1
|
Garbouchian A, Montgomery AC, Gilbert SP, Bentley M. KAP is the neuronal organelle adaptor for Kinesin-2 KIF3AB and KIF3AC. Mol Biol Cell 2022; 33:ar133. [PMID: 36200888 PMCID: PMC9727798 DOI: 10.1091/mbc.e22-08-0336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Kinesin-driven organelle transport is crucial for neuron development and maintenance, yet the mechanisms by which kinesins specifically bind their organelle cargoes remain undefined. In contrast to other transport kinesins, the neuronal function and specific organelle adaptors of heterodimeric Kinesin-2 family members KIF3AB and KIF3AC remain unknown. We developed a novel microscopy-based assay to define protein-protein interactions in intact neurons. The experiments found that both KIF3AB and KIF3AC bind kinesin-associated protein (KAP). These interactions are mediated by the distal C-terminal tail regions and not the coiled-coil domain. We used live-cell imaging in cultured hippocampal neurons to define the localization and trafficking parameters of KIF3AB and KIF3AC organelle populations. We discovered that KIF3AB/KAP and KIF3AC/KAP bind the same organelle populations and defined their transport parameters in axons and dendrites. The results also show that ∼12% of KIF3 organelles contain the RNA-binding protein adenomatous polyposis coli. These data point toward a model in which KIF3AB and KIF3AC use KAP as their neuronal organelle adaptor and that these kinesins mediate transport of a range of organelles.
Collapse
Affiliation(s)
- Alex Garbouchian
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Andrew C. Montgomery
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Susan P. Gilbert
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Marvin Bentley
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180,*Address correspondence to: Marvin Bentley ()
| |
Collapse
|
2
|
Mul W, Mitra A, Peterman EJG. Mechanisms of Regulation in Intraflagellar Transport. Cells 2022; 11:2737. [PMID: 36078145 PMCID: PMC9454703 DOI: 10.3390/cells11172737] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022] Open
Abstract
Cilia are eukaryotic organelles essential for movement, signaling or sensing. Primary cilia act as antennae to sense a cell's environment and are involved in a wide range of signaling pathways essential for development. Motile cilia drive cell locomotion or liquid flow around the cell. Proper functioning of both types of cilia requires a highly orchestrated bi-directional transport system, intraflagellar transport (IFT), which is driven by motor proteins, kinesin-2 and IFT dynein. In this review, we explore how IFT is regulated in cilia, focusing from three different perspectives on the issue. First, we reflect on how the motor track, the microtubule-based axoneme, affects IFT. Second, we focus on the motor proteins, considering the role motor action, cooperation and motor-train interaction plays in the regulation of IFT. Third, we discuss the role of kinases in the regulation of the motor proteins. Our goal is to provide mechanistic insights in IFT regulation in cilia and to suggest directions of future research.
Collapse
Affiliation(s)
| | | | - Erwin J. G. Peterman
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
3
|
Kumari D, Ray K. Phosphoregulation of Kinesins Involved in Long-Range Intracellular Transport. Front Cell Dev Biol 2022; 10:873164. [PMID: 35721476 PMCID: PMC9203973 DOI: 10.3389/fcell.2022.873164] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/29/2022] [Indexed: 12/28/2022] Open
Abstract
Kinesins, the microtubule-dependent mechanochemical enzymes, power a variety of intracellular movements. Regulation of Kinesin activity and Kinesin-Cargo interactions determine the direction, timing and flux of various intracellular transports. This review examines how phosphorylation of Kinesin subunits and adaptors influence the traffic driven by Kinesin-1, -2, and -3 family motors. Each family of Kinesins are phosphorylated by a partially overlapping set of serine/threonine kinases, and each event produces a unique outcome. For example, phosphorylation of the motor domain inhibits motility, and that of the stalk and tail domains induces cargo loading and unloading effects according to the residue and context. Also, the association of accessory subunits with cargo and adaptor proteins with the motor, respectively, is disrupted by phosphorylation. In some instances, phosphorylation by the same kinase on different Kinesins elicited opposite outcomes. We discuss how this diverse range of effects could manage the logistics of Kinesin-dependent, long-range intracellular transport.
Collapse
|
4
|
Deng Q, Tan YS, Chew LY, Wang H. Msps governs acentrosomal microtubule assembly and reactivation of quiescent neural stem cells. EMBO J 2021; 40:e104549. [PMID: 34368973 PMCID: PMC8488572 DOI: 10.15252/embj.2020104549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 12/11/2022] Open
Abstract
The ability of stem cells to switch between quiescence and proliferation is crucial for tissue homeostasis and regeneration. Drosophila quiescent neural stem cells (NSCs) extend a primary cellular protrusion from the cell body prior to their reactivation. However, the structure and function of this protrusion are not well established. Here, we show that in the protrusion of quiescent NSCs, microtubules are predominantly acentrosomal and oriented plus‐end‐out toward the tip of the primary protrusion. We have identified Mini Spindles (Msps)/XMAP215 as a key microtubule regulator in quiescent NSCs that governs NSC reactivation via regulating acentrosomal microtubule growth and orientation. We show that quiescent NSCs form membrane contact with the neuropil and E‐cadherin, a cell adhesion molecule, localizes to these NSC‐neuropil junctions. Msps and a plus‐end directed motor protein Kinesin‐2 promote NSC cell cycle re‐entry and target E‐cadherin to NSC‐neuropil contact during NSC reactivation. Together, this work establishes acentrosomal microtubule organization in the primary protrusion of quiescent NSCs and the Msps‐Kinesin‐2 pathway that governs NSC reactivation, in part, by targeting E‐cad to NSC‐neuropil contact sites.
Collapse
Affiliation(s)
- Qiannan Deng
- Neuroscience & Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Ye Sing Tan
- Neuroscience & Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Liang Yuh Chew
- Temasek Life Sciences Laboratory, Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Hongyan Wang
- Neuroscience & Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore.,NUS Graduate School - Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
5
|
Jana SC, Dutta P, Jain A, Singh A, Adusumilli L, Girotra M, Kumari D, Shirolikar S, Ray K. Kinesin-2 transports Orco into the olfactory cilium of Drosophila melanogaster at specific developmental stages. PLoS Genet 2021; 17:e1009752. [PMID: 34411092 PMCID: PMC8407544 DOI: 10.1371/journal.pgen.1009752] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 08/31/2021] [Accepted: 07/29/2021] [Indexed: 12/21/2022] Open
Abstract
The cilium, the sensing centre for the cell, displays an extensive repertoire of receptors for various cell signalling processes. The dynamic nature of ciliary signalling indicates that the ciliary entry of receptors and associated proteins must be regulated and conditional. To understand this process, we studied the ciliary localisation of the odour-receptor coreceptor (Orco), a seven-pass transmembrane protein essential for insect olfaction. Little is known about when and how Orco gets into the cilia. Here, using Drosophila melanogaster, we show that the bulk of Orco selectively enters the cilia on adult olfactory sensory neurons in two discrete, one-hour intervals after eclosion. A conditional loss of heterotrimeric kinesin-2 during this period reduces the electrophysiological response to odours and affects olfactory behaviour. We further show that Orco binds to the C-terminal tail fragments of the heterotrimeric kinesin-2 motor, which is required to transfer Orco from the ciliary base to the outer segment and maintain within an approximately four-micron stretch at the distal portion of the ciliary outer-segment. The Orco transport was not affected by the loss of critical intraflagellar transport components, IFT172/Oseg2 and IFT88/NompB, respectively, during the adult stage. These results highlight a novel developmental regulation of seven-pass transmembrane receptor transport into the cilia and indicate that ciliary signalling is both developmentally and temporally regulated.
Collapse
Affiliation(s)
- Swadhin Chandra Jana
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal
| | - Priya Dutta
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Akanksha Jain
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Anjusha Singh
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Lavanya Adusumilli
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Mukul Girotra
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Diksha Kumari
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Seema Shirolikar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Krishanu Ray
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
6
|
Abstract
The intraflagellar transport (IFT) system is a remarkable molecular machine used by cells to assemble and maintain the cilium, a long organelle extending from eukaryotic cells that gives rise to motility, sensing and signaling. IFT plays a critical role in building the cilium by shuttling structural components and signaling receptors between the ciliary base and tip. To provide effective transport, IFT-A and IFT-B adaptor protein complexes assemble into highly repetitive polymers, called IFT trains, that are powered by the motors kinesin-2 and IFT-dynein to move bidirectionally along the microtubules. This dynamic system must be precisely regulated to shuttle different cargo proteins between the ciliary tip and base. In this Cell Science at a Glance article and the accompanying poster, we discuss the current structural and mechanistic understanding of IFT trains and how they function as macromolecular machines to assemble the structure of the cilium.
Collapse
Affiliation(s)
- Mareike A Jordan
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Gaia Pigino
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Pfotenhauerstraße 108, 01307 Dresden, Germany.,Human Technopole, Via Cristina Belgioioso 171, 20157 Milan, Italy
| |
Collapse
|
7
|
Webb S, Mukhopadhyay AG, Roberts AJ. Intraflagellar transport trains and motors: Insights from structure. Semin Cell Dev Biol 2020; 107:82-90. [PMID: 32684327 PMCID: PMC7561706 DOI: 10.1016/j.semcdb.2020.05.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/19/2020] [Accepted: 05/26/2020] [Indexed: 11/17/2022]
Abstract
Intraflagellar transport (IFT) sculpts the proteome of cilia and flagella; the antenna-like organelles found on the surface of virtually all human cell types. By delivering proteins to the growing ciliary tip, recycling turnover products, and selectively transporting signalling molecules, IFT has critical roles in cilia biogenesis, quality control, and signal transduction. IFT involves long polymeric arrays, termed IFT trains, which move to and from the ciliary tip under the power of the microtubule-based motor proteins kinesin-II and dynein-2. Recent top-down and bottom-up structural biology approaches are converging on the molecular architecture of the IFT train machinery. Here we review these studies, with a focus on how kinesin-II and dynein-2 assemble, attach to IFT trains, and undergo precise regulation to mediate bidirectional transport.
Collapse
Affiliation(s)
- Stephanie Webb
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London, United Kingdom
| | - Aakash G Mukhopadhyay
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London, United Kingdom
| | - Anthony J Roberts
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London, United Kingdom.
| |
Collapse
|
8
|
Douglas RL, Haltiwanger BM, Albisetti A, Wu H, Jeng RL, Mancuso J, Cande WZ, Welch MD. Trypanosomes have divergent kinesin-2 proteins that function differentially in flagellum biosynthesis and cell viability. J Cell Sci 2020; 133:jcs129213. [PMID: 32503938 DOI: 10.1242/jcs.129213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 05/27/2020] [Indexed: 12/13/2022] Open
Abstract
Trypanosoma brucei, the causative agent of African sleeping sickness, has a flagellum that is crucial for motility, pathogenicity, and viability. In most eukaryotes, the intraflagellar transport (IFT) machinery drives flagellum biogenesis, and anterograde IFT requires kinesin-2 motor proteins. In this study, we investigated the function of the two T. brucei kinesin-2 proteins, TbKin2a and TbKin2b, in bloodstream form trypanosomes. We found that, compared to kinesin-2 proteins across other phyla, TbKin2a and TbKin2b show greater variation in neck, stalk and tail domain sequences. Both kinesins contributed additively to flagellar lengthening. Silencing TbKin2a inhibited cell proliferation, cytokinesis and motility, whereas silencing TbKin2b did not. TbKin2a was localized on the flagellum and colocalized with IFT components near the basal body, consistent with it performing a role in IFT. TbKin2a was also detected on the flagellar attachment zone, a specialized structure that connects the flagellum to the cell body. Our results indicate that kinesin-2 proteins in trypanosomes play conserved roles in flagellar biosynthesis and exhibit a specialized localization, emphasizing the evolutionary flexibility of motor protein function in an organism with a large complement of kinesins.
Collapse
Affiliation(s)
- Robert L Douglas
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Brett M Haltiwanger
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Anna Albisetti
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Haiming Wu
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Robert L Jeng
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Joel Mancuso
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - W Zacheus Cande
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Matthew D Welch
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
9
|
Nakayama K, Katoh Y. Architecture of the IFT ciliary trafficking machinery and interplay between its components. Crit Rev Biochem Mol Biol 2020; 55:179-196. [PMID: 32456460 DOI: 10.1080/10409238.2020.1768206] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cilia and flagella serve as cellular antennae and propellers in various eukaryotic cells, and contain specific receptors and ion channels as well as components of axonemal microtubules and molecular motors to achieve their sensory and motile functions. Not only the bidirectional trafficking of specific proteins within cilia but also their selective entry and exit across the ciliary gate is mediated by the intraflagellar transport (IFT) machinery with the aid of motor proteins. The IFT-B complex, which is powered by the kinesin-2 motor, mediates anterograde protein trafficking from the base to the tip of cilia, whereas the IFT-A complex together with the dynein-2 complex mediates retrograde protein trafficking. The BBSome complex connects ciliary membrane proteins to the IFT machinery. Defects in any component of this trafficking machinery lead to abnormal ciliogenesis and ciliary functions, and results in a broad spectrum of disorders, collectively called the ciliopathies. In this review article, we provide an overview of the architectures of the components of the IFT machinery and their functional interplay in ciliary protein trafficking.
Collapse
Affiliation(s)
- Kazuhisa Nakayama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yohei Katoh
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
10
|
Ahmed Z, Mazumdar S, Ray K. Kinesin associated protein, DmKAP, binding harnesses the C-terminal ends of the Drosophila kinesin-2 stalk heterodimer. Biochem Biophys Res Commun 2019; 522:506-511. [PMID: 31784087 DOI: 10.1016/j.bbrc.2019.11.111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 11/17/2019] [Indexed: 01/01/2023]
Abstract
The heterotrimeric kinesin-2 consists of two distinct motor subunits and an accessory protein, KAP, which binds to the coiled-coil stalk domains and one of the tail domains of the motor subunits. Genetic studies revealed that KAP is essential for the kinesin-2 functions in cilia, flagella, and axon. However, the structural significance of the KAP binding on kinesin-2 assembly and stability is not known. Here, using the Fluorescence Lifetime assay, we show that DmKAP binding selectively reduces the distance between the C-terminal ends of Drosophila kinesin-2 stalk heterodimer. Insertion of a missense mutation (E551K) in the Drosophila kinesin-2α stalk fragment, which was shown to reduce the structural dynamics of the stalk heterodimer earlier, also reduced the distances at both the N- and C-terminal ends of the stalk heterodimer independent of DmKAP. The zipping effect, particularly at the N-terminal end of the mutant stalk heterodimer, is further enhanced in the presence of DmKAP. Together, these results suggest that the KAP binding could alter the structural dynamics of kinesin-2 stalk heterodimer at the C-terminal end and stabilize the association between the stalk domains.
Collapse
Affiliation(s)
- Zoheb Ahmed
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Shyamalava Mazumdar
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Krishanu Ray
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India.
| |
Collapse
|
11
|
Ahmed Z, Doodhi H, Bhaumik A, Mazumdar S, Ray K. The structural dynamics of the kinesin-2 stalk heterodimer and its biological relevance. Biochem Biophys Res Commun 2019; 518:171-177. [DOI: 10.1016/j.bbrc.2019.08.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 08/06/2019] [Indexed: 11/25/2022]
|
12
|
Quinn SM, Howsmon DP, Hahn J, Gilbert SP. Kinesin-2 heterodimerization alters entry into a processive run along the microtubule but not stepping within the run. J Biol Chem 2018; 293:13389-13400. [PMID: 29991594 DOI: 10.1074/jbc.ra118.002767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/06/2018] [Indexed: 11/06/2022] Open
Abstract
Heterodimeric KIF3AC and KIF3AB, two members of the mammalian kinesin-2 family, generate force for microtubule plus end-directed cargo transport. However, the advantage of heterodimeric kinesins over homodimeric ones is not well-understood. We showed previously that microtubule association for entry into a processive run was similar in rate for KIF3AC and KIF3AB at ∼7.0 μm-1 s-1 Yet, for engineered homodimers of KIF3AA and KIF3BB, this constant is significantly faster at 11 μm-1 s-1 and much slower for KIF3CC at 2.1 μm-1 s-1 These results led us to hypothesize that heterodimerization of KIF3A with KIF3C and KIF3A with KIF3B altered the intrinsic catalytic properties of each motor domain. Here, we tested this hypothesis by using presteady-state stopped-flow kinetics and mathematical modeling. Surprisingly, the modeling revealed that the catalytic properties of KIF3A and KIF3B/C were altered upon microtubule binding, yet each motor domain retained its relative intrinsic kinetics for ADP release and subsequent ATP binding and the nucleotide-promoted transitions thereafter. These results are consistent with the interpretation that for KIF3AB, each motor head is catalytically similar and therefore each step is approximately equivalent. In contrast, for KIF3AC the results predict that the processive steps will alternate between a fast step for KIF3A followed by a slow step for KIF3C resulting in asymmetric stepping during a processive run. This study reveals the impact of heterodimerization of the motor polypeptides for microtubule association to start the processive run and the fundamental differences in the motile properties of KIF3C compared with KIF3A and KIF3B.
Collapse
Affiliation(s)
| | | | - Juergen Hahn
- Chemical and Biological Engineering, and .,Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | | |
Collapse
|
13
|
Dey S, Ray K. Cholinergic activity is essential for maintaining the anterograde transport of Choline Acetyltransferase in Drosophila. Sci Rep 2018; 8:8028. [PMID: 29795337 PMCID: PMC5966444 DOI: 10.1038/s41598-018-26176-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 04/30/2018] [Indexed: 12/14/2022] Open
Abstract
Cholinergic activity is essential for cognitive functions and neuronal homeostasis. Choline Acetyltransferase (ChAT), a soluble protein that synthesizes acetylcholine at the presynaptic compartment, is transported in bulk in the axons by the heterotrimeric Kinesin-2 motor. Axonal transport of soluble proteins is described as a constitutive process assisted by occasional, non-specific interactions with moving vesicles and motor proteins. Here, we report that an increase in the influx of Kinesin-2 motor and association between ChAT and the motor during a specific developmental period enhances the axonal entry, as well as the anterograde flow of the protein, in the sensory neurons of intact Drosophila nervous system. Loss of cholinergic activity due to Hemicholinium and Bungarotoxin treatments, respectively, disrupts the interaction between ChAT and Kinesin-2 in the axon, and the episodic enhancement of axonal influx of the protein. Altogether, these observations highlight a phenomenon of synaptic activity-dependent, feedback regulation of a soluble protein transport in vivo, which could potentially define the quantum of its pre-synaptic influx.
Collapse
Affiliation(s)
- Swagata Dey
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.
| | - Krishanu Ray
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.
| |
Collapse
|
14
|
Gilbert SP, Guzik-Lendrum S, Rayment I. Kinesin-2 motors: Kinetics and biophysics. J Biol Chem 2018; 293:4510-4518. [PMID: 29444824 DOI: 10.1074/jbc.r117.001324] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Kinesin-2s are major transporters of cellular cargoes. This subfamily contains both homodimeric kinesins whose catalytic domains result from the same gene product and heterodimeric kinesins with motor domains derived from two different gene products. In this Minireview, we focus on the progress to define the biochemical and biophysical properties of the kinesin-2 family members. Our understanding of their mechanochemical capabilities has been advanced by the ability to identify the kinesin-2 genes in multiple species, expression and purification of these motors for single-molecule and ensemble assays, and development of new technologies enabling quantitative measurements of kinesin activity with greater sensitivity.
Collapse
Affiliation(s)
- Susan P Gilbert
- From the Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180 and
| | - Stephanie Guzik-Lendrum
- From the Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180 and
| | - Ivan Rayment
- the Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
15
|
Dey S, Banker G, Ray K. Anterograde Transport of Rab4-Associated Vesicles Regulates Synapse Organization in Drosophila. Cell Rep 2017; 18:2452-2463. [PMID: 28273459 DOI: 10.1016/j.celrep.2017.02.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 12/19/2016] [Accepted: 02/09/2017] [Indexed: 11/29/2022] Open
Abstract
Local endosomal recycling at synapses is essential to maintain neurotransmission. Rab4GTPase, found on sorting endosomes, is proposed to balance the flow of vesicles among endocytic, recycling, and degradative pathways in the presynaptic compartment. Here, we report that Rab4-associated vesicles move bidirectionally in Drosophila axons but with an anterograde bias, resulting in their moderate enrichment at the synaptic region of the larval ventral ganglion. Results from FK506 binding protein (FKBP) and FKBP-Rapamycin binding domain (FRB) conjugation assays in rat embryonic fibroblasts together with genetic analyses in Drosophila indicate that an association with Kinesin-2 (mediated by the tail domain of Kinesin-2α/KIF3A/KLP64D subunit) moves Rab4-associated vesicles toward the synapse. Reduction in the anterograde traffic of Rab4 causes an expansion of the volume of the synapse-bearing region in the ventral ganglion and increases the motility of Drosophila larvae. These results suggest that Rab4-dependent vesicular traffic toward the synapse plays a vital role in maintaining synaptic balance in this neuronal network.
Collapse
Affiliation(s)
- Swagata Dey
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India.
| | - Gary Banker
- Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, OR 97239, USA
| | - Krishanu Ray
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India.
| |
Collapse
|
16
|
Prevo B, Scholey JM, Peterman EJG. Intraflagellar transport: mechanisms of motor action, cooperation, and cargo delivery. FEBS J 2017; 284:2905-2931. [PMID: 28342295 PMCID: PMC5603355 DOI: 10.1111/febs.14068] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/20/2017] [Accepted: 03/23/2017] [Indexed: 02/06/2023]
Abstract
Intraflagellar transport (IFT) is a form of motor-dependent cargo transport that is essential for the assembly, maintenance, and length control of cilia, which play critical roles in motility, sensory reception, and signal transduction in virtually all eukaryotic cells. During IFT, anterograde kinesin-2 and retrograde IFT dynein motors drive the bidirectional transport of IFT trains that deliver cargo, for example, axoneme precursors such as tubulins as well as molecules of the signal transduction machinery, to their site of assembly within the cilium. Following its discovery in Chlamydomonas, IFT has emerged as a powerful model system for studying general principles of motor-dependent cargo transport and we now appreciate the diversity that exists in the mechanism of IFT within cilia of different cell types. The absence of heterotrimeric kinesin-2 function, for example, causes a complete loss of both IFT and cilia in Chlamydomonas, but following its loss in Caenorhabditis elegans, where its primary function is loading the IFT machinery into cilia, homodimeric kinesin-2-driven IFT persists and assembles a full-length cilium. Generally, heterotrimeric kinesin-2 and IFT dynein motors are thought to play widespread roles as core IFT motors, whereas homodimeric kinesin-2 motors are accessory motors that mediate different functions in a broad range of cilia, in some cases contributing to axoneme assembly or the delivery of signaling molecules but in many other cases their ciliary functions, if any, remain unknown. In this review, we focus on mechanisms of motor action, motor cooperation, and motor-dependent cargo delivery during IFT.
Collapse
Affiliation(s)
- Bram Prevo
- Department of Cellular & Molecular Medicine, University of California San Diego, CA, USA
- Ludwig Institute for Cancer Research, San Diego, CA, USA
| | - Jonathan M Scholey
- Department of Molecular & Cell Biology, University of California Davis, CA, USA
| | - Erwin J G Peterman
- Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Becher A, Eiseler T, Porzner M, Walther P, Keil R, Bobrovich S, Hatzfeld M, Seufferlein T. The armadillo protein p0071 controls KIF3 motor transport. J Cell Sci 2017; 130:3374-3387. [PMID: 28808088 DOI: 10.1242/jcs.200170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 08/02/2017] [Indexed: 01/17/2023] Open
Abstract
We here report a novel function of the armadillo protein p0071 (also known as PKP4) during transport mediated by the KIF3 transport complex. Secretion of chromogranin A and matrix metallopeptidase 9 from pancreatic neuroendocrine tumor cells or pancreatic cancer cells, respectively, was substantially reduced following knockdown of p0071. Vesicle tracking indicated that there was impaired directional persistence of vesicle movement upon p0071 depletion. This suggests a disturbed balance between plus- and minus-end directed microtubule transport in cells lacking p0071. p0071 directly interacts with the KIF3 motor subunit KIF3B. Our data indicate that p0071 also interacts with the kinesin cargo adaptor protein KAP3 (also known as KIFAP3) acting as a stabilizing linker between KIF3B and its KAP3 cargo-binding entity. Thus, p0071 is required for directional vesicle movement and secretion of different KIF3-transported carriers, thereby regulating the transport of intracellular membrane vesicles along microtubules.
Collapse
Affiliation(s)
- Alexander Becher
- Department of Internal Medicine I, Ulm University, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Tim Eiseler
- Department of Internal Medicine I, Ulm University, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Marc Porzner
- Department of Internal Medicine I, Ulm University, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - René Keil
- Institute of Molecular Medicine, Division of Pathobiochemistry, Martin-Luther-University of Halle-Wittenberg, D-06114 Halle, Germany
| | - Susanne Bobrovich
- Department of Internal Medicine I, Ulm University, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Mechthild Hatzfeld
- Institute of Molecular Medicine, Division of Pathobiochemistry, Martin-Luther-University of Halle-Wittenberg, D-06114 Halle, Germany
| | - Thomas Seufferlein
- Department of Internal Medicine I, Ulm University, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| |
Collapse
|
18
|
Intraflagellar transport velocity is governed by the number of active KIF17 and KIF3AB motors and their motility properties under load. Proc Natl Acad Sci U S A 2017; 114:E6830-E6838. [PMID: 28761002 DOI: 10.1073/pnas.1708157114] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Homodimeric KIF17 and heterotrimeric KIF3AB are processive, kinesin-2 family motors that act jointly to carry out anterograde intraflagellar transport (IFT), ferrying cargo along microtubules (MTs) toward the tips of cilia. How IFT trains attain speeds that exceed the unloaded rate of the slower, KIF3AB motor remains unknown. By characterizing the motility properties of kinesin-2 motors as a function of load we find that the increase in KIF3AB velocity, elicited by forward loads from KIF17 motors, cannot alone account for the speed of IFT trains in vivo. Instead, higher IFT velocities arise from an increased likelihood that KIF3AB motors dissociate from the MT, resulting in transport by KIF17 motors alone, unencumbered by opposition from KIF3AB. The rate of transport is therefore set by an equilibrium between a faster state, where only KIF17 motors move the train, and a slower state, where at least one KIF3AB motor on the train remains active in transport. The more frequently the faster state is accessed, the higher the overall velocity of the IFT train. We conclude that IFT velocity is governed by (i) the absolute numbers of each motor type on a given train, (ii) how prone KIF3AB is to dissociation from MTs relative to KIF17, and (iii) how prone both motors are to dissociation relative to binding MTs.
Collapse
|
19
|
Girotra M, Srivastava S, Kulkarni A, Barbora A, Bobra K, Ghosal D, Devan P, Aher A, Jain A, Panda D, Ray K. The C-terminal tails of heterotrimeric kinesin-2 motor subunits directly bind to α-tubulin1: Possible implications for cilia-specific tubulin entry. Traffic 2017; 18:123-133. [PMID: 27976831 DOI: 10.1111/tra.12461] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 12/06/2016] [Accepted: 12/06/2016] [Indexed: 01/02/2023]
Abstract
The assembly of microtubule-based cytoskeleton propels the cilia and flagella growth. Previous studies have indicated that the kinesin-2 family motors transport tubulin into the cilia through intraflagellar transport. Here, we report a direct interaction between the C-terminal tail fragments of heterotrimeric kinesin-2 and α-tubulin1 isoforms in vitro. Blot overlay screen, affinity purification from tissue extracts, cosedimentation with subtilisin-treated microtubule and LC-ESI-MS/MS characterization of the tail-fragment-associated tubulin identified an association between the tail domains and α-tubulin1A/D isotype. The interaction was confirmed by Forster's resonance energy transfer assay in tissue-cultured cells. The overexpression of the recombinant tails in NIH3T3 cells affected the primary cilia growth, which was rescued by coexpression of a α-tubulin1 transgene. Furthermore, fluorescent recovery after photobleach analysis in the olfactory cilia of Drosophila indicated that tubulin is transported in a non-particulate form requiring kinesin-2. These results provide additional new insight into the mechanisms underlying selective tubulin isoform enrichment in the cilia.
Collapse
Affiliation(s)
- Mukul Girotra
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Shalini Srivastava
- Department of Biosciences and Biotechnology, Indian Institute of Technology Bombay, Mumbai, India
| | - Anuttama Kulkarni
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Ayan Barbora
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Kratika Bobra
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Debnath Ghosal
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Pavithra Devan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Amol Aher
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Akanksha Jain
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Dulal Panda
- Department of Biosciences and Biotechnology, Indian Institute of Technology Bombay, Mumbai, India
| | - Krishanu Ray
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
20
|
Albracht CD, Guzik-Lendrum S, Rayment I, Gilbert SP. Heterodimerization of Kinesin-2 KIF3AB Modulates Entry into the Processive Run. J Biol Chem 2016; 291:23248-23256. [PMID: 27637334 DOI: 10.1074/jbc.m116.752196] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Indexed: 11/06/2022] Open
Abstract
Mammalian KIF3AB is an N-terminal processive kinesin-2 that is best known for its roles in intracellular transport. There has been significant interest in KIF3AB to define the key principles that underlie its processivity but also to define the mechanistic basis of its sensitivity to force. In this study, the kinetics for entry into the processive run were quantified. The results show for KIF3AB that the kinetics of microtubule association at 7 μm-1 s-1 is less than the rates observed for KIF3AA at 13 μm-1 s-1 or KIF3BB at 11.9 μm-1 s-1 ADP release after microtubule association for KIF3AB is 33 s-1 and is significantly slower than ADP release from homodimeric KIF3AA and KIF3BB, which reach 80-90 s-1 To explore the interhead communication implied by the rate differences at these first steps, we compared the kinetics of KIF3AB microtubule association followed by ADP release with the kinetics for mixtures of KIF3AA plus KIF3BB. Surprisingly, the kinetics of KIF3AB are not equivalent to any of the mixtures of KIF3AA + KIF3BB. In fact, the transients for each of the mixtures overlay the transients for KIF3AA and KIF3BB. These results reveal that intermolecular communication within the KIF3AB heterodimer modulates entry into the processive run, and the results suggest that it is the high rate of microtubule association that drives rebinding to the microtubule after force-dependent motor detachment.
Collapse
Affiliation(s)
- Clayton D Albracht
- From the Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180 and
| | - Stephanie Guzik-Lendrum
- From the Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180 and
| | - Ivan Rayment
- the Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Susan P Gilbert
- From the Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180 and
| |
Collapse
|
21
|
Scholey JM. Kinesin-2: a family of heterotrimeric and homodimeric motors with diverse intracellular transport functions. Annu Rev Cell Dev Biol 2013; 29:443-69. [PMID: 23750925 DOI: 10.1146/annurev-cellbio-101512-122335] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Kinesin-2 was first purified as a heterotrimeric, anterograde, microtubule-based motor consisting of two distinct kinesin-related subunits and a novel associated protein (KAP) that is currently best known for its role in intraflagellar transport and ciliogenesis. Subsequent work, however, has revealed diversity in the oligomeric state of different kinesin-2 motors owing to the combinatorial heterodimerization of its subunits and the coexistence of both heterotrimeric and homodimeric kinesin-2 motors in some cells. Although the functional significance of the homo- versus heteromeric organization of kinesin-2 motor subunits and the role of KAP remain uncertain, functional studies suggest that cooperation between different types of kinesin-2 motors or between kinesin-2 and a member of a different motor family can generate diverse patterns of anterograde intracellular transport. Moreover, despite being restricted to ciliated eukaryotes, kinesin-2 motors are now known to drive diverse transport events outside cilia. Here, I review the organization, assembly, phylogeny, biological functions, and motility mechanism of this diverse family of intracellular transport motors.
Collapse
Affiliation(s)
- Jonathan M Scholey
- Department of Molecular and Cell Biology, University of California, Davis, California 95616;
| |
Collapse
|
22
|
Gaudin R, de Alencar BC, Jouve M, Bèrre S, Le Bouder E, Schindler M, Varthaman A, Gobert FX, Benaroch P. Critical role for the kinesin KIF3A in the HIV life cycle in primary human macrophages. ACTA ACUST UNITED AC 2012; 199:467-79. [PMID: 23091068 PMCID: PMC3483138 DOI: 10.1083/jcb.201201144] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Macrophages are long-lived target cells for HIV infection and are considered viral reservoirs. HIV assembly in macrophages occurs in virus-containing compartments (VCCs) in which virions accumulate and are stored. The regulation of the trafficking and release of these VCCs remains unknown. Using high resolution light and electron microscopy of HIV-1-infected primary human macrophages, we show that the spatial distribution of VCCs depended on the microtubule network and that VCC-limiting membrane was closely associated with KIF3A+ microtubules. Silencing KIF3A strongly decreased virus release from HIV-1-infected macrophages, leading to VCC accumulation intracellularly. Time-lapse microscopy further suggested that VCCs and associated KIF3A move together along microtubules. Importantly, KIF3A does not play a role in HIV release from T cells that do not possess VCCs. These results reveal that HIV-1 requires the molecular motor KIF3 to complete its cycle in primary macrophages. Targeting this step may lead to novel strategies to eliminate this viral reservoir.
Collapse
Affiliation(s)
- Raphaël Gaudin
- Institut Curie, Centre de Recherche, Paris, F-75248 France
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Doodhi H, Jana SC, Devan P, Mazumdar S, Ray K. Biochemical and molecular dynamic simulation analysis of a weak coiled coil association between kinesin-II stalks. PLoS One 2012; 7:e45981. [PMID: 23029351 PMCID: PMC3461054 DOI: 10.1371/journal.pone.0045981] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 08/27/2012] [Indexed: 01/03/2023] Open
Abstract
DEFINITION Kinesin-2 refers to the family of motor proteins represented by conserved, heterotrimeric kinesin-II and homodimeric Osm3/Kif17 class of motors. BACKGROUND Kinesin-II, a microtubule-based anterograde motor, is composed of three different conserved subunits, named KLP64D, KLP68D and DmKAP in Drosophila. Although previous reports indicated that coiled coil interaction between the middle segments of two dissimilar motor subunits established the heterodimer, the molecular basis of the association is still unknown. METHODOLOGY/PRINCIPAL FINDINGS Here, we present a detailed heterodimeric association model of the KLP64D/68D stalk supported by extensive experimental analysis and molecular dynamic simulations. We find that KLP64D stalk is unstable, but forms a weak coiled coil heteroduplex with the KLP68D stalk when coexpressed in bacteria. Local instabilities, relative affinities between the C-terminal stalk segments, and dynamic long-range interactions along the stalks specify the heterodimerization. Thermal unfolding studies and independent simulations further suggest that interactions between the C-terminal stalk fragments are comparatively stable, whereas the N-terminal stalk reversibly unfolds at ambient temperature. CONCLUSIONS/SIGNIFICANCE Results obtained in this study suggest that coiled coil interaction between the C-terminal stalks of kinesin-II motor subunits is held together through a few hydrophobic and charged interactions. The N-terminal stalk segments are flexible and could uncoil reversibly during a motor walk. This supports the requirement for a flexible coiled coil association between the motor subunits, and its role in motor function needs to be elucidated.
Collapse
Affiliation(s)
- Harinath Doodhi
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Swadhin C. Jana
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Pavithra Devan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Shyamalava Mazumdar
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Krishanu Ray
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
24
|
Sadananda A, Ray K. Neurogenetics of slow axonal transport: from cells to animals. J Neurogenet 2012; 26:291-7. [PMID: 22834647 DOI: 10.3109/01677063.2012.699564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Slow axonal transport is a multivariate phenomenon implicated in several neurodegenerative disorders. Recent reports have unraveled the molecular basis of the transport of certain slow component proteins, such as the neurofilament subunits, tubulin, and certain soluble enzymes such as Ca(2+)/calmodulin-dependent protein kinase IIa (CaM kinase IIa), etc., in tissue cultured neurons. In addition, genetic analyses also implicate microtubule-dependent motors and other housekeeping proteins in this process. However, the biological relevance of this phenomenon is not so well understood. Here, the authors have discussed the possibility of adopting neurogenetic analyses in multiple model organisms to correlate molecular level measurements of the slow transport phenomenon to animal behavior, thus facilitating the investigation of its biological efficacy.
Collapse
|
25
|
Sadananda A, Hamid R, Doodhi H, Ghosal D, Girotra M, Jana SC, Ray K. Interaction with a kinesin-2 tail propels choline acetyltransferase flow towards synapse. Traffic 2012; 13:979-91. [PMID: 22486887 DOI: 10.1111/j.1600-0854.2012.01361.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 04/02/2012] [Accepted: 04/04/2012] [Indexed: 11/28/2022]
Abstract
Bulk flow constitutes a substantial part of the slow transport of soluble proteins in axons. Though the underlying mechanism is unclear, evidences indicate that intermittent, kinesin-based movement of large protein-aggregates aids this process. Choline acetyltransferase (ChAT), a soluble enzyme catalyzing acetylcholine synthesis, propagates toward the synapse at an intermediate, slow rate. The presynaptic enrichment of ChAT requires heterotrimeric kinesin-2, comprising KLP64D, KLP68D and DmKAP, in Drosophila. Here, we show that the bulk flow of a recombinant Green Fluorescent Protein-tagged ChAT (GFP::ChAT), in Drosophila axons, lacks particulate features. It occurs for a brief period during the larval stages. In addition, both the endogenous ChAT and GFP::ChAT directly bind to the KLP64D tail, which is essential for the GFP::ChAT entry and anterograde flow in axon. These evidences suggest that a direct interaction with motor proteins could regulate the bulk flow of soluble proteins, and thus establish their asymmetric distribution.
Collapse
Affiliation(s)
- Aparna Sadananda
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Long-distance transport in eukaryotic cells is driven by molecular motors that move along microtubule tracks. Molecular motors of the kinesin superfamily contain a kinesin motor domain attached to family-specific sequences for cargo binding, regulation, and oligomerization. The biochemical and biophysical properties of the kinesin motor domain have been widely studied, yet little is known about how kinesin motors work in the complex cellular environment. We discuss recent studies on the three major families involved in intracellular transport (kinesin-1, kinesin-2, and kinesin-3) that have begun to bridge the gap in knowledge between the in vitro and in vivo behaviors of kinesin motors. These studies have increased our understanding of how kinesin subunits assemble to produce a functional motor, how kinesin motors are affected by biochemical cues and obstacles present on cellular microtubules, and how multiple motors on a cargo surface can work collectively for increased force production and travel distance.
Collapse
Affiliation(s)
- Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
27
|
Jana SC, Girotra M, Ray K. Heterotrimeric kinesin-II is necessary and sufficient to promote different stepwise assembly of morphologically distinct bipartite cilia in Drosophila antenna. Mol Biol Cell 2011; 22:769-81. [PMID: 21233284 PMCID: PMC3057702 DOI: 10.1091/mbc.e10-08-0712] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Structurally diverse sensory cilia have evolved from primary cilia, a microtubule-based cellular extension engaged in chemical and mechanical sensing and signal integration. The diversity is often associated with functional specialization. The olfactory receptor neurons in Drosophila, for example, express three distinct bipartite cilia displaying different sets of olfactory receptors on them. Molecular description underlying their assembly and diversification is still incomplete. Here, we show that the branched and the slender olfactory cilia develop in two distinct step-wise patterns through the pupal stages before the expression of olfactory receptor genes in olfactory neurons. The process initiates with a thin procilium growth from the dendrite apex, followed by volume increment in successive stages. Mutations in the kinesin-II subunit genes either eliminate or restrict the cilia growth as well as tubulin entry into the developing cilia. Together with previous results, our results here suggest that heterotrimeric kinesin-II is the primary motor engaged in all type-I sensory cilia assembly in Drosophila and that the cilia structure diversity is achieved through additional transports supported by the motor during development.
Collapse
Affiliation(s)
- Swadhin C Jana
- Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
| | | | | |
Collapse
|
28
|
Pan X, Acar S, Scholey JM. Torque generation by one of the motor subunits of heterotrimeric kinesin-2. Biochem Biophys Res Commun 2010; 401:53-7. [PMID: 20833139 DOI: 10.1016/j.bbrc.2010.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 09/03/2010] [Indexed: 12/20/2022]
Abstract
Heterotrimeric kinesin-2 motors transport intraflagellar transport (IFT)-particles from the base to the tip of the axoneme to assemble and maintain cilia. These motors are distinct in containing two non-identical motor subunits together with an accessory subunit. We evaluated the significance of this organization by comparing purified wild type kinesin-2 holoenzymes that support IFT in vivo, with mutant trimers containing only one type of motor domain that do not support IFT in vivo. In motility assays, wild type kinesin-2 moved microtubules (MTs) at a rate intermediate between the rates supported by the two mutants. Interestingly, one of the mutants, but not the other mutant or the wild type protein, was observed to drive a persistent counter-clock-wise rotation of the gliding MTs. Thus one of the two motor domains of heterotrimeric kinesin-2 exerts torque as well as axial force as it moves along a MT, which may allow kinesin-2 to control its circumferential position around a MT doublet within the cilium.
Collapse
Affiliation(s)
- Xiaoyu Pan
- Department of Molecular and Cell Biology, University of California at Davis, Davis, CA 95616, USA
| | | | | |
Collapse
|