1
|
Nakanishi T, Koma YI, Miyako S, Torigoe R, Yokoo H, Omori M, Yamanaka K, Ishihara N, Tsukamoto S, Kodama T, Nishio M, Shigeoka M, Yokozaki H, Kakeji Y. AREG Upregulation in Cancer Cells via Direct Interaction with Cancer-Associated Fibroblasts Promotes Esophageal Squamous Cell Carcinoma Progression Through EGFR-Erk/p38 MAPK Signaling. Cells 2024; 13:1733. [PMID: 39451251 PMCID: PMC11506648 DOI: 10.3390/cells13201733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) are a key component of the tumor microenvironment and significantly contribute to the progression of various cancers, including esophageal squamous cell carcinoma (ESCC). Our previous study established a direct co-culture system of human bone marrow-derived mesenchymal stem cells (progenitors of CAFs) and ESCC cell lines, which facilitates the generation of CAF-like cells and enhances malignancy in ESCC cells. In this study, we further elucidated the mechanism by which CAFs promote ESCC progression using cDNA microarray analysis of monocultured ESCC cells and those co-cultured with CAFs. We observed an increase in the expression and secretion of amphiregulin (AREG) and the expression and phosphorylation of its receptor EGFR in co-cultured ESCC cells. Moreover, AREG treatment of ESCC cells enhanced their survival and migration via the EGFR-Erk/p38 MAPK signaling pathway. Immunohistochemical analysis of human ESCC tissues showed a positive correlation between the intensity of AREG expression at the tumor-invasive front and the expression level of the CAF marker FAP. Bioinformatics analysis confirmed significant upregulation of AREG in ESCC compared with normal tissues. These findings suggest that AREG plays a crucial role in CAF-mediated ESCC progression and could be a novel therapeutic target for ESCC.
Collapse
Affiliation(s)
- Takashi Nakanishi
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (T.N.); (S.M.); (R.T.); (H.Y.); (M.O.); (K.Y.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
- Division of Gastro-Intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan;
| | - Yu-ichiro Koma
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (T.N.); (S.M.); (R.T.); (H.Y.); (M.O.); (K.Y.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
| | - Shoji Miyako
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (T.N.); (S.M.); (R.T.); (H.Y.); (M.O.); (K.Y.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
- Division of Gastro-Intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan;
| | - Rikuya Torigoe
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (T.N.); (S.M.); (R.T.); (H.Y.); (M.O.); (K.Y.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
- Division of Gastro-Intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan;
| | - Hiroki Yokoo
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (T.N.); (S.M.); (R.T.); (H.Y.); (M.O.); (K.Y.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
- Division of Gastro-Intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan;
| | - Masaki Omori
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (T.N.); (S.M.); (R.T.); (H.Y.); (M.O.); (K.Y.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
- Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Keitaro Yamanaka
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (T.N.); (S.M.); (R.T.); (H.Y.); (M.O.); (K.Y.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
- Division of Obstetrics and Gynecology, Department of Surgery Related, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Nobuaki Ishihara
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (T.N.); (S.M.); (R.T.); (H.Y.); (M.O.); (K.Y.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
- Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Shuichi Tsukamoto
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (T.N.); (S.M.); (R.T.); (H.Y.); (M.O.); (K.Y.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
| | - Takayuki Kodama
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (T.N.); (S.M.); (R.T.); (H.Y.); (M.O.); (K.Y.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
| | - Mari Nishio
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (T.N.); (S.M.); (R.T.); (H.Y.); (M.O.); (K.Y.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
| | - Manabu Shigeoka
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (T.N.); (S.M.); (R.T.); (H.Y.); (M.O.); (K.Y.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
| | - Hiroshi Yokozaki
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (T.N.); (S.M.); (R.T.); (H.Y.); (M.O.); (K.Y.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
| | - Yoshihiro Kakeji
- Division of Gastro-Intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan;
| |
Collapse
|
2
|
Swiatnicki MR, Rennhack JP, Ortiz MMO, Hollern DP, Perry AV, Kubiak R, Riveria Riveria SM, O’Reilly S, Andrechek ER. Elevated phosphorylation of EGFR in NSCLC due to mutations in PTPRH. PLoS Genet 2022; 18:e1010362. [PMID: 36054194 PMCID: PMC9477422 DOI: 10.1371/journal.pgen.1010362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 09/15/2022] [Accepted: 07/28/2022] [Indexed: 11/20/2022] Open
Abstract
The role of EGFR in lung cancer is well described with numerous activating mutations that result in phosphorylation and tyrosine kinase inhibitors that target EGFR. While the role of the EGFR kinase in non-small cell lung cancer (NSCLC) is appreciated, control of EGFR signaling pathways through dephosphorylation by phosphatases is not as clear. Through whole genome sequencing we have uncovered conserved V483M Ptprh mutations in PyMT induced tumors. Profiling the downstream events of Ptprh mutant tumors revealed AKT activation, suggesting a key target of PTPRH was EGFR tyrosine 1197. Given the role of EGFR in lung cancer, we explored TCGA data which revealed that a subset of PTPRH mutant tumors shared gene expression profiles with EGFR mutant tumors, but that EGFR mutations and PTPRH mutations were mutually exclusive. Generation of a PTPRH knockout NSCLC cell line resulted in Y1197 phosphorylation of EGFR, and a rescue with expression of wild type PTPRH returned EGFR phosphorylation to parental line values while rescue with catalytically dead PTPRH did not. A dose response curve illustrated that two human NSCLC lines with naturally occurring PTPRH mutations responded to EGFR tyrosine kinase inhibition. Osimertinib treatment of these tumors resulted in a reduction of tumor volume relative to vehicle controls. PTPRH mutation resulted in nuclear pEGFR as seen in immunohistochemistry, suggesting that there may also be a role for EGFR as a transcriptional co-factor. Together these data suggest mutations in PTPRH in NSCLC is inhibitory to PTPRH function, resulting in aberrant EGFR activity and ultimately may result in clinically actionable alterations using existing therapies. One of the major genetic causes of lung cancer is EGFR activity. Traditionally this is caused by mutations in the EGFR receptor tyrosine kinase resulting in unchecked activity, which ultimately results in lung cancer. A series of tyrosine kinase inhibitors have been developed that treat these EGFR positive lung cancers, with remarkable efficacy. Here we describe work from a mouse model that revealed mutations in PTPRH, a phosphatase that we show dephosphorylates EGFR. We show that mutation or loss of wild type PTPRH results in elevated EGFR activity. Searching for similar mutations in human lung cancer revealed that 5% of all lung cancers had PTPRH mutations. Since activation of EGFR by mutation and loss of PTPRH function would be redundant, we tested and demonstrated that these events only occurred separately. Patient data revealed that a subset of PTPRH mutant lung cancer did have elevated EGFR activity. Testing two tumor lines from patients with naturally occurring PTPRH mutations revealed a sensitivity to EGFR inhibitors. The broad implications of this work are that there are a large number of lung cancer patients with PTPRH mutations that could potentially benefit from a revised treatment based on sequencing. Currently the PTPTRH mutations are not detected and these patients are treated with chemotherapy as a standard of care while they could potentially be more effectively treated with EGFR inhibitors. The ability to use EGFR inhibitors in PTPRH mutant lung cancers is a new area for investigation and is the primary impact of this research.
Collapse
Affiliation(s)
- Matthew R. Swiatnicki
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Jonathan P. Rennhack
- Department of Physiology, Michigan State University, East Lansing, Michigan, United States of America
| | - Mylena M. O. Ortiz
- Cell and Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
| | | | - Ashlee V. Perry
- Department of Physiology, Michigan State University, East Lansing, Michigan, United States of America
| | - Rachel Kubiak
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | | | - Sandra O’Reilly
- Research Technology Support Facility, Michigan State University, East Lansing, Michigan, United States of America
| | - Eran R. Andrechek
- Department of Physiology, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
3
|
Lu Q, Gao Y, Fan Z, Xiao X, Chen Y, Si Y, Kong D, Wang S, Liao M, Chen X, Wang X, Chu W. Amphiregulin promotes hair regeneration of skin-derived precursors via the PI3K and MAPK pathways. Cell Prolif 2021; 54:e13106. [PMID: 34382262 PMCID: PMC8450126 DOI: 10.1111/cpr.13106] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 12/13/2022] Open
Abstract
Objectives There are significant clinical challenges associated with alopecia treatment, including poor efficiency of related drugs and insufficient hair follicles (HFs) for transplantation. Skin‐derived precursors (SKPs) exhibit great potential as stem cell‐based therapies for hair regeneration; however, the proliferation and hair‐inducing capacity of SKPs gradually decrease during culturing. Materials and Methods We describe a 3D co‐culture system accompanied by kyoto encyclopaedia of genes and genomes and gene ontology enrichment analyses to determine the key factors and pathways that enhance SKP stemness and verified using alkaline phosphatase assays, Ki‐67 staining, HF reconstitution, Western blot and immunofluorescence staining. The upregulated genes were confirmed utilizing corresponding recombinant protein or small‐interfering RNA silencing in vitro, as well as the evaluation of telogen‐to‐anagen transition and HF reconstitution in vivo. Results The 3D co‐culture system revealed that epidermal stem cells and adipose‐derived stem cells enhanced SKP proliferation and HF regeneration capacity by amphiregulin (AREG), with the promoted stemness allowing SKPs to gain an earlier telogen‐to‐anagen transition and high‐efficiency HF reconstitution. By contrast, inhibitors of the phosphoinositide 3‐kinase (PI3K) and mitogen‐activated protein kinase (MAPK) pathways downstream of AREG signalling resulted in diametrically opposite activities. Conclusions By exploiting a 3D co‐culture model, we determined that AREG promoted SKP stemness by enhancing both proliferation and hair‐inducing capacity through the PI3K and MAPK pathways. These findings suggest AREG therapy as a potentially promising approach for treating alopecia.
Collapse
Affiliation(s)
- Qiumei Lu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Ying Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China.,Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, China
| | - Zhimeng Fan
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xing Xiao
- Center of Scientific Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yu Chen
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuan Si
- Department of Dermatology, Guangzhou First People's Hospital, Guangzhou, China
| | - Deqiang Kong
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Shuai Wang
- The Yonghe Medical Beauty Clinic Limited Company, Guangzhou, China
| | - Meijian Liao
- School of basic medicine, Xuzhou Medical University, Xuzhou, China
| | - Xiaodong Chen
- Department of Burn Surgery, The First People's Hospital of Foshan, Foshan, China
| | - Xusheng Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Weiwei Chu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Liu Y, Calmel C, Desbois-Mouthon C, Sobczak-Thépot J, Karaiskou A, Praz F. Regulation of the EGFR/ErbB signalling by clathrin in response to various ligands in hepatocellular carcinoma cell lines. J Cell Mol Med 2020; 24:8091-8102. [PMID: 32515546 PMCID: PMC7348188 DOI: 10.1111/jcmm.15440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/10/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022] Open
Abstract
Membrane receptor intracellular trafficking and signalling are frequently altered in cancers. Our aim was to investigate whether clathrin‐dependent trafficking modulates signalling of the ErbB receptor family in response to amphiregulin (AR), EGF, heparin‐binding EGF‐like growth factor (HB‐EGF) and heregulin‐1β (HRG). Experiments were performed using three hepatocellular carcinoma (HCC) cell lines, Hep3B, HepG2 and PLC/PRF/5, expressing various levels of EGFR, ErbB2 and ErbB3. Inhibition of clathrin‐mediated endocytosis (CME), by down‐regulating clathrin heavy chain expression, resulted in a cell‐ and ligand‐specific pattern of phosphorylation of the ErbB receptors and their downstream effectors. Clathrin down‐regulation significantly decreased the ratio between phosphorylated EGFR (pEGFR) and total EGFR in all cell lines when stimulated with AR, EGF, HB‐EGF or HRG, except in HRG‐stimulated Hep3B cells in which pEGFR was not detectable. The ratio between phosphorylated ErbB2 and total ErbB2 was significantly decreased in clathrin down‐regulated Hep3B cells stimulated with any of the ligands, and in HRG‐stimulated PLC/PRF/5 cells. The ratio between phosphorylated ErbB3 and total ErbB3 significantly decreased in clathrin down‐regulated cell lines upon stimulation with EGF or HB‐EGF. STAT3 phosphorylation levels significantly increased in all cell lines irrespective of stimulation, while that of AKT remained unchanged, except in AR‐stimulated Hep3B and HepG2 cells in which pAKT was significantly decreased. Finally, ERK phosphorylation was insensitive to clathrin inhibition. Altogether, our observations indicate that clathrin regulation of ErbB signalling in HCC is a complex process that likely depends on the expression of ErbB family members and on the autocrine/paracrine secretion of their ligands in the tumour environment.
Collapse
Affiliation(s)
- Yuanhui Liu
- INSERM UMR_S 938, Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, Paris, France
| | - Claire Calmel
- INSERM UMR_S 938, Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, Paris, France
| | | | - Joëlle Sobczak-Thépot
- INSERM UMR_S 938, Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, Paris, France
| | - Anthi Karaiskou
- INSERM UMR_S 938, Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, Paris, France
| | - Françoise Praz
- INSERM UMR_S 938, Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, Paris, France.,Centre National de la Recherche Scientifique (CNRS), Paris, France
| |
Collapse
|
5
|
Bahcall M, Awad MM, Sholl LM, Wilson FH, Xu M, Wang S, Palakurthi S, Choi J, Ivanova EV, Leonardi GC, Ulrich BC, Paweletz CP, Kirschmeier PT, Watanabe M, Baba H, Nishino M, Nagy RJ, Lanman RB, Capelletti M, Chambers ES, Redig AJ, VanderLaan PA, Costa DB, Imamura Y, Jänne PA. Amplification of Wild-type KRAS Imparts Resistance to Crizotinib in MET Exon 14 Mutant Non-Small Cell Lung Cancer. Clin Cancer Res 2018; 24:5963-5976. [PMID: 30072474 PMCID: PMC6279568 DOI: 10.1158/1078-0432.ccr-18-0876] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/19/2018] [Accepted: 07/23/2018] [Indexed: 01/06/2023]
Abstract
PURPOSE MET inhibitors can be effective therapies in patients with MET exon 14 (METex14) mutant non-small cell lung cancer (NSCLC). However, long-term efficacy is limited by the development of drug resistance. In this study, we characterize acquired amplification of wild-type (WT) KRAS as a molecular mechanism behind crizotinib resistance in three cases of METex14-mutant NSCLC and propose a combination therapy to target it. EXPERIMENTAL DESIGN The patient-derived cell line and xenograft (PDX) DFCI358 were established from a crizotinib-resistant METex14-mutant patient tumor with massive focal amplification of WT KRAS. To characterize the mechanism of KRAS-mediated resistance, molecular signaling was analyzed in the parental cell line and its KRAS siRNA-transfected derivative. Sensitivity of the cell line to ligand stimulation was assessed and KRAS-dependent expression of EGFR ligands was quantified. Drug combinations were screened for efficacy in vivo and in vitro using viability and apoptotic assays. RESULTS KRAS amplification is a recurrent genetic event in crizotinib-resistant METex14-mutant NSCLC. The key characteristics of this genetic signature include uncoupling MET from downstream effectors, relative insensitivity to dual MET/MEK inhibition due to compensatory induction of PI3K signaling, KRAS-induced expression of EGFR ligands and hypersensitivity to ligand-dependent and independent activation, and reliance on PI3K signaling upon MET inhibition. CONCLUSIONS Using patient-derived cell line and xenografts, we characterize the mechanism of crizotinib resistance mediated by KRAS amplification in METex14-mutant NSCLC and demonstrate the superior efficacy of the dual MET/PI3K inhibition as a therapeutic strategy addressing this resistance mechanism.
Collapse
Affiliation(s)
- Magda Bahcall
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Mark M Awad
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Lynette M Sholl
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Frederick H Wilson
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Man Xu
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Stephen Wang
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Sangeetha Palakurthi
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jihyun Choi
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Elena V Ivanova
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Giulia C Leonardi
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Bryan C Ulrich
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Cloud P Paweletz
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Paul T Kirschmeier
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Masayuki Watanabe
- Department of Gastroenterological Surgery, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Mizuki Nishino
- Department of Radiology, Brigham And Women's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | | | | | - Marzia Capelletti
- Center for Hematologic Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Emily S Chambers
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Amanda J Redig
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Paul A VanderLaan
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Daniel B Costa
- Thoracic Oncology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
- Hematology/Oncology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Yu Imamura
- Department of Gastroenterological Surgery, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Pasi A Jänne
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
6
|
Kefaloyianni E, Muthu ML, Kaeppler J, Sun X, Sabbisetti V, Chalaris A, Rose-John S, Wong E, Sagi I, Waikar SS, Rennke H, Humphreys BD, Bonventre JV, Herrlich A. ADAM17 substrate release in proximal tubule drives kidney fibrosis. JCI Insight 2018; 1:87023. [PMID: 27642633 DOI: 10.1172/jci.insight.87023] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Kidney fibrosis following kidney injury is an unresolved health problem and causes significant morbidity and mortality worldwide. In a study into its molecular mechanism, we identified essential causative features. Acute or chronic kidney injury causes sustained elevation of a disintegrin and metalloprotease 17 (ADAM17); of its cleavage-activated proligand substrates, in particular of pro-TNFα and the EGFR ligand amphiregulin (pro-AREG); and of the substrates' receptors. As a consequence, EGFR is persistently activated and triggers the synthesis and release of proinflammatory and profibrotic factors, resulting in macrophage/neutrophil ingress and fibrosis. ADAM17 hypomorphic mice, specific ADAM17 inhibitor-treated WT mice, or mice with inducible KO of ADAM17 in proximal tubule (Slc34a1-Cre) were significantly protected against these effects. In vitro, in proximal tubule cells, we show that AREG has unique profibrotic actions that are potentiated by TNFα-induced AREG cleavage. In vivo, in acute kidney injury (AKI) and chronic kidney disease (CKD, fibrosis) patients, soluble AREG is indeed highly upregulated in human urine, and both ADAM17 and AREG expression show strong positive correlation with fibrosis markers in related kidney biopsies. Our results indicate that targeting of the ADAM17 pathway represents a therapeutic target for human kidney fibrosis.
Collapse
Affiliation(s)
| | | | - Jakob Kaeppler
- Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Xiaoming Sun
- Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Venkata Sabbisetti
- Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Athena Chalaris
- Institute for Biochemistry, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Stefan Rose-John
- Institute for Biochemistry, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Eitan Wong
- Weizmann Institute of Science, Rehovot, Israel
| | - Irit Sagi
- Weizmann Institute of Science, Rehovot, Israel
| | - Sushrut S Waikar
- Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Helmut Rennke
- Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Benjamin D Humphreys
- Division of Nephrology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Joseph V Bonventre
- Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Andreas Herrlich
- Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Mitchell RA, Luwor RB, Burgess AW. Epidermal growth factor receptor: Structure-function informing the design of anticancer therapeutics. Exp Cell Res 2018; 371:1-19. [PMID: 30098332 DOI: 10.1016/j.yexcr.2018.08.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 12/19/2022]
Abstract
Research on the epidermal growth factor (EGF) family and the family of receptors (EGFR) has progressed rapidly in recent times. New crystal structures of the ectodomains with different ligands, the activation of the kinase domain through oligomerisation and the use of fluorescence techniques have revealed profound conformational changes on ligand binding. The control of cell signaling from the EGFR-family is complex, with heterodimerisation, ligand affinity and signaling cross-talk influencing cellular outcomes. Analysis of tissue homeostasis indicates that the control of pro-ligand processing is likely to be as important as receptor activation events. Several members of the EGFR-family are overexpressed and/or mutated in cancer cells. The perturbation of EGFR-family signaling drives the malignant phenotype of many cancers and both inhibitors and antagonists of signaling from these receptors have already produced therapeutic benefits for patients. The design of affibodies, antibodies, small molecule inhibitors and even immunotherapeutic drugs targeting the EGFR-family has yielded promising new approaches to improving outcomes for cancer patients. In this review, we describe recent discoveries which have increased our understanding of the structure and dynamics of signaling from the EGFR-family, the roles of ligand processing and receptor cross-talk. We discuss the relevance of these studies to the development of strategies for designing more effective targeted treatments for cancer patients.
Collapse
Affiliation(s)
- Ruth A Mitchell
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Victoria 3052, Australia; Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Rodney B Luwor
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Antony W Burgess
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Victoria 3052, Australia; Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia.
| |
Collapse
|
8
|
Critchley WR, Pellet-Many C, Ringham-Terry B, Harrison MA, Zachary IC, Ponnambalam S. Receptor Tyrosine Kinase Ubiquitination and De-Ubiquitination in Signal Transduction and Receptor Trafficking. Cells 2018; 7:E22. [PMID: 29543760 PMCID: PMC5870354 DOI: 10.3390/cells7030022] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/09/2018] [Accepted: 03/13/2018] [Indexed: 12/13/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) are membrane-based sensors that enable rapid communication between cells and their environment. Evidence is now emerging that interdependent regulatory mechanisms, such as membrane trafficking, ubiquitination, proteolysis and gene expression, have substantial effects on RTK signal transduction and cellular responses. Different RTKs exhibit both basal and ligand-stimulated ubiquitination, linked to trafficking through different intracellular compartments including the secretory pathway, plasma membrane, endosomes and lysosomes. The ubiquitin ligase superfamily comprising the E1, E2 and E3 enzymes are increasingly implicated in this post-translational modification by adding mono- and polyubiquitin tags to RTKs. Conversely, removal of these ubiquitin tags by proteases called de-ubiquitinases (DUBs) enables RTK recycling for another round of ligand sensing and signal transduction. The endocytosis of basal and activated RTKs from the plasma membrane is closely linked to controlled proteolysis after trafficking and delivery to late endosomes and lysosomes. Proteolytic RTK fragments can also have the capacity to move to compartments such as the nucleus and regulate gene expression. Such mechanistic diversity now provides new opportunities for modulating RTK-regulated cellular responses in health and disease states.
Collapse
Affiliation(s)
- William R Critchley
- Endothelial Cell Biology Unit, School of Molecular & Cellular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - Caroline Pellet-Many
- Centre for Cardiovascular Biology & Medicine, Rayne Building, University College London, London WC1E 6PT, UK.
| | - Benjamin Ringham-Terry
- Centre for Cardiovascular Biology & Medicine, Rayne Building, University College London, London WC1E 6PT, UK.
| | | | - Ian C Zachary
- Centre for Cardiovascular Biology & Medicine, Rayne Building, University College London, London WC1E 6PT, UK.
| | - Sreenivasan Ponnambalam
- Endothelial Cell Biology Unit, School of Molecular & Cellular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
9
|
Carpenter BL, Liu J, Qi L, Wang C, O'Connor KL. Integrin α6β4 Upregulates Amphiregulin and Epiregulin through Base Excision Repair-Mediated DNA Demethylation and Promotes Genome-wide DNA Hypomethylation. Sci Rep 2017; 7:6174. [PMID: 28733611 PMCID: PMC5522472 DOI: 10.1038/s41598-017-06351-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 06/13/2017] [Indexed: 02/05/2023] Open
Abstract
Aberrant DNA methylation patterns are a common theme across all cancer types. Specific DNA demethylation of regulatory sequences can result in upregulation of genes that are critical for tumor development and progression. Integrin α6β4 is highly expressed in pancreatic carcinoma and contributes to cancer progression, in part, through the specific DNA demethylation and upregulation of epidermal growth factor receptor (EGFR) ligands amphiregulin (AREG) and epiregulin (EREG). Whole genome bisulfite sequencing (WGBS) revealed that integrin α6β4 signaling promotes an overall hypomethylated state and site specific DNA demethylation of enhancer elements within the proximal promoters of AREG and EREG. Additionally, we find that the base excision repair (BER) pathway is required to maintain expression of AREG and EREG, as blocking DNA repair molecules, TET1 GADD45A, TDG, or PARP-1 decreased gene expression. Likewise, we provide the novel finding that integrin α6β4 confers an enhanced ability on cells to repair DNA lesions and survive insult. Therefore, while many known signaling functions mediated by integrin α6β4 that promote invasive properties have been established, this study demonstrates that integrin α6β4 can dramatically impact the epigenome of cancer cells, direct global DNA methylation levels toward a hypomethylated state, and impact DNA repair and subsequent cell survival.
Collapse
Affiliation(s)
- Brittany L Carpenter
- Markey Cancer Center, University of Kentucky, Lexington, 40506-0509, USA.,Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, 40506-0509, USA
| | - Jinpeng Liu
- Markey Cancer Center, University of Kentucky, Lexington, 40506-0509, USA
| | - Lei Qi
- Markey Cancer Center, University of Kentucky, Lexington, 40506-0509, USA.,Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, 40506-0509, USA
| | - Chi Wang
- Markey Cancer Center, University of Kentucky, Lexington, 40506-0509, USA.,Department of Biostatistics, Division of Cancer Biostatistics, University of Kentucky, Lexington, 40506-0509, USA
| | - Kathleen L O'Connor
- Markey Cancer Center, University of Kentucky, Lexington, 40506-0509, USA. .,Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, 40506-0509, USA.
| |
Collapse
|
10
|
Sisto M, Lorusso L, Ingravallo G, Lisi S. Exocrine Gland Morphogenesis: Insights into the Role of Amphiregulin from Development to Disease. Arch Immunol Ther Exp (Warsz) 2017; 65:477-499. [DOI: 10.1007/s00005-017-0478-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 06/02/2017] [Indexed: 12/12/2022]
|
11
|
Zuo WL, Yang J, Gomi K, Chao I, Crystal RG, Shaykhiev R. EGF-Amphiregulin Interplay in Airway Stem/Progenitor Cells Links the Pathogenesis of Smoking-Induced Lesions in the Human Airway Epithelium. Stem Cells 2017; 35:824-837. [PMID: 27709733 PMCID: PMC5330845 DOI: 10.1002/stem.2512] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 08/16/2016] [Accepted: 09/08/2016] [Indexed: 12/31/2022]
Abstract
The airway epithelium of cigarette smokers undergoes dramatic remodeling with hyperplasia of basal cells (BC) and mucus-producing cells, squamous metaplasia, altered ciliated cell differentiation and decreased junctional barrier integrity, relevant to chronic obstructive pulmonary disease and lung cancer. In this study, we show that epidermal growth factor receptor (EGFR) ligand amphiregulin (AREG) is induced by smoking in human airway epithelium as a result of epidermal growth factor (EGF)-driven squamous differentiation of airway BC stem/progenitor cells. In turn, AREG induced a unique EGFR activation pattern in human airway BC, distinct from that evoked by EGF, leading to BC- and mucous hyperplasia, altered ciliated cell differentiation and impaired barrier integrity. Further, AREG promoted its own expression and suppressed expression of EGF, establishing an autonomous self-amplifying signaling loop in airway BC relevant for promotion of EGF-independent hyperplastic phenotypes. Thus, EGF-AREG interplay in airway BC stem/progenitor cells is one of the mechanisms that mediates the interconnected pathogenesis of all major smoking-induced lesions in the human airway epithelium. Stem Cells 2017;35:824-837.
Collapse
Affiliation(s)
- Wu-Lin Zuo
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Jing Yang
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Kazunori Gomi
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| | - IonWa Chao
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Renat Shaykhiev
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
12
|
Doerner A, Scheck R, Schepartz A. Growth Factor Identity Is Encoded by Discrete Coiled-Coil Rotamers in the EGFR Juxtamembrane Region. ACTA ACUST UNITED AC 2016; 22:776-84. [PMID: 26091170 DOI: 10.1016/j.chembiol.2015.05.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 05/04/2015] [Accepted: 05/13/2015] [Indexed: 12/24/2022]
Abstract
Binding of transforming growth factor α (TGF-α) to the epidermal growth factor receptor (EGFR) extracellular domain is encoded through the formation of a unique antiparallel coiled coil within the juxtamembrane segment. This new coiled coil is an "inside-out" version of the coiled coil formed in the presence of epidermal growth factor (EGF). A third, intermediary coiled-coil interface is formed in the juxtamembrane region when EGFR is stimulated with betacellulin. The seven growth factors that activate EGFR in mammalian systems (EGF, TGF-α, epigen, epiregulin, betacellulin, heparin-binding EGF, and amphiregulin) fall into distinct categories in which the structure of the coiled coil induced within the juxtamembrane region correlates with cell state. The observation that coiled-coil state tracks with the downstream signaling profiles for each ligand provides evidence for growth factor functional selectivity by EGFR. Encoding growth factor identity in alternative coiled-coil rotamers provides a simple and elegant method for communicating chemical information across the plasma membrane.
Collapse
Affiliation(s)
- Amy Doerner
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520-8107, USA
| | - Rebecca Scheck
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520-8107, USA
| | - Alanna Schepartz
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520-8107, USA; Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA.
| |
Collapse
|
13
|
Chapter Six - The Ubiquitin Network in the Control of EGFR Endocytosis and Signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 141:225-76. [DOI: 10.1016/bs.pmbts.2016.03.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
14
|
Carpenter BL, Chen M, Knifley T, Davis KA, Harrison SMW, Stewart RL, O'Connor KL. Integrin α6β4 Promotes Autocrine Epidermal Growth Factor Receptor (EGFR) Signaling to Stimulate Migration and Invasion toward Hepatocyte Growth Factor (HGF). J Biol Chem 2015; 290:27228-27238. [PMID: 26381405 DOI: 10.1074/jbc.m115.686873] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Indexed: 12/14/2022] Open
Abstract
Integrin α6β4 is up-regulated in pancreatic adenocarcinomas where it contributes to carcinoma cell invasion by altering the transcriptome. In this study, we found that integrin α6β4 up-regulates several genes in the epidermal growth factor receptor (EGFR) pathway, including amphiregulin (AREG), epiregulin (EREG), and ectodomain cleavage protease MMP1, which is mediated by promoter demethylation and NFAT5. The correlation of these genes with integrin α6β4 was confirmed in The Cancer Genome Atlas Pancreatic Cancer Database. Based on previous observations that integrin α6β4 cooperates with c-Met in pancreatic cancers, we examined the impact of EGFR signaling on hepatocyte growth factor (HGF)-stimulated migration and invasion. We found that AREG and EREG were required for autocrine EGFR signaling, as knocking down either ligand inhibited HGF-mediated migration and invasion. We further determined that HGF induced secretion of AREG, which is dependent on integrin-growth factor signaling pathways, including MAPK, PI3K, and PKC. Moreover, matrix metalloproteinase activity and integrin α6β4 signaling were required for AREG secretion. Blocking EGFR signaling with EGFR-specific antibodies or an EGFR tyrosine kinase inhibitor hindered HGF-stimulated pancreatic carcinoma cell chemotaxis and invasive growth in three-dimensional culture. Finally, we found that EGFR was phosphorylated in response to HGF stimulation that is dependent on EGFR kinase activity; however, c-Met phosphorylation in response to HGF was unaffected by EGFR signaling. Taken together, these data illustrate that integrin α6β4 stimulates invasion by promoting autocrine EGFR signaling through transcriptional up-regulation of key EGFR family members and by facilitating HGF-stimulated EGFR ligand secretion. These signaling events, in turn, promote pancreatic carcinoma migration and invasion.
Collapse
Affiliation(s)
- Brittany L Carpenter
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40506-0509; Departments of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40506-0509
| | - Min Chen
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40506-0509; Departments of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky 40506-0509
| | - Teresa Knifley
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40506-0509
| | - Kelley A Davis
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40506-0509
| | - Susan M W Harrison
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40506-0509
| | - Rachel L Stewart
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40506-0509; Departments of Pathology and Laboratory Medicine, University of Kentucky, Lexington, Kentucky 40506-0509
| | - Kathleen L O'Connor
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40506-0509; Departments of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40506-0509.
| |
Collapse
|
15
|
Perspectives on Epidermal Growth Factor Receptor Regulation in Triple-Negative Breast Cancer: Ligand-Mediated Mechanisms of Receptor Regulation and Potential for Clinical Targeting. Adv Cancer Res 2015; 127:253-81. [PMID: 26093903 DOI: 10.1016/bs.acr.2015.04.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Currently, there are no effective targeted therapies for triple-negative breast cancer (TNBC) indicating a critical unmet need for breast cancer patients. Tumors that fall into the triple-negative category of breast cancers do not respond to the targeted therapies currently approved for breast cancer treatment, such as endocrine therapy (tamoxifen, aromatase inhibitors) or human epidermal growth factor receptor-2 (HER2) inhibitors (trastuzumab, lapatinib), because these tumors lack the most common breast cancer markers: estrogen receptor, progesterone receptor, and HER2. While many patients with TNBC respond to chemotherapy, subsets of patients fare poorly and relapse very quickly. Studies indicate that epidermal growth factor receptor (EGFR) is frequently overrepresented in TNBC (>50%), suggesting EGFR could be used as a biomarker and target in breast cancer. While it is clear that this growth factor receptor plays an integral role in TNBC, little is known about the mechanisms of sustained EGFR activation and how to target this protein despite availability of EGFR-targeted inhibitors, suggesting that our understanding of EGFR deregulation in TNBC is incomplete.
Collapse
|
16
|
An antibody to amphiregulin, an abundant growth factor in patients’ fluids, inhibits ovarian tumors. Oncogene 2015; 35:438-47. [DOI: 10.1038/onc.2015.93] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 02/26/2015] [Accepted: 02/27/2015] [Indexed: 02/03/2023]
|
17
|
Chung BM, Tom E, Zutshi N, Bielecki TA, Band V, Band H. Nexus of signaling and endocytosis in oncogenesis driven by non-small cell lung cancer-associated epidermal growth factor receptor mutants. World J Clin Oncol 2014; 5:806-823. [PMID: 25493220 PMCID: PMC4259944 DOI: 10.5306/wjco.v5.i5.806] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/19/2014] [Accepted: 09/10/2014] [Indexed: 02/06/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) controls a wide range of cellular processes, and aberrant EGFR signaling as a result of receptor overexpression and/or mutation occurs in many types of cancer. Tumor cells in non-small cell lung cancer (NSCLC) patients that harbor EGFR kinase domain mutations exhibit oncogene addiction to mutant EGFR, which confers high sensitivity to tyrosine kinase inhibitors (TKIs). As patients invariably develop resistance to TKIs, it is important to delineate the cell biological basis of mutant EGFR-induced cellular transformation since components of these pathways can serve as alternate therapeutic targets to preempt or overcome resistance. NSCLC-associated EGFR mutants are constitutively-active and induce ligand-independent transformation in nonmalignant cell lines. Emerging data suggest that a number of factors are critical for the mutant EGFR-dependent tumorigenicity, and bypassing the effects of TKIs on these pathways promotes drug resistance. For example, activation of downstream pathways such as Akt, Erk, STAT3 and Src is critical for mutant EGFR-mediated biological processes. It is now well-established that the potency and spatiotemporal features of cellular signaling by receptor tyrosine kinases such as EGFR, as well as the specific pathways activated, is determined by the nature of endocytic traffic pathways through which the active receptors traverse. Recent evidence indicates that NSCLC-associated mutant EGFRs exhibit altered endocytic trafficking and they exhibit reduced Cbl ubiquitin ligase-mediated lysosomal downregulation. More recent work has shown that mutant EGFRs undergo ligand-independent traffic into the endocytic recycling compartment, a behavior that plays a key role in Src pathway activation and oncogenesis. These studies are beginning to delineate the close nexus between signaling and endocytic traffic of EGFR mutants as a key driver of oncogenic processes. Therefore, in this review, we will discuss the links between mutant EGFR signaling and endocytic properties, and introduce potential mechanisms by which altered endocytic properties of mutant EGFRs may alter signaling and vice versa as well as their implications for NSCLC therapy.
Collapse
|
18
|
Godde NJ, Sheridan JM, Smith LK, Pearson HB, Britt KL, Galea RC, Yates LL, Visvader JE, Humbert PO. Scribble modulates the MAPK/Fra1 pathway to disrupt luminal and ductal integrity and suppress tumour formation in the mammary gland. PLoS Genet 2014; 10:e1004323. [PMID: 24852022 PMCID: PMC4031063 DOI: 10.1371/journal.pgen.1004323] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 03/06/2014] [Indexed: 12/16/2022] Open
Abstract
Polarity coordinates cell movement, differentiation, proliferation and apoptosis to build and maintain complex epithelial tissues such as the mammary gland. Loss of polarity and the deregulation of these processes are critical events in malignant progression but precisely how and at which stage polarity loss impacts on mammary development and tumourigenesis is unclear. Scrib is a core polarity regulator and tumour suppressor gene however to date our understanding of Scrib function in the mammary gland has been limited to cell culture and transplantation studies of cell lines. Utilizing a conditional mouse model of Scrib loss we report for the first time that Scrib is essential for mammary duct morphogenesis, mammary progenitor cell fate and maintenance, and we demonstrate a critical and specific role for Scribble in the control of the early steps of breast cancer progression. In particular, Scrib-deficiency significantly induced Fra1 expression and basal progenitor clonogenicity, which resulted in fully penetrant ductal hyperplasia characterized by high cell turnover, MAPK hyperactivity, frank polarity loss with mixing of apical and basolateral membrane constituents and expansion of atypical luminal cells. We also show for the first time a role for Scribble in mammalian spindle orientation with the onset of mammary hyperplasia being associated with aberrant luminal cell spindle orientation and a failure to apoptose during the final stage of duct tubulogenesis. Restoring MAPK/Fra1 to baseline levels prevented Scrib-hyperplasia, whereas persistent Scrib deficiency induced alveolar hyperplasia and increased the incidence, onset and grade of mammary tumours. These findings, based on a definitive genetic mouse model provide fundamental insights into mammary duct maturation and homeostasis and reveal that Scrib loss activates a MAPK/Fra1 pathway that alters mammary progenitor activity to drive premalignancy and accelerate tumour progression.
Collapse
Affiliation(s)
- Nathan J. Godde
- Cell Cycle and Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Julie M. Sheridan
- ACRF Stem Cells and Cancer Division, Walter and Eliza Hall Institute, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Lorey K. Smith
- Cell Cycle and Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Helen B. Pearson
- Cell Cycle and Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Kara L. Britt
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
- Metastasis Research Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Ryan C. Galea
- Cell Cycle and Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Laura L. Yates
- Cell Cycle and Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Jane E. Visvader
- ACRF Stem Cells and Cancer Division, Walter and Eliza Hall Institute, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Patrick O. Humbert
- Cell Cycle and Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Molecular Biology and Biochemistry, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
19
|
Berasain C, Avila MA. Amphiregulin. Semin Cell Dev Biol 2014; 28:31-41. [PMID: 24463227 DOI: 10.1016/j.semcdb.2014.01.005] [Citation(s) in RCA: 208] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/10/2014] [Accepted: 01/14/2014] [Indexed: 12/26/2022]
Abstract
Amphiregulin (AREG) is a ligand of the epidermal growth factor receptor (EGFR), a widely expressed transmembrane tyrosine kinase. AREG is synthesized as a membrane-anchored precursor protein that can engage in juxtacrine signaling on adjacent cells. Alternatively, after proteolytic processing by cell membrane proteases, mainly TACE/ADAM17, AREG is secreted and behaves as an autocrine or paracrine factor. AREG gene expression and release is induced by a plethora of stimuli including inflammatory lipids, cytokines, hormones, growth factors and xenobiotics. Through EGFR binding AREG activates major intracellular signaling cascades governing cell survival, proliferation and motility. Physiologically, AREG plays an important role in the development and maturation of mammary glands, bone tissue and oocytes. Chronic elevation of AREG expression is increasingly associated with different pathological conditions, mostly of inflammatory and/or neoplastic nature. Here we review the essential aspects of AREG structure, function and regulation, discuss the basis for its differential role within the EGFR family of ligands, and identify emerging aspects in AREG research with translational potential.
Collapse
Affiliation(s)
- Carmen Berasain
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain; CIBERehd, Clinica Universidad de Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain.
| | - Matías A Avila
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain; CIBERehd, Clinica Universidad de Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain.
| |
Collapse
|
20
|
Rush JS, Ceresa BP. RAB7 and TSG101 are required for the constitutive recycling of unliganded EGFRs via distinct mechanisms. Mol Cell Endocrinol 2013; 381:188-97. [PMID: 23933150 PMCID: PMC3831653 DOI: 10.1016/j.mce.2013.07.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 07/26/2013] [Accepted: 07/31/2013] [Indexed: 12/13/2022]
Abstract
Both constitutive and ligand-mediated membrane trafficking regulate Epidermal Growth Factor Receptor (EGFR) signaling. The constitutive endocytosis and recycling of the unliganded EGFR is a critical determinant of cell surface EGFR expression and the cell's sensitivity to ligands. We report that two proteins with established roles in trafficking the EGF:EGFR complex to the lysosome also regulate the recycling of the unliganded EGFR. Knock down of either Tumor suppressor gene 101 (TSG101) or RAB7 causes the endosomal accumulation of the inactive, unliganded receptor in morphologically and biochemically distinct organelles. Knock down of TSG101 causes the EGFR to accumulate in low density endosomes whereas RAB7 knock down results in EGFR accumulation in high density endosomes. Knock down of either protein caused the receptor to co-localize primarily with LAMP-1, but not EEA1. These two proteins regulate EGFR slow, perinuclear recycling, via distinct mechanism and are new molecular targets that regulate cell surface EGFR expression.
Collapse
Affiliation(s)
- Jamie S. Rush
- Department of Pharmacology and Toxicology, University of Louisville
| | - Brian P. Ceresa
- Department of Pharmacology and Toxicology, University of Louisville
- Department of Cell Biology, University of Oklahoma Health Sciences Center
| |
Collapse
|
21
|
Miaczynska M. Effects of membrane trafficking on signaling by receptor tyrosine kinases. Cold Spring Harb Perspect Biol 2013; 5:a009035. [PMID: 24186066 DOI: 10.1101/cshperspect.a009035] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The intracellular trafficking machinery contributes to the spatial and temporal control of signaling by receptor tyrosine kinases (RTKs). The primary role in this process is played by endocytic trafficking, which regulates the localization of RTKs and their downstream effectors, as well as the duration and the extent of their activity. The key regulatory points along the endocytic pathway are internalization of RTKs from the plasma membrane, their sorting to degradation or recycling, and their residence in various endosomal compartments. Here I will review factors and mechanisms that modulate RTK signaling by (1) affecting receptor internalization, (2) regulating the balance between degradation and recycling of RTK, and (3) compartmentalization of signals in endosomes and other organelles. Cumulatively, these mechanisms illustrate a multilayered control of RTK signaling exerted by the trafficking machinery.
Collapse
Affiliation(s)
- Marta Miaczynska
- International Institute of Molecular and Cell Biology, Laboratory of Cell Biology, 02-109 Warsaw, Poland
| |
Collapse
|
22
|
Boissier P, Chen J, Huynh-Do U. EphA2 signaling following endocytosis: role of Tiam1. Traffic 2013; 14:1255-71. [PMID: 24112471 DOI: 10.1111/tra.12123] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 09/18/2013] [Accepted: 09/20/2013] [Indexed: 12/31/2022]
Abstract
Eph receptors and their membrane-bound ligands, the ephrins, represent a complex subfamily of receptor tyrosine kinases (RTKs). Eph/ephrin binding can lead to various and opposite cellular behaviors such as adhesion versus repulsion, or cell migration versus cell-adhesion. Recently, Eph endocytosis has been identified as one of the critical steps responsible for such diversity. Eph receptors, as many RTKs, are rapidly endocytosed following ligand-mediated activation and traffic through endocytic compartments prior to degradation. However, it is becoming obvious that endocytosis controls signaling in many different manners. Here we showed that activated EphA2 are degraded in the lysosomes and that about 35% of internalized receptors are recycled back to the plasma membrane. Our study is also the first to demonstrate that EphA2 retains the capacity to signal in endosomes. In particular, activated EphA2 interacted with the Rho family GEF Tiam1 in endosomes. This association led to Tiam1 activation, which in turn increased Rac1 activity and facilitated Eph/ephrin endocytosis. Disrupting Tiam1 function with RNA interference impaired both ephrinA1-dependent Rac1 activation and ephrinA1-induced EphA2 endocytosis. In summary, our findings shed new light on the regulation of EphA2 endocytosis, intracellular trafficking and signal termination and establish Tiam1 as an important modulator of EphA2 signaling.
Collapse
Affiliation(s)
- Pomme Boissier
- Department of Nephrology, Hypertension and Clinical Pharmacology, Inselspital, University of Bern, Bern, 3012, Switzerland
| | | | | |
Collapse
|
23
|
Mukhopadhyay C, Zhao X, Maroni D, Band V, Naramura M. Distinct effects of EGFR ligands on human mammary epithelial cell differentiation. PLoS One 2013; 8:e75907. [PMID: 24124521 PMCID: PMC3790811 DOI: 10.1371/journal.pone.0075907] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 08/16/2013] [Indexed: 11/18/2022] Open
Abstract
Based on gene expression patterns, breast cancers can be divided into subtypes that closely resemble various developmental stages of normal mammary epithelial cells (MECs). Thus, understanding molecular mechanisms of MEC development is expected to provide critical insights into initiation and progression of breast cancer. Epidermal growth factor receptor (EGFR) and its ligands play essential roles in normal and pathological mammary gland. Signals through EGFR is required for normal mammary gland development. Ligands for EGFR are over-expressed in a significant proportion of breast cancers, and elevated expression of EGFR is associated with poorer clinical outcome. In the present study, we examined the effect of signals through EGFR on MEC differentiation using the human telomerase reverse transcriptase (hTERT)-immortalized human stem/progenitor MECs which express cytokeratin 5 but lack cytokeratin 19 (K5+K19- hMECs). As reported previously, these cells can be induced to differentiate into luminal and myoepithelial cells under appropriate culture conditions. K5+K19- hMECs acquired distinct cell fates in response to EGFR ligands epidermal growth factor (EGF), amphiregulin (AREG) and transforming growth factor alpha (TGFα) in differentiation-promoting MEGM medium. Specifically, presence of EGF during in vitro differentiation supported development into both luminal and myoepithelial lineages, whereas cells differentiated only towards luminal lineage when EGF was replaced with AREG. In contrast, substitution with TGFα led to differentiation only into myoepithelial lineage. Chemical inhibition of the MEK-Erk pathway, but not the phosphatidylinositol 3-kinase (PI3K)-AKT pathway, interfered with K5+K19- hMEC differentiation. The present data validate the utility of the K5+K19- hMEC cells for modeling key features of human MEC differentiation. This system should be useful in studying molecular/biochemical mechanisms of human MEC differentiation.
Collapse
Affiliation(s)
- Chandrani Mukhopadhyay
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Xiangshan Zhao
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Dulce Maroni
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Vimla Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Mayumi Naramura
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
24
|
Odintsova E, van Niel G, Conjeaud H, Raposo G, Iwamoto R, Mekada E, Berditchevski F. Metastasis suppressor tetraspanin CD82/KAI1 regulates ubiquitylation of epidermal growth factor receptor. J Biol Chem 2013; 288:26323-26334. [PMID: 23897813 DOI: 10.1074/jbc.m112.439380] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Ligand-induced ubiquitylation of EGF receptor (EGFR) is an important regulatory mechanism that controls endocytic trafficking of the receptor and its signaling potential. Here we report that tetraspanin CD82/KAI1 specifically suppresses ubiquitylation of EGFR after stimulation with heparin-binding EGF or amphiregulin and alters the rate of recruitment of the activated receptor to EEA1-positive endosomes. The suppressive effect of CD82 is dependent on the heparin-binding domain of the ligand. Deletion of the C-terminal cytoplasmic domain of CD82 (CD82ΔC mutant) inhibits endocytic trafficking of the tetraspanin and compromises its activity toward heparin-binding EGF-activated EGFR. Reduced ubiquitylation of EGFR is accompanied by PKC-dependent increase in serine phosphorylation of c-Cbl in cells expressing elevated levels of CD82. Furthermore, phosphorylation of threonine 654 (PKC phosphorylation site) in the juxtamembrane domain of the receptor is considerably increased in CD82-expressing cells. These results describe previously unsuspected links between tetraspanin proteins and ubiquitylation of their molecular partners (e.g., EGFR). Our data identify CD82 as a new regulator of c-Cbl, which discriminatively controls the activity of this E3 ubiquitin ligase toward heparin-binding ligand-EGFR pairs. Taken together, these observations provide an important new insight into the modulatory role of CD82 in endocytic trafficking of EGF receptor.
Collapse
Affiliation(s)
- Elena Odintsova
- From the School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom,.
| | - Guillaume van Niel
- the Institut Curie, Centre de Recherche, and Unité Mixte de Recherche 144, Centre National de la Recherche Scientifique, F-75248 Paris, France
| | - Hélène Conjeaud
- the Matière et Systèmes Complexes, UMR 7057 CNRS, Université Denis Diderot Paris-VII, 75205 Paris, France, and
| | - Graça Raposo
- the Institut Curie, Centre de Recherche, and Unité Mixte de Recherche 144, Centre National de la Recherche Scientifique, F-75248 Paris, France
| | - Ryo Iwamoto
- the Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Eisuke Mekada
- the Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Fedor Berditchevski
- From the School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
25
|
Odin (ANKS1A) modulates EGF receptor recycling and stability. PLoS One 2013; 8:e64817. [PMID: 23825523 PMCID: PMC3692516 DOI: 10.1371/journal.pone.0064817] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 04/18/2013] [Indexed: 12/22/2022] Open
Abstract
The ANKS1A gene product, also known as Odin, was first identified as a tyrosine-phosphorylated component of the epidermal growth factor receptor network. Here we show that Odin functions as an effector of EGFR recycling. In EGF-stimulated HEK293 cells tyrosine phosphorylation of Odin was induced prior to EGFR internalization and independent of EGFR-to-ERK signaling. Over-expression of Odin increased EGF-induced EGFR trafficking to recycling endosomes and recycling back to the cell surface, and decreased trafficking to lysosomes and degradation. Conversely, Odin knockdown in both HEK293 and the non-small cell lung carcinoma line RVH6849, which expresses roughly 10-fold more EGF receptors than HEK293, caused decreased EGFR recycling and accelerated trafficking to the lysosome and degradation. By governing the endocytic fate of internalized receptors, Odin may provide a layer of regulation that enables cells to contend with receptor cell densities and ligand concentration gradients that are physiologically and pathologically highly variable.
Collapse
|
26
|
Ernst A, Avvakumov G, Tong J, Fan Y, Zhao Y, Alberts P, Persaud A, Walker JR, Neculai AM, Neculai D, Vorobyov A, Garg P, Beatty L, Chan PK, Juang YC, Landry MC, Yeh C, Zeqiraj E, Karamboulas K, Allali-Hassani A, Vedadi M, Tyers M, Moffat J, Sicheri F, Pelletier L, Durocher D, Raught B, Rotin D, Yang J, Moran MF, Dhe-Paganon S, Sidhu SS. A strategy for modulation of enzymes in the ubiquitin system. Science 2013; 339:590-5. [PMID: 23287719 PMCID: PMC3815447 DOI: 10.1126/science.1230161] [Citation(s) in RCA: 232] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The ubiquitin system regulates virtually all aspects of cellular function. We report a method to target the myriad enzymes that govern ubiquitination of protein substrates. We used massively diverse combinatorial libraries of ubiquitin variants to develop inhibitors of four deubiquitinases (DUBs) and analyzed the DUB-inhibitor complexes with crystallography. We extended the selection strategy to the ubiquitin conjugating (E2) and ubiquitin ligase (E3) enzymes and found that ubiquitin variants can also enhance enzyme activity. Last, we showed that ubiquitin variants can bind selectively to ubiquitin-binding domains. Ubiquitin variants exhibit selective function in cells and thus enable orthogonal modulation of specific enzymatic steps in the ubiquitin system.
Collapse
Affiliation(s)
- Andreas Ernst
- Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - George Avvakumov
- Structural Genomics Consortium, MaRS Centre, 101 College Street, Suite 700, Toronto, Ontario M5G 1L7, Canada
| | - Jiefei Tong
- Hospital for Sick Children, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Yihui Fan
- Texas Children’s Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yanling Zhao
- Texas Children’s Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Philipp Alberts
- Hospital for Sick Children, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Avinash Persaud
- Hospital for Sick Children, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Biochemistry Department, University of Toronto, Toronto, OntarioM5S 3E1, Canada
| | - John R Walker
- Structural Genomics Consortium, MaRS Centre, 101 College Street, Suite 700, Toronto, Ontario M5G 1L7, Canada
| | - Ana-Mirela Neculai
- Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Dante Neculai
- Structural Genomics Consortium, MaRS Centre, 101 College Street, Suite 700, Toronto, Ontario M5G 1L7, Canada
| | - Andrew Vorobyov
- Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Pankaj Garg
- Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Linda Beatty
- Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Pak-Kei Chan
- Institut de Recherche en Immunologie et Cancérologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Yu-Chi Juang
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
| | - Marie-Claude Landry
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
| | - Christina Yeh
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Elton Zeqiraj
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
| | - Konstantina Karamboulas
- Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Abdellah Allali-Hassani
- Structural Genomics Consortium, MaRS Centre, 101 College Street, Suite 700, Toronto, Ontario M5G 1L7, Canada
| | - Masoud Vedadi
- Structural Genomics Consortium, MaRS Centre, 101 College Street, Suite 700, Toronto, Ontario M5G 1L7, Canada
| | - Mike Tyers
- Institut de Recherche en Immunologie et Cancérologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
| | - Jason Moffat
- Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
- Banting and Best Department of Medical Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
- Ontario Cancer Institute and McLaughlin Centre for Molecular Medicine, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Frank Sicheri
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Laurence Pelletier
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Daniel Durocher
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Brian Raught
- Ontario Cancer Institute and McLaughlin Centre for Molecular Medicine, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Daniela Rotin
- Hospital for Sick Children, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Biochemistry Department, University of Toronto, Toronto, OntarioM5S 3E1, Canada
| | - Jianhua Yang
- Texas Children’s Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael F Moran
- Hospital for Sick Children, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
- Banting and Best Department of Medical Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Sirano Dhe-Paganon
- Structural Genomics Consortium, MaRS Centre, 101 College Street, Suite 700, Toronto, Ontario M5G 1L7, Canada
- Department of Physiology, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Sachdev S Sidhu
- Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
- Banting and Best Department of Medical Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
- Ontario Cancer Institute and McLaughlin Centre for Molecular Medicine, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
27
|
HER2 stabilizes EGFR and itself by altering autophosphorylation patterns in a manner that overcomes regulatory mechanisms and promotes proliferative and transformation signaling. Oncogene 2012; 32:4169-80. [PMID: 23027125 PMCID: PMC3538112 DOI: 10.1038/onc.2012.418] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 07/19/2012] [Accepted: 07/25/2012] [Indexed: 12/24/2022]
Abstract
One of the causes of breast cancer is overexpression of the human epidermal growth factor receptor 2 (HER2). Enhanced receptor autophosphorylation and resistance to activation-induced down regulation have been suggested as mechanisms for HER2-induced sustained signaling and cell transformation. However, the molecular mechanisms underlying these possibilities remain incompletely understood. In the current report, we present evidence that show that HER2 overexpression does not lead to receptor hyper-autophosphorylation, but alters patterns in a manner that favors receptor stability and sustained signaling. Specifically, HER2 overexpression blocks EGFR tyrosine phosphorylation on Y1045 and Y1068, the known docking sites of c-Cbl and Grb2, respectively, while promoting phosphorylation on Y1173, the known docking site of the Gab adaptor proteins and phospholipase C gamma (PLCγ). Under these conditions, HER2 itself is phosphorylated on Y1221/1222, with no known role, and on Y1248 that corresponds to Y1173 of EGFR. Interestingly, suppressed EGFR autophosphorylation on the Grb2 and c-Cbl binding sites correlated with receptor stability and sustained signaling, suggesting that HER2 accomplishes these tasks by altering autophosphorylation patterns. In conformity with these findings, mutation of the Grb2 binding site on EGFR (Y1068F-EGFR) conferred resistance to ligand-induced degradation which in turn induced sustained signaling, and increased cell proliferation and transformation. These findings suggest that the Grb2 binding site on EGFR is redundant for signaling, but critical for receptor regulation. On the other hand, mutation of the putative Grb2 binding site in HER2 (Y1139) did not affect stability, signaling or transformation, suggesting that Y1139 in HER2 may not serve as a Grb2 binding site. In agreement with the role of EGFR in HER2 signaling, inhibition of EGFR expression reduced HER2-induced anchorage-independent growth and tumorigenesis. These results imply that complementing HER2-targeted therapies with anti-EGFR drugs may be beneficial in HER2-positive breast cancer.
Collapse
|
28
|
At the crossroads: EGFR and PTHrP signaling in cancer-mediated diseases of bone. Odontology 2012; 100:109-29. [PMID: 22684584 DOI: 10.1007/s10266-012-0070-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 05/21/2012] [Indexed: 01/01/2023]
Abstract
The epidermal growth factor receptor is a well-established cancer therapeutic target due to its stimulation of proliferation, motility, and resistance to apoptosis. Recently, additional roles for the receptor have been identified in growth of metastases. Similar to development, metastatic spread requires signaling interactions between epithelial-derived tumor cells and mesenchymal derivatives of the microenvironment. This necessitates reactivation of developmental signaling molecules, including the hypercalcemia factor parathyroid hormone-related protein. This review covers the variations of epidermal growth factor receptor signaling in cancers that produce bone metastases, regulation of parathyroid hormone-related protein, and evidence that the two molecules drive cancer-mediated diseases of bone.
Collapse
|
29
|
Wilson KJ, Mill C, Lambert S, Buchman J, Wilson TR, Hernandez-Gordillo V, Gallo RM, Ades LMC, Settleman J, Riese DJ. EGFR ligands exhibit functional differences in models of paracrine and autocrine signaling. Growth Factors 2012; 30:107-16. [PMID: 22260327 PMCID: PMC3962550 DOI: 10.3109/08977194.2011.649918] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Epidermal growth factor (EGF) family peptides are ligands for the EGF receptor (EGFR). Here, we elucidate functional differences among EGFR ligands and mechanisms underlying these distinctions. In 32D/EGFR myeloid and MCF10A breast cells, soluble amphiregulin (AR), transforming growth factor alpha (TGFα), neuregulin 2 beta, and epigen stimulate greater EGFR coupling to cell proliferation and DNA synthesis than do EGF, betacellulin, heparin-binding EGF-like growth factor, and epiregulin. EGF competitively antagonizes AR, indicating that its functional differences reflect dissimilar intrinsic activity at EGFR. EGF stimulates much greater phosphorylation of EGFR Tyr1045 than does AR. Moreover, the EGFR Y1045F mutation and z-cbl dominant-negative mutant of the c-cbl ubiquitin ligase potentiate the effect of EGF but not of AR. Both EGF and AR stimulate phosphorylation of EGFR Tyr992. However, the EGFR Y992F mutation and phospholipase C gamma inhibitor U73122 reduce the effect of AR much more than that of EGF. Expression of TGFα in 32D/EGFR cells causes greater EGFR coupling to cell proliferation than does expression of EGF. Moreover, expression of EGF in 32D/EGFR cells causes these cells to be largely refractory to stimulation with soluble EGF. Thus, EGFR ligands are functionally distinct in models of paracrine and autocrine signaling and EGFR coupling to biological responses may be specified by competition among functionally distinct EGFR ligands.
Collapse
Affiliation(s)
- Kristy J Wilson
- Purdue University College of Pharmacy, Purdue University Center for Cancer Research, West Lafayette, IN 47907-2064, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Solis GP, Schrock Y, Hülsbusch N, Wiechers M, Plattner H, Stuermer CAO. Reggies/flotillins regulate E-cadherin-mediated cell contact formation by affecting EGFR trafficking. Mol Biol Cell 2012; 23:1812-25. [PMID: 22438585 PMCID: PMC3350547 DOI: 10.1091/mbc.e11-12-1006] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In epithelial cells, the reggie/flotillin proteins regulate—in association with PrP—the formation of E-cadherin adherens junctions (AJs) via the EGFR. Reggies control the EGF-mediated phosphorylation and internalization of EGFR. EGF signaling at the plasma membrane induces the macropinocytosis of E-cadherin and thus the formation of AJs. The reggie/flotillin proteins are implicated in membrane trafficking and, together with the cellular prion protein (PrP), in the recruitment of E-cadherin to cell contact sites. Here, we demonstrate that reggies, as well as PrP down-regulation, in epithelial A431 cells cause overlapping processes and abnormal formation of adherens junctions (AJs). This defect in cell adhesion results from reggie effects on Src tyrosine kinases and epidermal growth factor receptor (EGFR): loss of reggies reduces Src activation and EGFR phosphorylation at residues targeted by Src and c-cbl and leads to increased surface exposure of EGFR by blocking its internalization. The prolonged EGFR signaling at the plasma membrane enhances cell motility and macropinocytosis, by which junction-associated E-cadherin is internalized and recycled back to AJs. Accordingly, blockage of EGFR signaling or macropinocytosis in reggie-deficient cells restores normal AJ formation. Thus, by promoting EGFR internalization, reggies restrict the EGFR signaling involved in E-cadherin macropinocytosis and recycling and regulate AJ formation and dynamics and thereby cell adhesion.
Collapse
Affiliation(s)
- Gonzalo P Solis
- Department of Biology, University of Konstanz, 78467 Konstanz, Germany.
| | | | | | | | | | | |
Collapse
|
31
|
Morcavallo A, Genua M, Palummo A, Kletvikova E, Jiracek J, Brzozowski AM, Iozzo RV, Belfiore A, Morrione A. Insulin and insulin-like growth factor II differentially regulate endocytic sorting and stability of insulin receptor isoform A. J Biol Chem 2012; 287:11422-36. [PMID: 22318726 DOI: 10.1074/jbc.m111.252478] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The insulin receptor isoform A (IR-A) binds both insulin and insulin-like growth factor (IGF)-II, although the affinity for IGF-II is 3-10-fold lower than insulin depending on a cell and tissue context. Notably, in mouse embryonic fibroblasts lacking the IGF-IR and expressing solely the IR-A (R-/IR-A), IGF-II is a more potent mitogen than insulin. As receptor endocytosis and degradation provide spatial and temporal regulation of signaling events, we hypothesized that insulin and IGF-II could affect IR-A biological responses by differentially regulating IR-A trafficking. Using R-/IR-A cells, we discovered that insulin evoked significant IR-A internalization, a process modestly affected by IGF-II. However, the differential internalization was not due to IR-A ubiquitination. Notably, prolonged stimulation of R-/IR-A cells with insulin, but not with IGF-II, targeted the receptor to a degradative pathway. Similarly, the docking protein insulin receptor substrate 1 (IRS-1) was down-regulated after prolonged insulin but not IGF-II exposure. Similar results were also obtained in experiments using [NMeTyr(B26)]-insulin, an insulin analog with IR-A binding affinity similar to IGF-II. Finally, we discovered that IR-A was internalized through clathrin-dependent and -independent pathways, which differentially regulated the activation of downstream effectors. Collectively, our results suggest that a lower affinity of IGF-II for the IR-A promotes lower IR-A phosphorylation and activation of early downstream effectors vis à vis insulin but may protect IR-A and IRS-1 from down-regulation thereby evoking sustained and robust mitogenic stimuli.
Collapse
Affiliation(s)
- Alaide Morcavallo
- Department of Urology and Endocrine Mechanisms and Hormone Action Program, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Baillo A, Giroux C, Ethier SP. Knock-down of amphiregulin inhibits cellular invasion in inflammatory breast cancer. J Cell Physiol 2011; 226:2691-701. [PMID: 21302279 DOI: 10.1002/jcp.22620] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We have previously shown that SUM-149 human breast cancer cells require an amphiregulin (AREG) autocrine loop for cell proliferation. We also demonstrated that AREG can increase epidermal growth factor receptor (EGFR) stability and promote EGFR localization to the plasma membrane. In the present studies we successfully knocked-down AREG expression in SUM-149 cells by lentiviral infection of AREG shRNA. In the absence of AREG expression, SUM-149 cell growth was slowed, but not completely inhibited. Furthermore, cells infected with AREG shRNA constructs showed an increase in EGFR protein expression by Western blot. Immunofluorescence and confocal microscopy showed that following AREG knock-down, EGFR continued to localize to the cell surface. Soft agar assays demonstrated that AREG knock-down cells retain anchorage-independent growth capacity. Additionally mammosphere forming assays and Adefluor staining analysis showed that knock-down of AREG expression did not affect the expression of stem cell phenotypes. However, following AREG knock-down, SUM-149 cells demonstrated a dramatic decrease in their ability to invade a Matrigel matrix. Consistent with this observation, microarray analysis comparing cells infected with a non-silencing vector to the AREG knock-down cells, identified genes associated with the invasive phenotype such as RHOB and DKK1, and networks associated with cell motility such as integrin-linked kinase signaling, and focal adhesion kinase signaling. AREG was also found to modulate WNT and Notch signaling in these cells. Thus, AREG functions in regulating the invasive phenotype, and we propose that this regulation may be through altered signaling that occurs when AREG activates plasma membrane localized EGFR.
Collapse
Affiliation(s)
- Andrea Baillo
- Department of Oncology, Wayne State University, Detroit, Michigan, USA
| | | | | |
Collapse
|
33
|
Pasic L, Eisinger-Mathason TSK, Velayudhan BT, Moskaluk CA, Brenin DR, Macara IG, Lannigan DA. Sustained activation of the HER1-ERK1/2-RSK signaling pathway controls myoepithelial cell fate in human mammary tissue. Genes Dev 2011; 25:1641-53. [PMID: 21828273 DOI: 10.1101/gad.2025611] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human mammary glands arise from multipotent progenitor cells, which likely respond both to cell-autonomous and to extrinsic cues. However, the identity of these cues and how they might act remain unclear. We analyzed HER1 ligand effects on mammary morphogenesis using a three-dimensional organoid model generated from human breast tissue that recapitulates both qualitatively and quantitatively the normal ductal network in situ. Strikingly, different HER1 ligands generate distinct patterns of cell fate. Epidermal growth factor (EGF) causes a massive expansion of the myoepithelial lineage. Amphiregulin, in contrast, enables normal ductal development. These differences cannot be ascribed to preferential apoptosis or proliferation of differentiated cell populations, but are dependent on HER1 signal intensity. Inhibition of the extracellular signal-regulated kinase 1/2 (ERK1/2) effector RSK prevents the EGF-induced myoepithelial expansion. Notably, mouse mammary organoids are much less responsive to HER1 ligands. Little is known about the myoepithelial lineage or about growth factor effects on mammary progenitor differentiation, and our studies provide an important window into human mammary development that reveals unexpected differences from the mouse model.
Collapse
Affiliation(s)
- Lejla Pasic
- Department of Microbiology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Zhou X, Agazie YM. The signaling and transformation potency of the overexpressed HER2 protein is dependent on the normally-expressed EGFR. Cell Signal 2011; 24:140-50. [PMID: 21911055 DOI: 10.1016/j.cellsig.2011.08.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 08/14/2011] [Accepted: 08/25/2011] [Indexed: 12/18/2022]
Abstract
Human epidermal growth factor receptor 2 (HER2) belongs to the EGFR family of receptor tyrosine kinases that comprises four members. As opposed to the other family members, HER2 does not require ligand binding for activation. Hence, HER2 molecules can undergo spontaneous dimerization, autophosphorylation and activation of downstream signaling pathways especially under conditions of overexpression, a commonly encountered phenomenon in breast cancer. In this study, we sought to investigate the mechanism by which HER2 musters signaling and transformation potency. We show that HER2 overexpression per se induces a significant increase in basal mitogenic and cell survival signaling, which was augmented by EGF stimulation. Inhibition of the normally expressed EGFR significantly suppressed the ability of overexpressed HER2 to induce enhanced signaling and cell transformation, suggesting that HER2 requires the EGFR and potentially other members to maximize its signaling and transformation potency. The novel observation revealed by prolonged EGF stimulation studies was the biphasic signaling pattern in the presence of HER2 overexpression that suggested the induction of a short-circuited mechanism, permitting sustained signaling. Our results further show that the short-circuited signaling was due to the re-shuttling of internalized receptor molecules to the Rab11-positive recycling endosomes, while suppressing channeling to the LAMP1-positive lysosome-targeting endosomes. Therefore, HER2's oncogenicity is dependent, not only on its constitutively active nature, but also on its ability to muster collaborative signaling from family members through modulation of ligand-induced receptor regulation.
Collapse
Affiliation(s)
- Xiangdong Zhou
- Department of Biochemistry, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | | |
Collapse
|
35
|
Busser B, Sancey L, Brambilla E, Coll JL, Hurbin A. The multiple roles of amphiregulin in human cancer. Biochim Biophys Acta Rev Cancer 2011; 1816:119-31. [PMID: 21658434 DOI: 10.1016/j.bbcan.2011.05.003] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 05/20/2011] [Accepted: 05/21/2011] [Indexed: 12/21/2022]
Abstract
Amphiregulin (AREG) is one of the ligands of the epidermal growth factor receptor (EGFR). AREG plays a central role in mammary gland development and branching morphogenesis in organs and is expressed both in physiological and in cancerous tissues. Various studies have highlighted the functional role of AREG in several aspects of tumorigenesis, including self-sufficiency in generating growth signals, limitless replicative potential, tissue invasion and metastasis, angiogenesis, and resistance to apoptosis. The oncogenic activity of AREG has already been described in the most common human epithelial malignancies, such as lung, breast, colorectal, ovary and prostate carcinomas, as well as in some hematological and mesenchymal cancers. Furthermore, AREG is also involved in resistance to several cancer treatments. In this review, we describe the various roles of AREG in oncogenesis and discuss its translational potential, such as the development of anti-AREG treatments, based on AREG activity. In the last decade, independent groups have reported successful but sometimes contradictory results in relation to the potential of AREG to serve as a prognostic and/or predictive marker for oncology, especially with regard to anti-EGFR therapies. Thus, we also discuss the potential usefulness of using AREG as a therapeutic target and validated biomarker for predicting cancer outcomes or treatment efficacy.
Collapse
Affiliation(s)
- Benoit Busser
- INSERM, U823, Institut Albert Bonniot, Grenoble, France, Université Joseph Fourier, Grenoble, France.
| | | | | | | | | |
Collapse
|
36
|
Dong A, Gupta A, Pai RK, Tun M, Lowe AW. The human adenocarcinoma-associated gene, AGR2, induces expression of amphiregulin through Hippo pathway co-activator YAP1 activation. J Biol Chem 2011; 286:18301-10. [PMID: 21454516 PMCID: PMC3093902 DOI: 10.1074/jbc.m110.215707] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 03/15/2011] [Indexed: 01/03/2023] Open
Abstract
Anterior Gradient Homolog 2 (AGR2) is expressed by the normal intestine and by most human adenocarcinomas, including those derived from the esophagus, pancreas, lung, breast, ovary, and prostate. Xenografts of human adenocarcinoma cell lines in nude mice previously demonstrated that AGR2 supports tumor growth. In addition, AGR2 is able to induce in vitro a transformed phenotype in fibroblast and epithelial cell lines. The mechanism underlying the growth promoting effects of AGR2 is unknown. The present study shows that AGR2 induces expression of amphiregulin (AREG), a growth promoting EGFR ligand. Induced AREG expression in adenocarcinoma cells is able to rescue the transformed phenotype that is lost when AGR2 expression is reduced. Additional experiments demonstrate that AGR2 induction of AREG is mediated by activation of the Hippo signaling pathway co-activator, YAP1. Thus AGR2 promotes growth by regulating the Hippo and EGF receptor signaling pathways.
Collapse
Affiliation(s)
| | | | | | - May Tun
- From the Departments of Medicine and
| | - Anson W. Lowe
- From the Departments of Medicine and
- the Stanford Digestive Disease Center, Stanford University, Stanford, California 94305
| |
Collapse
|
37
|
Baldys A, Raymond JR. Role of c-Cbl carboxyl terminus in serotonin 5-HT2A receptor recycling and resensitization. J Biol Chem 2011; 286:24656-65. [PMID: 21464131 DOI: 10.1074/jbc.m110.119891] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The 5-hydroxytryptamine 2A receptor (5-HT(2A)R) undergoes constitutive and agonist-dependent internalization. Despite many advances in our understanding of G protein-coupled receptor trafficking, the exact mechanism of endocytic sorting of G protein-coupled receptors remains obscure. Recently, we have reported a novel finding documenting a global role for the ubiquitin ligase c-Cbl in regulating vesicular sorting of epidermal growth factor receptor (Baldys, A., Göoz, M., Morinelli, T. A., Lee, M. H., Raymond, J. R., Jr., Luttrell, L. M., and Raymond, J. R., Sr. (2009) Biochemistry 48, 1462-1473). Thus, we tested the hypothesis that c-Cbl might play a role in 5-HT(2A)R recycling. In this study, we demonstrated an association of 5-HT(2A)R with c-Cbl. Furthermore, down-regulation of c-Cbl by RNA interference blocked efficient recycling of 5-HT(2A)R to the plasma membrane. Immunofluorescence microscopy revealed that 5-HT(2A) receptors were trapped in early endosome antigen 1- and Rab11-positive sorting endosomes in cells overexpressing c-Cbl mutants lacking carboxyl termini. This inhibitory effect was associated with a relative decrease in association of c-Cbl truncation proteins with the 5-HT(2A)R, compared with that observed for the full-length c-Cbl fusion protein. Consistent with the delayed recycling, 5-HT(2A)R resensitization was greatly attenuated in the presence of c-Cbl mutants lacking carboxyl termini, as detected by changes in the cytosolic calcium. Taken together, these studies have led to the discovery that the C-terminal region of c-Cbl plays a crucial role in the temporal and spatial control of 5-HT(2A)R recycling.
Collapse
Affiliation(s)
- Aleksander Baldys
- Nephrology Division, Department of Medicine, Medical University of South Carolina, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29425, USA
| | | |
Collapse
|
38
|
Dey M, Baldys A, Sumter DB, Göoz P, Luttrell LM, Raymond JR, Göoz M. Bradykinin decreases podocyte permeability through ADAM17-dependent epidermal growth factor receptor activation and zonula occludens-1 rearrangement. J Pharmacol Exp Ther 2010; 334:775-83. [PMID: 20566668 DOI: 10.1124/jpet.110.168054] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recent data show that increases in bradykinin (BK) concentration contribute to the beneficial effects of angiotensin-converting enzyme inhibitor (ACEI) treatment in chronic kidney disease. However, the possible role of BK in attenuated proteinuria, often seen in ACEI-treated patients, is not well studied. Here, we report that BK decreases mouse podocyte permeability through rearrangement of the tight junction protein zonula occludens-1 (ZO-1) and identify some of the major signaling events leading to permeability change. We show that BK2 receptor (BK2R) stimulation transactivates the epidermal growth factor receptor (EGFR). EGFR transactivation is mediated by a disintegrin and metalloenzyme (ADAM) family members, which are required for both extracellular signal-regulated kinase (ERK) and EGFR activation by BK. Using a gene-silencing approach we observed that both BK-induced ERK activation and BK-induced permeability decrease in podocytes is attenuated by ADAM17 down-regulation, and we identified epiregulin (ER) as the EGFR ligand participating in ADAM-dependent BK2R-EGFR cross-talk. EGFR inhibition attenuated both ZO-1 rearrangement and BK-induced permeability decreases in podocyte. We propose that ZO-1 redistribution is an important element of BK-induced permeability change and the signaling events involved in ZO-1 rearrangement include transactivation of the EGFR via ADAM17 activation and ER shedding. Our data indicate that ADAM17 and the EGFR may be potential novel therapeutic targets in diabetic nephropathy and other chronic kidney diseases.
Collapse
Affiliation(s)
- Mamon Dey
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Fang Z, Takizawa N, Wilson KA, Smith TC, Delprato A, Davidson MW, Lambright DG, Luna EJ. The membrane-associated protein, supervillin, accelerates F-actin-dependent rapid integrin recycling and cell motility. Traffic 2010; 11:782-99. [PMID: 20331534 DOI: 10.1111/j.1600-0854.2010.01062.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In migrating cells, the cytoskeleton coordinates signal transduction and redistribution of transmembrane proteins, including integrins and growth factor receptors. Supervillin is an F-actin- and myosin II-binding protein that tightly associates with signaling proteins in cholesterol-rich, 'lipid raft' membrane microdomains. We show here that supervillin also can localize with markers for early and sorting endosomes (EE/SE) and with overexpressed components of the Arf6 recycling pathway in the cell periphery. Supervillin tagged with the photoswitchable fluorescent protein, tdEos, moves both into and away from dynamic structures resembling podosomes at the basal cell surface. Rapid integrin recycling from EE/SE is inhibited in supervillin-knockdown cells, but the rates of integrin endocytosis and recycling from the perinuclear recycling center (PNRC) are unchanged. A lack of synergy between supervillin knockdown and the actin filament barbed-end inhibitor, cytochalasin D, suggests that both treatments affect actin-dependent rapid recycling. Supervillin also enhances signaling from the epidermal growth factor receptor (EGFR) to extracellular signal-regulated kinases (ERKs) 1 and 2 and increases the velocity of cell translocation. These results suggest that supervillin, F-actin and associated proteins coordinate a rapid, basolateral membrane recycling pathway that contributes to ERK signaling and actin-based cell motility.
Collapse
Affiliation(s)
- Zhiyou Fang
- Department of Cell Biology, University of Massachusetts Medical School, Biotech 4, Suite 306, 377 Plantation Street, Worcester, MA 01605, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
The molecular mechanisms of EGFR vesicular trafficking to lysosomes have recently received considerable attention. It is now clear that endosomal sorting complexes required for transport (ESCRTs) are critical for EGFR degradation. Although an increasing number of membrane receptors also undergo recycling via specific pathways, little information is available regarding regulated recycling of EGFR. In this study, we investigated the roles of ESCRTs in EGFR recycling after stimulation with amphiregulin (AR). We used ESCRT small interfering RNA (siRNA) duplexes to demonstrate that AR-induced EGFR intracellular processing involves active sorting to the recycling pathway through specific members of the ESCRT family.
Collapse
Affiliation(s)
- Aleksander Baldys
- Nephrology Division, Department of Medicine, Medical University of South Carolina, and Medical and Research Services, Ralph H Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29425, USA
| | | |
Collapse
|
41
|
Roepstorff K, Grandal MV, Henriksen L, Knudsen SLJ, Lerdrup M, Grøvdal L, Willumsen BM, van Deurs B. Differential effects of EGFR ligands on endocytic sorting of the receptor. Traffic 2009; 10:1115-27. [PMID: 19531065 PMCID: PMC2723868 DOI: 10.1111/j.1600-0854.2009.00943.x] [Citation(s) in RCA: 252] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Endocytic downregulation is a pivotal mechanism turning off signalling from the EGF receptor (EGFR). It is well established that whereas EGF binding leads to lysosomal degradation of EGFR, transforming growth factor (TGF)-α causes receptor recycling. TGF-α therefore leads to continuous signalling and is a more potent mitogen than EGF. In addition to EGF and TGF-α, five EGFR ligands have been identified. Although many of these ligands are upregulated in cancers, very little is known about their effect on EGFR trafficking. We have compared the effect of six different ligands on endocytic trafficking of EGFR. We find that, whereas they all stimulate receptor internalization, they have very diverse effects on endocytic sorting. Heparin-binding EGF-like growth factor and Betacellulin target all EGFRs for lysosomal degradation. In contrast, TGF-α and epiregulin lead to complete receptor recycling. EGF leads to lysosomal degradation of the majority but not all EGFRs. Amphiregulin does not target EGFR for lysosomal degradation but causes fast as well as slow EGFR recycling. The Cbl ubiquitin ligases, especially c-Cbl, are responsible for EGFR ubiquitination after stimulation with all ligands, and persistent EGFR phosphorylation and ubiquitination largely correlate with receptor degradation.
Collapse
Affiliation(s)
- Kirstine Roepstorff
- Department of Cellular and Molecular Medicine, The Panum Building, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|