1
|
Zheng M, Zheng M, Lupoli TJ. Expanding the Substrate Scope of a Bacterial Nucleotidyltransferase via Allosteric Mutations. ACS Infect Dis 2022; 8:2035-2044. [PMID: 36106727 DOI: 10.1021/acsinfecdis.2c00402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Bacterial glycoconjugates, such as cell surface polysaccharides and glycoproteins, play important roles in cellular interactions and survival. Enzymes called nucleotidyltransferases use sugar-1-phosphates and nucleoside triphosphates (NTPs) to produce nucleoside diphosphate sugars (NDP-sugars), which serve as building blocks for most glycoconjugates. Research spanning several decades has shown that some bacterial nucleotidyltransferases have broad substrate tolerance and can be exploited to produce a variety of NDP-sugars in vitro. While these enzymes are known to be allosterically regulated by NDP-sugars and their fragments, much work has focused on the effect of active site mutations alone. Here, we show that rational mutations in the allosteric site of the nucleotidyltransferase RmlA lead to expanded substrate tolerance and improvements in catalytic activity that can be explained by subtle changes in quaternary structure and interactions with ligands. These observations will help inform future studies on the directed biosynthesis of diverse bacterial NDP-sugars and downstream glycoconjugates.
Collapse
Affiliation(s)
- Maggie Zheng
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Meng Zheng
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Tania J Lupoli
- Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
2
|
Li S, Chen F, Li Y, Wang L, Li H, Gu G, Li E. Rhamnose-Containing Compounds: Biosynthesis and Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165315. [PMID: 36014553 PMCID: PMC9415975 DOI: 10.3390/molecules27165315] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022]
Abstract
Rhamnose-associated molecules are attracting attention because they are present in bacteria but not mammals, making them potentially useful as antibacterial agents. Additionally, they are also valuable for tumor immunotherapy. Thus, studies on the functions and biosynthetic pathways of rhamnose-containing compounds are in progress. In this paper, studies on the biosynthetic pathways of three rhamnose donors, i.e., deoxythymidinediphosphate-L-rhamnose (dTDP-Rha), uridine diphosphate-rhamnose (UDP-Rha), and guanosine diphosphate rhamnose (GDP-Rha), are firstly reviewed, together with the functions and crystal structures of those associated enzymes. Among them, dTDP-Rha is the most common rhamnose donor, and four enzymes, including glucose-1-phosphate thymidylyltransferase RmlA, dTDP-Glc-4,6-dehydratase RmlB, dTDP-4-keto-6-deoxy-Glc-3,5-epimerase RmlC, and dTDP-4-keto-Rha reductase RmlD, are involved in its biosynthesis. Secondly, several known rhamnosyltransferases from Geobacillus stearothermophilus, Saccharopolyspora spinosa, Mycobacterium tuberculosis, Pseudomonas aeruginosa, and Streptococcus pneumoniae are discussed. In these studies, however, the functions of rhamnosyltransferases were verified by employing gene knockout and radiolabeled substrates, which were almost impossible to obtain and characterize the products of enzymatic reactions. Finally, the application of rhamnose-containing compounds in disease treatments is briefly described.
Collapse
Affiliation(s)
- Siqiang Li
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian 463000, China
- Institute of Agricultural Products Fermentation Engineering and Application, Huanghuai University, Zhumadian 463000, China
| | - Fujia Chen
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian 463000, China
- Institute of Agricultural Products Fermentation Engineering and Application, Huanghuai University, Zhumadian 463000, China
| | - Yun Li
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian 463000, China
- Institute of Agricultural Products Fermentation Engineering and Application, Huanghuai University, Zhumadian 463000, China
| | - Lizhen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250100, China
| | - Hongyan Li
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian 463000, China
| | - Guofeng Gu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China
- Correspondence: (G.G.); (E.L.)
| | - Enzhong Li
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian 463000, China
- Institute of Agricultural Products Fermentation Engineering and Application, Huanghuai University, Zhumadian 463000, China
- Correspondence: (G.G.); (E.L.)
| |
Collapse
|
3
|
Council CE, Kilpin KJ, Gusthart JS, Allman SA, Linclau B, Lee SS. Enzymatic glycosylation involving fluorinated carbohydrates. Org Biomol Chem 2021; 18:3423-3451. [PMID: 32319497 DOI: 10.1039/d0ob00436g] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Fluorinated carbohydrates, where one (or more) fluorine atom(s) have been introduced into a carbohydrate structure, typically through deoxyfluorination chemistry, have a wide range of applications in the glycosciences. Fluorinated derivatives of galactose, glucose, N-acetylgalactosamine, N-acetylglucosamine, talose, fucose and sialic acid have been employed as either donor or acceptor substrates in glycosylation reactions. Fluorinated donors can be synthesised by synthetic methods or produced enzymatically from chemically fluorinated sugars. The latter process is mediated by enzymes such as kinases, phosphorylases and nucleotidyltransferases. Fluorinated donors produced by either method can subsequently be used in glycosylation reactions mediated by glycosyltransferases, or phosphorylases yielding fluorinated oligosaccharide or glycoconjugate products. Fluorinated acceptor substrates are typically synthesised chemically. Glycosyltransferases are most commonly used in conjunction with natural donors to further elaborate fluorinated acceptor substrates. Glycoside hydrolases are used with either fluorinated donors or acceptors. The activity of enzymes towards fluorinated sugars is often lower than towards the natural sugar substrates irrespective of donor or acceptor. This may be in part attributed to elimination of the contribution of the hydroxyl group to the binding of the substrate to enzymes. However, in many cases, enzymes still maintain a significant activity, and reactions may be optimised where necessary, enabling enzymes to be used more successfully in the production of fluorinated carbohydrates. This review describes the current state of the art regarding chemoenzymatic production of fluorinated carbohydrates, focusing specifically on examples of the enzymatic production of activated fluorinated donors and enzymatic glycosylation involving fluorinated sugars as either glycosyl donors or acceptors.
Collapse
Affiliation(s)
- Claire E Council
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK.
| | | | | | | | | | | |
Collapse
|
4
|
Li S, Wang H, Jin G, Chen Z, Gu G. Exploring the broad nucleotide triphosphate and sugar-1-phosphate specificity of thymidylyltransferase Cps23FL from Streptococcus pneumonia serotype 23F. RSC Adv 2020; 10:30110-30114. [PMID: 35518267 PMCID: PMC9056299 DOI: 10.1039/d0ra05799a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/07/2020] [Indexed: 11/21/2022] Open
Abstract
Glucose-1-phosphate thymidylyltransferase (Cps23FL) from Streptococcus pneumonia serotype 23F is the initial enzyme that catalyses the thymidylyl transfer reaction in prokaryotic deoxythymidine diphosphate-l-rhamnose (dTDP-Rha) biosynthetic pathway. In this study, the broad substrate specificity of Cps23FL towards six glucose-1-phosphates and nine nucleoside triphosphates as substrates was systematically explored, eventually providing access to nineteen sugar nucleotide analogs. The broad substrate specificities of thymidylyltransferase Cps23FL towards nucleotide triphosphates and sugar-1-phosphates were systemically investigated.![]()
Collapse
Affiliation(s)
- Siqiang Li
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University 72 Binhai Road Qingdao 266237 China .,School of Biological and Food Processing Engineering, Huanghuai University 76 Kaiyuan Road Zhumadian 463000 China
| | - Hong Wang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University 72 Binhai Road Qingdao 266237 China
| | - Guoxia Jin
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University 88 Wenhua Dong Lu Jinan 250014 China
| | - Zonggang Chen
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University 72 Binhai Road Qingdao 266237 China
| | - Guofeng Gu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University 72 Binhai Road Qingdao 266237 China
| |
Collapse
|
5
|
Honda Y, Nakano S, Ito S, Dadashipour M, Zhang Z, Kawarabayasi Y. Improvement of ST0452 N-Acetylglucosamine-1-Phosphate Uridyltransferase Activity by the Cooperative Effect of Two Single Mutations Identified through Structure-Based Protein Engineering. Appl Environ Microbiol 2018; 84:e02213-18. [PMID: 30291121 PMCID: PMC6275352 DOI: 10.1128/aem.02213-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 09/25/2018] [Indexed: 11/20/2022] Open
Abstract
We showed previously that the Y97N mutant of the ST0452 protein, isolated from Sulfolobus tokodaii, exhibited over 4 times higher N-acetylglucosamine-1-phosphate (GlcNAc-1-P) uridyltransferase (UTase) activity, compared with that of the wild-type ST0452 protein. We determined the three-dimensional structure of the Y97N protein to explore the detailed mechanism underlying this increased activity. The overall structure was almost identical to that of the wild-type ST0452 protein (PDB ID 2GGO), with residue 97 (Asn) interacting with the O-5 atom of N-acetylglucosamine (GlcNAc) in the complex without metal ions. The same interaction was observed for Escherichia coli GlmU in the absence of metal ions. These observations indicated that the three-dimensional structure of the Y97N protein was not changed by this substitution but the interactions with the substrate were slightly modified, which might cause the activity to increase. The crystal structure of the Y97N protein also showed that positions 146 (Glu) and 80 (Thr) formed interactions with GlcNAc, and an engineering strategy was applied to these residues to increase activity. All proteins substituted at position 146 had drastically decreased activities, whereas several proteins substituted at position 80 showed higher GlcNAc-1-P UTase activity, compared to that of the wild-type protein. The substituted amino acids at positions 80 and 97 might result in optimized interactions with the substrate; therefore, we predicted that the combination of these two substitutions might cooperatively increase GlcNAc-1-P UTase activity. Of the four double mutant ST0452 proteins generated, T80S/Y97N showed 6.5-times-higher activity, compared to that of the wild-type ST0452 protein, revealing that these two substituted residues functioned cooperatively to increase GlcNAc-1-P UTase activity.IMPORTANCE We demonstrated that the enzymatic activity of a thermostable protein was over 4 times higher than that of the wild-type protein following substitution of a single amino acid, without affecting its thermostability. The three-dimensional structure of the improved mutant protein complexed with substrate was determined. The same overall structure and interaction between the substituted residue and the GlcNAc substrate as observed in the well-characterized bacterial enzyme suggested that the substitution of Tyr at position 97 by Asn might slightly change the interaction. This subtle change in the interaction might potentially increase the GlcNAc-1-P UTase activity of the mutant protein. These observations indicated that a drastic change in the structure of a natural thermostable enzyme is not necessary to increase its activity; a subtle change in the interaction with the substrate might be sufficient. Cooperative effects were observed in the appropriate double mutant protein. This work provides useful information for the future engineering of natural enzymes.
Collapse
Affiliation(s)
- Yuki Honda
- Laboratory for Functional Genomics of Extremophiles, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
- Faculty of Science, Nara Women's University, Nara, Japan
| | - Shogo Nakano
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | - Sohei Ito
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | - Mohammad Dadashipour
- Laboratory for Functional Genomics of Extremophiles, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Zilian Zhang
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, People's Republic of China
| | - Yutaka Kawarabayasi
- Laboratory for Functional Genomics of Extremophiles, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
- National Institute of Advanced Industrial Science and Technology (AIST), Bioproduction Research Institute, Ibaraki, Japan
| |
Collapse
|
6
|
Bais VS, Batra S, Prakash B. Identification of two highly promiscuous thermostable sugar nucleotidylyltransferases for glycorandomization. FEBS J 2018; 285:2840-2855. [PMID: 29806742 DOI: 10.1111/febs.14521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 04/14/2018] [Accepted: 05/23/2018] [Indexed: 01/22/2023]
Abstract
Glycorandomization is a process that improves the efficacy of glycoconjugates by the addition of a diverse array of sugars to secondary metabolites and antibiotics of pharmaceutical importance. This process, which employs sugar nucleotidylyltransferases (SNTs) and glycosyl transferases (GTs) in tandem, would benefit by the employment of promiscuous enzymes, i.e. those with the ability to utilize diverse noncanonical substrates. As promiscuous GTs are available, here we set out to identify promiscuous SNTs. For this, we began with a detailed family-wide characterization of SNTs. Earlier, we had proposed that SNTs could be classified into two major groups - I and II. They share a common structural framework and utilize a similar catalytic mechanism. Subtle variations in the way two magnesium ions - MgA2+ and MgB2+ - are stabilized by metal ion coordination motifs led to their classification into diverse subgroups viz. I-A, I-B, I-C, II-A, and II-B. Based on this classification, here we investigate promiscuity across the entire family of SNTs. We study the utilization of several sugar phosphates and nucleotides by the various subgroups of SNTs to understand substrate specificity and promiscuity in these. We find that promiscuity is prevalent among SNTs; and in particular, in the thermophilic homologs. In principle, promiscuity profiling identified four new SNTs that can be employed for the production of sugar-nucleotide libraries. However, assaying for their ability to simultaneously utilize multiple substrates in a single-pot reaction, we find two thermophilic SNTs- TMGA , an adenylyltransferase from Thermotoga maritima and PHGT , a thymidylyltransferase from Pyrococcus horikoshii that are readily employable for the production of diverse sugar-nucleotides.
Collapse
Affiliation(s)
- Vaibhav Singh Bais
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Sahil Batra
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Balaji Prakash
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysore, India
| |
Collapse
|
7
|
Baumgartner J, Lee J, Halavaty AS, Minasov G, Anderson WF, Kuhn ML. Structure of the Bacillus anthracis dTDP-L-rhamnose-biosynthetic enzyme glucose-1-phosphate thymidylyltransferase (RfbA). Acta Crystallogr F Struct Biol Commun 2017; 73:621-628. [PMID: 29095156 PMCID: PMC5683032 DOI: 10.1107/s2053230x17015357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/22/2017] [Indexed: 11/10/2022] Open
Abstract
L-Rhamnose is a ubiquitous bacterial cell-wall component. The biosynthetic pathway for its precursor dTDP-L-rhamnose is not present in humans, which makes the enzymes of the pathway potential drug targets. In this study, the three-dimensional structure of the first protein of this pathway, glucose-1-phosphate thymidylyltransferase (RfbA), from Bacillus anthracis was determined. In other organisms this enzyme is referred to as RmlA. RfbA was co-crystallized with the products of the enzymatic reaction, dTDP-α-D-glucose and pyrophosphate, and its structure was determined at 2.3 Å resolution. This is the first reported thymidylyltransferase structure from a Gram-positive bacterium. RfbA shares overall structural characteristics with known RmlA homologs. However, RfbA exhibits a shorter sequence at its C-terminus, which results in the absence of three α-helices involved in allosteric site formation. Consequently, RfbA was observed to exhibit a quaternary structure that is unique among currently reported glucose-1-phosphate thymidylyltransferase bacterial homologs. These structural analyses suggest that RfbA may not be allosterically regulated in some organisms and is structurally distinct from other RmlA homologs.
Collapse
Affiliation(s)
- Jackson Baumgartner
- Department of Chemistry and Biochemistry, San Francisco State University, USA
| | - Jesi Lee
- Department of Chemistry and Biochemistry, San Francisco State University, USA
| | - Andrei S. Halavaty
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, USA
- Center for Structural Genomics of Infectious Diseases (CSGID), USA
| | - George Minasov
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, USA
- Center for Structural Genomics of Infectious Diseases (CSGID), USA
| | - Wayne F. Anderson
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, USA
- Center for Structural Genomics of Infectious Diseases (CSGID), USA
| | - Misty L. Kuhn
- Department of Chemistry and Biochemistry, San Francisco State University, USA
| |
Collapse
|
8
|
Increasing the Thermostable Sugar-1-Phosphate Nucleotidylyltransferase Activities of the Archaeal ST0452 Protein through Site Saturation Mutagenesis of the 97th Amino Acid Position. Appl Environ Microbiol 2017; 83:AEM.02291-16. [PMID: 27864169 DOI: 10.1128/aem.02291-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/06/2016] [Indexed: 11/20/2022] Open
Abstract
The ST0452 protein is a bifunctional protein exhibiting sugar-1-phosphate nucleotidylyltransferase (sugar-1-P NTase) and amino-sugar-1-phosphate acetyltransferase activities and was isolated from the thermophilic archaeon Sulfolobus tokodaii Based on the previous observation that five single mutations increased ST0452 sugar-1-P NTase activity, nine double-mutant ST0452 proteins were generated with the intent of obtaining enzymes exhibiting a further increase in catalysis, but all showed less than 15% of the wild-type N-acetyl-d-glucosamine-1-phosphate uridyltransferase (GlcNAc-1-P UTase) activity. The Y97A mutant exhibited the highest activity of the single-mutant proteins, and thus site saturation mutagenesis of the 97th position (Tyr) was conducted. Six mutants showed both increased GlcNAc-1-P UTase and glucose-1-phosphate uridyltransferase activities, eight mutants showed only enhanced GlcNAc-1-P UTase activity, and six exhibited higher GlcNAc-1-P UTase activity than that of the Y97A mutant. Kinetic analyses of three typical mutants indicated that the increase in sugar-1-P NTase activity was mainly due to an increase in the apparent kcat value. We hypothesized that changing the 97th position (Tyr) to a smaller amino acid with similar electronic properties would increase activity, and thus the Tyr at the corresponding 103rd position of the Escherichia coli GlmU (EcGlmU) enzyme was replaced with the same residues. The Y103N mutant EcGlmU showed increased GlcNAc-1-P UTase activity, revealing that the Tyr at the 97th position of the ST0452 protein (103rd position in EcGlmU) plays an important role in catalysis. The present results provide useful information regarding how to improve the activity of natural enzymes and how to generate powerful enzymes for the industrial production of sugar nucleotides. IMPORTANCE It is typically difficult to increase enzymatic activity by introducing substitutions into a natural enzyme. However, it was previously found that the ST0452 protein, a thermostable enzyme from the thermophilic archaeon Sulfolobus tokodaii, exhibited increased activity following single amino acid substitutions of Ala. In this study, ST0452 proteins exhibiting a further increase in activity were created using a site saturation mutagenesis strategy at the 97th position. Kinetic analyses showed that the increased activities of the mutant proteins were principally due to increased apparent kcat values. These mutant proteins might suggest clues regarding the mechanism underlying the reaction process and provide very important information for the design of synthetic improved enzymes, and they can be used as powerful biocatalysts for the production of sugar nucleotide molecules. Moreover, this work generated useful proteins for three-dimensional structural analysis clarifying the processes underlying the regulation and mechanism of enzymatic activity.
Collapse
|
9
|
McCormick NE, Jakeman DL. On the mechanism of phosphoenolpyruvate synthetase (PEPs) and its inhibition by sodium fluoride: potential magnesium and aluminum fluoride complexes of phosphoryl transfer. Biochem Cell Biol 2015; 93:236-40. [DOI: 10.1139/bcb-2014-0153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Phosphoenolpyruvate synthase (PEPs) catalyzes the conversion of pyruvate to phosphoenolpyruvate (PEP) using a two-step mechanism invoking a phosphorylated-His intermediate. Formation of PEP is an initial step in gluconeogenesis, and PEPs is essential for growth of Escherichia coli on 3-carbon sources such as pyruvate. The production of PEPs has also been linked to bacterial virulence and antibiotic resistance. As such, PEPs is of interest as a target for antibiotic development, and initial investigations of PEPs have indicated inhibition by sodium fluoride. Similar inhibition has been observed in a variety of phospho-transfer enzymes through the formation of metal fluoride complexes within the active site. Herein we quantify the inhibitory capacity of sodium fluoride through a coupled spectrophotometric assay. The observed inhibition provides indirect evidence for the formation of a MgF3−complex within the enzyme active site and insight into the phospho-transfer mechanism of PEPs. The effect of AlCl3on PEPs enzyme activity was also assessed and found to decrease substrate binding and turnover.
Collapse
Affiliation(s)
- Nicole E. McCormick
- College of Pharmacy, Dalhousie University, 5968 College St., Halifax, NS B3H 4R2, Canada
| | - David L. Jakeman
- College of Pharmacy, Dalhousie University, 5968 College St., Halifax, NS B3H 4R2, Canada
- Department of Chemistry, Dalhousie University, 6274 Coberg Rd., Halifax, NS B3H 4R2, Canada
| |
Collapse
|
10
|
|
11
|
De Bruyn F, Maertens J, Beauprez J, Soetaert W, De Mey M. Biotechnological advances in UDP-sugar based glycosylation of small molecules. Biotechnol Adv 2015; 33:288-302. [PMID: 25698505 DOI: 10.1016/j.biotechadv.2015.02.005] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 12/19/2014] [Accepted: 02/09/2015] [Indexed: 01/04/2023]
Abstract
Glycosylation of small molecules like specialized (secondary) metabolites has a profound impact on their solubility, stability or bioactivity, making glycosides attractive compounds as food additives, therapeutics or nutraceuticals. The subsequently growing market demand has fuelled the development of various biotechnological processes, which can be divided in the in vitro (using enzymes) or in vivo (using whole cells) production of glycosides. In this context, uridine glycosyltransferases (UGTs) have emerged as promising catalysts for the regio- and stereoselective glycosylation of various small molecules, hereby using uridine diphosphate (UDP) sugars as activated glycosyldonors. This review gives an extensive overview of the recently developed in vivo production processes using UGTs and discusses the major routes towards UDP-sugar formation. Furthermore, the use of interconverting enzymes and glycorandomization is highlighted for the production of unusual or new-to-nature glycosides. Finally, the technological challenges and future trends in UDP-sugar based glycosylation are critically evaluated and summarized.
Collapse
Affiliation(s)
- Frederik De Bruyn
- Centre of Expertise-Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Jo Maertens
- Centre of Expertise-Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Joeri Beauprez
- Centre of Expertise-Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Wim Soetaert
- Centre of Expertise-Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Marjan De Mey
- Centre of Expertise-Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Ghent University, Coupure links 653, 9000 Ghent, Belgium.
| |
Collapse
|
12
|
Zhang J, Singh S, Hughes RR, Zhou M, Sunkara M, Morris AJ, Thorson JS. A simple strategy for glycosyltransferase-catalyzed aminosugar nucleotide synthesis. Chembiochem 2014; 15:647-52. [PMID: 24677528 PMCID: PMC4051237 DOI: 10.1002/cbic.201300779] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Indexed: 12/18/2022]
Abstract
A set of 2-chloro-4-nitrophenyl glucosamino-/xylosaminosides were synthesized and assessed as potential substrates in the context of glycosyltransferase-catalyzed formation of the corresponding UDP/TDP-α-D-glucosamino-/xylosaminosugars and in single-vessel model transglycosylation reactions. This study highlights a robust platform for aminosugar nucleotide synthesis and reveals OleD Loki to be a proficient catalyst for U/TDP-aminosugar synthesis and utilization
Collapse
Affiliation(s)
- Jianjun Zhang
- Dr. J. Zhang, Prof. S. Singh, R. R. Hughes, Prof. J. S. Thorson Center for Pharmaceutical Research and Innovation University of Kentucky 789 South Limestone Street, Lexington, KY 40536 (USA)
| | - Shanteri Singh
- Dr. J. Zhang, Prof. S. Singh, R. R. Hughes, Prof. J. S. Thorson Center for Pharmaceutical Research and Innovation University of Kentucky 789 South Limestone Street, Lexington, KY 40536 (USA)
| | - Ryan R. Hughes
- Dr. J. Zhang, Prof. S. Singh, R. R. Hughes, Prof. J. S. Thorson Center for Pharmaceutical Research and Innovation University of Kentucky 789 South Limestone Street, Lexington, KY 40536 (USA)
| | - Maoquan Zhou
- Dr. M. Zhou School of Pharmacy, University of Wisconsin-Madison 777 Highland Avenue, Madison, WI 53705 (USA)
| | - Manjula Sunkara
- M. Sunkara, Prof. A. J. Morris Division of Cardiovascular Medicine University of Kentucky, Lexington, KY 40536(USA)
| | - Andrew J. Morris
- M. Sunkara, Prof. A. J. Morris Division of Cardiovascular Medicine University of Kentucky, Lexington, KY 40536(USA)
| | - Jon S. Thorson
- Dr. J. Zhang, Prof. S. Singh, R. R. Hughes, Prof. J. S. Thorson Center for Pharmaceutical Research and Innovation University of Kentucky 789 South Limestone Street, Lexington, KY 40536 (USA)
| |
Collapse
|
13
|
Beaton SA, Jiang PM, Melong JC, Loranger MW, Mohamady S, Veinot TI, Jakeman DL. The effect of bisphosphonate acidity on the activity of a thymidylyltransferase. Org Biomol Chem 2014; 11:5473-80. [PMID: 23857455 DOI: 10.1039/c3ob41017j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Thymidylyltransferases (thymidine diphospho pyrophosphorylases) are nucleotidylyltransferases that play key roles in the biosynthesis of carbohydrate components within bacterial cell walls and in the biosynthesis of glycosylated natural products. They catalyze the formation of sugar nucleotides concomitant with the release of pyrophosphate. Protein engineering of thymidylyltransferases has been an approach for the production of a variety of non-physiological sugar nucleotides. In this work, we have explored chemical approaches towards modifying the activity of the thymidylyltransferase (Cps2L) cloned from S. pneumoniae, through the use of chemically synthesized 'activated' nucleoside triphosphates with enhanced leaving groups, or by switching the metal ion co-factor specificity. Within a series of phosphonate-containing nucleoside triphosphate analogues, thymidylyltransferase activity is enhanced based on the acidity of the leaving group and a Brønsted-type analysis indicated that leaving group departure is rate limiting. We have also determined IC50 values for a series of bisphosphonates as inhibitors of thymidylyltransferases. No correlation between the acidity of the inhibitors (pKa) and the magnitude of enzyme inhibition was found.
Collapse
Affiliation(s)
- Stephen A Beaton
- Department of Chemistry, Dalhousie University, 1459 Oxford St., Halifax, Nova Scotia B3H 4R2, Canada
| | | | | | | | | | | | | |
Collapse
|
14
|
Chlubnova I, Legentil L, Dureau R, Pennec A, Almendros M, Daniellou R, Nugier-Chauvin C, Ferrières V. Specific and non-specific enzymes for furanosyl-containing conjugates: biosynthesis, metabolism, and chemo-enzymatic synthesis. Carbohydr Res 2012; 356:44-61. [PMID: 22554502 DOI: 10.1016/j.carres.2012.04.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 04/02/2012] [Accepted: 04/03/2012] [Indexed: 11/27/2022]
Abstract
There is no doubt now that the synthesis of compounds of varying complexity such as saccharides and derivatives thereof continuously grows with enzymatic methods. This review focuses on recent basic knowledge on enzymes specifically involved in the biosynthesis and degradation of furanosyl-containing polysaccharides and conjugates. Moreover, and when possible, biocatalyzed approaches, alternative to standard synthesis, will be detailed in order to strengthen the high potential of these biocatalysts to go further with the preparation of rare furanosides. Interesting results will be also proposed with chemo-enzymatic processes based on nonfuranosyl-specific enzymes.
Collapse
Affiliation(s)
- Ilona Chlubnova
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, Avenue du Général Leclerc, CS 50837, 35708 Rennes Cedex 7, France
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Singh B, Lee CB, Park JW, Sohng JK. The amino acid sequences in the C-terminal region of glucose-1-phosphate thymidylyltransferases determine their soluble expression in Escherichia coli. Protein Eng Des Sel 2012; 25:179-87. [DOI: 10.1093/protein/gzs002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
16
|
Moretti R, Chang A, Peltier-Pain P, Bingman CA, Phillips GN, Thorson JS. Expanding the nucleotide and sugar 1-phosphate promiscuity of nucleotidyltransferase RmlA via directed evolution. J Biol Chem 2011; 286:13235-43. [PMID: 21317292 DOI: 10.1074/jbc.m110.206433] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Directed evolution is a valuable technique to improve enzyme activity in the absence of a priori structural knowledge, which can be typically enhanced via structure-guided strategies. In this study, a combination of both whole-gene error-prone polymerase chain reaction and site-saturation mutagenesis enabled the rapid identification of mutations that improved RmlA activity toward non-native substrates. These mutations have been shown to improve activities over 10-fold for several targeted substrates, including non-native pyrimidine- and purine-based NTPs as well as non-native D- and L-sugars (both α- and β-isomers). This study highlights the first broadly applicable high throughput sugar-1-phosphate nucleotidyltransferase screen and the first proof of concept for the directed evolution of this enzyme class toward the identification of uniquely permissive RmlA variants.
Collapse
Affiliation(s)
- Rocco Moretti
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | |
Collapse
|
17
|
Chlubnová I, Sylla B, Nugier-Chauvin C, Daniellou R, Legentil L, Kralová B, Ferrières V. Natural glycans and glycoconjugates as immunomodulating agents. Nat Prod Rep 2011; 28:937-52. [DOI: 10.1039/c1np00005e] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
18
|
Gantt RW, Peltier-Pain P, Thorson JS. Enzymatic methods for glyco(diversification/randomization) of drugs and small molecules. Nat Prod Rep 2011; 28:1811-53. [DOI: 10.1039/c1np00045d] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
19
|
Partha SK, Sadeghi-Khomami A, Slowski K, Kotake T, Thomas NR, Jakeman DL, Sanders DAR. Chemoenzymatic synthesis, inhibition studies, and X-ray crystallographic analysis of the phosphono analog of UDP-Galp as an inhibitor and mechanistic probe for UDP-galactopyranose mutase. J Mol Biol 2010; 403:578-90. [PMID: 20850454 DOI: 10.1016/j.jmb.2010.08.053] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 08/27/2010] [Accepted: 08/30/2010] [Indexed: 12/01/2022]
Abstract
UDP (uridine diphosphate) galactopyranose mutase (UGM) is involved in the cell wall biosynthesis of many pathogenic microorganisms. UGM catalyzes the reversible conversion of UDP-α-D-galactopyranose into UDP-α-D-galactofuranose, with the latter being the precursor of galactofuranose (Galf) residues in cell walls. Glycoconjugates of Galf are essential components in the cell wall of various pathogenic bacteria, including Mycobacterium tuberculosis, the causative agent of tuberculosis. The absence of Galf in humans and its bacterial requirement make UGM a potential target for developing novel antibacterial agents. In this article, we report the synthesis, inhibitory activity, and X-ray crystallographic studies of UDP-phosphono-galactopyranose, a nonhydrolyzable C-glycosidic phosphonate. This is the first report on the synthesis of a phosphonate analog of UDP-α-D-galactopyranose by a chemoenzymatic phosphoryl coupling method. The phosphonate was evaluated against three bacterial UGMs and showed only moderate inhibition. We determined the crystal structure of the phosphonate analog bound to Deinococcus radiodurans UGM at 2.6 Å resolution. The phosphonate analog is bound in a novel conformation not observed in UGM-substrate complex structures or in other enzyme-sugar nucleotide phosphonate complexes. This complex structure provides a structural basis for the observed micromolar inhibition towards UGM. Steric clashes, loss of electrostatic stabilization between an active-site arginine (Arg305) and the phosphonate analog, and a 180° flip of the hexose moiety account for the differences in the binding orientations of the isosteric phosphonate analog and the physiological substrate. This provides new insight into the ability of a sugar-nucleotide-binding enzyme to orient a substrate analog in an unexpected geometry and should be taken into consideration in designing such enzyme inhibitors.
Collapse
|
20
|
Mizanur RM, Pohl NLB. Phosphomannose isomerase/GDP-mannose pyrophosphorylase from Pyrococcus furiosus: a thermostable biocatalyst for the synthesis of guanidinediphosphate-activated and mannose-containing sugar nucleotides. Org Biomol Chem 2009; 7:2135-9. [PMID: 19421452 DOI: 10.1039/b822794b] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we present an analysis of the chemical function of a recombinant bifunctional phosphomannose isomerase/GDP-mannose pyrophosphorylase (manC) from Pyrococcus furiosus DSM 3638 and its use in the synthesis of guanidinediphospho-hexoses and a range of nucleotidediphospho-mannoses. This enzyme is unusually promiscuous in both its nucleotide triphosphate (NTP) and sugar-1-phosphate acceptance. It accepts all five naturally occurring NTPs (ATP, CTP, GTP, dTTP and UTP) and a range of sugar-1-phosphates (glucose-, mannose-, galactose-, glucosamine-, N-acetylglucosamine- and fucose-1-phosphate). A truncated GDP-mannose pyrophosphorylase domain of the whole length enzyme showed almost 100-fold less sugar nucleotidyltransferase activity with only GTP and mannose 1-phosphate as substrates. The temperature stability and inherently broad substrate tolerance of this archaeal enzyme make it an effective reagent for the rapid chemoenzymatic synthesis of a range of natural and unnatural sugar nucleotides that are challenging to make by chemical means alone.
Collapse
Affiliation(s)
- Rahman M Mizanur
- Department of Chemistry and Plant Sciences Institute, Gilman Hall, Iowa State University, Ames, Iowa 50011-3111, USA
| | | |
Collapse
|