1
|
Lombardo Z, Mukerji I. Site-Specific Investigation of DNA Holliday Junction Dynamics and Structure with 6-Methylisoxanthopterin, a Fluorescent Guanine Analog. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.590264. [PMID: 38659790 PMCID: PMC11042373 DOI: 10.1101/2024.04.19.590264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
DNA Holliday Junction (HJ) formation and resolution is requisite for maintaining genomic stability in processes such as replication fork reversal and double-strand break repair. If HJs are not resolved, chromosome disjunction and aneuploidy result, hallmarks of tumor cells. To understand the structural features that lead to processing of these four-stranded joint molecule structures, we seek to identify structural and dynamic features unique to the central junction core. We incorporate the fluorescent guanine analog 6-methylisoxanthopterin (6-MI) at ten different locations throughout a model HJ structure to obtain site-specific information regarding the structure and dynamics of bases relative to those in a comparable sequence context in duplex DNA. These comparisons were accomplished through measuring fluorescence lifetime, relative brightness, fluorescence anisotropy, and thermodynamic stability, along with fluorescence quenching assays. These time-resolved and steady-state fluorescence measurements demonstrate that the structural distortions imposed by strand crossing result in increased solvent exposure, less stacking of bases and greater extrahelical nature of bases within the junction core. The 6-MI base analogs in the junction reflect these structural changes through an increase in intensity relative to those in the duplex. Molecular dynamics simulations performed using a model HJ indicate the primary sources of deformation are in the shift and twist parameters of the bases at the central junction step. These results suggest that junction-binding proteins may use the unique structure and dynamics of the bases at the core for recognition.
Collapse
Affiliation(s)
- Zane Lombardo
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, 52 Lawn Ave, Middletown, Connecticut 06459, United States
| | - Ishita Mukerji
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, 52 Lawn Ave, Middletown, Connecticut 06459, United States
| |
Collapse
|
2
|
Lombardo Z, Mukerji I. Site-specific investigation of DNA Holliday Junction dynamics and structure with 6-Methylisoxanthopterin, a fluorescent guanine analog. TRENDS IN PHOTOCHEMISTRY & PHOTOBIOLOGY 2023; 22:85-102. [PMID: 39371247 PMCID: PMC11450702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
DNA Holliday Junction (HJ) formation and resolution is requisite for maintaining genomic stability in processes such as replication fork reversal and double-strand break repair. If HJs are not resolved, chromosome disjunction and aneuploidy result, hallmarks of tumor cells. To understand the structural features that lead to processing of these four-stranded joint molecule structures, we seek to identify structural and dynamic features unique to the central junction core. We incorporated the fluorescent guanine analog 6-methylisoxanthopterin (6-MI) at ten different locations throughout a model HJ structure to obtain site-specific information regarding the structure and dynamics of bases relative to those in a comparable sequence context in duplex DNA. These comparisons were accomplished through measuring fluorescence lifetime, relative brightness, fluorescence anisotropy, and quenching assays. These time-resolved and steady-state fluorescence measurements demonstrate that the structural distortions imposed by strand crossing result in increased solvent exposure, less stacking of bases and greater extrahelical nature of bases within the junction core. The 6-MI base analogs in the junction reflect these structural changes through an increase in intensity relative to those in the duplex. Molecular dynamics simulations performed using a model HJ indicate that the primary sources of deformation are in the shift and twist parameters of the bases at the central junction step. These results suggest that junction-binding proteins may use the unique structure and dynamics of the bases at the core for recognition.
Collapse
Affiliation(s)
- Zane Lombardo
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, 52 Lawn Ave, Middletown, Connecticut 06459, USA
| | - Ishita Mukerji
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, 52 Lawn Ave, Middletown, Connecticut 06459, USA
| |
Collapse
|
3
|
Dziuba D. Environmentally sensitive fluorescent nucleoside analogues as probes for nucleic acid - protein interactions: molecular design and biosensing applications. Methods Appl Fluoresc 2022; 10. [PMID: 35738250 DOI: 10.1088/2050-6120/ac7bd8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/23/2022] [Indexed: 11/12/2022]
Abstract
Fluorescent nucleoside analogues (FNAs) are indispensable in studying the interactions of nucleic acids with nucleic acid-binding proteins. By replacing one of the poorly emissive natural nucleosides, FNAs enable real-time optical monitoring of the binding interactions in solutions, under physiologically relevant conditions, with high sensitivity. Besides that, FNAs are widely used to probe conformational dynamics of biomolecular complexes using time-resolved fluorescence methods. Because of that, FNAs are tools of high utility for fundamental biological research, with potential applications in molecular diagnostics and drug discovery. Here I review the structural and physical factors that can be used for the conversion of the molecular binding events into a detectable fluorescence output. Typical environmentally sensitive FNAs, their properties and applications, and future challenges in the field are discussed.
Collapse
Affiliation(s)
- Dmytro Dziuba
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden, Grand Est, 67401, FRANCE
| |
Collapse
|
4
|
Thienoguanosine, a unique non-perturbing reporter for investigating rotational dynamics of DNA duplexes and their complexes with proteins. Int J Biol Macromol 2022; 213:210-225. [DOI: 10.1016/j.ijbiomac.2022.05.162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/02/2022] [Accepted: 05/23/2022] [Indexed: 11/05/2022]
|
5
|
Dziuba D, Didier P, Ciaco S, Barth A, Seidel CAM, Mély Y. Fundamental photophysics of isomorphic and expanded fluorescent nucleoside analogues. Chem Soc Rev 2021; 50:7062-7107. [PMID: 33956014 DOI: 10.1039/d1cs00194a] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fluorescent nucleoside analogues (FNAs) are structurally diverse mimics of the natural essentially non-fluorescent nucleosides which have found numerous applications in probing the structure and dynamics of nucleic acids as well as their interactions with various biomolecules. In order to minimize disturbance in the labelled nucleic acid sequences, the FNA chromophoric groups should resemble the natural nucleobases in size and hydrogen-bonding patterns. Isomorphic and expanded FNAs are the two groups that best meet the criteria of non-perturbing fluorescent labels for DNA and RNA. Significant progress has been made over the past decades in understanding the fundamental photophysics that governs the spectroscopic and environmentally sensitive properties of these FNAs. Herein, we review recent advances in the spectroscopic and computational studies of selected isomorphic and expanded FNAs. We also show how this information can be used as a rational basis to design new FNAs, select appropriate sequences for optimal spectroscopic response and interpret fluorescence data in FNA applications.
Collapse
Affiliation(s)
- Dmytro Dziuba
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| | - Pascal Didier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| | - Stefano Ciaco
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France. and Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Anders Barth
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Claus A M Seidel
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| |
Collapse
|
6
|
Mariam J, Krishnamoorthy G, Anand R. Use of 6‐Methylisoxanthopterin, a Fluorescent Guanine Analog, to Probe Fob1‐Mediated Dynamics at the Stalling Fork Barrier DNA Sequences. Chem Asian J 2019; 14:4760-4766. [DOI: 10.1002/asia.201901061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/19/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Jessy Mariam
- Department of ChemistryIndian Institute of Technology Bombay Powai Mumbai 400076 Maharashtra India
| | | | - Ruchi Anand
- Department of ChemistryIndian Institute of Technology Bombay Powai Mumbai 400076 Maharashtra India
| |
Collapse
|
7
|
Mismatch Recognition by Saccharomyces cerevisiae Msh2-Msh6: Role of Structure and Dynamics. Int J Mol Sci 2019; 20:ijms20174271. [PMID: 31480444 PMCID: PMC6747400 DOI: 10.3390/ijms20174271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 12/12/2022] Open
Abstract
The mismatch repair (MMR) pathway maintains genome integrity by correcting errors such as mismatched base pairs formed during DNA replication. In MMR, Msh2–Msh6, a heterodimeric protein, targets single base mismatches and small insertion/deletion loops for repair. By incorporating the fluorescent nucleoside base analog 6-methylisoxanthopterin (6-MI) at or adjacent to a mismatch site to probe the structural and dynamic elements of the mismatch, we address how Msh2–Msh6 recognizes these mismatches for repair within the context of matched DNA. Fluorescence quantum yield and rotational correlation time measurements indicate that local base dynamics linearly correlate with Saccharomyces cerevisiae Msh2–Msh6 binding affinity where the protein exhibits a higher affinity (KD ≤ 25 nM) for mismatches that have a significant amount of dynamic motion. Energy transfer measurements measuring global DNA bending find that mismatches that are both well and poorly recognized by Msh2–Msh6 experience the same amount of protein-induced bending. Finally, base-specific dynamics coupled with protein-induced blue shifts in peak emission strongly support the crystallographic model of directional binding, in which Phe 432 of Msh6 intercalates 3′ of the mismatch. These results imply an important role for local base dynamics in the initial recognition step of MMR.
Collapse
|
8
|
Fluorescent nucleobases as tools for studying DNA and RNA. Nat Chem 2017; 9:1043-1055. [PMID: 29064490 DOI: 10.1038/nchem.2859] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/11/2017] [Indexed: 02/07/2023]
Abstract
Understanding the diversity of dynamic structures and functions of DNA and RNA in biology requires tools that can selectively and intimately probe these biomolecules. Synthetic fluorescent nucleobases that can be incorporated into nucleic acids alongside their natural counterparts have emerged as a powerful class of molecular reporters of location and environment. They are enabling new basic insights into DNA and RNA, and are facilitating a broad range of new technologies with chemical, biological and biomedical applications. In this Review, we will present a brief history of the development of fluorescent nucleobases and explore their utility as tools for addressing questions in biophysics, biochemistry and biology of nucleic acids. We provide chemical insights into the two main classes of these compounds: canonical and non-canonical nucleobases. A point-by-point discussion of the advantages and disadvantages of both types of fluorescent nucleobases is made, along with a perspective into the future challenges and outlook for this burgeoning field.
Collapse
|
9
|
Park JH, Lee HS, Jang MD, Han SW, Kim SK, Lee YA. Enantioselective light switch effect of Δ- and Λ-[Ru(phenanthroline)2 dipyrido[3,2-a:2′, 3′-c]phenazine]2+ bound to G-quadruplex DNA. J Biomol Struct Dyn 2017. [DOI: 10.1080/07391102.2017.1345324] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Jin Ha Park
- Department of Chemistry, Yeungnam University, Gyeongsan, Gyeong-buk, 38541, Republic of Korea
| | - Hyun Suk Lee
- Department of Chemistry, Yeungnam University, Gyeongsan, Gyeong-buk, 38541, Republic of Korea
| | - Myung Duk Jang
- Department of Materials and Engineering, Kyungwoon University, Kumi City, Gyeong-buk, 39253, Republic of Korea
| | - Sung Wook Han
- Department of Health & Biotechnology, Kyungwoon University, Kumi City, Gyeong-buk, 39253, Republic of Korea
| | - Seog K. Kim
- Department of Chemistry, Yeungnam University, Gyeongsan, Gyeong-buk, 38541, Republic of Korea
| | - Young-Ae Lee
- Department of Chemistry, Yeungnam University, Gyeongsan, Gyeong-buk, 38541, Republic of Korea
| |
Collapse
|
10
|
Han JH, Chitrapriya N, Lee HS, Lee YA, Kim SK, Jung MJ. Behavior of the Guanine Base in G-quadruplexes Probed by the Fluorescent Guanine Analog, 6-Methyl Isoxanthopterin. B KOREAN CHEM SOC 2017. [DOI: 10.1002/bkcs.11060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ji Hoon Han
- Department of Chemistry; Yeungnam University; Gyeongsan 38541 Republic of Korea
| | - Nataraj Chitrapriya
- Department of Chemistry; Yeungnam University; Gyeongsan 38541 Republic of Korea
| | - Hyun Suk Lee
- Department of Chemistry; Yeungnam University; Gyeongsan 38541 Republic of Korea
| | - Young-Ae Lee
- Department of Chemistry; Yeungnam University; Gyeongsan 38541 Republic of Korea
| | - Seog K. Kim
- Department of Chemistry; Yeungnam University; Gyeongsan 38541 Republic of Korea
| | - Maeng-Joon Jung
- Department of Chemistry; Kyungpook National University; Daegu 41566 Republic of Korea
| |
Collapse
|
11
|
Moreno A, Knee JL, Mukerji I. Photophysical Characterization of Enhanced 6-Methylisoxanthopterin Fluorescence in Duplex DNA. J Phys Chem B 2016; 120:12232-12248. [PMID: 27934220 DOI: 10.1021/acs.jpcb.6b07369] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The structure and dynamic motions of bases in DNA duplexes and other constructs are important for understanding mechanisms of selectivity and recognition of DNA-binding proteins. The fluorescent guanine analogue, 6-methylisoxanthopterin 6-MI, is well suited to this purpose as it exhibits an unexpected 3- to 4-fold increase in relative quantum yield upon duplex formation when incorporated into the following sequences: ATFAA, AAFTA, or ATFTA (where F represents 6-MI). To better understand some of the factors leading to the 6-MI fluorescence increase upon duplex formation, we characterized the effect of local sequence and structural perturbations on 6-MI photophysics through temperature melts, quantum yield measurements, fluorescence quenching assays, and fluorescence lifetime measurements. By examining 21 sequences we have determined that the duplex-enhanced fluorescence (DEF) depends on the composition of bases adjacent to 6-MI and the presence of adenines at locations n ± 2 from the probe. Investigation of duplex stability and local solvent accessibility measurements support a model in which the DEF arises from a constrained geometry of 6-MI in the duplex, which remains H-bonded to cytosine, stacked with adjacent bases and inaccessible to quenchers. Perturbation of DNA structure through the introduction of an unpaired base 3' to 6-MI or a mismatched basepair increases 6-MI dynamic motion leading to fluorescence quenching and a reduction in quantum yield. Molecular dynamics simulations suggest the enhanced fluorescence results from a greater degree of twist at the X-F step relative to the quenched duplexes examined. These results point to a model where adenine residues located at n ± 2 from 6-MI induce a structural geometry with greater twist in the duplex that hinders local motion reducing dynamic quenching and producing an increase in 6-MI fluorescence.
Collapse
Affiliation(s)
- Andrew Moreno
- Departments of Chemistry and ‡Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University , 52 Lawn Ave, Middletown, Connecticut 06459, United States
| | - J L Knee
- Departments of Chemistry and ‡Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University , 52 Lawn Ave, Middletown, Connecticut 06459, United States
| | - Ishita Mukerji
- Departments of Chemistry and ‡Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University , 52 Lawn Ave, Middletown, Connecticut 06459, United States
| |
Collapse
|
12
|
Johnson NP, Ji H, Steinberg TH, von Hippel PH, Marcus AH. Sequence-Dependent Conformational Heterogeneity and Proton-Transfer Reactivity of the Fluorescent Guanine Analogue 6-Methyl Isoxanthopterin (6-MI) in DNA. J Phys Chem B 2015; 119:12798-807. [PMID: 26368400 DOI: 10.1021/acs.jpcb.5b06361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The local conformations of individual nucleic acid bases in DNA are important components in processes fundamental to gene regulation. Fluorescent nucleic acid base analogues, which can be substituted for natural bases in DNA, can serve as useful spectroscopic probes of average local base conformation and conformational heterogeneity. Here we report excitation-emission peak shift (EES) measurements of the fluorescent guanine (G) analogue 6-methyl isoxanthoptherin (6-MI), both as a ribonucleotide monophosphate (NMP) in solution and as a site-specific substituent for G in various DNA constructs. Changes in the peak positions of the fluorescence spectra as a function of excitation energy indicate that distinct subpopulations of conformational states exist in these samples on time scales longer than the fluorescence lifetime. Our pH-dependent measurements of the 6-MI NMP in solution show that these states can be identified as protonated and deprotonated forms of the 6-MI fluorescent probe. We implement a simple two-state model, which includes four vibrationally coupled electronic levels to estimate the free energy change, the free energy of activation, and the equilibrium constant for the proton transfer reaction. These parameters vary in single-stranded and duplex DNA constructs, and also depend on the sequence context of flanking bases. Our results suggest that proton transfer in 6-MI-substituted DNA constructs is coupled to conformational heterogeneity of the probe base, and can be interpreted to suggest that Watson-Crick base pairing between 6-MI and its complementary cytosine in duplex DNA involves a "low-barrier-hydrogen-bond". These findings may be important in using the 6-MI probe to understand local base conformational fluctuations, which likely play a central role in protein-DNA and ligand-DNA interactions.
Collapse
Affiliation(s)
- Neil P Johnson
- Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon , Eugene, Oregon 97403, United States.,Oregon Center for Optics and Department of Chemistry and Biochemistry, University of Oregon , Eugene, Oregon 97403, United States
| | - Huiying Ji
- Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon , Eugene, Oregon 97403, United States.,Oregon Center for Optics and Department of Chemistry and Biochemistry, University of Oregon , Eugene, Oregon 97403, United States
| | - Thomas H Steinberg
- Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon , Eugene, Oregon 97403, United States
| | - Peter H von Hippel
- Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon , Eugene, Oregon 97403, United States
| | - Andrew H Marcus
- Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon , Eugene, Oregon 97403, United States.,Oregon Center for Optics and Department of Chemistry and Biochemistry, University of Oregon , Eugene, Oregon 97403, United States
| |
Collapse
|
13
|
Chen L, Chao H, Zhao Q, Li H. Unique Optical Oxygen-Sensing Performance of [Ru(IP)2(HNAIP)]2+ during the Groove-Binding-Induced B-to-Z DNA Conformational Transition. Inorg Chem 2015; 54:8281-7. [DOI: 10.1021/acs.inorgchem.5b00862] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Linlin Chen
- School of Chemistry and Environment, South China Normal University, Guangzhou 510006, P. R. China
| | - Hui Chao
- Department of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Qianwen Zhao
- School of Chemistry and Environment, South China Normal University, Guangzhou 510006, P. R. China
| | - Hong Li
- School of Chemistry and Environment, South China Normal University, Guangzhou 510006, P. R. China
| |
Collapse
|
14
|
Xu J, Chen B, Callis P, Muiño PL, Rozeboom H, Broos J, Toptygin D, Brand L, Knutson JR. Picosecond fluorescence dynamics of tryptophan and 5-fluorotryptophan in monellin: slow water-protein relaxation unmasked. J Phys Chem B 2015; 119:4230-9. [PMID: 25710196 PMCID: PMC7477844 DOI: 10.1021/acs.jpcb.5b01651] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Time dependent fluorescence Stokes (emission wavelength) shifts (TDFSS) from tryptophan (Trp) following sub-picosecond excitation are increasingly used to investigate protein dynamics, most recently enabling active research interest into water dynamics near the surface of proteins. Unlike many fluorescence probes, both the efficiency and the wavelength of Trp fluorescence in proteins are highly sensitive to microenvironment, and Stokes shifts can be dominated by the well-known heterogeneous nature of protein structure, leading to what we call pseudo-TDFSS: shifts that arise from differential decay rates of subpopulations. Here we emphasize a novel, general method that obviates pseudo-TDFSS by replacing Trp by 5-fluorotryptophan (5Ftrp), a fluorescent analogue with higher ionization potential and greatly suppressed electron-transfer quenching. 5FTrp slows and suppresses pseudo-TDFSS, thereby providing a clearer view of genuine relaxation caused by solvent and protein response. This procedure is applied to the sweet-tasting protein monellin which has uniquely been the subject of ultrafast studies in two different laboratories (Peon, J.; et al. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 10964; Xu, J.; et al. J. Am. Chem. Soc. 2006, 128, 1214) that led to disparate interpretations of a 20 ps transient. They differed because of the pseudo-TDFSS present. The current study exploiting special properties of 5FTrp strongly supports the conclusion that both lifetime heterogeneity-based TDFSS and environment relaxation-based TDFSS are present in monellin and 5FTrp-monellin. The original experiments on monellin were most likely dominated by pseudo-TDFSS, whereas, in the present investigation of 5FTrp-monellin, the TDFSS is dominated by relaxation and any residual pseudo-TDFSS is overwhelmed and/or slowed to irrelevance.
Collapse
Affiliation(s)
- Jianhua Xu
- Optical Spectroscopy Section, Laboratory of Molecular Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Binbin Chen
- Optical Spectroscopy Section, Laboratory of Molecular Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Patrik Callis
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Pedro L. Muiño
- Department of Chemistry, Saint Francis University, Loretto, Pennsylvania 15940, United States
| | - Henriëtte Rozeboom
- Department of Biophysical Chemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Jaap Broos
- Department of Biophysical Chemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Dmitri Toptygin
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Ludwig Brand
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Jay R. Knutson
- Optical Spectroscopy Section, Laboratory of Molecular Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
15
|
Binding phenomena and fluorescence quenching. I: Descriptive quantum principles of fluorescence quenching using a supermolecule approach. J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2014.04.050] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Barlev A, Sen D. Catalytic DNAs that harness violet light to repair thymine dimers in a DNA substrate. J Am Chem Soc 2013; 135:2596-603. [PMID: 23347049 DOI: 10.1021/ja309638j] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
UV1C is an in vitro selected catalytic DNA that shows efficient photolyase activity, using light of <310 nm wavelength to photo-reactivate CPD thymine dimers within a substrate DNA. We show here that a minimal mutational strategy of substituting a guanine analogue, 6MI, for single guanine residues within UV1C extends the DNAzyme's activity into the violet region of the spectrum. These 6MI point mutant DNAzymes fall into three distinct functional classes, which photo-reactivate the thymine dimer along different pathways. Cumulatively, they reveal the modus operandi of the original UV1C DNAzyme to be a surprisingly versatile one. The interchangeable properties of no less than six of the G→6MI point mutants highlight UV1C's built-in functional flexibility, which may serve as a starting point for the creation of efficient, visible light-harnessing, photolyase DNAzymes for either the prophylaxis or therapy of UV damage to human skin.
Collapse
Affiliation(s)
- Adam Barlev
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | | |
Collapse
|
17
|
Bag SS, Talukdar S, Matsumoto K, Kundu R. Triazolyl donor/acceptor chromophore decorated unnatural nucleosides and oligonucleotides with duplex stability comparable to that of a natural adenine/thymine pair. J Org Chem 2012; 78:278-91. [PMID: 23171090 DOI: 10.1021/jo302033f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We report the design and synthesis of triazolyl donor/acceptor unnatural nucleosides via click chemistry and studies on the duplex stabilization of DNA containing two such new nucleosides. The observed duplex stabilization among the self-pair/heteropair has been found to be comparable to that of a natural A/T pair. Our observations on the comparable duplex stabilization has been explained on the basis of possible π-π stacking and/or charge transfer interactions between the pairing partners. The evidence of ground-state charge transfer complexation came from the UV-vis spectra and the static quenching of fluorescence in a heteropair. We have also exploited one of our unnatural DNAs in stabilizing abasic DNA.
Collapse
Affiliation(s)
- Subhendu Sekhar Bag
- Bio-organic Chemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Guwahati-781039, India.
| | | | | | | |
Collapse
|
18
|
Widom JR, Rappoport D, Perdomo-Ortiz A, Thomsen H, Johnson NP, von Hippel PH, Aspuru-Guzik A, Marcus AH. Electronic transition moments of 6-methyl isoxanthopterin--a fluorescent analogue of the nucleic acid base guanine. Nucleic Acids Res 2012. [PMID: 23185042 PMCID: PMC3553960 DOI: 10.1093/nar/gks1148] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Fluorescent nucleic acid base analogues are important spectroscopic tools for understanding local structure and dynamics of DNA and RNA. We studied the orientations and magnitudes of the electric dipole transition moments (EDTMs) of 6-methyl isoxanthopterin (6-MI), a fluorescent analogue of guanine that has been particularly useful in biological studies. Using a combination of absorption spectroscopy, linear dichroism (LD) and quantum chemical calculations, we identified six electronic transitions that occur within the 25 000–50 000 cm−1 spectral range. Our results indicate that the two experimentally observed lowest-energy transitions, which occur at 29 687 cm−1 (337 nm) and 34 596 cm−1 (289 nm), are each polarized within the plane of the 6-MI base. A third in-plane polarized transition is experimentally observed at 47 547 cm−1 (210 nm). The theoretically predicted orientation of the lowest-energy transition moment agrees well with experiment. Based on these results, we constructed an exciton model to describe the absorption spectra of a 6-MI dinucleotide–substituted double-stranded DNA construct. This model is in good agreement with the experimental data. The orientations and intensities of the low-energy electronic transitions of 6-MI reported here should be useful for studying local conformations of DNA and RNA in biologically important complexes.
Collapse
Affiliation(s)
- Julia R Widom
- Oregon Center for Optics, Department of Chemistry, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Moreno A, Knee J, Mukerji I. Applying 6-methylisoxanthopterin-enhanced fluorescence to examine protein-DNA interactions in the picomolar range. Biochemistry 2012; 51:6847-59. [PMID: 22849374 DOI: 10.1021/bi300466d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Incorporation of fluorescent nucleoside analogues into duplex DNA usually leads to a reduction in quantum yield, which significantly limits their potential use and application. We have identified two pentamer DNA sequences containing 6-methylisoxanthopterin (6-MI) (ATFAA and AAFTA, where F is 6-MI) that exhibit significant enhancement of fluorescence upon formation of duplex DNA with quantum yields close to that of monomeric 6-MI. The enhanced fluorescence dramatically increases the utility and sensitivity of the probe and is used to study protein-DNA interactions of nanomolar specificity in this work. The increased sensitivity of 6-MI allows anisotropy binding measurements to be performed at DNA concentrations of 1 nM and fluorescence intensity measurements at 50 pM DNA. The ATFAA sequence was incorporated into DNA constructs to measure the binding affinity of four different protein-DNA interactions that exhibit sequence-specific and non-sequence-specific recognition. In all cases, the K(d) values obtained were consistent with previously reported values measured by other methods. Time-resolved and steady-state fluorescence measurements demonstrate that 6-MI fluorescence is very sensitive to local distortion and reports on different degrees of protein-induced perturbations with single-base resolution, where the largest changes occur at the site of protein binding.
Collapse
Affiliation(s)
- Andrew Moreno
- Departments of Chemistry and Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, 52 Lawn Avenue, Middletown, CT 06459, USA
| | | | | |
Collapse
|
20
|
Kodali G, Narayanan M, Stanley RJ. Excited-state electronic properties of 6-methylisoxanthopterin (6-MI): an experimental and theoretical study. J Phys Chem B 2012; 116:2981-9. [PMID: 22276652 DOI: 10.1021/jp2110083] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
6-Methylisoxanthopterin (6-MI) is a pteridine-based guanine analog that has a red-shifted absorption and high fluorescence quantum yield. Its Watson-Crick base-pairing and base stacking properties are similar to guanine. The fluorescence quantum yield of 6-MI is sensitive to its nearest neighbors and base stacking, making it a very useful real-time probe of DNA structure. The fundamental photophysics underlying this fluorescence quenching by base stacking is not well understood. We have explored the excited-state electronic structure of the 6-MI in frozen 77 K LiCl glasses using Stark spectroscopy. These measurements yielded the direction and degree of charge redistribution for the S(0)→S(1) transition as manifested in the difference dipole moment, Δμ(01), and difference static polarizability, TrΔα. TDDFT (time-dependent density functional theory) was employed to calculate the transition energy, oscillator strength, and the dipole moments of the ground and lowest optically bright excited state of 6-MI (S(0)→S(1)). The direction of Δμ(01) was assigned in the molecular frame based on the Stark data and calculations. These results suggest that the C4═O and C2-NH(2) groups are electron-deficient in the excited state, a very different outcome compared with guanine. This implies that Watson-Crick hydrogen bonding in 6-MI may be modulated by absorption of a photon so as to strengthen base pairing, if only transiently. Solvatochromism was also obtained for the absorption and emission spectra of 6-MI in various solvents and compared with the Stark spectroscopic results using both the Lippert-Mataga and Bakhshiev models.
Collapse
Affiliation(s)
- Goutham Kodali
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| | | | | |
Collapse
|
21
|
Datta K, Johnson NP, Villani G, Marcus AH, von Hippel PH. Characterization of the 6-methyl isoxanthopterin (6-MI) base analog dimer, a spectroscopic probe for monitoring guanine base conformations at specific sites in nucleic acids. Nucleic Acids Res 2011; 40:1191-202. [PMID: 22009678 PMCID: PMC3273825 DOI: 10.1093/nar/gkr858] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We here characterize local conformations of site-specifically placed pairs of guanine (G) residues in RNA and DNA, using 6-methyl isoxanthopterin (6-MI) as a conformational probe. 6-MI is a base analog of G and spectroscopic signals obtained from pairs of adjacent 6-MI residues reflect base–base interactions that are sensitive to the sequence context, local DNA conformation and solvent environment of the probe bases. CD signals show strong exciton coupling between stacked 6-MI bases in double-stranded (ds) DNA; this coupling is reduced in single-stranded (ss) DNA sequences. Solvent interactions reduce the fluorescence of the dimer probe more efficiently in ssDNA than dsDNA, while self-quenching between 6-MI bases is enhanced in dsDNA. 6-MI dimer probes closely resemble adjacent GG residues, in that these probes have minimal effects on the stability of dsDNA and on interactions with solvent additive betaine. They also serve as effective template bases, although further polymerase-dependent extension of DNA primers past 6-MI template bases is significantly inhibited. These probes are also used to monitor DNA ‘breathing’ at model replication forks. The 6-MI dimer probe can serve in many contexts as a useful tool to investigate GG conformations at specific sites within the nucleic acid frameworks of functioning macromolecular machines in solution.
Collapse
Affiliation(s)
- Kausiki Datta
- Department of Chemistry and Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | | | | | | | | |
Collapse
|
22
|
Narayanan M, Kodali G, Singh V, Xing Y, Hawkins ME, Stanley RJ. Differential fluorescence quenching of fluorescent nucleic acid base analogues by native nucleic acid monophosphates. J Phys Chem B 2010; 114:5953-63. [PMID: 20387838 DOI: 10.1021/jp1011507] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fluorescent nucleic acid base analogues (FBAs) are used widely as probes of DNA and RNA structure and dynamics. Of increasing utility are the pteridone adenosine analogues (6MAP, DMAP) and pteridine guanosine analogues (3MI, 6MI). These FBAs (collectively referred to as PTERs) are useful, in part, because their fluorescence quantum yields, Phi(f), are modulated by base stacking with native bases (NBs), making them sensitive reporters of DNA structure. The quenching mechanism has been hypothesized to be photoinduced electron transfer following selective excitation of the FBA, but hard evidence for this has been lacking. The degree of quenching shows some dependence on the neighboring bases, but there has been no real determination as to whether FBA*:NB complexes satisfy the basic thermodynamic requirement for spontaneous PET: a negative free energy for the electron transfer reaction. Indeed, quenching may result from entirely different mechanisms. To address these questions, Stern-Volmer (S-V) experiments were performed using the native-base monophosphate nucleotides (NMPs) GMP, AMP, CMP, and dTMP in aqueous solutions as quenchers to obtain quenching rate constants, k(q). Cyclic voltammetry (CV) and optical absorption and emission data of the PTERS were obtained in aprotic organic solvents. These data were used to obtain excited-state redox potentials from which electron transfer free energies were derived using the Rehm-Weller equation. The reorganization energies for PET were obtained using the Scandola-Balzani equation, taking into account the free energy contribution due to water. 6MAP*, DMAP*, and 3MI* gave negative free energies between -0.1 and -0.2 eV and reorganization energies of about 0.13 eV. They all displayed ET activation energies below the accessible thermal energy (0.038 eV = 3/2k(B)T, where k(B) is Boltzmann's constant) for all NMPs with the exception of CMP, whose activation barrier was only about 35% higher (approximately 0.05 eV). Thus, we conclude that these PTERs act as electron acceptors and promote NMP oxidation. However, 6MI* had positive ET free energies for all NMPs with the exception of GMP (and then only for nucleobase oxidation). The magnitudes of these free energies (> or = 0.45 eV for AMP, CMP, and dTMP) suggest that 6MI* may not quenched by PET.
Collapse
Affiliation(s)
- Madhavan Narayanan
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| | | | | | | | | | | |
Collapse
|