1
|
Truong DP, Rousseau S, Machala BW, Huddleston JP, Zhu M, Hull KG, Romo D, Raushel FM, Sacchettini JC, Glasner ME. Second-Shell Amino Acid R266 Helps Determine N-Succinylamino Acid Racemase Reaction Specificity in Promiscuous N-Succinylamino Acid Racemase/ o-Succinylbenzoate Synthase Enzymes. Biochemistry 2021; 60:3829-3840. [PMID: 34845903 DOI: 10.1021/acs.biochem.1c00627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Catalytic promiscuity is the coincidental ability to catalyze nonbiological reactions in the same active site as the native biological reaction. Several lines of evidence show that catalytic promiscuity plays a role in the evolution of new enzyme functions. Thus, studying catalytic promiscuity can help identify structural features that predispose an enzyme to evolve new functions. This study identifies a potentially preadaptive residue in a promiscuous N-succinylamino acid racemase/o-succinylbenzoate synthase (NSAR/OSBS) enzyme from Amycolatopsis sp. T-1-60. This enzyme belongs to a branch of the OSBS family which includes many catalytically promiscuous NSAR/OSBS enzymes. R266 is conserved in all members of the NSAR/OSBS subfamily. However, the homologous position is usually hydrophobic in other OSBS subfamilies, whose enzymes lack NSAR activity. The second-shell amino acid R266 is close to the catalytic acid/base K263, but it does not contact the substrate, suggesting that R266 could affect the catalytic mechanism. Mutating R266 to glutamine in Amycolatopsis NSAR/OSBS profoundly reduces NSAR activity but moderately reduces OSBS activity. This is due to a 1000-fold decrease in the rate of proton exchange between the substrate and the general acid/base catalyst K263. This mutation is less deleterious for the OSBS reaction because K263 forms a cation-π interaction with the OSBS substrate and/or the intermediate, rather than acting as a general acid/base catalyst. Together, the data explain how R266 contributes to NSAR reaction specificity and was likely an essential preadaptation for the evolution of NSAR activity.
Collapse
Affiliation(s)
- Dat P Truong
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas 77843-2128, United States
| | - Simon Rousseau
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas 77843-2128, United States
| | - Benjamin W Machala
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas 77843-2128, United States
| | - Jamison P Huddleston
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843-3255, United States
| | - Mingzhao Zhu
- Baylor Synthesis and Drug-Lead Discovery Laboratory, Department of Chemistry and Biochemistry, Baylor University, One Bear Place, Waco, Texas 76798-7348, United States
| | - Kenneth G Hull
- Baylor Synthesis and Drug-Lead Discovery Laboratory, Department of Chemistry and Biochemistry, Baylor University, One Bear Place, Waco, Texas 76798-7348, United States
| | - Daniel Romo
- Baylor Synthesis and Drug-Lead Discovery Laboratory, Department of Chemistry and Biochemistry, Baylor University, One Bear Place, Waco, Texas 76798-7348, United States
| | - Frank M Raushel
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas 77843-2128, United States.,Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843-3255, United States
| | - James C Sacchettini
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843-3255, United States
| | - Margaret E Glasner
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas 77843-2128, United States
| |
Collapse
|
2
|
Allen KN, Whitman CP. The Birth of Genomic Enzymology: Discovery of the Mechanistically Diverse Enolase Superfamily. Biochemistry 2021; 60:3515-3528. [PMID: 34664940 DOI: 10.1021/acs.biochem.1c00494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Enzymes are categorized into superfamilies by sequence, structural, and mechanistic similarities. The evolutionary implications can be profound. Until the mid-1990s, the approach was fragmented largely due to limited sequence and structural data. However, in 1996, Babbitt et al. published a paper in Biochemistry that demonstrated the potential power of mechanistically diverse superfamilies to identify common ancestry, predict function, and, in some cases, predict specificity. This Perspective describes the findings of the original work and reviews the current understanding of structure and mechanism in the founding family members. The outcomes of the genomic enzymology approach have reached far beyond the functional assignment of members of the enolase superfamily, inspiring the study of superfamilies and the adoption of sequence similarity networks and genome context and yielding fundamental insights into enzyme evolution.
Collapse
Affiliation(s)
- Karen N Allen
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Christian P Whitman
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
3
|
Li B, Liang J, Hanfrey CC, Phillips MA, Michael AJ. Discovery of ancestral L-ornithine and L-lysine decarboxylases reveals parallel, pseudoconvergent evolution of polyamine biosynthesis. J Biol Chem 2021; 297:101219. [PMID: 34560100 PMCID: PMC8503589 DOI: 10.1016/j.jbc.2021.101219] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 11/15/2022] Open
Abstract
Polyamines are fundamental molecules of life, and their deep evolutionary history is reflected in extensive biosynthetic diversification. The polyamines putrescine, agmatine, and cadaverine are produced by pyridoxal 5'-phosphate-dependent L-ornithine, L-arginine, and L-lysine decarboxylases (ODC, ADC, LDC), respectively, from both the alanine racemase (AR) and aspartate aminotransferase (AAT) folds. Two homologous forms of AAT-fold decarboxylase are present in bacteria: an ancestral form and a derived, acid-inducible extended form containing an N-terminal fusion to the receiver-like domain of a bacterial response regulator. Only ADC was known from the ancestral form and limited to the Firmicutes phylum, whereas extended forms of ADC, ODC, and LDC are present in Proteobacteria and Firmicutes. Here, we report the discovery of ancestral form ODC, LDC, and bifunctional O/LDC and extend the phylogenetic diversity of functionally characterized ancestral ADC, ODC, and LDC to include phyla Fusobacteria, Caldiserica, Nitrospirae, and Euryarchaeota. Using purified recombinant enzymes, we show that these ancestral forms have a nascent ability to decarboxylate kinetically less preferred amino acid substrates with low efficiency, and that product inhibition primarily affects preferred substrates. We also note a correlation between the presence of ancestral ODC and ornithine/arginine auxotrophy and link this with a known symbiotic dependence on exogenous ornithine produced by species using the arginine deiminase system. Finally, we show that ADC, ODC, and LDC activities emerged independently, in parallel, in the homologous AAT-fold ancestral and extended forms. The emergence of the same ODC, ADC, and LDC activities in the nonhomologous AR-fold suggests that polyamine biosynthesis may be inevitable.
Collapse
Affiliation(s)
- Bin Li
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jue Liang
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | | | - Margaret A Phillips
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Anthony J Michael
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
4
|
Harty ML, Sharma AN, Bearne SL. Catalytic properties of the metal ion variants of mandelate racemase reveal alterations in the apparent electrophilicity of the metal cofactor. Metallomics 2020; 11:707-723. [PMID: 30843025 DOI: 10.1039/c8mt00330k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mandalate racemase (MR) from Pseudomonas putida requires a divalent metal cation, usually Mg2+, to catalyse the interconversion of the enantiomers of mandelate. Although the active site Mg2+ may be replaced by Mn2+, Co2+, or Ni2+, substitution by these metal ions does not markedly (<10-fold) alter the kinetic parameters Kappm, kappcat, and (kcat/Km)app for the substrates (R)- and (S)-mandelate, and the alternative substrate (S)-trifluorolactate. Viscosity variation experiments with Mn2+-MR showed that the metal ion plays a role in the uniform binding of the transition states for enzyme-substrate association, the chemical step, and enzyme-product dissociation. Surprisingly, the competitive inhibition constants (Ki) for inhibition of each metalloenzyme variant by benzohydroxamate did not vary significantly with the identity of the metal ion unlike the marked variation of the stability constants (K1) observed for M2+·BzH complex formation in solution. A similar trend was observed for the inhibition of the metalloenzyme variants by F-, except for Mg2+-MR, which bound F- tighter than would be predicted based on the stability constants for formation of M2+·F- complexes in solution. Thus, the enzyme modifies the enatic state of the bound metal ion cofactor so that the apparent electrophilicity of Mg2+ is enhanced, while that of Ni2+ is attenuated, resulting in a levelling effect relative to the trends observed for the free metals in solution.
Collapse
Affiliation(s)
- Matthew L Harty
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| | | | | |
Collapse
|
5
|
Holliday GL, Brown SD, Mischel D, Polacco BJ, Babbitt PC. A strategy for large-scale comparison of evolutionary- and reaction-based classifications of enzyme function. Database (Oxford) 2020; 2020:baaa034. [PMID: 32449511 PMCID: PMC7246345 DOI: 10.1093/database/baaa034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/18/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022]
Abstract
Determining the molecular function of enzymes discovered by genome sequencing represents a primary foundation for understanding many aspects of biology. Historically, classification of enzyme reactions has used the enzyme nomenclature system developed to describe the overall reactions performed by biochemically characterized enzymes, irrespective of their associated sequences. In contrast, functional classification and assignment for the millions of protein sequences of unknown function now available is largely done in two computational steps, first by similarity-based assignment of newly obtained sequences to homologous groups, followed by transferring to them the known functions of similar biochemically characterized homologs. Due to the fundamental differences in their etiologies and practice, `how' these chemistry- and evolution-centric functional classification systems relate to each other has been difficult to explore on a large scale. To investigate this issue in a new way, we integrated two published ontologies that had previously described each of these classification systems independently. The resulting infrastructure was then used to compare the functional assignments obtained from each classification system for the well-studied and functionally diverse enolase superfamily. Mapping these function assignments to protein structure and reaction similarity networks shows a profound and complex disconnect between the homology- and chemistry-based classification systems. This conclusion mirrors previous observations suggesting that except for closely related sequences, facile annotation transfer from small numbers of characterized enzymes to the huge number uncharacterized homologs to which they are related is problematic. Our extension of these comparisons to large enzyme superfamilies in a computationally intelligent manner provides a foundation for new directions in protein function prediction for the huge proportion of sequences of unknown function represented in major databases. Interactive sequence, reaction, substrate and product similarity networks computed for this work for the enolase and two other superfamilies are freely available for download from the Structure Function Linkage Database Archive (http://sfld.rbvi.ucsf.edu).
Collapse
Affiliation(s)
- Gemma L Holliday
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, 1700 4th Street, CA 94143, USA
- Present Address: Medicines Discovery Catapult, Mereside, Alderley Park, Alderley Edge SK10 4TG, UK
| | - Shoshana D Brown
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, 1700 4th Street, CA 94143, USA
| | - David Mischel
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, 1700 4th Street, CA 94143, USA
| | - Benjamin J Polacco
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, 1700 4th Street, CA 94143, USA
| | - Patricia C Babbitt
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, 1700 4th Street, CA 94143, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, 1700 4th Street, CA 94143, USA
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, 1700 4th Street, CA 94143, USA
| |
Collapse
|
6
|
QM/MM study of the reaction mechanism of Cl-cis,cis-muconate with muconate lactonizing enzyme. Bioorg Chem 2018; 80:453-460. [DOI: 10.1016/j.bioorg.2018.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 11/18/2022]
|
7
|
Zallot R, Oberg NO, Gerlt JA. 'Democratized' genomic enzymology web tools for functional assignment. Curr Opin Chem Biol 2018; 47:77-85. [PMID: 30268904 DOI: 10.1016/j.cbpa.2018.09.009] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 12/24/2022]
Abstract
The protein databases contain an exponentially growing number of sequences as a result of the recent increase in ease and decrease in cost of genome sequencing. The rate of data accumulation far exceeds the rate of functional studies, producing an increase in genomic 'dark matter', sequences for which no precise and validated function is defined. Publicly accessible, that is 'democratized,' genomic enzymology web tools are essential to leverage the protein and genome databases for discovery of the in vitro activities and in vivo functions of novel enzymes and proteins belonging to the dark matter. In this review, we discuss the use of web tools that have proven successful for functional assignment. We also describe a mechanism for ensuring the capture of published functional data so that the quality of both curated and automated annotations transfer can be improved.
Collapse
Affiliation(s)
- Rémi Zallot
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, United States
| | - Nils O Oberg
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, United States
| | - John A Gerlt
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, United States; Department of Biochemistry, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, United States; Department of Chemistry, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, United States.
| |
Collapse
|
8
|
Lee S, Kim KH, Kim HY, Choi IG. Crystal structure analysis of 3,6-anhydro-l-galactonate cycloisomerase suggests emergence of novel substrate specificity in the enolase superfamily. Biochem Biophys Res Commun 2017; 491:217-222. [PMID: 28716734 DOI: 10.1016/j.bbrc.2017.07.080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 07/03/2017] [Indexed: 12/01/2022]
Abstract
3,6-Anydro-l-galatonate cycloisomerase (ACI) catalyzes the cycloisomerization of a 3,6-anhydro-l-galactonic acid known as a novel metabolite in agarolytic bacteria. Here, we present 3-D structures of ACI from Vibrio sp. strain EJY3 (VejACI) in native and mutant forms at 2.2 Å and 2.6 Å resolutions, respectively. The enzyme belongs to the mandelate racemase subgroup of the enolase superfamily catalyzing common β-elimination reactions by α-carbon deprotonation of substrates. The structure of VejACI revealed a notable 20s loop region in the capping domain, which can be a highly conserved structural motif in ACI homologs of agar metabolism. By comparing mutant (mVejAC/H300 N) and native VejACI structures, we identified a conformational change of Ile142 in VejACI that causes spatial expansion in the binding pocket. These observations imply that Ile142 and the 20s loop play important roles in enzymatic reactivity and substrate specificity. The structural phylogenetic analysis of the enolase superfamily including ACIs revealed sequential, structural, and functional relationships related to the emergence of novel substrate specificity.
Collapse
Affiliation(s)
- Saeyoung Lee
- Department of Biotechnology, Korea University Graduate School, 5 Anam-ro, Seoungbuk-gu, Seoul, 02841, South Korea; Protein Structure Group, Korea Basic Science Institute, Ochang, Chungbuk, 28119, South Korea
| | - Kyoung Heon Kim
- Department of Biotechnology, Korea University Graduate School, 5 Anam-ro, Seoungbuk-gu, Seoul, 02841, South Korea
| | - Hye-Yeon Kim
- Protein Structure Group, Korea Basic Science Institute, Ochang, Chungbuk, 28119, South Korea; Department of Bio-Analytical Science, University of Science and Technology, Daejeon, 34133, South Korea; Center for Convergent Research of Emerging Virus Infection(CEVI), Korea Research Institute of Chemical Technology, Daejeon 34114, South Korea.
| | - In-Geol Choi
- Department of Biotechnology, Korea University Graduate School, 5 Anam-ro, Seoungbuk-gu, Seoul, 02841, South Korea.
| |
Collapse
|
9
|
Evolution of biosynthetic diversity. Biochem J 2017; 474:2277-2299. [DOI: 10.1042/bcj20160823] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/20/2017] [Accepted: 04/24/2017] [Indexed: 12/16/2022]
Abstract
Since the emergence of the last common ancestor from which all extant life evolved, the metabolite repertoire of cells has increased and diversified. Not only has the metabolite cosmos expanded, but the ways in which the same metabolites are made have diversified. Enzymes catalyzing the same reaction have evolved independently from different protein folds; the same protein fold can produce enzymes recognizing different substrates, and enzymes performing different chemistries. Genes encoding useful enzymes can be transferred between organisms and even between the major domains of life. Organisms that live in metabolite-rich environments sometimes lose the pathways that produce those same metabolites. Fusion of different protein domains results in enzymes with novel properties. This review will consider the major evolutionary mechanisms that generate biosynthetic diversity: gene duplication (and gene loss), horizontal and endosymbiotic gene transfer, and gene fusion. It will also discuss mechanisms that lead to convergence as well as divergence. To illustrate these mechanisms, one of the original metabolisms present in the last universal common ancestor will be employed: polyamine metabolism, which is essential for the growth and cell proliferation of archaea and eukaryotes, and many bacteria.
Collapse
|
10
|
Bearne SL, St Maurice M. A Paradigm for CH Bond Cleavage: Structural and Functional Aspects of Transition State Stabilization by Mandelate Racemase. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 109:113-160. [PMID: 28683916 DOI: 10.1016/bs.apcsb.2017.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mandelate racemase (MR) from Pseudomonas putida catalyzes the Mg2+-dependent, 1,1-proton transfer reaction that racemizes (R)- and (S)-mandelate. MR shares a partial reaction (i.e., the metal ion-assisted, Brønsted base-catalyzed proton abstraction of the α-proton of carboxylic acid substrates) and structural features ((β/α)7β-barrel and N-terminal α + β capping domains) with a vast group of homologous, yet functionally diverse, enzymes in the enolase superfamily. Mechanistic and structural studies have developed this enzyme into a paradigm for understanding how enzymes such as those of the enolase superfamily overcome kinetic and thermodynamic barriers to catalyze the abstraction of an α-proton from a carbon acid substrate with a relatively high pKa value. Structural studies on MR bound to intermediate/transition state analogues have delineated those structural features that MR uses to stabilize transition states and enhance reaction rates of proton abstraction. Kinetic, site-directed mutagenesis, and structural studies have also revealed that the phenyl ring of the substrate migrates through the hydrophobic cavity within the active site during catalysis and that the Brønsted acid-base catalysts (Lys 166 and His 297) may be utilized as binding determinants for inhibitor recognition. In addition, structural studies on the adduct formed from the irreversible inhibition of MR by 3-hydroxypyruvate revealed that MR can form and deprotonate a Schiff-base with 3-hydroxypyruvate to yield an enol(ate)-aldehyde adduct, suggesting a possible evolutionary link between MR and the Schiff-base forming aldolases. As the archetype of the enolase superfamily, mechanistic and structural studies on MR will continue to enhance our understanding of enzyme catalysis and furnish insights into the evolution of enzyme function.
Collapse
|
11
|
Knutson ST, Westwood BM, Leuthaeuser JB, Turner BE, Nguyendac D, Shea G, Kumar K, Hayden JD, Harper AF, Brown SD, Morris JH, Ferrin TE, Babbitt PC, Fetrow JS. An approach to functionally relevant clustering of the protein universe: Active site profile-based clustering of protein structures and sequences. Protein Sci 2017; 26:677-699. [PMID: 28054422 PMCID: PMC5368075 DOI: 10.1002/pro.3112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 12/22/2016] [Indexed: 01/11/2023]
Abstract
Protein function identification remains a significant problem. Solving this problem at the molecular functional level would allow mechanistic determinant identification-amino acids that distinguish details between functional families within a superfamily. Active site profiling was developed to identify mechanistic determinants. DASP and DASP2 were developed as tools to search sequence databases using active site profiling. Here, TuLIP (Two-Level Iterative clustering Process) is introduced as an iterative, divisive clustering process that utilizes active site profiling to separate structurally characterized superfamily members into functionally relevant clusters. Underlying TuLIP is the observation that functionally relevant families (curated by Structure-Function Linkage Database, SFLD) self-identify in DASP2 searches; clusters containing multiple functional families do not. Each TuLIP iteration produces candidate clusters, each evaluated to determine if it self-identifies using DASP2. If so, it is deemed a functionally relevant group. Divisive clustering continues until each structure is either a functionally relevant group member or a singlet. TuLIP is validated on enolase and glutathione transferase structures, superfamilies well-curated by SFLD. Correlation is strong; small numbers of structures prevent statistically significant analysis. TuLIP-identified enolase clusters are used in DASP2 GenBank searches to identify sequences sharing functional site features. Analysis shows a true positive rate of 96%, false negative rate of 4%, and maximum false positive rate of 4%. F-measure and performance analysis on the enolase search results and comparison to GEMMA and SCI-PHY demonstrate that TuLIP avoids the over-division problem of these methods. Mechanistic determinants for enolase families are evaluated and shown to correlate well with literature results.
Collapse
Affiliation(s)
- Stacy T. Knutson
- Department of PhysicsWake Forest UniversityWinston‐SalemNorth Carolina27106
- Department of Computer ScienceWake Forest UniversityWinston‐SalemNorth Carolina27106
| | - Brian M. Westwood
- Department of PhysicsWake Forest UniversityWinston‐SalemNorth Carolina27106
- Department of Computer ScienceWake Forest UniversityWinston‐SalemNorth Carolina27106
| | - Janelle B. Leuthaeuser
- Molecular Genetics and Genomics ProgramWake Forest School of MedicineWinston‐SalemNorth Carolina27157
| | - Brandon E. Turner
- Department of PhysicsWake Forest UniversityWinston‐SalemNorth Carolina27106
| | - Don Nguyendac
- Department of PhysicsWake Forest UniversityWinston‐SalemNorth Carolina27106
| | - Gabrielle Shea
- Department of PhysicsWake Forest UniversityWinston‐SalemNorth Carolina27106
| | - Kiran Kumar
- Department of PhysicsWake Forest UniversityWinston‐SalemNorth Carolina27106
| | - Julia D. Hayden
- Biochemistry Program, Dickinson CollegeCarlislePennsylvania17013
| | - Angela F. Harper
- Department of PhysicsWake Forest UniversityWinston‐SalemNorth Carolina27106
| | - Shoshana D. Brown
- Department of Pharmaceutical ChemistryUniversity of CaliforniaSan FranciscoCalifornia94158
| | - John H. Morris
- Department of Pharmaceutical ChemistryUniversity of CaliforniaSan FranciscoCalifornia94158
| | - Thomas E. Ferrin
- Department of Pharmaceutical ChemistryUniversity of CaliforniaSan FranciscoCalifornia94158
| | - Patricia C. Babbitt
- Department of Pharmaceutical ChemistryUniversity of CaliforniaSan FranciscoCalifornia94158
| | | |
Collapse
|
12
|
Bearne SL. The interdigitating loop of the enolase superfamily as a specificity binding determinant or 'flying buttress'. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:619-630. [PMID: 28179138 DOI: 10.1016/j.bbapap.2017.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/21/2016] [Accepted: 02/03/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND Enzymes of the enolase superfamily (ENS) are mechanistically diverse, yet share a common partial reaction (abstraction of the α-proton from a carboxylate substrate). While the catalytic machinery responsible for the deprotonation reaction has been conserved, divergent evolution has led to numerous ENS members that catalyze different overall reactions. This rich functional diversity has made the ENS an excellent model system for developing the approaches necessary to validate enzyme function. However, enzymes of the ENS also share a common bidomain structure ((β/α)7β-barrel domain and α+β capping domain) which makes validation of function from structural information challenging. SCOPE OF THE REVIEW This review presents a comparative survey of the structural data obtained over the past decade for enzymes from all seven subgroups that comprise the ENS. MAJOR CONCLUSIONS Of the seven ENS subgroups (enolase, mandelate racemase (MR), muconate lactonizing enzyme, β-methylaspartate ammonia lyase, d-glucarate dehydratase, d-mannonate dehydratase (ManD), and galactarate dehydratase 2), only enzymes of the MR and ManD subgroups exhibit an additional feature of structural complexity-an interdigitating loop. This loop emanates from one protomer of a homodimeric pair and penetrates into the adjacent, symmetry-related protomer to either contribute a binding determinant to the active site of the adjacent protomer, or act as a 'flying buttress' to support residues of the active site. GENERAL SIGNIFICANCE The analysis presented in this review suggests that the interdigitating loop is the only gross structural element that permits functional distinction between ENS subgroups at the tertiary level of protein structure.
Collapse
Affiliation(s)
- Stephen L Bearne
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada; Department of Chemistry, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
13
|
Abstract
The Gene Ontology (GO) (Ashburner et al., Nat Genet 25(1):25-29, 2000) is a powerful tool in the informatics arsenal of methods for evaluating annotations in a protein dataset. From identifying the nearest well annotated homologue of a protein of interest to predicting where misannotation has occurred to knowing how confident you can be in the annotations assigned to those proteins is critical. In this chapter we explore what makes an enzyme unique and how we can use GO to infer aspects of protein function based on sequence similarity. These can range from identification of misannotation or other errors in a predicted function to accurate function prediction for an enzyme of entirely unknown function. Although GO annotation applies to any gene products, we focus here a describing our approach for hierarchical classification of enzymes in the Structure-Function Linkage Database (SFLD) (Akiva et al., Nucleic Acids Res 42(Database issue):D521-530, 2014) as a guide for informed utilisation of annotation transfer based on GO terms.
Collapse
Affiliation(s)
- Gemma L Holliday
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, 1700 4th Street, San Francisco, CA, 94158, USA.
| | - Rebecca Davidson
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, 1700 4th Street, San Francisco, CA, 94158, USA
| | - Eyal Akiva
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, 1700 4th Street, San Francisco, CA, 94158, USA
| | - Patricia C Babbitt
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, 1700 4th Street, San Francisco, CA, 94158, USA
| |
Collapse
|
14
|
Leuthaeuser JB, Morris JH, Harper AF, Ferrin TE, Babbitt PC, Fetrow JS. DASP3: identification of protein sequences belonging to functionally relevant groups. BMC Bioinformatics 2016; 17:458. [PMID: 27835946 PMCID: PMC5106842 DOI: 10.1186/s12859-016-1295-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 10/20/2016] [Indexed: 01/26/2023] Open
Abstract
Background Development of automatable processes for clustering proteins into functionally relevant groups is a critical hurdle as an increasing number of sequences are deposited into databases. Experimental function determination is exceptionally time-consuming and can’t keep pace with the identification of protein sequences. A tool, DASP (Deacon Active Site Profiler), was previously developed to identify protein sequences with active site similarity to a query set. Development of two iterative, automatable methods for clustering proteins into functionally relevant groups exposed algorithmic limitations to DASP. Results The accuracy and efficiency of DASP was significantly improved through six algorithmic enhancements implemented in two stages: DASP2 and DASP3. Validation demonstrated DASP3 provides greater score separation between true positives and false positives than earlier versions. In addition, DASP3 shows similar performance to previous versions in clustering protein structures into isofunctional groups (validated against manual curation), but DASP3 gathers and clusters protein sequences into isofunctional groups more efficiently than DASP and DASP2. Conclusions DASP algorithmic enhancements resulted in improved efficiency and accuracy of identifying proteins that contain active site features similar to those of the query set. These enhancements provide incremental improvement in structure database searches and initial sequence database searches; however, the enhancements show significant improvement in iterative sequence searches, suggesting DASP3 is an appropriate tool for the iterative processes required for clustering proteins into isofunctional groups. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1295-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Janelle B Leuthaeuser
- Molecular Genetics and Genomics Program, Wake Forest University, Winston-Salem, NC, 27106, USA. .,Present address: University of Richmond, Gottwald Hall C302, Richmond, VA, 23173, USA.
| | - John H Morris
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Angela F Harper
- Department of Physics, Wake Forest University, Winston-Salem, NC, 27106, USA
| | - Thomas E Ferrin
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Patricia C Babbitt
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Jacquelyn S Fetrow
- Department of Chemistry, University of Richmond, Richmond, VA, 23173, USA
| |
Collapse
|
15
|
Biosynthesis of polyamines and polyamine-containing molecules. Biochem J 2016; 473:2315-29. [DOI: 10.1042/bcj20160185] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/22/2016] [Indexed: 12/16/2022]
Abstract
Polyamines are evolutionarily ancient polycations derived from amino acids and are pervasive in all domains of life. They are essential for cell growth and proliferation in eukaryotes and are essential, important or dispensable for growth in bacteria. Polyamines present a useful scaffold to attach other moieties to, and are often incorporated into specialized metabolism. Life has evolved multiple pathways to synthesize polyamines, and structural variants of polyamines have evolved in bacteria, archaea and eukaryotes. Among the complex biosynthetic diversity, patterns of evolutionary reiteration can be distinguished, revealing evolutionary recycling of particular protein folds and enzyme chassis. The same enzyme activities have evolved from multiple protein folds, suggesting an inevitability of evolution of polyamine biosynthesis. This review discusses the different biosynthetic strategies used in life to produce diamines, triamines, tetra-amines and branched and long-chain polyamines. It also discusses the enzymes that incorporate polyamines into specialized metabolites and attempts to place polyamine biosynthesis in an evolutionary context.
Collapse
|
16
|
Currin A, Swainston N, Day PJ, Kell DB. Synthetic biology for the directed evolution of protein biocatalysts: navigating sequence space intelligently. Chem Soc Rev 2015; 44:1172-239. [PMID: 25503938 PMCID: PMC4349129 DOI: 10.1039/c4cs00351a] [Citation(s) in RCA: 256] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Indexed: 12/21/2022]
Abstract
The amino acid sequence of a protein affects both its structure and its function. Thus, the ability to modify the sequence, and hence the structure and activity, of individual proteins in a systematic way, opens up many opportunities, both scientifically and (as we focus on here) for exploitation in biocatalysis. Modern methods of synthetic biology, whereby increasingly large sequences of DNA can be synthesised de novo, allow an unprecedented ability to engineer proteins with novel functions. However, the number of possible proteins is far too large to test individually, so we need means for navigating the 'search space' of possible protein sequences efficiently and reliably in order to find desirable activities and other properties. Enzymologists distinguish binding (Kd) and catalytic (kcat) steps. In a similar way, judicious strategies have blended design (for binding, specificity and active site modelling) with the more empirical methods of classical directed evolution (DE) for improving kcat (where natural evolution rarely seeks the highest values), especially with regard to residues distant from the active site and where the functional linkages underpinning enzyme dynamics are both unknown and hard to predict. Epistasis (where the 'best' amino acid at one site depends on that or those at others) is a notable feature of directed evolution. The aim of this review is to highlight some of the approaches that are being developed to allow us to use directed evolution to improve enzyme properties, often dramatically. We note that directed evolution differs in a number of ways from natural evolution, including in particular the available mechanisms and the likely selection pressures. Thus, we stress the opportunities afforded by techniques that enable one to map sequence to (structure and) activity in silico, as an effective means of modelling and exploring protein landscapes. Because known landscapes may be assessed and reasoned about as a whole, simultaneously, this offers opportunities for protein improvement not readily available to natural evolution on rapid timescales. Intelligent landscape navigation, informed by sequence-activity relationships and coupled to the emerging methods of synthetic biology, offers scope for the development of novel biocatalysts that are both highly active and robust.
Collapse
Affiliation(s)
- Andrew Currin
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- School of Chemistry , The University of Manchester , Manchester M13 9PL , UK
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
| | - Neil Swainston
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
- School of Computer Science , The University of Manchester , Manchester M13 9PL , UK
| | - Philip J. Day
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
- Faculty of Medical and Human Sciences , The University of Manchester , Manchester M13 9PT , UK
| | - Douglas B. Kell
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- School of Chemistry , The University of Manchester , Manchester M13 9PL , UK
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
| |
Collapse
|
17
|
Brown SD, Babbitt PC. New insights about enzyme evolution from large scale studies of sequence and structure relationships. J Biol Chem 2014; 289:30221-30228. [PMID: 25210038 PMCID: PMC4215206 DOI: 10.1074/jbc.r114.569350] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Understanding how enzymes have evolved offers clues about their structure-function relationships and mechanisms. Here, we describe evolution of functionally diverse enzyme superfamilies, each representing a large set of sequences that evolved from a common ancestor and that retain conserved features of their structures and active sites. Using several examples, we describe the different structural strategies nature has used to evolve new reaction and substrate specificities in each unique superfamily. The results provide insight about enzyme evolution that is not easily obtained from studies of one or only a few enzymes.
Collapse
Affiliation(s)
- Shoshana D Brown
- Departments of Bioengineering and Therapeutic Sciences and University of California, San Francisco, California 94158-2330
| | - Patricia C Babbitt
- Departments of Bioengineering and Therapeutic Sciences and University of California, San Francisco, California 94158-2330; Departments of Pharmaceutical Chemistry, School of Pharmacy, and University of California, San Francisco, California 94158-2330; California Institute for Quantitative Biosciences, University of California, San Francisco, California 94158-2330.
| |
Collapse
|
18
|
Kolomytseva M, Ferraroni M, Chernykh A, Golovleva L, Scozzafava A. Structural basis for the substrate specificity and the absence of dehalogenation activity in 2-chloromuconate cycloisomerase from Rhodococcus opacus 1CP. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1541-9. [DOI: 10.1016/j.bbapap.2014.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 04/09/2014] [Accepted: 04/13/2014] [Indexed: 11/26/2022]
|
19
|
Kumar G, Frantom PA. Evolutionarily Distinct Versions of the Multidomain Enzyme α-Isopropylmalate Synthase Share Discrete Mechanisms of V-Type Allosteric Regulation. Biochemistry 2014; 53:4847-56. [DOI: 10.1021/bi500702u] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Garima Kumar
- Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Patrick A. Frantom
- Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
20
|
McMillan AW, Lopez MS, Zhu M, Morse BC, Yeo IC, Amos J, Hull K, Romo D, Glasner ME. Role of an Active Site Loop in the Promiscuous Activities of Amycolatopsis sp. T-1-60 NSAR/OSBS. Biochemistry 2014; 53:4434-44. [DOI: 10.1021/bi500573v] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Andrew W. McMillan
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas 77843-2128, United States
| | - Mariana S. Lopez
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas 77843-2128, United States
| | | | - Benjamin C. Morse
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas 77843-2128, United States
| | - In-Cheol Yeo
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas 77843-2128, United States
| | - Jaleesia Amos
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas 77843-2128, United States
| | | | | | - Margaret E. Glasner
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas 77843-2128, United States
| |
Collapse
|
21
|
Loss of quaternary structure is associated with rapid sequence divergence in the OSBS family. Proc Natl Acad Sci U S A 2014; 111:8535-40. [PMID: 24872444 DOI: 10.1073/pnas.1318703111] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The rate of protein evolution is determined by a combination of selective pressure on protein function and biophysical constraints on protein folding and structure. Determining the relative contributions of these properties is an unsolved problem in molecular evolution with broad implications for protein engineering and function prediction. As a case study, we examined the structural divergence of the rapidly evolving o-succinylbenzoate synthase (OSBS) family, which catalyzes a step in menaquinone synthesis in diverse microorganisms and plants. On average, the OSBS family is much more divergent than other protein families from the same set of species, with the most divergent family members sharing <15% sequence identity. Comparing 11 representative structures revealed that loss of quaternary structure and large deletions or insertions are associated with the family's rapid evolution. Neither of these properties has been investigated in previous studies to identify factors that affect the rate of protein evolution. Intriguingly, one subfamily retained a multimeric quaternary structure and has small insertions and deletions compared with related enzymes that catalyze diverse reactions. Many proteins in this subfamily catalyze both OSBS and N-succinylamino acid racemization (NSAR). Retention of ancestral structural characteristics in the NSAR/OSBS subfamily suggests that the rate of protein evolution is not proportional to the capacity to evolve new protein functions. Instead, structural features that are conserved among proteins with diverse functions might contribute to the evolution of new functions.
Collapse
|
22
|
Casey AK, Hicks MA, Johnson JL, Babbitt PC, Frantom PA. Mechanistic and bioinformatic investigation of a conserved active site helix in α-isopropylmalate synthase from Mycobacterium tuberculosis, a member of the DRE-TIM metallolyase superfamily. Biochemistry 2014; 53:2915-25. [PMID: 24720347 PMCID: PMC4025573 DOI: 10.1021/bi500246z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The characterization of functionally diverse enzyme superfamilies provides the opportunity to identify evolutionarily conserved catalytic strategies, as well as amino acid substitutions responsible for the evolution of new functions or specificities. Isopropylmalate synthase (IPMS) belongs to the DRE-TIM metallolyase superfamily. Members of this superfamily share common active site elements, including a conserved active site helix and an HXH divalent metal binding motif, associated with stabilization of a common enolate anion intermediate. These common elements are overlaid by variations in active site architecture resulting in the evolution of a diverse set of reactions that include condensation, lyase/aldolase, and carboxyl transfer activities. Here, using IPMS, an integrated biochemical and bioinformatics approach has been utilized to investigate the catalytic role of residues on an active site helix that is conserved across the superfamily. The construction of a sequence similarity network for the DRE-TIM metallolyase superfamily allows for the biochemical results obtained with IPMS variants to be compared across superfamily members and within other condensation-catalyzing enzymes related to IPMS. A comparison of our results with previous biochemical data indicates an active site arginine residue (R80 in IPMS) is strictly required for activity across the superfamily, suggesting that it plays a key role in catalysis, most likely through enolate stabilization. In contrast, differential results obtained from substitution of the C-terminal residue of the helix (Q84 in IPMS) suggest that this residue plays a role in reaction specificity within the superfamily.
Collapse
Affiliation(s)
- Ashley K Casey
- Department of Chemistry, The University of Alabama , 250 Hackberry Lane, Tuscaloosa, Alabama 35406, United States
| | | | | | | | | |
Collapse
|
23
|
Castro-Roa D, Garcia-Pino A, De Gieter S, van Nuland NA, Loris R, Zenkin N. The Fic protein Doc uses an inverted substrate to phosphorylate and inactivate EF-Tu. Nat Chem Biol 2013; 9:811-7. [PMID: 24141193 PMCID: PMC3836179 DOI: 10.1038/nchembio.1364] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 09/06/2013] [Indexed: 01/29/2023]
Abstract
Fic proteins are ubiquitous in all of the domains of life and have critical roles in multiple cellular processes through AMPylation of (transfer of AMP to) target proteins. Doc from the doc-phd toxin-antitoxin module is a member of the Fic family and inhibits bacterial translation by an unknown mechanism. Here we show that, in contrast to having AMPylating activity, Doc is a new type of kinase that inhibits bacterial translation by phosphorylating the conserved threonine (Thr382) of the translation elongation factor EF-Tu, rendering EF-Tu unable to bind aminoacylated tRNAs. We provide evidence that EF-Tu phosphorylation diverged from AMPylation by antiparallel binding of the NTP relative to the catalytic residues of the conserved Fic catalytic core of Doc. The results bring insights into the mechanism and role of phosphorylation of EF-Tu in bacterial physiology as well as represent an example of the catalytic plasticity of enzymes and a mechanism for the evolution of new enzymatic activities.
Collapse
Affiliation(s)
- Daniel Castro-Roa
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Baddiley-Clark Building, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| | - Abel Garcia-Pino
- Structural Biology Brussels, Department of Biotechnology (DBIT), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
- Molecular Recognition Unit, Department of Structural Biology, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Steven De Gieter
- Structural Biology Brussels, Department of Biotechnology (DBIT), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
- Molecular Recognition Unit, Department of Structural Biology, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Nico A.J. van Nuland
- Structural Biology Brussels, Department of Biotechnology (DBIT), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
- Molecular Recognition Unit, Department of Structural Biology, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Remy Loris
- Structural Biology Brussels, Department of Biotechnology (DBIT), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
- Molecular Recognition Unit, Department of Structural Biology, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Nikolay Zenkin
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Baddiley-Clark Building, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| |
Collapse
|
24
|
Odokonyero D, Ragumani S, Lopez MS, Bonanno JB, Ozerova NDS, Woodard DR, Machala BW, Swaminathan S, Burley SK, Almo SC, Glasner ME. Divergent evolution of ligand binding in the o-succinylbenzoate synthase family. Biochemistry 2013; 52:7512-21. [PMID: 24060347 DOI: 10.1021/bi401176d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Thermobifida fusca o-succinylbenzoate synthase (OSBS), a member of the enolase superfamily that catalyzes a step in menaquinone biosynthesis, has an amino acid sequence that is 22 and 28% identical with those of two previously characterized OSBS enzymes from Escherichia coli and Amycolatopsis sp. T-1-60, respectively. These values are considerably lower than typical levels of sequence identity among homologous proteins that have the same function. To determine how such divergent enzymes catalyze the same reaction, we determined the structure of T. fusca OSBS and identified amino acids that are important for ligand binding. We discovered significant differences in structure and conformational flexibility between T. fusca OSBS and other members of the enolase superfamily. In particular, the 20s loop, a flexible loop in the active site that permits ligand binding and release in most enolase superfamily proteins, has a four-amino acid deletion and is well-ordered in T. fusca OSBS. Instead, the flexibility of a different region allows the substrate to enter from the other side of the active site. T. fusca OSBS was more tolerant of mutations at residues that were critical for activity in E. coli OSBS. Also, replacing active site amino acids found in one protein with the amino acids that occur at the same place in the other protein reduces the catalytic efficiency. Thus, the extraordinary divergence between these proteins does not appear to reflect a higher tolerance of mutations. Instead, large deletions outside the active site were accompanied by alteration of active site size and electrostatic interactions, resulting in small but significant differences in ligand binding.
Collapse
Affiliation(s)
- Denis Odokonyero
- Department of Biochemistry and Biophysics, Texas A&M University , 2128 TAMU, College Station, Texas 77843-2128, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Neves RPP, Sousa SF, Fernandes PA, Ramos MJ. Parameters for Molecular Dynamics Simulations of Manganese-Containing Metalloproteins. J Chem Theory Comput 2013; 9:2718-32. [DOI: 10.1021/ct400055v] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Rui P. P. Neves
- REQUIMTE,
Departamento de Química e Bioquímica,
Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Sérgio F. Sousa
- REQUIMTE,
Departamento de Química e Bioquímica,
Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Pedro A. Fernandes
- REQUIMTE,
Departamento de Química e Bioquímica,
Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Maria J. Ramos
- REQUIMTE,
Departamento de Química e Bioquímica,
Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| |
Collapse
|
26
|
Baas BJ, Zandvoort E, Geertsema EM, Poelarends GJ. Recent Advances in the Study of Enzyme Promiscuity in the Tautomerase Superfamily. Chembiochem 2013; 14:917-26. [DOI: 10.1002/cbic.201300098] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Indexed: 11/06/2022]
|
27
|
Krastanov A, Alexieva Z, Yemendzhiev H. Microbial degradation of phenol and phenolic derivatives. Eng Life Sci 2013. [DOI: 10.1002/elsc.201100227] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Albert Krastanov
- Department of Biotechnology; University of Food Technologies; Plovdiv; Bulgaria
| | - Zlatka Alexieva
- Institute of Microbiology; Bulgarian Academy of Sciences; Sofia; Bulgaria
| | - Husein Yemendzhiev
- Department of Water Technology; University “Prof. Asen Zlatarov”; Burgas; Bulgaria
| |
Collapse
|
28
|
Zhu WW, Wang C, Jipp J, Ferguson L, Lucas SN, Hicks MA, Glasner ME. Residues required for activity in Escherichia coli o-succinylbenzoate synthase (OSBS) are not conserved in all OSBS enzymes. Biochemistry 2012; 51:6171-81. [PMID: 22775324 DOI: 10.1021/bi300753j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding how enzyme specificity evolves will provide guiding principles for protein engineering and function prediction. The o-succinylbenzoate synthase (OSBS) family is an excellent model system for elucidating these principles because it has many highly divergent amino acid sequences that are <20% identical, and some members have evolved a second function. The OSBS family belongs to the enolase superfamily, members of which use a set of conserved residues to catalyze a wide variety of reactions. These residues are the only conserved residues in the OSBS family, so they are not sufficient to determine reaction specificity. Some enzymes in the OSBS family catalyze another reaction, N-succinylamino acid racemization (NSAR). NSARs cannot be segregated into a separate family because their sequences are highly similar to those of known OSBSs, and many of them have both OSBS and NSAR activities. To determine how such divergent enzymes can catalyze the same reaction and how NSAR activity evolved, we divided the OSBS family into subfamilies and compared the divergence of their active site residues. Correlating sequence conservation with the effects of mutations in Escherichia coli OSBS identified two nonconserved residues (R159 and G288) at which mutations decrease efficiency ≥200-fold. These residues are not conserved in the subfamily that includes NSAR enzymes. The OSBS/NSAR subfamily binds the substrate in a different orientation, eliminating selective pressure to retain arginine and glycine at these positions. This supports the hypothesis that specificity-determining residues have diverged in the OSBS family and provides insight into the sequence changes required for the evolution of NSAR activity.
Collapse
Affiliation(s)
- Wan Wen Zhu
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Schroeder GK, Johnson WH, Huddleston JP, Serrano H, Johnson KA, Whitman CP. Reaction of cis-3-chloroacrylic acid dehalogenase with an allene substrate, 2,3-butadienoate: hydration via an enamine. J Am Chem Soc 2011; 134:293-304. [PMID: 22129074 DOI: 10.1021/ja206873f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
cis-3-Chloroacrylic acid dehalogenase (cis-CaaD) catalyzes the hydrolytic dehalogenation of cis-3-haloacrylates to yield malonate semialdehyde. The enzyme processes other substrates including an allene (2,3-butadienoate) to produce acetoacetate. In the course of a stereochemical analysis of the cis-CaaD-catalyzed reaction using this allene, the enzyme was unexpectedly inactivated in the presence of NaBH(4) by the reduction of a covalent enzyme-substrate bond. Covalent modification was surprising because the accumulated evidence for cis-CaaD dehalogenation favored a mechanism involving direct substrate hydration mediated by Pro-1. However, the results of subsequent mechanistic, pre-steady state and full progress kinetic experiments are consistent with a mechanism in which an enamine forms between Pro-1 and the allene. Hydrolysis of the enamine or an imine tautomer produces acetoacetate. Reduction of the imine species is likely responsible for the observed enzyme inactivation. This is the first reported observation of a tautomerase superfamily member functioning by covalent catalysis. The results may suggest that some fraction of the cis-CaaD-catalyzed dehalogenation of cis-3-haloacrylates also proceeds by covalent catalysis.
Collapse
Affiliation(s)
- Gottfried K Schroeder
- Division of Medicinal Chemistry, College of Pharmacy, University of Texas, Austin, Texas 78712, USA
| | | | | | | | | | | |
Collapse
|
30
|
Gerlt JA, Babbitt PC, Jacobson MP, Almo SC. Divergent evolution in enolase superfamily: strategies for assigning functions. J Biol Chem 2011; 287:29-34. [PMID: 22069326 DOI: 10.1074/jbc.r111.240945] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nature's strategies for evolving catalytic functions can be deciphered from the information contained in the rapidly expanding protein sequence databases. However, the functions of many proteins in the protein sequence and structure databases are either uncertain (too divergent to assign function based on homology) or unknown (no homologs), thereby limiting the utility of the databases. The mechanistically diverse enolase superfamily is a paradigm for understanding the structural bases for evolution of enzymatic function. We describe strategies for assigning functions to members of the enolase superfamily that should be applicable to other superfamilies.
Collapse
Affiliation(s)
- John A Gerlt
- Departments of Biochemistry and Chemistry and The Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801.
| | - Patricia C Babbitt
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, 94143
| | - Matthew P Jacobson
- Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, California 94143
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York 10461
| |
Collapse
|
31
|
Kaul P, Asano Y. Strategies for discovery and improvement of enzyme function: state of the art and opportunities. Microb Biotechnol 2011; 5:18-33. [PMID: 21883976 PMCID: PMC3815269 DOI: 10.1111/j.1751-7915.2011.00280.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Developments in biocatalysis have been largely fuelled by consumer demands for new products, industrial attempts to improving existing process and minimizing waste, coupled with governmental measures to regulate consumer safety along with scientific advancements. One of the major hurdles to application of biocatalysis to chemical synthesis is unavailability of the desired enzyme to catalyse the reaction to allow for a viable process development. Even when the desired enzyme is available it often forces the process engineers to alter process parameters due to inadequacies of the enzyme, such as instability, inhibition, low yield or selectivity, etc. Developments in the field of enzyme or reaction engineering have allowed access to means to achieve the ends, such as directed evolution, de novo protein design, use of non‐conventional media, using new substrates for old enzymes, active‐site imprinting, altering temperature, etc. Utilization of enzyme discovery and improvement tools therefore provides a feasible means to overcome this problem. Judicious employment of these tools has resulted in significant advancements that have leveraged the research from laboratory to market thus impacting economic growth; however, there are further opportunities that have not yet been explored. The present review attempts to highlight some of these achievements and potential opportunities.
Collapse
Affiliation(s)
- Praveen Kaul
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Hauz Khas, New Delhi - 110 016, India
| | | |
Collapse
|
32
|
Insight into the reaction mechanism of cis,cis-muconate lactonizing enzymes: a DFT QM/MM study. J Mol Model 2011; 18:525-31. [PMID: 21541743 DOI: 10.1007/s00894-011-1088-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Accepted: 04/07/2011] [Indexed: 10/18/2022]
Abstract
MLEs derived from mycobacterium smegmatis and seudomonas fluorescens share ∼76% identity and have a very similar arrangement of catalytic residues in their active site configuration. However, while they catalyze the conversion of cis,cis-muconate to the same achiral product, muconolactone, studies in deuterated solvent surprisingly show that the cyclo-isomerization proceeds with the formation of a chiral product. In this paper we discuss the application of DFT QM/MM calculations on both MLEs, to our knowledge the first reported in the literature on this protein. We investigate the proposal that the base involved in the catalytic reaction is the lysine residue found at the end of the 2(nd) strand given: (a) that the lysine residue at the end of the 6(th) strand is in an apparently equally effective position to catalyze reaction and (b) that the structural related epimerase in-fact achieve their stereo-specific outcomes by relying on either the base from the 2(nd) or 6(th) strand.
Collapse
|
33
|
Crystal structure of PG16 and chimeric dissection with somatically related PG9: structure-function analysis of two quaternary-specific antibodies that effectively neutralize HIV-1. J Virol 2010; 84:8098-110. [PMID: 20538861 DOI: 10.1128/jvi.00966-10] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HIV-1 resists neutralization by most antibodies. Two somatically related human antibodies, PG9 and PG16, however, each neutralize 70 to 80% of circulating HIV-1 isolates. Here we present the structure of the antigen-binding fragment of PG16 in monoclinic and orthorhombic lattices at 2.4 and 4.0 A, respectively, and use a combination of structural analysis, paratope dissection, and neutralization assessment to determine the functional relevance of three unusual PG9/PG16 features: N-linked glycosylation, extensive affinity maturation, and a heavy chain-third complementarity-determining region (CDR H3) that is one of the longest observed in human antibodies. Glycosylation extended off the side of the light chain variable domain and was not required for neutralization. The CDR H3 formed an axe-shaped subdomain, which comprised 42% of the CDR surface, with the axe head looming approximately 20 A above the other combining loops. Comprehensive sets of chimeric swaps between PG9 and PG16 of light chain, heavy chain, and CDR H3 were employed to decipher structure-function relationships. Chimeric swaps generally complemented functionally, with differences in PG9/PG16 neutralization related primarily to residue differences in CDR H3. Meanwhile, chimeric reversions to genomic V genes showed isolate-dependent effects, with affinity maturation playing a significant role in augmenting neutralization breadth (P = 0.036) and potency (P < 0.0001). The structural and functional details of extraordinary CDR H3 and extensive affinity maturation provide insights into the neutralization mechanism of and the elicitation pathway for broadly neutralizing antibodies like PG9 and PG16.
Collapse
|
34
|
|