1
|
Structure activity relationship towards design of cryptosporidium specific thymidylate synthase inhibitors. Eur J Med Chem 2019; 183:111673. [PMID: 31536894 DOI: 10.1016/j.ejmech.2019.111673] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/31/2019] [Accepted: 09/01/2019] [Indexed: 02/08/2023]
Abstract
Cryptosporidiosis is a human gastrointestinal disease caused by protozoans of the genus Cryptosporidium, which can be fatal in immunocompromised individuals. The essential enzyme, thymidylate synthase (TS), is responsible for de novo synthesis of deoxythymidine monophosphate. The TS active site is relatively conserved between Cryptosporidium and human enzymes. In previous work, we identified compound 1, (2-amino-4-oxo-4,7-dihydro-pyrrolo[2,3-d]pyrimidin-methyl-phenyl-l-glutamic acid), as a promising selective Cryptosporidium hominis TS (ChTS) inhibitor. In the present study, we explore the structure-activity relationship around 1 glutamate moiety by synthesizing and biochemically evaluating the inhibitory activity of analogues against ChTS and human TS (hTS). X-Ray crystal structures were obtained for compounds bound to both ChTS and hTS. We establish the importance of the 2-phenylacetic acid moiety methylene linker in optimally positioning compounds 23, 24, and 25 within the active site. Moreover, through the comparison of structural data for 5, 14, 15, and 23 bound in both ChTS and hTS identified that active site rigidity is a driving force in determining inhibitor selectivity.
Collapse
|
2
|
Czyzyk DJ, Valhondo M, Jorgensen WL, Anderson KS. Understanding the structural basis of species selective, stereospecific inhibition for Cryptosporidium and human thymidylate synthase. FEBS Lett 2019; 593:2069-2078. [PMID: 31172516 DOI: 10.1002/1873-3468.13474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 11/08/2022]
Abstract
Thymidylate synthase (TS), found in all organisms, is an essential enzyme responsible for the de novo synthesis of deoxythymidine monophosphate. The TS active sites of the protozoal parasite Cryptosporidium hominis and human are relatively conserved. Evaluation of antifolate compound 1 and its R-enantiomer 2 against both enzymes reveals divergent inhibitor selectivity and enzyme stereospecificity. To establish how C. hominis and human TS (ChTS and hTS) selectively discriminate 1 and 2, respectively, we determined crystal structures of ChTS complexed with 2 and hTS complexed with 1 or 2. Coupled with the previously determined structure of ChTS complexed with 1, we discuss a possible mechanism for enzyme stereospecificity and inhibitor selectivity.
Collapse
Affiliation(s)
- Daniel J Czyzyk
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | | | | | - Karen S Anderson
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
3
|
Kumar VP, Cisneros JA, Frey KM, Castellanos-Gonzalez A, Wang Y, Gangjee A, White AC, Jorgensen WL, Anderson KS. Structural studies provide clues for analog design of specific inhibitors of Cryptosporidium hominis thymidylate synthase-dihydrofolate reductase. Bioorg Med Chem Lett 2014; 24:4158-61. [PMID: 25127103 PMCID: PMC4427026 DOI: 10.1016/j.bmcl.2014.07.049] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/15/2014] [Accepted: 07/17/2014] [Indexed: 11/18/2022]
Abstract
Cryptosporidium is the causative agent of a gastrointestinal disease, cryptosporidiosis, which is often fatal in immunocompromised individuals and children. Thymidylate synthase (TS) and dihydrofolate reductase (DHFR) are essential enzymes in the folate biosynthesis pathway and are well established as drug targets in cancer, bacterial infections, and malaria. Cryptosporidium hominis has a bifunctional thymidylate synthase and dihydrofolate reductase enzyme, compared to separate enzymes in the host. We evaluated lead compound 1 from a novel series of antifolates, 2-amino-4-oxo-5-substituted pyrrolo[2,3-d]pyrimidines as an inhibitor of Cryptosporidium hominis thymidylate synthase with selectivity over the human enzyme. Complementing the enzyme inhibition compound 1 also has anti-cryptosporidial activity in cell culture. A crystal structure with compound 1 bound to the TS active site is discussed in terms of several van der Waals, hydrophobic and hydrogen bond interactions with the protein residues and the substrate analog 5-fluorodeoxyuridine monophosphate (TS), cofactor NADPH and inhibitor methotrexate (DHFR). Another crystal structure in complex with compound 1 bound in both the TS and DHFR active sites is also reported here. The crystal structures provide clues for analog design and for the design of ChTS-DHFR specific inhibitors.
Collapse
Affiliation(s)
- Vidya P Kumar
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Jose A Cisneros
- Department of Chemistry, Yale University, 225 Prospect Street, PO Box 208107, New Haven, CT 06520-8107, USA
| | - Kathleen M Frey
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | | | - Yiqiang Wang
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Aleem Gangjee
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA.
| | - A Clinton White
- Infectious Disease Division, Department of Internal Medicine, University of Texas Medical Branch, Galveston, USA
| | - William L Jorgensen
- Department of Chemistry, Yale University, 225 Prospect Street, PO Box 208107, New Haven, CT 06520-8107, USA.
| | - Karen S Anderson
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
4
|
Abstract
SUMMARYCryptosporidiumhost cell interaction remains fairly obscure compared with other apicomplexans such asPlasmodiumorToxoplasma. The reason for this is probably the inability of this parasite to complete its life cyclein vitroand the lack of a system to genetically modifyCryptosporidium. However, there is a substantial set of data about the molecules involved in attachment and invasion and about the host cell pathways involved in actin arrangement that are altered by the parasite. Here we summarize the recent advances in research on host cell infection regarding the excystation process, attachment and invasion, survival in the cell, egress and the available data on omics.
Collapse
|
5
|
Sharma H, Landau MJ, Vargo MA, Spasov KA, Anderson KS. First three-dimensional structure of Toxoplasma gondii thymidylate synthase-dihydrofolate reductase: insights for catalysis, interdomain interactions, and substrate channeling. Biochemistry 2013; 52:7305-7317. [PMID: 24053355 DOI: 10.1021/bi400576t] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Most species, such as humans, have monofunctional forms of thymidylate synthase (TS) and dihydrofolate reductase (DHFR) that are key folate metabolism enzymes making critical folate components required for DNA synthesis. In contrast, several parasitic protozoa, including Toxoplasma gondii , contain a unique bifunctional thymidylate synthase-dihydrofolate reductase (TS-DHFR) having the catalytic activities contained on a single polypeptide chain. The prevalence of T. gondii infections across the world, especially for those immunocompromised, underscores the need to understand TS-DHFR enzyme function and to find new avenues to exploit for the design of novel antiparasitic drugs. As a first step, we have solved the first three-dimensional structures of T. gondii TS-DHFR at 3.7 Å and of a loop truncated TS-DHFR, removing several flexible surface loops in the DHFR domain, improving resolution to 2.2 Å. Distinct structural features of the TS-DHFR homodimer include a junctional region containing a kinked crossover helix between the DHFR domains of the two adjacent monomers, a long linker connecting the TS and DHFR domains, and a DHFR domain that is positively charged. The roles of these unique structural features were probed by site-directed mutagenesis coupled with presteady state and steady state kinetics. Mutational analysis of the crossover helix region combined with kinetic characterization established the importance of this region not only in DHFR catalysis but also in modulating the distal TS activity, suggesting a role for TS-DHFR interdomain interactions. Additional kinetic studies revealed that substrate channeling occurs in which dihydrofolate is directly transferred from the TS to DHFR active site without entering bulk solution. The crystal structure suggests that the positively charged DHFR domain governs this electrostatically mediated movement of dihydrofolate, preventing release from the enzyme. Taken together, these structural and kinetic studies reveal unique, functional regions on the T. gondii TS-DHFR enzyme that may be targeted for inhibition, thus paving the way for designing species specific inhibitors.
Collapse
Affiliation(s)
- Hitesh Sharma
- The Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510
| | - Mark J Landau
- The Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510.,The Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06510
| | - Melissa A Vargo
- The Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510
| | - Krasimir A Spasov
- The Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510
| | - Karen S Anderson
- The Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510.,The Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06510
| |
Collapse
|
6
|
Wang Z, Sapienza PJ, Abeysinghe T, Luzum C, Lee AL, Finer-Moore JS, Stroud RM, Kohen A. Mg2+ binds to the surface of thymidylate synthase and affects hydride transfer at the interior active site. J Am Chem Soc 2013; 135:7583-92. [PMID: 23611499 PMCID: PMC3674108 DOI: 10.1021/ja400761x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Thymidylate synthase (TSase) produces the sole intracellular de novo source of thymidine (i.e., the DNA base T) and thus is a common target for antibiotic and anticancer drugs. Mg(2+) has been reported to affect TSase activity, but the mechanism of this interaction has not been investigated. Here we show that Mg(2+) binds to the surface of Escherichia coli TSase and affects the kinetics of hydride transfer at the interior active site (16 Å away). Examination of the crystal structures identifies a Mg(2+) near the glutamyl moiety of the folate cofactor, providing the first structural evidence for Mg(2+) binding to TSase. The kinetics and NMR relaxation experiments suggest that the weak binding of Mg(2+) to the protein surface stabilizes the closed conformation of the ternary enzyme complex and reduces the entropy of activation on the hydride transfer step. Mg(2+) accelerates the hydride transfer by ~7-fold but does not affect the magnitude or temperature dependence of the intrinsic kinetic isotope effect. These results suggest that Mg(2+) facilitates the protein motions that bring the hydride donor and acceptor together, but it does not change the tunneling ready state of the hydride transfer. These findings highlight how variations in cellular Mg(2+) concentration can modulate enzyme activity through long-range interactions in the protein, rather than binding at the active site. The interaction of Mg(2+) with the glutamyl tail of the folate cofactor and nonconserved residues of bacterial TSase may assist in designing antifolates with polyglutamyl substitutes as species-specific antibiotic drugs.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Paul J. Sapienza
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Thelma Abeysinghe
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Calvin Luzum
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Andrew L. Lee
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Janet S. Finer-Moore
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA 94158, USA
| | - Robert M. Stroud
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA 94158, USA
| | - Amnon Kohen
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
7
|
Martucci WE, Rodriguez JM, Vargo MA, Marr M, Hamilton AD, Anderson KS. Exploring novel strategies for AIDS protozoal pathogens: α-helix mimetics targeting a key allosteric protein-protein interaction in C. hominis TS-DHFR. MEDCHEMCOMM 2013; 4. [PMID: 24324854 DOI: 10.1039/c3md00141e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The bifunctional enzyme thymidylate synthase-dihydrofolate reductase (TS-DHFR) from the protozoal parasite Cryptosporidium hominis is a potential molecular target for the design of antiparasitic therapies for AIDS-related opportunistic infections. The enzyme exists as a homodimer with each monomer containing a unique swap domain known as a "crossover helix" that binds in a cleft on the adjacent DHFR active site. This crossover helix is absent in species containing monofunctional forms of DHFR such as human. An in-depth understanding of protein-protein interactions between the crossover helix and adjacent DHFR active site that might modulate enzyme integrity or function would allow for insights into rational design of species-specific allosteric inhibitors. Mutational analysis coupled with structural studies and biophysical and kinetic characterization of crossover helix mutants identifies this domain as essential for full enzyme stability and catalytic activity, and pinpoints these effects to distinct faces of the crossover helix important in protein-protein interactions. Moreover, targeting this helical protein interaction with α-helix mimetics of the crossover helix leads to selective inhibition and destabilization of the C. hominis TS-DHFR enzyme, thus validating this region as a new avenue to explore for species-specific inhibitor design.
Collapse
Affiliation(s)
- W Edward Martucci
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA ; Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA
| | | | | | | | | | | |
Collapse
|
8
|
Rider SD, Zhu G. Cryptosporidium: genomic and biochemical features. Exp Parasitol 2008; 124:2-9. [PMID: 19187778 DOI: 10.1016/j.exppara.2008.12.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 12/18/2008] [Accepted: 12/22/2008] [Indexed: 11/24/2022]
Abstract
Recent progress in understanding the unique biochemistry of the two closely related human enteric pathogens Cryptosporidium parvum and Cryptosporidium hominis has been stimulated by the elucidation of the complete genome sequences for both pathogens. Much of the work that has occurred since that time has been focused on understanding the metabolic pathways encoded by the genome in hopes of providing increased understanding of the parasite biology, and in the identification of novel targets for pharmacological interventions. However, despite identifying the genes encoding enzymes that participate in many of the major metabolic pathways, only a hand full of proteins have actually been the subjects of detailed scrutiny. Thus, much of the biochemistry of these parasites remains a true mystery.
Collapse
Affiliation(s)
- Stanley Dean Rider
- Department of Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, 4467 TAMU, College Station, TX 77843, USA.
| | | |
Collapse
|