1
|
Kuznetsova AA, Kuznetsov NA. Direct Enzyme Engineering of B Family DNA Polymerases for Biotechnological Approaches. Bioengineering (Basel) 2023; 10:1150. [PMID: 37892880 PMCID: PMC10604792 DOI: 10.3390/bioengineering10101150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
DNA-dependent DNA polymerases have been intensively studied for more than 60 years and underlie numerous biotechnological and diagnostic applications. In vitro, DNA polymerases are used for DNA manipulations, including cloning, PCR, site-directed mutagenesis, sequencing, and others. Understanding the mechanisms of action of DNA polymerases is important for the creation of new enzymes possessing improved or modified properties. This review is focused on archaeal family B DNA polymerases. These enzymes have high fidelity and thermal stability and are finding many applications in molecular biological methods. Nevertheless, the search for and construction of new DNA polymerases with altered properties is constantly underway, including enzymes for synthetic biology. This brief review describes advances in the development of family B DNA polymerases for PCR, synthesis of xeno-nucleic acids, and reverse transcription.
Collapse
Affiliation(s)
- Aleksandra A. Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (SB RAS), 8 Prospekt Akad. Lavrentyeva, Novosibirsk 630090, Russia
| | - Nikita A. Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (SB RAS), 8 Prospekt Akad. Lavrentyeva, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Str., Novosibirsk 630090, Russia
| |
Collapse
|
2
|
Reverse Genetics of RNA Viruses: ISA-Based Approach to Control Viral Population Diversity without Modifying Virus Phenotype. Viruses 2019; 11:v11070666. [PMID: 31330809 PMCID: PMC6669666 DOI: 10.3390/v11070666] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/11/2019] [Accepted: 07/18/2019] [Indexed: 12/22/2022] Open
Abstract
Reverse genetic systems are essential for the study of RNA viruses. Infectious clones remain the most widely used systems to manipulate viral genomes. Recently, a new PCR-based method called ISA (infectious subgenomic amplicons) has been developed. This approach has resulted in greater genetic diversity of the viral populations than that observed using infectious clone technology. However, for some studies, generation of clonal viral populations is necessary. In this study, we used the tick-borne encephalitis virus as model to demonstrate that utilization of a very high-fidelity, DNA-dependent DNA polymerase during the PCR step of the ISA procedure gives the possibility to reduce the genetic diversity of viral populations. We also concluded that the fidelity of the polymerase is not the only factor influencing this diversity. Studying the impact of genotype modification on virus phenotype is a crucial step for the development of reverse genetic methods. Here, we also demonstrated that the utilization of different PCR polymerases did not affect the phenotype (replicative fitness in cellulo and virulence in vivo) compared to the initial ISA procedure and the use of an infectious clone. In conclusion, we provide here an approach to control the genetic diversity of RNA viruses without modifying their phenotype.
Collapse
|
3
|
Engineering-driven biological insights into DNA polymerase mechanism. Curr Opin Biotechnol 2018; 60:9-16. [PMID: 30502514 DOI: 10.1016/j.copbio.2018.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 11/13/2018] [Indexed: 12/11/2022]
Abstract
DNA-dependent DNA polymerases have been extensively studied for over 60 years and lie at the core of multiple biotechnological and diagnostic applications. Nevertheless, these complex molecular machines remain only partially understood. Here we present some evidence on how polymerase engineering for the synthesis and replication of xenobiotic nucleic acids (XNAs) have improved our understanding of these enzymes and how that can be used to gain further insight into their mechanism. Better understanding of the mechanisms of DNA polymerases can accelerate their engineering and we highlight how it is now feasible to use structure-based and function-based approaches to systematically and iteratively develop XNA polymerases for increasingly divergent chemistries.
Collapse
|
4
|
Chim N, Shi C, Sau SP, Nikoomanzar A, Chaput JC. Structural basis for TNA synthesis by an engineered TNA polymerase. Nat Commun 2017; 8:1810. [PMID: 29180809 PMCID: PMC5703726 DOI: 10.1038/s41467-017-02014-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/01/2017] [Indexed: 12/03/2022] Open
Abstract
Darwinian evolution experiments carried out on xeno-nucleic acid (XNA) polymers require engineered polymerases that can faithfully and efficiently copy genetic information back and forth between DNA and XNA. However, current XNA polymerases function with inferior activity relative to their natural counterparts. Here, we report five X-ray crystal structures that illustrate the pathway by which α-(l)-threofuranosyl nucleic acid (TNA) triphosphates are selected and extended in a template-dependent manner using a laboratory-evolved polymerase known as Kod-RI. Structural comparison of the apo, binary, open and closed ternary, and translocated product detail an ensemble of interactions and conformational changes required to promote TNA synthesis. Close inspection of the active site in the closed ternary structure reveals a sub-optimal binding geometry that explains the slow rate of catalysis. This key piece of information, which is missing for all naturally occurring archaeal DNA polymerases, provides a framework for engineering new TNA polymerase variants. The laboratory-evolved polymerase Kod-RI catalyzes α-L-threose nucleic acid (TNA) synthesis. Here, the authors present Kod-RI crystal structures that give insights into how TNA triphosphates are selected and extended in a template-dependent manner, which will help to engineer improved TNA polymerases for synthetic genetics applications.
Collapse
Affiliation(s)
- Nicholas Chim
- Departments of Pharmaceutical Sciences, Chemistry, and Molecular Biology and Biochemistry University of California, Irvine, CA, 92697-3958, USA
| | - Changhua Shi
- Departments of Pharmaceutical Sciences, Chemistry, and Molecular Biology and Biochemistry University of California, Irvine, CA, 92697-3958, USA
| | - Sujay P Sau
- Departments of Pharmaceutical Sciences, Chemistry, and Molecular Biology and Biochemistry University of California, Irvine, CA, 92697-3958, USA
| | - Ali Nikoomanzar
- Departments of Pharmaceutical Sciences, Chemistry, and Molecular Biology and Biochemistry University of California, Irvine, CA, 92697-3958, USA
| | - John C Chaput
- Departments of Pharmaceutical Sciences, Chemistry, and Molecular Biology and Biochemistry University of California, Irvine, CA, 92697-3958, USA.
| |
Collapse
|
5
|
Hoshino H, Kasahara Y, Fujita H, Kuwahara M, Morihiro K, Tsunoda SI, Obika S. Consecutive incorporation of functionalized nucleotides with amphiphilic side chains by novel KOD polymerase mutant. Bioorg Med Chem Lett 2015; 26:530-533. [PMID: 26627581 DOI: 10.1016/j.bmcl.2015.11.079] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/19/2015] [Accepted: 11/21/2015] [Indexed: 11/29/2022]
Abstract
Recently, 7-substituted 7-deazapurine nucleoside triphosphates and 5-substituted pyrimidine nucleoside triphosphates (dN(am)TPs) were synthesized to extend enzymatically using commercially available polymerase. However, extension was limited when we attempted to incorporate the substrates consecutively. To address this, we have produced a mutant polymerase that can efficiently accept the modified nucleotide with amphiphilic groups as substrates. Here we show that the KOD polymerase mutant, KOD exo(-)/A485L, had the ability to incorporate dN(am)TP continuously over 50nt, indicating that the mutant is sufficient for generating functional nucleic acid molecules.
Collapse
Affiliation(s)
- Hidekazu Hoshino
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Yuuya Kasahara
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Hiroto Fujita
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Masayasu Kuwahara
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan.
| | - Kunihiko Morihiro
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Shin-Ichi Tsunoda
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan.
| |
Collapse
|
6
|
Tumir LM, Šupljika F, Piantanida I. Bis-phenanthridinium–adenine conjugates as fluorescent and CD reporters for fine structural differences in ds-DNA/RNA and ss-RNA structures. Supramol Chem 2015. [DOI: 10.1080/10610278.2015.1099655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Lidija-Marija Tumir
- Laboratory for Study of Interactions of Biomacromolecules, Division of Organic Chemistry & Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Filip Šupljika
- Laboratory for Study of Interactions of Biomacromolecules, Division of Organic Chemistry & Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ivo Piantanida
- Laboratory for Study of Interactions of Biomacromolecules, Division of Organic Chemistry & Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
7
|
Error Rate Comparison during Polymerase Chain Reaction by DNA Polymerase. Mol Biol Int 2014; 2014:287430. [PMID: 25197572 PMCID: PMC4150459 DOI: 10.1155/2014/287430] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 07/21/2014] [Indexed: 12/20/2022] Open
Abstract
As larger-scale cloning projects become more prevalent, there is an increasing need for comparisons among high fidelity DNA polymerases used for PCR amplification. All polymerases marketed for PCR applications are tested for fidelity properties (i.e., error rate determination) by vendors, and numerous literature reports have addressed PCR enzyme fidelity. Nonetheless, it is often difficult to make direct comparisons among different enzymes due to numerous methodological and analytical differences from study to study. We have measured the error rates for 6 DNA polymerases commonly used in PCR applications, including 3 polymerases typically used for cloning applications requiring high fidelity. Error rate measurement values reported here were obtained by direct sequencing of cloned PCR products. The strategy employed here allows interrogation of error rate across a very large DNA sequence space, since 94 unique DNA targets were used as templates for PCR cloning. The six enzymes included in the study, Taq polymerase, AccuPrime-Taq High Fidelity, KOD Hot Start, cloned Pfu polymerase, Phusion Hot Start, and Pwo polymerase, we find the lowest error rates with Pfu, Phusion, and Pwo polymerases. Error rates are comparable for these 3 enzymes and are >10x lower than the error rate observed with Taq polymerase. Mutation spectra are reported, with the 3 high fidelity enzymes displaying broadly similar types of mutations. For these enzymes, transition mutations predominate, with little bias observed for type of transition.
Collapse
|
8
|
Terpe K. Overview of thermostable DNA polymerases for classical PCR applications: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 2013; 97:10243-54. [DOI: 10.1007/s00253-013-5290-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/20/2013] [Accepted: 09/22/2013] [Indexed: 11/29/2022]
|
9
|
Selective modification of adenovirus replication can be achieved through rational mutagenesis of the adenovirus type 5 DNA polymerase. J Virol 2012; 86:10484-93. [PMID: 22811532 DOI: 10.1128/jvi.00739-12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Mutations that reduce the efficiency of deoxynucleoside (dN) triphosphate (dNTP) substrate utilization by the HIV-1 DNA polymerase prevent viral replication in resting cells, which contain low dNTP concentrations, but not in rapidly dividing cells such as cancer cells, which contain high levels of dNTPs. We therefore tested whether mutations in regions of the adenovirus type 5 (Ad5) DNA polymerase that interact with the dNTP substrate or DNA template could alter virus replication. The majority of the mutations created, including conservative substitutions, were incompatible with virus replication. Five replication-competent mutants were recovered from 293 cells, but four of these mutants failed to replicate in A549 lung carcinoma cells and Wi38 normal lung cells. Purified polymerase proteins from these viruses exhibited only a 2- to 4-fold reduction in their dNTP utilization efficiency but nonetheless could not be rescued, even when intracellular dNTP concentrations were artificially raised by the addition of exogenous dNs to virus-infected A549 cells. The fifth mutation (I664V) reduced biochemical dNTP utilization by the viral polymerase by 2.5-fold. The corresponding virus replicated to wild-type levels in three different cancer cell lines but was significantly impaired in all normal cell lines in which it was tested. Efficient replication and virus-mediated cell killing were rescued by the addition of exogenous dNs to normal lung fibroblasts (MRC5 cells), confirming the dNTP-dependent nature of the polymerase defect. Collectively, these data provide proof-of-concept support for the notion that conditionally replicating, tumor-selective adenovirus vectors can be created by modifying the efficiency with which the viral DNA polymerase utilizes dNTP substrates.
Collapse
|
10
|
Gardner AF, Wang J, Wu W, Karouby J, Li H, Stupi BP, Jack WE, Hersh MN, Metzker ML. Rapid incorporation kinetics and improved fidelity of a novel class of 3'-OH unblocked reversible terminators. Nucleic Acids Res 2012; 40:7404-15. [PMID: 22570423 PMCID: PMC3424534 DOI: 10.1093/nar/gks330] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Recent developments of unique nucleotide probes have expanded our understanding of DNA polymerase function, providing many benefits to techniques involving next-generation sequencing (NGS) technologies. The cyclic reversible termination (CRT) method depends on efficient base-selective incorporation of reversible terminators by DNA polymerases. Most terminators are designed with 3′-O-blocking groups but are incorporated with low efficiency and fidelity. We have developed a novel class of 3′-OH unblocked nucleotides, called Lightning Terminators™, which have a terminating 2-nitrobenzyl moiety attached to hydroxymethylated nucleobases. A key structural feature of this photocleavable group displays a ‘molecular tuning’ effect with respect to single-base termination and improved nucleotide fidelity. Using Therminator™ DNA polymerase, we demonstrate that these 3′-OH unblocked terminators exhibit superior enzymatic performance compared to two other reversible terminators, 3′-O-amino-TTP and 3′-O-azidomethyl-TTP. Lightning Terminators™ show maximum incorporation rates (kpol) that range from 35 to 45 nt/s, comparable to the fastest NGS chemistries, yet with catalytic efficiencies (kpol/KD) comparable to natural nucleotides. Pre-steady-state kinetic studies of thymidine analogs revealed that the major determinant for improved nucleotide selectivity is a significant reduction in kpol by >1000-fold over TTP misincorporation. These studies highlight the importance of structure–function relationships of modified nucleotides in dictating polymerase performance.
Collapse
|
11
|
Mock DJ, Hollenbaugh JA, Daddacha W, Overstreet MG, Lazarski CA, Fowell DJ, Kim B. Leishmania induces survival, proliferation and elevated cellular dNTP levels in human monocytes promoting acceleration of HIV co-infection. PLoS Pathog 2012; 8:e1002635. [PMID: 22496656 PMCID: PMC3320607 DOI: 10.1371/journal.ppat.1002635] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 02/24/2012] [Indexed: 12/18/2022] Open
Abstract
Leishmaniasis is a parasitic disease that is widely prevalent in many tropical and sub-tropical regions of the world. Infection with Leishmania has been recognized to induce a striking acceleration of Human Immunodeficiency Virus Type 1 (HIV-1) infection in coinfected individuals through as yet incompletely understood mechanisms. Cells of the monocyte/macrophage lineage are the predominant cell types coinfected by both pathogens. Monocytes and macrophages contain extremely low levels of deoxynucleoside triphosphates (dNTPs) due to their lack of cell cycling and S phase, where dNTP biosynthesis is specifically activated. Lentiviruses, such as HIV-1, are unique among retroviruses in their ability to replicate in these non-dividing cells due, at least in part, to their highly efficient reverse transcriptase (RT). Nonetheless, viral replication progresses more efficiently in the setting of higher intracellular dNTP concentrations related to enhanced enzyme kinetics of the viral RT. In the present study, in vitro infection of CD14+ peripheral blood-derived human monocytes with Leishmania major was found to induce differentiation, marked elevation of cellular p53R2 ribonucleotide reductase subunit and R2 subunit expression. The R2 subunit is restricted to the S phase of the cell cycle. Our dNTP assay demonstrated significant elevation of intracellular monocyte-derived macrophages (MDMs) dNTP concentrations in Leishmania-infected cell populations as compared to control cells. Infection of Leishmania-maturated MDMs with a pseudotyped GFP expressing HIV-1 resulted in increased numbers of GFP+ cells in the Leishmania-maturated MDMs as compared to control cells. Interestingly, a sub-population of Leishmania-maturated MDMs was found to have re-entered the cell cycle, as demonstrated by BrdU labeling. In conclusion, Leishmania infection of primary human monocytes promotes the induction of an S phase environment and elevated dNTP levels with notable elevation of HIV-1 expression in the setting of coinfection. Leishmaniasis is a parasitic disease that infects several human host immune cells, including neutrophils, monocytes, and macrophages. Moreover, while HIV-1 infects monocytes and macrophages, only the infected macrophages productively release viral progenies. Importantly, patients coinfected with both pathogens progress more rapidly to AIDS. In this study, we examine how Leishmania major changes the cellular environment of monocytes in vitro. We found that Leishmania-infected monocytes actively mature into macrophages in the absence of GM-CSF, and that these cells up-regulate the expression of ribonucleotide reductase, an enzyme that catalyzes the formation of deoxynucleoside triphosphates (dNTPs). We confirmed the elevation of dNTP concentrations using a very sensitive dNTP assay for monocytes and monocyte-maturated macrophages. Collectively, these data support a model in which infection of monocytes with Leishmania elevates the intracellular dNTP pools, which is one of the natural anti-viral blocks to HIV-1 infection in monocytes and macrophages in patients.
Collapse
Affiliation(s)
- David J. Mock
- Department of Biomolecular Genetics, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail: (DJM); (BK)
| | - Joseph A. Hollenbaugh
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Waaqo Daddacha
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Michael G. Overstreet
- Center of Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | | | - Deborah J. Fowell
- Center of Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Baek Kim
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail: (DJM); (BK)
| |
Collapse
|
12
|
Bauer RJ, Begley MT, Trakselis MA. Kinetics and fidelity of polymerization by DNA polymerase III from Sulfolobus solfataricus. Biochemistry 2012; 51:1996-2007. [PMID: 22339170 DOI: 10.1021/bi201799a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have biochemically and kinetically characterized the polymerase and exonuclease activities of the third B-family polymerase (Dpo3) from the hyperthermophilic Crenarchaeon, Sulfolobus solfataricus (Sso). We have established through mutagenesis that despite incomplete sequence conservation, the polymerase and exonuclease active sites are functionally conserved in Dpo3. Using pre-steady-state kinetics, we can measure the fidelity of nucleotide incorporation by Dpo3 from the polymerase active site alone to be 10(3)-10(4) at 37 °C. The functional exonuclease proofreading active site will increase fidelity by at least 10(2), making Dpo3 comparable to other DNA polymerases in this family. Additionally, Dpo3's exonuclease activity is modulated by temperature, where a loss of promiscuous degradation activity can be attributed to a reorganization of the exonuclease domain when it is bound to primer-template DNA at high temperatures. Unexpectedly, the DNA binding affinity is weak compared with those of other DNA polymerases of this family. A comparison of the fidelity, polymerization kinetics, and associated functional exonuclease domain with those previously reported for other Sso polymerases (Dpo1 and Dpo4) illustrates that Dpo3 is a potential player in the proper maintenance of the archaeal genome.
Collapse
Affiliation(s)
- Robert J Bauer
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | | | | |
Collapse
|
13
|
Kennedy EM, Daddacha W, Slater R, Gavegnano C, Fromentin E, Schinazi RF, Kim B. Abundant non-canonical dUTP found in primary human macrophages drives its frequent incorporation by HIV-1 reverse transcriptase. J Biol Chem 2011; 286:25047-55. [PMID: 21454906 PMCID: PMC3137078 DOI: 10.1074/jbc.m111.234047] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 03/29/2011] [Indexed: 01/21/2023] Open
Abstract
Terminally differentiated/non-dividing macrophages contain extremely low cellular dNTP concentrations (20-40 nm), compared with activated CD4(+) T cells (2-5 μm). However, our LC-MS/MS study revealed that the non-canonical dUTP concentration (2.9 μm) is ∼60 times higher than TTP in macrophages, whereas the concentrations of dUTP and TTP in dividing human primary lymphocytes are very similar. Specifically, we evaluated the contribution of HIV-1 reverse transcriptase to proviral DNA uracilation under the physiological conditions found in HIV-1 target cells. Indeed, biochemical simulation of HIV-1 reverse transcription demonstrates that HIV-1 RT efficiently incorporates dUTP in the macrophage nucleotide pools but not in the T cell nucleotide pools. Measurement of both pre-steady state and steady state kinetic parameters of dUTP incorporation reveals minimal selectivity of HIV-1 RT for TTP over dUTP, implying that the cellular dUTP/TTP ratio determines the frequency of HIV-1 RT-mediated dUTP incorporation. The RT of another lentivirus, simian immunodeficiency virus, also displays efficient dUTP incorporation in the dNTP/dUTP pools found in macrophages but not in T cells. Finally, 2',3'-dideoxyuridine was inhibitory to HIV-1 proviral DNA synthesis in macrophages but not in T cells. The data presented demonstrates that the non-canonical dUTP was abundant relative to TTP, and efficiently incorporated during HIV-1 reverse transcription, particularly in non-dividing macrophages.
Collapse
Affiliation(s)
- Edward M. Kennedy
- From the Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642 and
| | - Waaqo Daddacha
- From the Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642 and
| | - Rebecca Slater
- From the Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642 and
| | - Christina Gavegnano
- the Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Veterans Affairs Medical Center, Decatur, Georgia 30033
| | - Emilie Fromentin
- the Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Veterans Affairs Medical Center, Decatur, Georgia 30033
| | - Raymond F. Schinazi
- the Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Veterans Affairs Medical Center, Decatur, Georgia 30033
| | - Baek Kim
- From the Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642 and
| |
Collapse
|
14
|
Kennedy EM, Gavegnano C, Nguyen L, Slater R, Lucas A, Fromentin E, Schinazi RF, Kim B. Ribonucleoside triphosphates as substrate of human immunodeficiency virus type 1 reverse transcriptase in human macrophages. J Biol Chem 2010; 285:39380-91. [PMID: 20924117 PMCID: PMC2998149 DOI: 10.1074/jbc.m110.178582] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 10/04/2010] [Indexed: 01/04/2023] Open
Abstract
We biochemically simulated HIV-1 DNA polymerization in physiological nucleotide pools found in two HIV-1 target cell types: terminally differentiated/non-dividing macrophages and activated/dividing CD4(+) T cells. Quantitative tandem mass spectrometry shows that macrophages harbor 22-320-fold lower dNTP concentrations and a greater disparity between ribonucleoside triphosphate (rNTP) and dNTP concentrations than dividing target cells. A biochemical simulation of HIV-1 reverse transcription revealed that rNTPs are efficiently incorporated into DNA in the macrophage but not in the T cell environment. This implies that HIV-1 incorporates rNTPs during viral replication in macrophages and also predicts that rNTP chain terminators lacking a 3'-OH should inhibit HIV-1 reverse transcription in macrophages. Indeed, 3'-deoxyadenosine inhibits HIV-1 proviral DNA synthesis in human macrophages more efficiently than in CD4(+) T cells. This study reveals that the biochemical landscape of HIV-1 replication in macrophages is unique and that ribonucleoside chain terminators may be a new class of anti-HIV-1 agents specifically targeting viral macrophage infection.
Collapse
Affiliation(s)
- Edward M. Kennedy
- From the Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642, and
| | - Christina Gavegnano
- the Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Veterans Affairs Medical Center, Decatur, Georgia 30033
| | - Laura Nguyen
- From the Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642, and
| | - Rebecca Slater
- From the Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642, and
| | - Amanda Lucas
- From the Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642, and
| | - Emilie Fromentin
- the Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Veterans Affairs Medical Center, Decatur, Georgia 30033
| | - Raymond F. Schinazi
- the Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Veterans Affairs Medical Center, Decatur, Georgia 30033
| | - Baek Kim
- From the Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642, and
| |
Collapse
|