract
The solution structure of Ca(2+)-bound regulatory domain of cardiac troponin C (cNTnC) in complex with the switch region of troponin I (cTnI(147-163)) and the calmodulin antagonist, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfinamide (W7), has been determined by NMR spectroscopy. The structure reveals that the W7 naphthalene ring interacts with the terminal methyl groups of M47, M60, and M81 as well as aliphatic and aromatic side chains of several other residues in the hydrophobic pocket of cNTnC. The H3 ring proton of W7 also contacts the methyl groups of I148 and M153 of cTnI(147-163). The N-(6-aminohexyl) tail interacts primarily with the methyl groups of V64 and M81, which are located on the C- and D-helices of cNTnC. Compared to the structure of the cNTnC*Ca(2+)*W7 complex (Hoffman, R. M. B. and Sykes, B. D. (2009) Biochemistry 48, 5541-5552), the tail of W7 reorients slightly toward the surface of cNTnC while the ring remains in the hydrophobic pocket. The positively charged -NH(3)(+) group from the tail of W7 repels the positively charged R147 of cTnI(147-163). As a result, the N-terminus of the peptide moves away from cNTnC and the helical content of cTnI(147-163) is diminished, when compared to the structure of cNTnC*Ca(2+)*cTnI(147-163) (Li, M. X., Spyracopoulos, L., and Sykes B. D. (1999) Biochemistry 38, 8289-8298). Thus the ternary structure cNTnC*Ca(2+)*W7*cTnI(147-163) reported in this study offers an explanation for the approximately 13-fold affinity reduction of cTnI(147-163) for cNTnC*Ca(2+) in the presence of W7 and provides a structural basis for the inhibitory effect of W7 in cardiac muscle contraction. This generates molecular insight into structural features that are useful for the design of cTnC-specific Ca(2+)-desensitizing drugs.
Collapse
Affiliation(s)
- Marta Oleszczuk
- Department of Biochemistry, School of Molecular and Systems Medicine, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | | | |
Collapse
|
30
|
Current World Literature. Curr Opin Anaesthesiol 2009; 22:539-43. [DOI: 10.1097/aco.0b013e32832fa02c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Choi YH, Cowan DB, Wahlers TCW, Hetzer R, Del Nido PJ, Stamm C. Calcium sensitisation impairs diastolic relaxation in post-ischaemic myocardium: implications for the use of Ca(2+) sensitising inotropes after cardiac surgery. Eur J Cardiothorac Surg 2009; 37:376-83. [PMID: 19616444 DOI: 10.1016/j.ejcts.2009.05.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 04/30/2009] [Accepted: 05/18/2009] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Calcium sensitising inotropes are increasingly being used in cardiac surgical patients. Theoretically, increasing contractile protein sensitivity to Ca(2+) prevents the Ca(2+) elevation associated arrhythmogenicity and potentiates the inotropic effect of catecholamines. On the other hand, we hypothesised that Ca(2+) sensitisation exacerbates post-ischaemic myocardial stunning by impairing diastolic relaxation, which might have deleterious effects in postoperative cardiac surgical patients. METHODS In an isolated rabbit heart model, 45 min normothermic ischaemia with potassium-induced cardioplegic arrest was followed by 120 min reperfusion. Isovolumetric left ventricular (LV) function and myocardial oxygen consumption (MvO(2)) were measured, and cytosolic Ca(2+) was monitored by rhod-2 surface spectrofluorometry. During reperfusion, ORG 30029 (250 microM) and levosimendan (0.5 microM) were used as Ca(2+) sensitisers (ORG, n=6, Levo, n=6), Ca(2+) de-sensitisation was induced with butanedione-monoxime (5mM, BDM, n=6), and dopamine (20 nM) served as a representative catecholamine (n=6). To counteract the PDE III inhibiting properties of ORG and Levo, IGF-1 (0.1 microM) and parathyroid hormone (0.05 microM) were used. RESULTS As expected, ischaemia/reperfusion induced moderate cytosolic calcium overload. Dopamine increased LV contractility and MvO(2) by augmenting the amplitude of the Ca(2+) transient, but relaxation was unchanged due to faster diastolic Ca(2+) removal. Dopamine-induced Ca(2+) handling was unchanged after uncoupling the Mg-ATPase with BDM, and MvO2 decreased in proportion with the reduced LV mechanical work load. ORG improved contractility without apparent effects on Ca(2+) handling, and MvO(2) remained constant despite increased contractile work. Conversely, ORG induced a rightward shift of the diastolic pressure-volume relationship in post-ischaemic hearts (diastolic pressure at 0.8 ml balloon volume 14.3+/-5 mmHg, p=0.01 vs control), but not in non-ischaemic control hearts. With levosimendan, the Ca(2+) sensitising effects were less pronounced (7.6+/-3 mmHg, p=0.4 vs control). By counteracting the PDE inhibiting effects of ORG and Levo using parathyroid hormone and IGF-1, the negative lusotropic effects of Ca(2+) sensitisation were unmasked. CONCLUSIONS Calcium sensitisation improves systolic function and energetic efficiency. However, Ca(2+) sensitisers should be used with caution during post-ischaemic reperfusion, as they may exacerbate myocardial stunning and thus impair cardiac output.
Collapse
Affiliation(s)
- Yeong-Hoon Choi
- Heart Center of the University of Cologne, Department of Cardiothoracic Surgery, Cologne, Germany.
| | | | | | | | | | | |
Collapse
|