1
|
Jilani SB. Deletion of yghZ in Escherichia coli promotes growth in presence of furfural with xylose as carbon source. FEMS Microbiol Lett 2024; 371:fnae028. [PMID: 38664064 DOI: 10.1093/femsle/fnae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/23/2024] [Accepted: 04/24/2024] [Indexed: 05/15/2024] Open
Abstract
Thermo-acidic pretreatment of lignocellulosic biomass is required to make it amenable to microbial metabolism and results in generation of furfural due to breakdown of pentose sugars. Furfural is toxic to microbial metabolism and results in reduced microbial productivity and increased production costs. This study asks if deletion of yghZ gene which encodes a NADPH-dependent aldehyde reductase enzyme results in improved furfural tolerance in Escherichia coli host. The ∆yghZ strain-SSK201-was tested for tolerance to furfural in presence of 5% xylose as a carbon source in AM1 minimal medium. At 96 h and in presence of 1.0 g/L furfural, the culture harboring strain SSK201 displayed 4.5-fold higher biomass, 2-fold lower furfural concentration and 15.75-fold higher specific growth rate (µ) as compared to the parent strain SSK42. The furfural tolerance advantage of SSK201 was retained when the carbon source was switched to glucose in AM1 medium and was lost in rich LB medium. The findings have potential to be scaled up to a hydrolysate culture medium, which contains furan inhibitors and lack nutritionally rich components, under bioreactor cultivation and observe growth advantage of the ∆yghZ host. It harbors potential to generate robust industrial strains which can convert lignocellulosic carbon into metabolites of interest in a cost-efficient manner.
Collapse
Affiliation(s)
- S Bilal Jilani
- Institute of Biotechnology, Amity University, Manesar, Haryana 122413, India
- Microbial Engineering Group, International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India
| |
Collapse
|
2
|
Dev C, Jilani SB, Yazdani SS. Adaptation on xylose improves glucose-xylose co-utilization and ethanol production in a carbon catabolite repression (CCR) compromised ethanologenic strain. Microb Cell Fact 2022; 21:154. [PMID: 35933385 PMCID: PMC9356451 DOI: 10.1186/s12934-022-01879-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sugar hydrolysates from lignocellulosic biomass are majorly composed of glucose and xylose that can be fermented to biofuels. Bacteria, despite having the natural ability to consume xylose are unable to consume it in presence of glucose due to a carbon catabolite repression (CCR) mechanism. This leads to overall reduced productivity as well as incomplete xylose utilization due to ethanol build-up from glucose utilization. In our effort to develop a strain for simultaneous fermentation of glucose and xylose into ethanol, we deleted ptsG in ethanologenic E. coli SSK42 to make it deficient in CCR and performed adaptive laboratory evolution to achieve accelerated growth rate, sugar consumption and ethanol production. Finally, we performed proteomics study to identify changes that might have been responsible for the observed improved phenotype of the evolved strain. RESULTS The parental strain of SSK42, i.e., wild-type E. coli B, did not co-utilize glucose and xylose as expected. After deleting the ptsG gene encoding the EIIBCGlc subunit of PTS system, glucose consumption is severely affected in wild-type E. coli B. However, the ethanologenic, SSK42 strain, which was evolved in our earlier study on both glucose and xylose, didn't show such a drastic effect of EIIBCGlc deletion, instead consumed glucose first, followed by xylose without delay for switching from one sugar to another. To improve growth on xylose and co-utilization capabilities, the ptsG deleted SSK42 was evolved on xylose. The strain evolved for 78 generations, strain SCD78, displayed significant co-utilization of glucose and xylose sugars. At the bioreactor level, the strain SCD78 produced 3-times the ethanol titer of the parent strain with significant glucose-xylose co-utilization. The rate of glucose and xylose consumption also increased 3.4-fold and 3-fold, respectively. Proteome data indicates significant upregulation of TCA cycle proteins, respiration-related proteins, and some transporters, which may have a role in increasing the total sugar consumption and co-utilization of sugars. CONCLUSION Through adaptive evolution, we have obtained a strain that has a significant glucose-xylose co-utilization phenotype with 3-fold higher total sugar consumption rate and ethanol production rate compared to the unevolved strain. This study also points out that adaptation on xylose is enough to impart glucose-xylose co-utilization property in CCR compromised ethanologenic strain SSK42.
Collapse
Affiliation(s)
- Chandra Dev
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.,DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Syed Bilal Jilani
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Syed Shams Yazdani
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India. .,DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| |
Collapse
|
3
|
Coulson TJD, Malenfant RM, Patten CL. Characterization of the TyrR Regulon in the Rhizobacterium Enterobacter ludwigii UW5 Reveals Overlap with the CpxR Envelope Stress Response. J Bacteriol 2020; 203:e00313-20. [PMID: 33046562 PMCID: PMC7723952 DOI: 10.1128/jb.00313-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/03/2020] [Indexed: 01/06/2023] Open
Abstract
The TyrR transcription factor controls the expression of genes for the uptake and biosynthesis of aromatic amino acids in Escherichia coli In the plant-associated and clinically significant proteobacterium Enterobacter ludwigii UW5, the TyrR orthologue was previously shown to regulate genes that encode enzymes for synthesis of the plant hormone indole-3-acetic acid and for gluconeogenesis, indicating a broader function for the transcription factor. This study aimed to delineate the TyrR regulon of E. ludwigii by comparing the transcriptomes of the wild type and a tyrR deletion strain. In E. ludwigii, TyrR positively or negatively regulates the expression of over 150 genes. TyrR downregulated expression of envelope stress response regulators CpxR and CpxP through interaction with a DNA binding site in the intergenic region between divergently transcribed cpxP and cpxR Repression of cpxP was alleviated by tyrosine. Methyltransferase gene dmpM, which is possibly involved in antibiotic synthesis, was strongly activated in the presence of tyrosine and phenylalanine by TyrR binding to its promoter region. TyrR also regulated expression of genes for aromatic catabolism and anaerobic respiration. Our findings suggest that the E. ludwigii TyrR regulon has diverged from that of E. coli to include genes for survival in the diverse environments that this bacterium inhabits and illustrate the expansion and plasticity of transcription factor regulons.IMPORTANCE Genome-wide RNA sequencing revealed a broader regulatory role for the TyrR transcription factor in the ecologically versatile bacterium Enterobacter ludwigii beyond that of aromatic amino acid synthesis and transport that constitute the role of the TyrR regulon of E. coli In E. ludwigii, a plant symbiont and human gut commensal, the TyrR regulon is expanded to include genes that are beneficial for plant interactions and response to stresses. Identification of the genes regulated by TyrR provides insight into the mechanisms by which the bacterium adapts to its environment.
Collapse
Affiliation(s)
- Thomas J D Coulson
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - René M Malenfant
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Cheryl L Patten
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada
| |
Collapse
|
4
|
Crystal Structure and Biophysical Analysis of Furfural-Detoxifying Aldehyde Reductase from Clostridium beijerinckii. Appl Environ Microbiol 2019; 85:AEM.00978-19. [PMID: 31101612 DOI: 10.1128/aem.00978-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/07/2019] [Indexed: 11/20/2022] Open
Abstract
Many aldehydes, such as furfural, are present in high quantities in lignocellulose lysates and are fermentation inhibitors, which makes biofuel production from this abundant carbon source extremely challenging. Cbei_3974 has recently been identified as an aldo-keto reductase responsible for partial furfural resistance in Clostridium beijerinckii Rational engineering of this enzyme could enhance the furfural tolerance of this organism, thereby improving biofuel yields. We report an extensive characterization of Cbei_3974 and a single-crystal X-ray structure of Cbei_3974 in complex with NADPH at a resolution of 1.75 Å. Docking studies identified residues involved in substrate binding, and an activity screen revealed the substrate tolerance of the enzyme. Hydride transfer, which is partially rate limiting under physiological conditions, occurs from the pro-R hydrogen of NADPH. Enzyme isotope labeling revealed a temperature-independent enzyme isotope effect of unity, indicating that the enzyme does not use dynamic coupling for catalysis and suggesting that the active site of the enzyme is optimally configured for catalysis with the substrate tested.IMPORTANCE Here we report the crystal structure and biophysical properties of an aldehyde reductase that can detoxify furfural, a common inhibitor of biofuel fermentation found in lignocellulose lysates. The data contained here will serve as a guide for protein engineers to develop improved enzyme variants that would impart furfural resistance to the microorganisms used in biofuel production and thus lead to enhanced biofuel yields from this sustainable resource.
Collapse
|
5
|
Schulte‐Sasse M, Pardo‐Ávila F, Pulido‐Mayoral NO, Vázquez‐Lobo A, Costas M, García‐Hernández E, Rodríguez‐Romero A, Fernández‐Velasco DA. Structural, thermodynamic and catalytic characterization of an ancestral triosephosphate isomerase reveal early evolutionary coupling between monomer association and function. FEBS J 2019; 286:882-900. [DOI: 10.1111/febs.14741] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 11/01/2018] [Accepted: 12/23/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Mariana Schulte‐Sasse
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas Departamento de Bioquímica Facultad de Medicina Universidad Nacional Autónoma de México Mexico
| | - Fátima Pardo‐Ávila
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas Departamento de Bioquímica Facultad de Medicina Universidad Nacional Autónoma de México Mexico
| | - Nancy O. Pulido‐Mayoral
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas Departamento de Bioquímica Facultad de Medicina Universidad Nacional Autónoma de México Mexico
| | - Alejandra Vázquez‐Lobo
- Centro de Investigación en Biodiversidad y Conservación Universidad Autónoma del Estado de Morelos Cuernavaca Mexico
| | - Miguel Costas
- Laboratorio de Biofisicoquímica Departamento de Fisicoquímica Facultad de Química Universidad Nacional Autónoma de México Mexico
| | | | | | - Daniel Alejandro Fernández‐Velasco
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas Departamento de Bioquímica Facultad de Medicina Universidad Nacional Autónoma de México Mexico
| |
Collapse
|
6
|
Molla GS, Kinfu BM, Chow J, Streit W, Wohlgemuth R, Liese A. Bioreaction Engineering Leading to Efficient Synthesis of L-Glyceraldehyd-3-Phosphate. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201600625] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/29/2016] [Accepted: 12/15/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Getachew S. Molla
- Institute of Technical Biocatalysis; Hamburg University of Technology; Hamburg Germany
| | - Birhanu M. Kinfu
- Department of Microbiology and Biotechnology; University of Hamburg; Hamburg Germany
| | - Jennifer Chow
- Department of Microbiology and Biotechnology; University of Hamburg; Hamburg Germany
| | - Wolfgang Streit
- Department of Microbiology and Biotechnology; University of Hamburg; Hamburg Germany
| | | | - Andreas Liese
- Institute of Technical Biocatalysis; Hamburg University of Technology; Hamburg Germany
| |
Collapse
|
7
|
Hélaine V, Mahdi R, Sudhir Babu GV, de Berardinis V, Wohlgemuth R, Lemaire M, Guérard-Hélaine C. Straightforward Synthesis of Terminally Phosphorylated L
-Sugars via
Multienzymatic Cascade Reactions. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500190] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Hobbs ME, Williams HJ, Hillerich B, Almo SC, Raushel FM. l-Galactose metabolism in Bacteroides vulgatus from the human gut microbiota. Biochemistry 2014; 53:4661-70. [PMID: 24963813 PMCID: PMC4108180 DOI: 10.1021/bi500656m] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
A previously
unknown metabolic pathway for the utilization of l-galactose
was discovered in a prevalent gut bacterium, Bacteroides vulgatus. The new pathway consists of three
previously uncharacterized enzymes that were found to be responsible
for the conversion of l-galactose to d-tagaturonate.
Bvu0219 (l-galactose dehydrogenase) was determined to oxidize l-galactose to l-galactono-1,5-lactone with kcat and kcat/Km values of 21 s–1 and 2.0
× 105 M–1 s–1,
respectively. The kinetic product of Bvu0219 is rapidly converted
nonenzymatically to the thermodynamically more stable l-galactono-1,4-lactone.
Bvu0220 (l-galactono-1,5-lactonase) hydrolyzes both the kinetic
and thermodynamic products of Bvu0219 to l-galactonate. However, l-galactono-1,5-lactone is estimated to be hydrolyzed 300-fold
faster than its thermodynamically more stable counterpart, l-galactono-1,4-lactone. In the final step of this pathway, Bvu0222
(l-galactonate dehydrogenase) oxidizes l-galactonate
to d-tagaturonate with kcat and kcat/Km values of
0.6 s–1 and 1.7 × 104 M–1 s–1, respectively. In the reverse direction, d-tagaturonate is reduced to l-galactonate with values
of kcat and kcat/Km of 90 s–1 and 1.6
× 105 M–1 s–1,
respectively. d-Tagaturonate is subsequently converted to d-glyceraldehyde and pyruvate through enzymes encoded within
the degradation pathway for d-glucuronate and d-galacturonate.
Collapse
Affiliation(s)
- Merlin Eric Hobbs
- Department of Biochemistry and Biophysics, §Department of Chemistry, Texas A&M University , College Station, Texas 77843, United States
| | | | | | | | | |
Collapse
|
9
|
Zhai X, Go M, O’Donoghue AC, Amyes TL, Pegan SD, Wang Y, Loria JP, Mesecar A, Richard JP. Enzyme architecture: the effect of replacement and deletion mutations of loop 6 on catalysis by triosephosphate isomerase. Biochemistry 2014; 53:3486-501. [PMID: 24825099 PMCID: PMC4051426 DOI: 10.1021/bi500458t] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Two mutations of the phosphodianion gripper loop in chicken muscle triosephosphate isomerase (cTIM) were examined: (1) the loop deletion mutant (LDM) formed by removal of residues 170-173 [Pompliano, D. L., et al. (1990) Biochemistry 29, 3186-3194] and (2) the loop 6 replacement mutant (L6RM), in which the N-terminal hinge sequence of TIM from eukaryotes, 166-PXW-168 (X = L or V), is replaced by the sequence from archaea, 166-PPE-168. The X-ray crystal structure of the L6RM shows a large displacement of the side chain of E168 from that for W168 in wild-type cTIM. Solution nuclear magnetic resonance data show that the L6RM results in significant chemical shift changes in loop 6 and surrounding regions, and that the binding of glycerol 3-phosphate (G3P) results in chemical shift changes for nuclei at the active site of the L6RM that are smaller than those of wild-type cTIM. Interactions with loop 6 of the L6RM stabilize the enediolate intermediate toward the elimination reaction catalyzed by the LDM. The LDM and L6RM result in 800000- and 23000-fold decreases, respectively, in kcat/Km for isomerization of GAP. Saturation of the LDM, but not the L6RM, by substrate and inhibitor phosphoglycolate is detected by steady-state kinetic analyses. We propose, on the basis of a comparison of X-ray crystal structures for wild-type TIM and the L6RM, that ligands bind weakly to the L6RM because a large fraction of the ligand binding energy is utilized to overcome destabilizing electrostatic interactions between the side chains of E168 and E129 that are predicted to develop in the loop-closed enzyme. Similar normalized yields of DHAP, d-DHAP, and d-GAP are formed in LDM- and L6RM-catalyzed reactions of GAP in D2O. The smaller normalized 12-13% yield of DHAP and d-DHAP observed for the mutant cTIM-catalyzed reactions compared with the 79% yield of these products for wild-type cTIM suggests that these mutations impair the transfer of a proton from O-2 to O-1 at the initial enediolate phosphate intermediate. No products are detected for the LDM-catalyzed isomerization reactions in D2O of [1-(13)C]GA and HPi, but the L6RM-catalyzed reaction in the presence of 0.020 M dianion gives a 2% yield of the isomerization product [2-(13)C,2-(2)H]GA.
Collapse
Affiliation(s)
- Xiang Zhai
- Department
of Chemistry, University at Buffalo, Buffalo, New York 14221, United States
| | - Maybelle
K. Go
- Department
of Chemistry, University at Buffalo, Buffalo, New York 14221, United States
| | | | - Tina L. Amyes
- Department
of Chemistry, University at Buffalo, Buffalo, New York 14221, United States
| | - Scott D. Pegan
- Department
of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia 30602, United States
| | - Yan Wang
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - J. Patrick Loria
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States,Department
of Chemistry and Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Andrew
D. Mesecar
- Departments
of Biological Sciences and Chemistry, Purdue
University, West Lafayette, Indiana 47907, United States
| | - John P. Richard
- Department
of Chemistry, University at Buffalo, Buffalo, New York 14221, United States,E-mail: . Telephone: (716) 645-4232. Fax: (716) 645-6963
| |
Collapse
|
10
|
Gauss D, Schoenenberger B, Wohlgemuth R. Chemical and enzymatic methodologies for the synthesis of enantiomerically pure glyceraldehyde 3-phosphates. Carbohydr Res 2014; 389:18-24. [DOI: 10.1016/j.carres.2013.12.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 12/21/2013] [Accepted: 12/27/2013] [Indexed: 11/28/2022]
|
11
|
Triosephosphate isomerase is dispensable in vitro yet essential for Mycobacterium tuberculosis to establish infection. mBio 2014; 5:e00085. [PMID: 24757211 PMCID: PMC3994511 DOI: 10.1128/mbio.00085-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Triosephosphate isomerase (TPI) catalyzes the interconversion of dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3-phosphate (G3P). This reaction is required for glycolysis and gluconeogenesis, and tpi has been predicted to be essential for growth of Mycobacterium tuberculosis. However, when studying a conditionally regulated tpi knockdown mutant, we noticed that depletion of TPI reduced growth of M. tuberculosis in media containing a single carbon source but not in media that contained both a glycolytic and a gluconeogenic carbon source. We used such two-carbon-source media to isolate a tpi deletion (Δtpi) mutant. The Δtpi mutant did not survive with single carbon substrates but grew like wild-type (WT) M. tuberculosis in the presence of both a glycolytic and a gluconeogenic carbon source. 13C metabolite tracing revealed the accumulation of TPI substrates in Δtpi and the absence of alternative triosephosphate isomerases and metabolic bypass reactions, which confirmed the requirement of TPI for glycolysis and gluconeogenesis in M. tuberculosis. The Δtpi strain was furthermore severely attenuated in the mouse model of tuberculosis, suggesting that M. tuberculosis cannot simultaneously access sufficient quantities of glycolytic and gluconeogenic carbon substrates to establish infection in mice. The importance of central carbon metabolism for the pathogenesis of M. tuberculosis has recently been recognized, but the consequences of depleting specific metabolic enzymes remain to be identified for many enzymes. We investigated triosephosphate isomerase (TPI) because it is central to both glycolysis and gluconeogenesis and had been predicted to be essential for growth of M. tuberculosis. This work identified metabolic conditions that make TPI dispensable for M. tuberculosis growth in culture and proved that M. tuberculosis relies on a single TPI enzyme and has no metabolic bypass for the TPI-dependent interconversion of dihydroxyacetone phosphate and glyceraldehyde-3-phosphate in glycolysis and gluconeogenesis. Finally, we demonstrate that TPI is essential for growth of the pathogen in mouse lungs.
Collapse
|
12
|
Abstract
Although more than 10(9) years have passed since the existence of the last universal common ancestor, proteins have yet to reach the limits of divergence. As a result, metabolic complexity is ever expanding. Identifying and understanding the mechanisms that drive and limit the divergence of protein sequence space impact not only evolutionary biologists investigating molecular evolution but also synthetic biologists seeking to design useful catalysts and engineer novel metabolic pathways. Investigations over the past 50 years indicate that the recruitment of enzymes for new functions is a key event in the acquisition of new metabolic capacity. In this review, we outline the genetic mechanisms that enable recruitment and summarize the present state of knowledge regarding the functional characteristics of extant catalysts that facilitate recruitment. We also highlight recent examples of enzyme recruitment, both from the historical record provided by phylogenetics and from enzyme evolution experiments. We conclude with a look to the future, which promises fruitful consequences from the convergence of molecular evolutionary theory, laboratory-directed evolution, and synthetic biology.
Collapse
Affiliation(s)
- Cindy Schulenburg
- Laboratory of Organic Chemistry, ETH-Zürich , Zürich CH-8093, Switzerland
| | | |
Collapse
|
13
|
Zhai X, Amyes TL, Wierenga RK, Loria JP, Richard JP. Structural mutations that probe the interactions between the catalytic and dianion activation sites of triosephosphate isomerase. Biochemistry 2013; 52:5928-40. [PMID: 23909928 DOI: 10.1021/bi401019h] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Triosephosphate isomerase (TIM) catalyzes the isomerization of dihydroxyacetone phosphate to form d-glyceraldehyde 3-phosphate. The effects of two structural mutations in TIM on the kinetic parameters for catalysis of the reaction of the truncated substrate glycolaldehyde (GA) and the activation of this reaction by phosphite dianion are reported. The P168A mutation results in similar 50- and 80-fold decreases in (kcat/Km)E and (kcat/Km)E·HPi, respectively, for deprotonation of GA catalyzed by free TIM and by the TIM·HPO(3)(2-) complex. The mutation has little effect on the observed and intrinsic phosphite dianion binding energy or the magnitude of phosphite dianion activation of TIM for catalysis of deprotonation of GA. A loop 7 replacement mutant (L7RM) of TIM from chicken muscle was prepared by substitution of the archaeal sequence 208-TGAG with 208-YGGS. L7RM exhibits a 25-fold decrease in (kcat/Km)E and a larger 170-fold decrease in (kcat/Km)E·HPi for reactions of GA. The mutation has little effect on the observed and intrinsic phosphodianion binding energy and only a modest effect on phosphite dianion activation of TIM. The observation that both the P168A and loop 7 replacement mutations affect mainly the kinetic parameters for TIM-catalyzed deprotonation but result in much smaller changes in the parameters for enzyme activation by phosphite dianion provides support for the conclusion that catalysis of proton transfer and dianion activation of TIM take place at separate, weakly interacting, sites in the protein catalyst.
Collapse
Affiliation(s)
- Xiang Zhai
- Department of Chemistry, University at Buffalo , Buffalo, New York 14260, United States
| | | | | | | | | |
Collapse
|
14
|
Niu C, Shang N, Liao X, Feng E, Liu X, Wang D, Wang J, Huang P, Hua Y, Zhu L, Wang H. Analysis of Soluble protein complexes in Shigella flexneri reveals the influence of temperature on the amount of lipopolysaccharide. Mol Cell Proteomics 2013; 12:1250-8. [PMID: 23378524 DOI: 10.1074/mcp.m112.025270] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Shigella flexneri, which is closely related to Escherichia coli, is the most common cause of the endemic form of shigellosis. In this study, 53 homomultimeric protein complexes and nine heteromultimeric protein complexes from S. flexneri 2a strain 2457T were separated and identified. Among these, three potential homomultimeric protein complexes had not been previously described. One complex, thought to be composed of 12 PhoN1 subunits, is a periplasmic protein with an unknown physiological role encoded on the virulence plasmid of S. flexneri. The abundance of the protein complexes was compared following growth at 37 or 30°C, and the abundance of three protein complexes (PyrB-PyrI, GlmS, and MglB) related to the synthesis of lipopolysaccharides (LPS) appeared to be temperature-dependent. Many studies have shown that LPS is essential to the virulence of S. flexneri. Here, we report the influence of temperature on the amount of LPS.
Collapse
Affiliation(s)
- Chang Niu
- Institute of Nuclear-Agricultural Science, Zhejiang University, Hangzhou 310029, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Lapthorn AJ, Zhu X, Ellis EM. The diversity of microbial aldo/keto reductases from Escherichia coli K12. Chem Biol Interact 2012; 202:168-77. [PMID: 23103600 DOI: 10.1016/j.cbi.2012.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 10/11/2012] [Accepted: 10/15/2012] [Indexed: 12/20/2022]
Abstract
The genome of Escherichia coli K12 contains 9 open reading frames encoding aldo/keto reductases (AKRs) that are differentially regulated and sequence diverse. A significant amount of data is available for the E. coli AKRs through the availability of gene knockouts and gene expression studies, which adds to the biochemical and kinetic data. This together with the availability of crystal structures for nearly half of the E. coli AKRs and homologues of several others provides an opportunity to look at the diversity of these representative bacterial AKRs. Based around the common AKR fold of (β/α)8 barrel with two additional α-helices, the E. coli AKRs have a loop structure that is more diverse than their mammalian counterparts, creating a variety of active site architectures. Nearly half of the AKRs are expected to be monomeric, but there are examples of dimeric, trimeric and octameric enzymes, as well as diversity in specificity for NAD as well as NADP as a cofactor. However in functional assignments and characterisation of enzyme activities there is a paucity of data when compared to the mammalian AKR enzymes.
Collapse
Affiliation(s)
- Adrian J Lapthorn
- School of Chemistry, University of Glasgow, Glasgow, United Kingdom.
| | | | | |
Collapse
|
16
|
Abstract
Large superfamilies of enzymes derived from a common progenitor have emerged by duplication and divergence of genes encoding metabolic enzymes. Division of the functions of early generalist enzymes enhanced catalytic power and control over metabolic fluxes. Later, novel enzymes evolved from inefficient secondary activities in specialized enzymes. Enzymes operate in the context of complex metabolic and regulatory networks. The potential for evolution of a new enzyme depends upon the collection of enzymes in a microbe, the topology of the metabolic network, the environmental conditions, and the net effect of trade-offs between the original and novel activities of the enzyme.
Collapse
Affiliation(s)
- Shelley D Copley
- Department of Molecular, Cellular and Developmental Biology and Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, Colorado 80309.
| |
Collapse
|
17
|
Williams WM, Weinberg A, Smith MA. Protein modification by dicarbonyl molecular species in neurodegenerative diseases. JOURNAL OF AMINO ACIDS 2011; 2011:461216. [PMID: 22332001 PMCID: PMC3276062 DOI: 10.4061/2011/461216] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 01/10/2011] [Indexed: 02/02/2023]
Abstract
Neurodegeneration results from abnormalities in cerebral metabolism and energy balance within neurons, astrocytes, microglia, or microvascular endothelial cells of the blood-brain barrier. In Alzheimer's disease, β-amyloid is considered the primary contributor to neuropathology and neurodegeneration. It now is believed that certain systemic diseases, such as diabetes mellitus, can contribute to neurodegeneration through the effects of chronic hyperglycemia/insulin resistance resulting in protein glycation, oxidative stress and inflammation within susceptible brain regions. Here, we present an overview of research focusing on the role of protein glycation, oxidative stress, and inflammation in the neurodegenerative process. Of special interest in this paper is the effect of methylglyoxal (MGO), a cytotoxic byproduct of glucose metabolism, elevated in neurodegenerative disease, and diabetes mellitus, on cerebral protein function and oxidative stress. How MGO interacts with amino acid residues within β-amyloid, and small peptides within the brain, is also discussed in terms of the affect on protein function.
Collapse
Affiliation(s)
- Wesley M Williams
- Department of Biological Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
18
|
Recruitment of genes and enzymes conferring resistance to the nonnatural toxin bromoacetate. Proc Natl Acad Sci U S A 2010; 107:17968-73. [PMID: 20921376 DOI: 10.1073/pnas.1007559107] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Microbial niches contain toxic chemicals capable of forcing organisms into periods of intense natural selection to afford survival. Elucidating the mechanisms by which microbes evade environmental threats has direct relevance for understanding and combating the rise of antibiotic resistance. In this study we used a toxic small-molecule, bromoacetate, to model the selective pressures imposed by antibiotics and anthropogenic toxins. We report the results of genetic selection experiments that identify nine genes from Escherichia coli whose overexpression affords survival in the presence of a normally lethal concentration of bromoacetate. Eight of these genes encode putative transporters or transmembrane proteins, while one encodes the essential peptidoglycan biosynthetic enzyme, UDP-N-acetylglucosamine enolpyruvoyl transferase (MurA). Biochemical studies demonstrate that the primary physiological target of bromoacetate is MurA, which becomes irreversibly inactivated via alkylation of a critical active-site cysteine. We also screened a comprehensive library of E. coli single-gene deletion mutants and identified 63 strains displaying increased susceptibility to bromoacetate. One hypersensitive bacterium lacks yliJ, a gene encoding a predicted glutathione transferase. Herein, YliJ is shown to catalyze the glutathione-dependent dehalogenation of bromoacetate with a k(cat)/K(m) value of 5.4 × 10(3) M(-1) s(-1). YliJ displays exceptional substrate specificity and produces a rate enhancement exceeding 5 orders of magnitude, remarkable characteristics for reactivity with a nonnatural molecule. This study illustrates the wealth of intrinsic survival mechanisms that can be exploited by bacteria when they are challenged with toxins.
Collapse
|
19
|
Desai KK, Miller BG. l-Glyceraldehyde 3-phosphate reductase from Escherichia coli is a heme binding protein. Bioorg Chem 2010; 38:37-41. [DOI: 10.1016/j.bioorg.2009.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 11/16/2009] [Accepted: 11/19/2009] [Indexed: 11/17/2022]
|
20
|
Abstract
Assignment of function for enzymes encoded in sequenced genomes is a challenging task. Predictions of enzyme function can be made using clues from superfamily assignment, structure, genome context, phylogenetic conservation, and virtual screening to identify potential ligands. Ultimately, confident assignment of function requires experimental verification as well as an understanding of the physiological role of an enzyme in the context of the metabolic network.
Collapse
Affiliation(s)
- Shelley D Copley
- Department of Molecular, Cellular & Developmental Biology and Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder Campus Box 216, Boulder, CO 80309 USA.
| |
Collapse
|
21
|
Abstract
Gluconeogenesis is blocked in a strain of Escherichia coli that is deficient in triosephosphate isomerase, but it was restored by the insertion of a plasmid coding for an L-glyceraldehyde 3-phosphate reductase (YghZ). This reductase provides a "bypass" that produces dihydroxyacetone phosphate (DHAP) by the consecutive enzyme-catalyzed reduction of L-glyceraldehyde 3-phosphate ( L-GAP) by NADPH to give L-glycerol 3-phosphate and reoxidation by NAD(+) catalyzed by endogenous L-glycerol 3-phosphate dehydrogenase to give DHAP. The origin of cellular L-GAP remains to be determined.
Collapse
Affiliation(s)
- John P Richard
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, USA.
| |
Collapse
|