1
|
Talukdar A, Maddhesiya P, Namsa ND, Doley R. Snake venom toxins targeting the central nervous system. TOXIN REV 2022. [DOI: 10.1080/15569543.2022.2084418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Amit Talukdar
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| | - Priya Maddhesiya
- Cell Biology and Anatomy, Ludwig Maximilian University (LMU), Munich, Germany
| | - Nima Dondu Namsa
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| | - Robin Doley
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| |
Collapse
|
2
|
Ivanušec A, Šribar J, Križaj I. Secreted Phospholipases A 2 - not just Enzymes: Revisited. Int J Biol Sci 2022; 18:873-888. [PMID: 35002531 PMCID: PMC8741859 DOI: 10.7150/ijbs.68093] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/02/2021] [Indexed: 12/18/2022] Open
Abstract
Secreted phospholipases A2 (sPLA2s) participate in a very broad spectrum of biological processes through their enzymatic activity and as ligands for membrane and soluble receptors. The physiological roles of sPLA2s as enzymes have been very well described, while their functions as ligands are still poorly known. Since the last overview of sPLA2-binding proteins (sPLA2-BPs) 10 years ago, several important discoveries have occurred in this area. New and more sensitive analytical tools have enabled the discovery of additional sPLA2-BPs, which are presented and critically discussed here. The structural diversity of sPLA2-BPs reveals sPLA2s as very promiscuous proteins, and we offer some structural explanations for this nature that makes these proteins evolutionarily highly advantageous. Three areas of physiological engagement of sPLA2-BPs have appeared most clearly: cellular transport and signalling, and regulation of the enzymatic activity of sPLA2s. Due to the multifunctionality of sPLA2s, they appear to be exceptional pharmacological targets. We reveal the potential to exploit interactions of sPLA2s with other proteins in medical terms, for the development of original diagnostic and therapeutic procedures. We conclude this survey by suggesting the priority questions that need to be answered.
Collapse
Affiliation(s)
- Adrijan Ivanušec
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Jernej Šribar
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
Synergy between 15-lipoxygenase and secreted PLA 2 promotes inflammation by formation of TLR4 agonists from extracellular vesicles. Proc Natl Acad Sci U S A 2020; 117:25679-25689. [PMID: 32973091 DOI: 10.1073/pnas.2005111117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Damage-associated endogenous molecules induce innate immune response, thus making sterile inflammation medically relevant. Stress-derived extracellular vesicles (stressEVs) released during oxidative stress conditions were previously found to activate Toll-like receptor 4 (TLR4), resulting in expression of a different pattern of immune response proteins in comparison to lipopolysaccharide (LPS), underlying the differences between pathogen-induced and sterile inflammation. Here we report that synergistic activities of 15-lipoxygenase (15-LO) and secreted phospholipase A2 (sPLA2) are needed for the formation of TLR4 agonists, which were identified as lysophospholipids (lysoPLs) with oxidized unsaturated acyl chain. Hydroxy, hydroperoxy, and keto products of 2-arachidonoyl-lysoPI oxidation by 15-LO were identified by mass spectrometry (MS), and they activated the same gene pattern as stressEVs. Extracellular PLA2 activity was detected in the synovial fluid from rheumatoid arthritis and gout patients. Furthermore, injection of sPLA2 promoted K/BxN serum-induced arthritis in mice, whereby ankle swelling was partially TLR4 dependent. Results confirm the role of oxidized lysoPL of stressEVs in sterile inflammation that promotes chronic diseases. Both 15-LO and sPLA2 enzymes are induced during inflammation, which opens the opportunity for therapy without compromising innate immunity against pathogens.
Collapse
|
4
|
Lee KH, Petruncio G, Shim A, Burdick M, Zhang Z, Shim YM, Noble SM, Paige M. Effect of Modifier Structure on the Activation of Leukotriene A 4 Hydrolase Aminopeptidase Activity. J Med Chem 2019; 62:10605-10616. [PMID: 31751136 DOI: 10.1021/acs.jmedchem.9b00663] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Activation of the leukotriene A4 hydrolase (LTA4H) aminopeptidase (AP) activity with 4-methoxydiphenylmethane (4MDM) promoted resolution of neutrophil infiltration in a murine cigarette smoke-induced model for emphysematous chronic obstructive pulmonary disease. Recently, 4-(4-benzylphenyl)thiazol-2-amine (ARM1) was published as a ligand for LTA4H with potential anti-inflammatory properties. To investigate the effect of modifier structure on enzyme kinetics of LTA4H, a series of analogues bearing structural features of ARM1 and 4MDM were synthesized using trifluoroborate Suzuki coupling reactions. Following, the 2.8 Å X-ray crystal structure of LTA4H complexed with 4-OMe-ARM1, a 4MDM-ARM1 hybrid molecule, was determined. Kinetic analysis showed that ARM1 and related analogues lowered affinity for the enzyme-substrate complex, resulting in a change of mechanism from hyperbolic mixed predominately catalytic activation (HMx(Sp < Ca)A) as observed for 4MDM to a predominately specific activation (HMx(Sp > Ca)A) mechanism. 4-OMe-ARM1 was then shown to dose responsively reduce LTB4 production in human neutrophils.
Collapse
Affiliation(s)
- Kyung Hyeon Lee
- Department of Chemistry & Biochemistry , George Mason University , 10920 George Mason Circle , Manassas , Virginia 20110 , United States
- Bacterial Diseases Branch, Wound Infections Department , Walter Reed Army Institute of Research , 503 Robert Grant Ave , Silver Spring , Maryland 20910 , United States
| | - Greg Petruncio
- Department of Chemistry & Biochemistry , George Mason University , 10920 George Mason Circle , Manassas , Virginia 20110 , United States
| | - Amanda Shim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine , University of Virginia , P.O. Box 800546, Charlottesville , Virginia 22908 , United States
| | - Marie Burdick
- Division of Pulmonary and Critical Care Medicine, Department of Medicine , University of Virginia , P.O. Box 800546, Charlottesville , Virginia 22908 , United States
| | - Zhimin Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine , University of Virginia , P.O. Box 800546, Charlottesville , Virginia 22908 , United States
| | - Yun M Shim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine , University of Virginia , P.O. Box 800546, Charlottesville , Virginia 22908 , United States
| | - Schroeder M Noble
- Bacterial Diseases Branch, Wound Infections Department , Walter Reed Army Institute of Research , 503 Robert Grant Ave , Silver Spring , Maryland 20910 , United States
| | - Mikell Paige
- Department of Chemistry & Biochemistry , George Mason University , 10920 George Mason Circle , Manassas , Virginia 20110 , United States
| |
Collapse
|
5
|
Sukocheva O, Menschikowski M, Hagelgans A, Yarla NS, Siegert G, Reddanna P, Bishayee A. Current insights into functions of phospholipase A2 receptor in normal and cancer cells: More questions than answers. Semin Cancer Biol 2019; 56:116-127. [PMID: 29104026 DOI: 10.1016/j.semcancer.2017.11.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/18/2017] [Accepted: 11/01/2017] [Indexed: 02/08/2023]
Abstract
Lipid signaling network was proposed as a potential target for cancer prevention and treatment. Several recent studies revealed that phospholipid metabolising enzyme, phospholipase A2 (PLA2), is a critical regulator of cancer accelerating pathologies and apoptosis in several types of cancers. In addition to functioning as an enzyme, PLA2 can activate a phospholipase A2 receptor (PLA2R1) in plasma membrane. While the list of PLA2 targets extends to glucose homeostasis, intracellular energy balance, adipocyte development, and hepatic lipogenesis, the PLA2R1 downstream effectors are few and scarcely investigated. Among the most addressed PLA2R1 effects are regulation of pro-inflammatory signaling, autoimmunity, apoptosis, and senescence. Localized in glomeruli podocytes, the receptor can be identified by circulating anti-PLA2R1 autoantibodies leading to development of membranous nephropathy, a strong autoimmune inflammatory cascade. PLA2R1 was shown to induce activation of Janus-kinase 2 (JAK2) and estrogen-related receptor α (ERRα)-controlled mitochondrial proteins, as well as increasing the accumulation of reactive oxygen species, thus leading to apoptosis and senescence. These findings indicate the potential role of PLA2R1 as tumor suppressor. Epigenetic investigations addressed the role of DNA methylation, histone modifications, and specific microRNAs in the regulation of PLA2R1 expression. However, involvement of PLA2R1 in suppression of malignant growth and metastasis remains controversial. In this review, we summarize the recent findings that highlight the role of PLA2R1 in the regulation of carcinogenesis-related intracellular signaling.
Collapse
Affiliation(s)
- Olga Sukocheva
- School of Health Sciences, Flinders University of South Australia, Bedford Park, South Australia 5042, Australia.
| | - Mario Menschikowski
- Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technical University of Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| | - Albert Hagelgans
- Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technical University of Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| | - Nagendra Sastry Yarla
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, Telangana, India
| | - Gabriele Siegert
- Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technical University of Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| | - Pallu Reddanna
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, Telangana, India
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
6
|
Šribar J, Kovačič L, Oberčkal J, Ivanušec A, Petan T, Fox JW, Križaj I. The neurotoxic secreted phospholipase A 2 from the Vipera a. ammodytes venom targets cytochrome c oxidase in neuronal mitochondria. Sci Rep 2019; 9:283. [PMID: 30670719 PMCID: PMC6342964 DOI: 10.1038/s41598-018-36461-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 11/16/2018] [Indexed: 12/30/2022] Open
Abstract
The β-neurotoxic secreted phospholipases A2 (sPLA2s) block neuro-muscular transmission by poisoning nerve terminals. Damage inflicted by such sPLA2s (β-ntx) on neuronal mitochondria is characteristic, very similar to that induced by structurally homologous endogenous group IIA sPLA2 when its activity is elevated, as, for example, in the early phase of Alzheimer's disease. Using ammodytoxin (Atx), the β-ntx from the venom of the nose-horned viper (Vipera a. ammodytes), the sPLA2 receptor R25 has been detected in neuronal mitochondria. This receptor has been purified from porcine cerebral cortex mitochondria by a new Atx-affinity-based chromatographic procedure. Mass spectrometry analysis revealed R25 to be the subunit II of cytochrome c oxidase (CCOX), an essential constituent of the respiratory chain complex. CCOX was confirmed as being the first intracellular membrane receptor for sPLA2 by alternative Atx-affinity-labellings of purified CCOX, supported also by the encounter of Atx and CCOX in PC12 cells. This discovery suggests the explanation of the mechanism by which β-ntx hinders production of ATP in poisoned nerve endings. It also provides a new insight into the potential function and dysfunction of endogenous GIIA sPLA2 in mitochondria.
Collapse
Affiliation(s)
- Jernej Šribar
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Lidija Kovačič
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Jernej Oberčkal
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Adrijan Ivanušec
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| | - Toni Petan
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Jay W Fox
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, 22908, USA
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia.
| |
Collapse
|
7
|
Ostrowski M, Porowinska D, Prochnicki T, Prevost M, Raynal B, Baron B, Sauguet L, Corringer PJ, Faure G. Neurotoxic phospholipase A2 from rattlesnake as a new ligand and new regulator of prokaryotic receptor GLIC (proton-gated ion channel from G. violaceus). Toxicon 2016; 116:63-71. [PMID: 26854368 DOI: 10.1016/j.toxicon.2016.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 11/26/2022]
Abstract
Neurotoxic phospholipases A2 (sPLA2) from snake venoms interact with various protein targets with high specificity and potency. They regulate function of multiple receptors or channels essential to life processes including neuronal or neuromuscular chemoelectric signal transduction. These toxic sPLA2 exhibit high pharmacological potential and determination of PLA2-receptor binding sites represents challenging part in the receptor-channel biochemistry and pharmacology. To investigate the mechanism of interaction of neurotoxic PLA2 with its neuronal receptor at the molecular level, we used as a model crotoxin, a heterodimeric sPLA2 from rattlesnake venom and proton-gated ion channel GLIC, a bacterial homolog of pentameric ligand-gated ion channels. The three-dimensional structures of both partners, crotoxin and GLIC have been solved by X-ray crystallography and production of full-length pentameric GLIC (with ECD and TM domains) is well established. In the present study, for the first time, we demonstrated physical and functional interaction of full-length purified and solubilized GLIC with CB, (PLA2 subunit of crotoxin). We identified GLIC as a new protein target of CB and CB as a new ligand of GLIC, and showed that this non covalent interaction (PLA2-GLIC) involves the extracellular domain of GLIC. We also determined a novel function of CB as an inhibitor of proton-gated ion channel activity. In agreement with conformational changes observed upon formation of the complex, CB appears to be negative allosteric modulator (NAM) of GLIC. Finally, we proposed a possible stoichiometric model for CB - GLIC interaction based on analytical ultracentrifugation.
Collapse
Affiliation(s)
- Maciej Ostrowski
- Institut Pasteur, Unité Récepteurs-Canaux, CNRS-UMR 3571, 25, rue du Dr. Roux, F-75015 Paris, France; Department of Biochemistry, Nicolaus Copernicus University, Torun, Poland
| | - Dorota Porowinska
- Institut Pasteur, Unité Récepteurs-Canaux, CNRS-UMR 3571, 25, rue du Dr. Roux, F-75015 Paris, France; Department of Biochemistry, Nicolaus Copernicus University, Torun, Poland
| | - Tomasz Prochnicki
- Institut Pasteur, Unité Récepteurs-Canaux, CNRS-UMR 3571, 25, rue du Dr. Roux, F-75015 Paris, France
| | - Marie Prevost
- Institut Pasteur, Unité Récepteurs-Canaux, CNRS-UMR 3571, 25, rue du Dr. Roux, F-75015 Paris, France
| | - Bertrand Raynal
- Institu Pasteur, Plate-Forme de Biophysique des Macromolecules et de leurs Interactions, 75015 Paris, France
| | - Bruno Baron
- Institu Pasteur, Plate-Forme de Biophysique des Macromolecules et de leurs Interactions, 75015 Paris, France
| | - Ludovic Sauguet
- Institut Pasteur, Unité Récepteurs-Canaux, CNRS-UMR 3571, 25, rue du Dr. Roux, F-75015 Paris, France
| | - Pierre-Jean Corringer
- Institut Pasteur, Unité Récepteurs-Canaux, CNRS-UMR 3571, 25, rue du Dr. Roux, F-75015 Paris, France
| | - Grazyna Faure
- Institut Pasteur, Unité Récepteurs-Canaux, CNRS-UMR 3571, 25, rue du Dr. Roux, F-75015 Paris, France.
| |
Collapse
|
8
|
Šribar J, Oberčkal J, Križaj I. Understanding the molecular mechanism underlying the presynaptic toxicity of secreted phospholipases A2: An update. Toxicon 2014; 89:9-16. [DOI: 10.1016/j.toxicon.2014.06.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/19/2014] [Accepted: 06/24/2014] [Indexed: 11/16/2022]
|
9
|
Ammodytoxins efficiently release arachidonic acid and induce apoptosis in a motoneuronal cell line in an enzymatic activity-dependent manner. Neurotoxicology 2012; 35:91-100. [PMID: 23266427 DOI: 10.1016/j.neuro.2012.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 12/14/2012] [Accepted: 12/14/2012] [Indexed: 11/20/2022]
Abstract
Secreted phospholipases A2 (sPLA2s) are phospholipolytic enzymes and receptor ligands whose action affects cell death and survival. We have previously shown that ammodytoxin A (AtxA), a snake venom sPLA2, is rapidly internalized into motoneuronal NSC34 cells, inducing characteristic neurotoxic sPLA2 cell damage and apoptosis. In this study, we have analyzed the role of sPLA2 enzymatic activity, including arachidonic acid (AA) release, in the induction of motoneuronal apoptosis by AtxA and homologous recombinant sPLA2s with different enzymatic properties: an AtxA mutant (V31W) with very high enzymatic activity, enzymatically inactive S49-sPLA2 (ammodytin L, AtnL), its mutant (LW) with restored enzymatic activity, and non-toxic, enzymatically active sPLA2 (AtnI2). Addition of AA, AtxA, AtxA-V31W and AtnL-LW, but not AtnL and AtnI2, to NSC34 cells resulted in caspase-3 activation, DNA fragmentation and disruption of mitochondrial membrane potential, leading to a significant and rapid decrease in motoneuronal cell viability that was not observed in C2C12 myoblasts and HEK293 cells. AtxA, AtxA-V31W and AtnL-LW, but not AtnL and AtnI2, also liberated large amounts of AA specifically from motoneuronal cells, and this ability correlated well with the ability to induce apoptotic changes and decrease cell viability. The enzymatic activity of AtxA and similar sPLA2s is thus necessary, but not sufficient, for inducing motoneuronal apoptosis. This suggests that specific binding to the motoneuronal cell surface, followed by internalization and enzymatic activity-dependent induction of apoptosis, possibly as a consequence of extensive extra- and intracellular AA release, is necessary for Atx-induced motoneuronal cell death.
Collapse
|
10
|
Faure G, Saul F. Crystallographic characterization of functional sites of crotoxin and ammodytoxin, potent β-neurotoxins from Viperidae venom. Toxicon 2012; 60:531-8. [PMID: 22683534 DOI: 10.1016/j.toxicon.2012.05.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 05/03/2012] [Accepted: 05/17/2012] [Indexed: 11/24/2022]
Abstract
This review will focus on a description of the three-dimensional structures of two β-neurotoxins, the monomeric PLA(2) ammodytoxin from Vipera ammodytes ammodytes, and heterodimeric crotoxin from Crotalus durissus terrificus, and a detailed structural analysis of their multiple functional sites. We have recently determined at high resolution the crystal structures of two natural isoforms of ammodytoxin (AtxA and AtxC) (Saul et al., 2010) which exhibit different toxicity profiles and different anticoagulant properties. Comparative structural analysis of these two PLA(2) isoforms, which differ only by two amino acid residues, allowed us to detect local conformational changes and delineate the role of critical residues in the anticoagulant and neurotoxic functions of these PLA(2) (Saul et al., 2010). We have also determined, at 1.35Å resolution, the crystal structure of heterodimeric crotoxin (Faure et al., 2011). The three-dimensional structure of crotoxin revealed details of the binding interface between its acidic (CA) and basic (CB) subunits and allowed us to identify key residues involved in the stability and toxicity of this potent heterodimeric β-neurotoxin (Faure et al., 2011). The precise spatial orientation of the three covalently linked polypeptide chains in the mature CA subunit complexed with CB helps us to understand the role played by critical residues of the CA subunit in the increased toxicity of the crotoxin complex. Since the CA subunit is a natural inhibitor of the catalytic and anticoagulant activities of CB, identification of the CA-CB binding interface describes residues involved in this inhibition. We propose future research directions based on knowledge of the recently reported 3D structures of crotoxin and ammodytoxin.
Collapse
Affiliation(s)
- Grazyna Faure
- Institut Pasteur, Récepteurs-Canaux, CNRS, URA 2182, Département de Neuroscience, 25, rue du Dr. Roux, F-75015 Paris, France.
| | | |
Collapse
|
11
|
A recent evaluation of the lethal potencies of ammodytoxins. Toxicon 2012; 59:642-3. [PMID: 22406514 DOI: 10.1016/j.toxicon.2012.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 02/09/2012] [Accepted: 02/21/2012] [Indexed: 11/20/2022]
Abstract
Ammodytoxin A (AtxA) is the most toxic secreted phospholipase A(2) of the three isotoxins with presynaptic neurotoxicity, isolated from the venom of the nose-horned viper (Vipera ammodytes ammodytes), with an LD(50) of 21 μg/kg in mice. The toxic potencies of two other isoforms have been re-evaluated using highly purified recombinant proteins, with their intraperitoneal LD(50)s determined as 960 μg/kg for AtxB and 310 μg/kg for AtxC. AtxB and AtxC differ from AtxA in only three and two amino acid residues, respectively.
Collapse
|
12
|
Križaj I. Ammodytoxin: a window into understanding presynaptic toxicity of secreted phospholipases A(2) and more. Toxicon 2011; 58:219-29. [PMID: 21726572 DOI: 10.1016/j.toxicon.2011.06.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 06/10/2011] [Accepted: 06/18/2011] [Indexed: 11/15/2022]
Affiliation(s)
- Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
13
|
Kovacic L, Novinec M, Petan T, Krizaj I. Structural basis of the significant calmodulin-induced increase in the enzymatic activity of secreted phospholipases A(2). Protein Eng Des Sel 2010; 23:479-87. [PMID: 20348188 DOI: 10.1093/protein/gzq019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Ammodytoxin (Atx), a neurotoxic secreted phospholipase A(2) (sPLA(2)), forms a high-affinity complex with calmodulin (CaM). The latter substantially increases the enzymatic activity of Atx under both non-reducing and reducing conditions, and the activity enhancement was accompanied, but not caused, by conformational stabilization of the enzyme. In this work, the energetically most favorable model of the complex was generated, making use of interaction site mapping, mutagenesis data and protein-docking algorithms. The model explains, in structural terms, the observed effects of stabilization and activity enhancement of the neurotoxic sPLA(2) by CaM. The structures of four mammalian sPLA(2) isoforms, groups IB, IIA, V and X, having the same fold as Atx, were superimposed on the structure of Atx in the complex with CaM. According to the generated models, the group V and X sPLA(2)s, but not the group IB and IIA enzymes, form stable complexes with CaM, which should also result in the augmentation of their enzymatic activity. By confirming the latter, the presented model is validated as a valuable tool to investigate the as yet unexplained role of CaM in the pathophysiology of snake venom and mammalian sPLA(2)s.
Collapse
Affiliation(s)
- Lidija Kovacic
- Department of Molecular and Biomedical Sciences, Jozef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | | | | | | |
Collapse
|