1
|
Torabi N, Chiechi RC. Photosystem I complexes form remarkably stable self-assembled tunneling junctions. NANOSCALE 2024; 16:19400-19412. [PMID: 39344694 DOI: 10.1039/d4nr02554g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
This paper describes large-area molecular tunneling junctions comprising self-assembled monolayers (SAMs) of light-harvesting protein complexes using eutectic Ga-In (EGaIn) as a top contact. The complexes, which are readily isolable in large quantities from spinach leaves, self-assemble on top of SAMs of [6,6]-phenyl-C61-butyric acid (PCBA) on gold (Au) supported by mica substrates (AuMica), which induces them to adopt a preferred orientation with respect to the electron transport chain that runs across the short axis of each complex, leading to temperature-independent rectification. We compared trimeric protein complexes isolated from thermophilic cyanobacteria to monomeric complexes extracted from spinach leaves by measuring charge-transport at variable temperatures and over the course of at least three months. Transport is independent of temperature in the range of 130 to 310 K for both protein complexes, affirming that the likely mechanism is non-resonant tunneling. The junctions rectified current and were stable for at least three months when stored at room temperature in ambient conditions, with the yield of working junctions falling from 100% to 97% over that time. These results demonstrate a straightforward strategy for forming remarkably robust molecular junctions, avoiding the fragility that is common in molecular electronics.
Collapse
Affiliation(s)
- Nahid Torabi
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Ryan C Chiechi
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Department of Chemistry & Organic and Carbon Electronics Cluster, North Carolina State University, Raleigh, North Carolina 27695-8204, USA.
| |
Collapse
|
2
|
Rasul F, You D, Jiang Y, Liu X, Daroch M. Thermophilic cyanobacteria-exciting, yet challenging biotechnological chassis. Appl Microbiol Biotechnol 2024; 108:270. [PMID: 38512481 PMCID: PMC10957709 DOI: 10.1007/s00253-024-13082-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/23/2024]
Abstract
Thermophilic cyanobacteria are prokaryotic photoautotrophic microorganisms capable of growth between 45 and 73 °C. They are typically found in hot springs where they serve as essential primary producers. Several key features make these robust photosynthetic microbes biotechnologically relevant. These are highly stable proteins and their complexes, the ability to actively transport and concentrate inorganic carbon and other nutrients, to serve as gene donors, microbial cell factories, and sources of bioactive metabolites. A thorough investigation of the recent progress in thermophilic cyanobacteria reveals a significant increase in the number of newly isolated and delineated organisms and wide application of thermophilic light-harvesting components in biohybrid devices. Yet despite these achievements, there are still deficiencies at the high-end of the biotechnological learning curve, notably in genetic engineering and gene editing. Thermostable proteins could be more widely employed, and an extensive pool of newly available genetic data could be better utilised. In this manuscript, we attempt to showcase the most important recent advances in thermophilic cyanobacterial biotechnology and provide an overview of the future direction of the field and challenges that need to be overcome before thermophilic cyanobacterial biotechnology can bridge the gap with highly advanced biotechnology of their mesophilic counterparts. KEY POINTS: • Increased interest in all aspects of thermophilic cyanobacteria in recent years • Light harvesting components remain the most biotechnologically relevant • Lack of reliable molecular biology tools hinders further development of the chassis.
Collapse
Affiliation(s)
- Faiz Rasul
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Dawei You
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Ying Jiang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Xiangjian Liu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
3
|
Paschenko VZ, Lukashev EP, Mamedov MD, Gvozdev DA, Knox PP. Effect of cationic antiseptics on fluorescent characteristics and electron transfer in cyanobacterial photosystem I complexes. PHOTOSYNTHESIS RESEARCH 2024; 159:241-251. [PMID: 37480468 DOI: 10.1007/s11120-023-01039-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/09/2023] [Indexed: 07/24/2023]
Abstract
In this study, the effects of cationic antiseptics such as chlorhexidine, picloxidine, miramistin, and octenidine at concentrations up to 150 µM on fluorescence spectra and its lifetimes, as well as on light-induced electron transfer in protein-pigment complexes of photosystem I (PSI) isolated from cyanobacterium Synechocystis sp. PCC 6803 have been studied. In doing so, octenidine turned out to be the most "effective" in terms of its influence on the spectral and functional characteristics of PSI complexes. It has been shown that the rate of energy migration from short-wavelength forms of light-harvesting chlorophyll to long-wavelength ones slows down upon addition of octenidine to the PSI suspension. After photo-separation of charges between the primary electron donor P700 and the terminal iron-sulfur center(s) FA/FB, the rate of forward electron transfer from (FA/FB)- to the external medium slows down while the rate of charge recombination between reduced FA/FB- and photooxidized P700+ increases. The paper considers the possible causes of the observed action of the antiseptic.
Collapse
Affiliation(s)
- Vladimir Z Paschenko
- Biophysical Department, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskye Gory 1, Build. 12, Moscow, Russia, 119234
| | - Eugene P Lukashev
- Biophysical Department, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskye Gory 1, Build. 12, Moscow, Russia, 119234
| | - Mahir D Mamedov
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Leninskye Gory 1, Build. 40, Moscow, Russia, 119992
| | - Daniil A Gvozdev
- Biophysical Department, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskye Gory 1, Build. 12, Moscow, Russia, 119234.
| | - Peter P Knox
- Biophysical Department, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskye Gory 1, Build. 12, Moscow, Russia, 119234
| |
Collapse
|
4
|
Nagao R, Ogawa H, Tsuboshita N, Kato K, Toyofuku R, Tomo T, Shen JR. Isolation and characterization of trimeric and monomeric PSI cores from Acaryochloris marina MBIC11017. PHOTOSYNTHESIS RESEARCH 2023; 157:55-63. [PMID: 37199910 DOI: 10.1007/s11120-023-01025-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 05/05/2023] [Indexed: 05/19/2023]
Abstract
Photosystem I (PSI) catalyzes light-induced electron-transfer reactions and has been observed to exhibit various oligomeric states and different energy levels of chlorophylls (Chls) in response to oligomerization. However, the biochemical and spectroscopic properties of a PSI monomer containing Chls d are not well understood. In this study, we successfully isolated and characterized PSI monomers from the cyanobacterium Acaryochloris marina MBIC11017, and compared their properties with those of the A. marina PSI trimer. The PSI trimers and monomers were prepared using trehalose density gradient centrifugation after anion-exchange and hydrophobic interaction chromatography. The polypeptide composition of the PSI monomer was found to be consistent with that of the PSI trimer. The absorption spectrum of the PSI monomer showed the Qy band of Chl d at 704 nm, which was blue-shifted from the peak at 707 nm observed in the PSI-trimer spectrum. The fluorescence-emission spectrum of the PSI monomer measured at 77 K exhibited a peak at 730 nm without a broad shoulder in the range of 745-780 nm, which was clearly observed in the PSI-trimer spectrum. These spectroscopic properties of the A. marina PSI trimer and monomer suggest different formations of low-energy Chls d between the two types of PSI cores. Based on these findings, we discuss the location of low-energy Chls d in A. marina PSIs.
Collapse
Affiliation(s)
- Ryo Nagao
- Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan.
| | - Haruya Ogawa
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Naoki Tsuboshita
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Koji Kato
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Reona Toyofuku
- Department of Physics, Graduate School of Science, Tokyo University of Science, Tokyo, 162-8601, Japan
| | - Tatsuya Tomo
- Department of Physics, Graduate School of Science, Tokyo University of Science, Tokyo, 162-8601, Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| |
Collapse
|
5
|
Alseekh S, Karakas E, Zhu F, Wijesingha Ahchige M, Fernie AR. Plant biochemical genetics in the multiomics era. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4293-4307. [PMID: 37170864 PMCID: PMC10433942 DOI: 10.1093/jxb/erad177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/09/2023] [Indexed: 05/13/2023]
Abstract
Our understanding of plant biology has been revolutionized by modern genetics and biochemistry. However, biochemical genetics can be traced back to the foundation of Mendelian genetics; indeed, one of Mendel's milestone discoveries of seven characteristics of pea plants later came to be ascribed to a mutation in a starch branching enzyme. Here, we review both current and historical strategies for the elucidation of plant metabolic pathways and the genes that encode their component enzymes and regulators. We use this historical review to discuss a range of classical genetic phenomena including epistasis, canalization, and heterosis as viewed through the lens of contemporary high-throughput data obtained via the array of approaches currently adopted in multiomics studies.
Collapse
Affiliation(s)
- Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Esra Karakas
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Feng Zhu
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, 430070 Wuhan, China
| | | | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| |
Collapse
|
6
|
Baikie TK, Wey LT, Lawrence JM, Medipally H, Reisner E, Nowaczyk MM, Friend RH, Howe CJ, Schnedermann C, Rao A, Zhang JZ. Photosynthesis re-wired on the pico-second timescale. Nature 2023; 615:836-840. [PMID: 36949188 DOI: 10.1038/s41586-023-05763-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 01/26/2023] [Indexed: 03/24/2023]
Abstract
Photosystems II and I (PSII, PSI) are the reaction centre-containing complexes driving the light reactions of photosynthesis; PSII performs light-driven water oxidation and PSI further photo-energizes harvested electrons. The impressive efficiencies of the photosystems have motivated extensive biological, artificial and biohybrid approaches to 're-wire' photosynthesis for higher biomass-conversion efficiencies and new reaction pathways, such as H2 evolution or CO2 fixation1,2. Previous approaches focused on charge extraction at terminal electron acceptors of the photosystems3. Electron extraction at earlier steps, perhaps immediately from photoexcited reaction centres, would enable greater thermodynamic gains; however, this was believed impossible with reaction centres buried at least 4 nm within the photosystems4,5. Here, we demonstrate, using in vivo ultrafast transient absorption (TA) spectroscopy, extraction of electrons directly from photoexcited PSI and PSII at early points (several picoseconds post-photo-excitation) with live cyanobacterial cells or isolated photosystems, and exogenous electron mediators such as 2,6-dichloro-1,4-benzoquinone (DCBQ) and methyl viologen. We postulate that these mediators oxidize peripheral chlorophyll pigments participating in highly delocalized charge-transfer states after initial photo-excitation. Our results challenge previous models that the photoexcited reaction centres are insulated within the photosystem protein scaffold, opening new avenues to study and re-wire photosynthesis for biotechnologies and semi-artificial photosynthesis.
Collapse
Affiliation(s)
- Tomi K Baikie
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Laura T Wey
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Department of Life Technologies, University of Turku, Turku, Finland
| | - Joshua M Lawrence
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | | | - Erwin Reisner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Marc M Nowaczyk
- Plant Biochemistry, Ruhr University Bochum, Bochum, Germany
- Department of Biochemistry, University of Rostock, Rostock, Germany
| | | | | | | | - Akshay Rao
- Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| | - Jenny Z Zhang
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
7
|
Brady NG, Qian S, Nguyen J, O'Neill HM, Bruce BD. Small angle neutron scattering and lipidomic analysis of a native, trimeric PSI-SMALP from a thermophilic cyanobacteria. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148596. [PMID: 35853496 PMCID: PMC10228149 DOI: 10.1016/j.bbabio.2022.148596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 06/05/2022] [Accepted: 07/11/2022] [Indexed: 01/21/2023]
Abstract
The use of styrene-maleic acid copolymers (SMAs) to produce membrane protein-containing nanodiscs without the initial detergent isolation has gained significant interest over the last decade. We have previously shown that a Photosystem I SMALP from the thermophilic cyanobacterium, Thermosynechococcus elongatus (PSI-SMALP), has much more rapid energy transfer and charge separation in vitro than detergent isolated PSI complexes. In this study, we have utilized small-angle neutron scattering (SANS) to better understand the geometry of these SMALPs. These techniques allow us to investigate the size and shape of these particles in their fully solvated state. Further, the particle's proteolipid core and detergent shell or copolymer belt can be interrogated separately using contrast variation, a capability unique to SANS. Here we report the dimensions of the Thermosynechococcus elongatus PSI-SMALP containing a PSI trimer. At ~1.5 MDa, PSI-SMALP is the largest SMALP to be isolated; our lipidomic analysis indicates it contains ~1300 lipids/per trimeric particle, >40-fold more than the PSI-DDM particle and > 100 fold more than identified in the 1JB0 crystal structure. Interestingly, the lipid composition to the PSI trimer in the PSI-SMALP differs significantly from bulk thylakoid composition, being enriched ~50 % in the anionic sulfolipid, SQDG. Finally, utilizing the contrast match point for the SMA 1440 copolymer, we also can observe the ~1 nm SMA copolymer belt surrounding this SMALP for the first time, consistent with most models of SMA organization.
Collapse
Affiliation(s)
- Nathan G Brady
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Shuo Qian
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; The Second Target Station Project, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jon Nguyen
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Hugh M O'Neill
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Barry D Bruce
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA; Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA; Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
8
|
Kato K, Hamaguchi T, Nagao R, Kawakami K, Ueno Y, Suzuki T, Uchida H, Murakami A, Nakajima Y, Yokono M, Akimoto S, Dohmae N, Yonekura K, Shen JR. Structural basis for the absence of low-energy chlorophylls in a photosystem I trimer from Gloeobacter violaceus. eLife 2022; 11:73990. [PMID: 35404232 PMCID: PMC9000952 DOI: 10.7554/elife.73990] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Photosystem I (PSI) is a multi-subunit pigment-protein complex that functions in light-harvesting and photochemical charge-separation reactions, followed by reduction of NADP to NADPH required for CO2 fixation in photosynthetic organisms. PSI from different photosynthetic organisms has a variety of chlorophylls (Chls), some of which are at lower-energy levels than its reaction center P700, a special pair of Chls, and are called low-energy Chls. However, the sites of low-energy Chls are still under debate. Here, we solved a 2.04-Å resolution structure of a PSI trimer by cryo-electron microscopy from a primordial cyanobacterium Gloeobacter violaceus PCC 7421, which has no low-energy Chls. The structure shows the absence of some subunits commonly found in other cyanobacteria, confirming the primordial nature of this cyanobacterium. Comparison with the known structures of PSI from other cyanobacteria and eukaryotic organisms reveals that one dimeric and one trimeric Chls are lacking in the Gloeobacter PSI. The dimeric and trimeric Chls are named Low1 and Low2, respectively. Low2 is missing in some cyanobacterial and eukaryotic PSIs, whereas Low1 is absent only in Gloeobacter. These findings provide insights into not only the identity of low-energy Chls in PSI, but also the evolutionary changes of low-energy Chls in oxyphototrophs.
Collapse
Affiliation(s)
- Koji Kato
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
| | | | - Ryo Nagao
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
| | | | | | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science
| | | | - Akio Murakami
- Graduate School of Science, Kobe University
- Research Center for Inland Seas, Kobe University
| | - Yoshiki Nakajima
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
| | - Makio Yokono
- Institute of Low Temperature Science, Hokkaido University
| | | | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science
| | - Koji Yonekura
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University
- Advanced Electron Microscope Development Unit, RIKEN-JEOL Collaboration Center, RIKEN Baton Zone Program
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
| |
Collapse
|
9
|
Torabi N, Rousseva S, Chen Q, Ashrafi A, Kermanpur A, Chiechi RC. Graphene oxide decorated with gold enables efficient biophotovolatic cells incorporating photosystem I. RSC Adv 2022; 12:8783-8791. [PMID: 35424820 PMCID: PMC8984948 DOI: 10.1039/d1ra08908k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/08/2022] [Indexed: 12/03/2022] Open
Abstract
This paper describes the use of reduced graphene oxide decorated with gold nanoparticles as an efficient electron transfer layer for solid-state biophotovoltic cells containing photosystem I as the sole photo-active component. Together with polytyrosine–polyaniline as a hole transfer layer, this device architecture results in an open-circuit voltage of 0.3 V, a fill factor of 38% and a short-circuit current density of 5.6 mA cm−2 demonstrating good coupling between photosystem I and the electrodes. The best-performing device reached an external power conversion efficiency of 0.64%, the highest for any solid-state photosystem I-based photovoltaic device that has been reported to date. Our results demonstrate that the functionality of photosystem I in the non-natural environment of solid-state biophotovoltaic cells can be improved through the modification of electrodes with efficient charge-transfer layers. The combination of reduced graphene oxide with gold nanoparticles caused tailoring of the electronic structure and alignment of the energy levels while also increasing electrical conductivity. The decoration of graphene electrodes with gold nanoparticles is a generalizable approach for enhancing charge-transfer across interfaces, particularly when adjusting the levels of the active layer is not feasible, as is the case for photosystem I and other biological molecules. This paper describes the use of reduced graphene oxide decorated with gold nanoparticles as an efficient electron transport layer for solid-state biophotovoltic cells containing photosystem I as the sole photo-active component.![]()
Collapse
Affiliation(s)
- Nahid Torabi
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands.,Zernike Institute for Advanced Materials Nijenborgh 4 9747 AG Groningen The Netherlands.,Department of Materials Engineering, Isfahan University of Technology Isfahan 84156-83111 Iran
| | - Sylvia Rousseva
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands.,Zernike Institute for Advanced Materials Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Qi Chen
- Zernike Institute for Advanced Materials Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Ali Ashrafi
- Department of Materials Engineering, Isfahan University of Technology Isfahan 84156-83111 Iran
| | - Ahmad Kermanpur
- Department of Materials Engineering, Isfahan University of Technology Isfahan 84156-83111 Iran
| | - Ryan C Chiechi
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands.,Zernike Institute for Advanced Materials Nijenborgh 4 9747 AG Groningen The Netherlands.,Department of Chemistry, North Carolina State University Raleigh North Carolina 27695-8204 USA
| |
Collapse
|
10
|
Chen M, Liu X, He Y, Li N, He J, Zhang Y. Diversity Among Cyanobacterial Photosystem I Oligomers. Front Microbiol 2022; 12:781826. [PMID: 35281305 PMCID: PMC8908432 DOI: 10.3389/fmicb.2021.781826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/06/2021] [Indexed: 12/03/2022] Open
Abstract
Unraveling the oligomeric states of the photosystem I complex is essential to understanding the evolution and native mechanisms of photosynthesis. The molecular composition and functions of this complex are highly conserved among cyanobacteria, algae, and plants; however, its structure varies considerably between species. In cyanobacteria, the photosystem I complex is a trimer in most species, but monomer, dimer and tetramer arrangements with full physiological function have recently been characterized. Higher order oligomers have also been identified in some heterocyst-forming cyanobacteria and their close unicellular relatives. Given technological progress in cryo-electron microscope single particle technology, structures of PSI dimers, tetramers and some heterogeneous supercomplexes have been resolved into near atomic resolution. Recent developments in photosystem I oligomer studies have largely enriched theories on the structure and function of these photosystems.
Collapse
Affiliation(s)
- Ming Chen
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xuan Liu
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yujie He
- Center for Cell Fate and Lineage (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Ningning Li
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- China–UK Institute for Frontier Science, Shenzhen, China
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jun He
- Center for Cell Fate and Lineage (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ying Zhang
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- China–UK Institute for Frontier Science, Shenzhen, China
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
11
|
Semchonok DA, Mondal J, Cooper CJ, Schlum K, Li M, Amin M, Sorzano CO, Ramírez-Aportela E, Kastritis PL, Boekema EJ, Guskov A, Bruce BD. Cryo-EM structure of a tetrameric photosystem I from Chroococcidiopsis TS-821, a thermophilic, unicellular, non-heterocyst-forming cyanobacterium. PLANT COMMUNICATIONS 2022; 3:100248. [PMID: 35059628 PMCID: PMC8760143 DOI: 10.1016/j.xplc.2021.100248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/03/2021] [Accepted: 10/08/2021] [Indexed: 05/19/2023]
Abstract
Photosystem I (PSI) is one of two photosystems involved in oxygenic photosynthesis. PSI of cyanobacteria exists in monomeric, trimeric, and tetrameric forms, in contrast to the strictly monomeric form of PSI in plants and algae. The tetrameric organization raises questions about its structural, physiological, and evolutionary significance. Here we report the ∼3.72 Å resolution cryo-electron microscopy structure of tetrameric PSI from the thermophilic, unicellular cyanobacterium Chroococcidiopsis sp. TS-821. The structure resolves 44 subunits and 448 cofactor molecules. We conclude that the tetramer is arranged via two different interfaces resulting from a dimer-of-dimers organization. The localization of chlorophyll molecules permits an excitation energy pathway within and between adjacent monomers. Bioinformatics analysis reveals conserved regions in the PsaL subunit that correlate with the oligomeric state. Tetrameric PSI may function as a key evolutionary step between the trimeric and monomeric forms of PSI organization in photosynthetic organisms.
Collapse
Affiliation(s)
- Dmitry A. Semchonok
- Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Jyotirmoy Mondal
- Biochemistry & Cellular and Molecular Biology Department, University of Tennessee, Knoxville, TN, USA
| | - Connor J. Cooper
- Program in Genome Science and Technology, University of Tennessee, Knoxville, TN, USA
| | - Katrina Schlum
- Program in Genome Science and Technology, University of Tennessee, Knoxville, TN, USA
| | - Meng Li
- Biochemistry & Cellular and Molecular Biology Department, University of Tennessee, Knoxville, TN, USA
- Bredesen Center for Interdisciplinary Research & Education, University of Tennessee, Knoxville, TN, USA
| | - Muhamed Amin
- Department of Sciences, University College Groningen, Groningen, the Netherlands
| | - Carlos O.S. Sorzano
- Biocomputing Unit, National Center for Biotechnology (CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
- Universidad CEU San Pablo, Campus Urb. Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain
| | - Erney Ramírez-Aportela
- Biocomputing Unit, National Center for Biotechnology (CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Panagiotis L. Kastritis
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Egbert J. Boekema
- Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Albert Guskov
- Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Barry D. Bruce
- Biochemistry & Cellular and Molecular Biology Department, University of Tennessee, Knoxville, TN, USA
- Program in Genome Science and Technology, University of Tennessee, Knoxville, TN, USA
- Bredesen Center for Interdisciplinary Research & Education, University of Tennessee, Knoxville, TN, USA
- Microbiology Department, University of Tennessee, Knoxville, TN, USA
- Corresponding author
| |
Collapse
|
12
|
Torabi N, Qiu X, López-Ortiz M, Loznik M, Herrmann A, Kermanpur A, Ashrafi A, Chiechi RC. Fullerenes Enhance Self-Assembly and Electron Injection of Photosystem I in Biophotovoltaic Devices. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11465-11473. [PMID: 34544234 PMCID: PMC8495901 DOI: 10.1021/acs.langmuir.1c01542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/06/2021] [Indexed: 06/02/2023]
Abstract
This paper describes the fabrication of microfluidic devices with a focus on controlling the orientation of photosystem I (PSI) complexes, which directly affects the performance of biophotovoltaic devices by maximizing the efficiency of the extraction of electron/hole pairs from the complexes. The surface chemistry of the electrode on which the complexes assemble plays a critical role in their orientation. We compared the degree of orientation on self-assembled monolayers of phenyl-C61-butyric acid and a custom peptide on nanostructured gold electrodes. Biophotovoltaic devices fabricated with the C61 fulleroid exhibit significantly improved performance and reproducibility compared to those utilizing the peptide, yielding a 1.6-fold increase in efficiency. In addition, the C61-based devices were more stable under continuous illumination. Our findings show that fulleroids, which are well-known acceptor materials in organic photovoltaic devices, facilitate the extraction of electrons from PSI complexes without sacrificing control over the orientation of the complexes, highlighting this combination of traditional organic semiconductors with biomolecules as a viable approach to coopting natural photosynthetic systems for use in solar cells.
Collapse
Affiliation(s)
- Nahid Torabi
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747
AG Groningen, The Netherlands
- Department
of Materials Engineering, Isfahan University
of Technology, Isfahan 84156-83111, Iran
| | - Xinkai Qiu
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| | - Manuel López-Ortiz
- IBEC—Institut
de Bioenginyeria de Catalunya, The Barcelona
Institute of Science and Technology, Baldiri Reixac 15-21, Barcelona 08028, Spain
- Network
Biomedical Research Center in Biomaterials, Bioengineering and Nanomedicine
(CIBER-BBN), Madrid 28029, Spain
| | - Mark Loznik
- Institute
of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
- DWI-Leibniz
Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany
| | - Andreas Herrmann
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747
AG Groningen, The Netherlands
- Institute
of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
- DWI-Leibniz
Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany
| | - Ahmad Kermanpur
- Department
of Materials Engineering, Isfahan University
of Technology, Isfahan 84156-83111, Iran
| | - Ali Ashrafi
- Department
of Materials Engineering, Isfahan University
of Technology, Isfahan 84156-83111, Iran
| | - Ryan C. Chiechi
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| |
Collapse
|
13
|
Teodor AH, Ooi EJ, Medina J, Alarcon M, Vaughn MD, Bruce BD, Bergkamp JJ. Aqueous-soluble bipyridine cobalt(ii/iii) complexes act as direct redox mediators in photosystem I-based biophotovoltaic devices. RSC Adv 2021; 11:10434-10450. [PMID: 35423559 PMCID: PMC8695705 DOI: 10.1039/d0ra10221k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/28/2021] [Indexed: 01/13/2023] Open
Abstract
Sustainable energy production is critical for meeting growing worldwide energy demands. Due to its stability and reduction potential, photosystem I (PSI) is attractive as the photosensitizer in biophotovoltaic devices. Herein, we characterize aqueous and organic solvent soluble synthetic bipyridine-based cobalt complexes as redox mediators for PSI-based biophotovoltaics applications. Cobalt-based complexes are not destructive to protein and have appropriate midpoint potentials for electron donation to PSI. We report on PSI stability in organic solvents commonly used in biophotovoltaics. We also show the effects of a mixed organic solvent phase on PSI reduction kinetics, slowing reduction rates approximately 8–38 fold as compared to fully aqueous systems, with implications for dye regeneration rates in PSI-based biophotovoltaics. Further, we show evidence of direct electron transfer from cobalt complexes to PSI. Finally, we report on photocurrent generation from Co mediator-PSI biophotovoltaic devices. Taken together, we discuss the development of novel Co complexes and our ability to fine-tune their characteristics via functional groups and counteranion choice to drive interaction with a biological electron acceptor on multiple levels from redox midpoints, spectral overlap, and solvent requirements, among others. This work suggests that fine-tuning of redox active species for interaction with a biological partner is possible for the creation and improvement of low cost, carbon-neutral energy production in the future. Sustainable energy production is critical for meeting growing worldwide energy demands.![]()
Collapse
Affiliation(s)
- Alexandra H Teodor
- Graduate School of Genome Science and Technology, University of Tennessee at Knoxville and Oak Ridge National Laboratory USA
| | - Eu-Jee Ooi
- Department of Chemistry and Biochemistry, California State University Bakersfield USA
| | - Jackeline Medina
- Department of Chemistry and Biochemistry, California State University Bakersfield USA
| | - Miguel Alarcon
- Department of Chemistry and Biochemistry, California State University Bakersfield USA
| | | | - Barry D Bruce
- Graduate School of Genome Science and Technology, University of Tennessee at Knoxville and Oak Ridge National Laboratory USA .,Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee at Knoxville USA.,Department of Chemical and Biomolecular Engineering, University of Tennessee at Knoxville USA
| | - Jesse J Bergkamp
- Department of Chemistry and Biochemistry, California State University Bakersfield USA
| |
Collapse
|
14
|
Çoruh O, Frank A, Tanaka H, Kawamoto A, El-Mohsnawy E, Kato T, Namba K, Gerle C, Nowaczyk MM, Kurisu G. Cryo-EM structure of a functional monomeric Photosystem I from Thermosynechococcus elongatus reveals red chlorophyll cluster. Commun Biol 2021; 4:304. [PMID: 33686186 PMCID: PMC7940658 DOI: 10.1038/s42003-021-01808-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 02/05/2021] [Indexed: 01/31/2023] Open
Abstract
A high-resolution structure of trimeric cyanobacterial Photosystem I (PSI) from Thermosynechococcus elongatus was reported as the first atomic model of PSI almost 20 years ago. However, the monomeric PSI structure has not yet been reported despite long-standing interest in its structure and extensive spectroscopic characterization of the loss of red chlorophylls upon monomerization. Here, we describe the structure of monomeric PSI from Thermosynechococcus elongatus BP-1. Comparison with the trimer structure gave detailed insights into monomerization-induced changes in both the central trimerization domain and the peripheral regions of the complex. Monomerization-induced loss of red chlorophylls is assigned to a cluster of chlorophylls adjacent to PsaX. Based on our findings, we propose a role of PsaX in the stabilization of red chlorophylls and that lipids of the surrounding membrane present a major source of thermal energy for uphill excitation energy transfer from red chlorophylls to P700.
Collapse
Affiliation(s)
- Orkun Çoruh
- Laboratory for Protein Crystallography, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Anna Frank
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Hideaki Tanaka
- Laboratory for Protein Crystallography, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Akihiro Kawamoto
- Laboratory for Protein Crystallography, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Eithar El-Mohsnawy
- Department of Botany and Microbiology, Faculty of Science, Kafrelsheikh University, Kafr Al Sheikh, Egypt
| | - Takayuki Kato
- Laboratory of CryoEM Structural Biology, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
- RIKEN Center for Biosystems Dynamics Research and SPring-8 Center, Suita, Osaka, Japan
- JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, Suita, Osaka, Japan
| | - Christoph Gerle
- Laboratory for Protein Crystallography, Institute for Protein Research, Osaka University, Suita, Osaka, Japan.
| | - Marc M Nowaczyk
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany.
| | - Genji Kurisu
- Laboratory for Protein Crystallography, Institute for Protein Research, Osaka University, Suita, Osaka, Japan.
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan.
| |
Collapse
|
15
|
Wang P, Frank A, Zhao F, Szczesny J, Junqueira JRC, Zacarias S, Ruff A, Nowaczyk MM, Pereira IAC, Rögner M, Conzuelo F, Schuhmann W. Gemischte Photosystem‐I‐Monoschichten ermöglichen einen verbesserten anisotropen Elektronenfluss in Biophotovoltaik‐Systemen durch Unterdrückung elektrischer Kurzschlüsse. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202008958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Panpan Wang
- Analytical Chemistry – Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstraße 150 44780 Bochum Deutschland
| | - Anna Frank
- Plant Biochemistry Faculty of Biology and Biotechnology Ruhr University Bochum Universitätsstraße 150 44780 Bochum Deutschland
| | - Fangyuan Zhao
- Analytical Chemistry – Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstraße 150 44780 Bochum Deutschland
| | - Julian Szczesny
- Analytical Chemistry – Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstraße 150 44780 Bochum Deutschland
| | - João R. C. Junqueira
- Analytical Chemistry – Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstraße 150 44780 Bochum Deutschland
| | - Sónia Zacarias
- Instituto de Tecnologia Química e Biológica António Xavier Universidade Nova de Lisboa Oeiras 2780-157 Portugal
| | - Adrian Ruff
- Analytical Chemistry – Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstraße 150 44780 Bochum Deutschland
- PPG (Deutschland) Business Support GmbH PPG Packaging Coatings EMEA Erlenbrunnenstraße 20 72411 Bodelshausen Deutschland
| | - Marc M. Nowaczyk
- Plant Biochemistry Faculty of Biology and Biotechnology Ruhr University Bochum Universitätsstraße 150 44780 Bochum Deutschland
| | - Inês A. C. Pereira
- Instituto de Tecnologia Química e Biológica António Xavier Universidade Nova de Lisboa Oeiras 2780-157 Portugal
| | - Matthias Rögner
- Plant Biochemistry Faculty of Biology and Biotechnology Ruhr University Bochum Universitätsstraße 150 44780 Bochum Deutschland
| | - Felipe Conzuelo
- Analytical Chemistry – Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstraße 150 44780 Bochum Deutschland
| | - Wolfgang Schuhmann
- Analytical Chemistry – Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstraße 150 44780 Bochum Deutschland
| |
Collapse
|
16
|
Wang P, Frank A, Zhao F, Szczesny J, Junqueira JRC, Zacarias S, Ruff A, Nowaczyk MM, Pereira IAC, Rögner M, Conzuelo F, Schuhmann W. Closing the Gap for Electronic Short-Circuiting: Photosystem I Mixed Monolayers Enable Improved Anisotropic Electron Flow in Biophotovoltaic Devices. Angew Chem Int Ed Engl 2021; 60:2000-2006. [PMID: 33075190 PMCID: PMC7894356 DOI: 10.1002/anie.202008958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/15/2020] [Indexed: 11/10/2022]
Abstract
Well-defined assemblies of photosynthetic protein complexes are required for an optimal performance of semi-artificial energy conversion devices, capable of providing unidirectional electron flow when light-harvesting proteins are interfaced with electrode surfaces. We present mixed photosystem I (PSI) monolayers constituted of native cyanobacterial PSI trimers in combination with isolated PSI monomers from the same organism. The resulting compact arrangement ensures a high density of photoactive protein complexes per unit area, providing the basis to effectively minimize short-circuiting processes that typically limit the performance of PSI-based bioelectrodes. The PSI film is further interfaced with redox polymers for optimal electron transfer, enabling highly efficient light-induced photocurrent generation. Coupling of the photocathode with a [NiFeSe]-hydrogenase confirms the possibility to realize light-induced H2 evolution.
Collapse
Affiliation(s)
- Panpan Wang
- Analytical Chemistry—Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstrasse 15044780BochumGermany
| | - Anna Frank
- Plant BiochemistryFaculty of Biology and BiotechnologyRuhr University BochumUniversitätsstrasse 15044780BochumGermany
| | - Fangyuan Zhao
- Analytical Chemistry—Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstrasse 15044780BochumGermany
| | - Julian Szczesny
- Analytical Chemistry—Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstrasse 15044780BochumGermany
| | - João R. C. Junqueira
- Analytical Chemistry—Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstrasse 15044780BochumGermany
| | - Sónia Zacarias
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeiras2780-157Portugal
| | - Adrian Ruff
- Analytical Chemistry—Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstrasse 15044780BochumGermany
- Present Address: PPG (Deutschland) Business Support GmbHPPG Packaging Coatings EMEAErlenbrunnenstrasse 2072411BodelshausenGermany
| | - Marc M. Nowaczyk
- Plant BiochemistryFaculty of Biology and BiotechnologyRuhr University BochumUniversitätsstrasse 15044780BochumGermany
| | - Inês A. C. Pereira
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeiras2780-157Portugal
| | - Matthias Rögner
- Plant BiochemistryFaculty of Biology and BiotechnologyRuhr University BochumUniversitätsstrasse 15044780BochumGermany
| | - Felipe Conzuelo
- Analytical Chemistry—Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstrasse 15044780BochumGermany
| | - Wolfgang Schuhmann
- Analytical Chemistry—Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstrasse 15044780BochumGermany
| |
Collapse
|
17
|
El-Mohsnawy E, Abu-Khudir R. A highly purified C-phycocyanin from thermophilic cyanobacterium Thermosynechococcus elongatus and its cytotoxic activity assessment using an in vitro cell-based approach. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2020. [DOI: 10.1080/16583655.2020.1812287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Eithar El-Mohsnawy
- Botany and Microbiology Department, Faculty of Science, Kafrelsheikh University, Kafr ElSheikh, Egypt
| | - Rasha Abu-Khudir
- Chemistry Department, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
- Chemistry Department, Biochemistry Branch, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
18
|
Akhtar P, Biswas A, Petrova N, Zakar T, van Stokkum IHM, Lambrev PH. Time-resolved fluorescence study of excitation energy transfer in the cyanobacterium Anabaena PCC 7120. PHOTOSYNTHESIS RESEARCH 2020; 144:247-259. [PMID: 32076913 PMCID: PMC7203587 DOI: 10.1007/s11120-020-00719-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 02/07/2020] [Indexed: 05/28/2023]
Abstract
Excitation energy transfer (EET) and trapping in Anabaena variabilis (PCC 7120) intact cells, isolated phycobilisomes (PBS) and photosystem I (PSI) complexes have been studied by picosecond time-resolved fluorescence spectroscopy at room temperature. Global analysis of the time-resolved fluorescence kinetics revealed two lifetimes of spectral equilibration in the isolated PBS, 30-35 ps and 110-130 ps, assigned primarily to energy transfer within the rods and between the rods and the allophycocyanin core, respectively. An additional intrinsic kinetic component with a lifetime of 500-700 ps was found, representing non-radiative decay or energy transfer in the core. Isolated tetrameric PSI complexes exhibited biexponential fluorescence decay kinetics with lifetimes of about 10 ps and 40 ps, representing equilibration between the bulk antenna chlorophylls with low-energy "red" states and trapping of the equilibrated excitations, respectively. The cascade of EET in the PBS and in PSI could be resolved in intact filaments as well. Virtually all energy absorbed by the PBS was transferred to the photosystems on a timescale of 180-190 ps.
Collapse
Affiliation(s)
- Parveen Akhtar
- Biological Research Centre, Szeged, Temesvári krt. 62, Szeged, 6726, Hungary
- ELI-ALPS, ELI-HU Nonprofit Ltd., Wolfgang Sandner u. 3, Szeged, 6728, Hungary
| | - Avratanu Biswas
- Biological Research Centre, Szeged, Temesvári krt. 62, Szeged, 6726, Hungary
- Doctoral School of Biology, University of Szeged, Közép Fasor 52, Szeged, 6726, Hungary
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Nia Petrova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad G. Bontchev Str., Bl. 21, 1113, Sofia, Bulgaria
| | - Tomas Zakar
- Biological Research Centre, Szeged, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Ivo H M van Stokkum
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Petar H Lambrev
- Biological Research Centre, Szeged, Temesvári krt. 62, Szeged, 6726, Hungary.
| |
Collapse
|
19
|
Sharapova LS, Akulinkina DV, Bolychevseva YV, Elanskaya IV, Yurina NP. Study of the Location of Low-Molecular Stress-Inducible Proteins that Protect the Photosynthetic Apparatus against Photodestruction. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683819010150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Qiu X, Castañeda Ocampo O, de Vries HW, van Putten M, Loznik M, Herrmann A, Chiechi RC. Self-Regenerating Soft Biophotovoltaic Devices. ACS APPLIED MATERIALS & INTERFACES 2018; 10:37625-37633. [PMID: 30295451 PMCID: PMC6328238 DOI: 10.1021/acsami.8b11115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
This paper describes the fabrication of soft, stretchable biophotovoltaic devices that generate photocurrent from photosystem I (PSI) complexes that are self-assembled onto Au electrodes with a preferred orientation. Charge is collected by the direct injection of electrons into the Au electrode and the transport of holes through a redox couple to liquid eutectic gallium-indium (EGaIn) electrodes that are confined to microfluidic pseudochannels by arrays of posts. The pseudochannels are defined in a single fabrication step that leverages the non-Newtonian rheology of EGaIn. This strategy is extended to the fabrication of reticulated electrodes that are inherently stretchable. A simple shadow evaporation technique is used to increase the surface area of the Au electrodes by a factor of approximately 106 compared to planar electrodes. The power conversion efficiency of the biophotovoltaic devices decreases over time, presumably as the PSI complexes denature and/or detach from the Au electrodes. However, by circulating a solution of active PSI complexes the devices self-regenerate by mass action/self-assembly. These devices leverage simple fabrication techniques to produce complex function and prove that photovoltaic devices comprising PSI can retain the ability to regenerate, one of the most important functions of photosynthetic organisms.
Collapse
Affiliation(s)
- Xinkai Qiu
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Olga Castañeda Ocampo
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Hendrik W. de Vries
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Maikel van Putten
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Mark Loznik
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Andreas Herrmann
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Ryan C. Chiechi
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- E-mail:
| |
Collapse
|
21
|
Kölsch A, Hejazi M, Stieger KR, Feifel SC, Kern JF, Müh F, Lisdat F, Lokstein H, Zouni A. Insights into the binding behavior of native and non-native cytochromes to photosystem I from Thermosynechococcus elongatus. J Biol Chem 2018; 293:9090-9100. [PMID: 29695502 DOI: 10.1074/jbc.ra117.000953] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 04/18/2018] [Indexed: 01/09/2023] Open
Abstract
The binding of photosystem I (PS I) from Thermosynechococcus elongatus to the native cytochrome (cyt) c6 and cyt c from horse heart (cyt cHH) was analyzed by oxygen consumption measurements, isothermal titration calorimetry (ITC), and rigid body docking combined with electrostatic computations of binding energies. Although PS I has a higher affinity for cyt cHH than for cyt c6, the influence of ionic strength and pH on binding is different in the two cases. ITC and theoretical computations revealed the existence of unspecific binding sites for cyt cHH besides one specific binding site close to P700 Binding to PS I was found to be the same for reduced and oxidized cyt cHH Based on this information, suitable conditions for cocrystallization of cyt cHH with PS I were found, resulting in crystals with a PS I:cyt cHH ratio of 1:1. A crystal structure at 3.4-Å resolution was obtained, but cyt cHH cannot be identified in the electron density map because of unspecific binding sites and/or high flexibility at the specific binding site. Modeling the binding of cyt c6 to PS I revealed a specific binding site where the distance and orientation of cyt c6 relative to P700 are comparable with cyt c2 from purple bacteria relative to P870 This work provides new insights into the binding modes of different cytochromes to PS I, thus facilitating steps toward solving the PS I-cyt c costructure and a more detailed understanding of natural electron transport processes.
Collapse
Affiliation(s)
- Adrian Kölsch
- From the Biophysics of Photosynthesis, Institute for Biology, Humboldt-Universität zu Berlin, Philippstrasse 13, 10115 Berlin, Germany,
| | - Mahdi Hejazi
- From the Biophysics of Photosynthesis, Institute for Biology, Humboldt-Universität zu Berlin, Philippstrasse 13, 10115 Berlin, Germany
| | - Kai R Stieger
- Biosystems Technology, Institute for Applied Life Sciences, University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau, Germany
| | - Sven C Feifel
- Biosystems Technology, Institute for Applied Life Sciences, University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau, Germany
| | - Jan F Kern
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Frank Müh
- Department of Theoretical Biophysics, Institute for Theoretical Physics, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria, and
| | - Fred Lisdat
- Biosystems Technology, Institute for Applied Life Sciences, University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau, Germany
| | - Heiko Lokstein
- Department of Chemical Physics and Optics, Charles University, Ke Karlovu 3, CZ-121 16 Praha 2, Czech Republic
| | - Athina Zouni
- From the Biophysics of Photosynthesis, Institute for Biology, Humboldt-Universität zu Berlin, Philippstrasse 13, 10115 Berlin, Germany,
| |
Collapse
|
22
|
Kubota-Kawai H, Mutoh R, Shinmura K, Sétif P, Nowaczyk MM, Rögner M, Ikegami T, Tanaka H, Kurisu G. X-ray structure of an asymmetrical trimeric ferredoxin-photosystem I complex. NATURE PLANTS 2018; 4:218-224. [PMID: 29610537 DOI: 10.1038/s41477-018-0130-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/06/2018] [Indexed: 05/03/2023]
Abstract
Photosystem I (PSI), a large protein complex located in the thylakoid membrane, mediates the final step in light-driven electron transfer to the stromal electron carrier protein ferredoxin (Fd). Here, we report the first structural description of the PSI-Fd complex from Thermosynechococcus elongatus. The trimeric PSI complex binds three Fds in a non-equivalent manner. While each is recognized by a PSI protomer in a similar orientation, the distances between Fds and the PSI redox centres differ. Fd binding thus entails loss of the exact three-fold symmetry of the PSI's soluble subunits, inducing structural perturbations which are transferred to the lumen through PsaF. Affinity chromatography and nuclear magnetic resonance analyses of PSI-Fd complexes support the existence of two different Fd-binding states, with one Fd being more tightly bound than the others. We propose a dynamic structural basis for productive complex formation, which supports fast electron transfer between PSI and Fd.
Collapse
Affiliation(s)
- Hisako Kubota-Kawai
- Institute for Protein Research, Osaka University, Osaka, Japan
- National Institute for Basic Biology, Aichi, Japan
| | - Risa Mutoh
- Institute for Protein Research, Osaka University, Osaka, Japan
- Department of Applied Physics, Faculty of Science, Fukuoka University, Fukuoka, Japan
| | - Kanako Shinmura
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Pierre Sétif
- Institut de Biologie Intégrative de la Cellule (I2BC), IBITECS, CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Marc M Nowaczyk
- Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Matthias Rögner
- Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Takahisa Ikegami
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama, Japan
| | - Hideaki Tanaka
- Institute for Protein Research, Osaka University, Osaka, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama, Japan
- Department of Macromolecular Science, Graduate School of Science, Osaka, Japan
| | - Genji Kurisu
- Institute for Protein Research, Osaka University, Osaka, Japan.
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama, Japan.
- Department of Macromolecular Science, Graduate School of Science, Osaka, Japan.
| |
Collapse
|
23
|
Shelaev IV, Mamedov MD, Gostev FE, Aybush AV, Li M, Nguyen J, Bruce BD, Nadtochenko VA. Comparisons of Electron Transfer Reactions in a Cyanobacterial Tetrameric and Trimeric Photosystem I Complexes. Photochem Photobiol 2018; 94:564-569. [DOI: 10.1111/php.12886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/05/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Ivan V. Shelaev
- N.N. Semenov Institute of Chemical Physics Russian Academy of Sciences Moscow Russia
| | - Mahir D. Mamedov
- A.N. Belozersky Institute of Physical–Chemical Biology Moscow State University Moscow Russia
| | - Fedor E. Gostev
- N.N. Semenov Institute of Chemical Physics Russian Academy of Sciences Moscow Russia
| | - Arseny V. Aybush
- N.N. Semenov Institute of Chemical Physics Russian Academy of Sciences Moscow Russia
| | - Meng Li
- Department of Biochemistry and Cellular and Molecular Biology University of Tennessee Knoxville TN
- Bredesen Center for Interdisciplinary Research University of Tennessee Knoxville TN
| | - Jonathan Nguyen
- Department of Biochemistry and Cellular and Molecular Biology University of Tennessee Knoxville TN
| | - Barry D. Bruce
- Department of Biochemistry and Cellular and Molecular Biology University of Tennessee Knoxville TN
- Bredesen Center for Interdisciplinary Research University of Tennessee Knoxville TN
- Department of Microbiology University of Tennessee Knoxville TN
| | - Victor A. Nadtochenko
- N.N. Semenov Institute of Chemical Physics Russian Academy of Sciences Moscow Russia
- Moscow Institute of Physics and Technology Dolgoprudny Russia
| |
Collapse
|
24
|
Casella S, Huang F, Mason D, Zhao GY, Johnson GN, Mullineaux CW, Liu LN. Dissecting the Native Architecture and Dynamics of Cyanobacterial Photosynthetic Machinery. MOLECULAR PLANT 2017; 10:1434-1448. [PMID: 29017828 PMCID: PMC5683893 DOI: 10.1016/j.molp.2017.09.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 09/25/2017] [Accepted: 09/29/2017] [Indexed: 05/18/2023]
Abstract
The structural dynamics and flexibility of cell membranes play fundamental roles in the functions of the cells, i.e., signaling, energy transduction, and physiological adaptation. The cyanobacterial thylakoid membrane represents a model membrane that can conduct both oxygenic photosynthesis and respiration simultaneously. In this study, we conducted direct visualization of the global organization and mobility of photosynthetic complexes in thylakoid membranes from a model cyanobacterium, Synechococcus elongatus PCC 7942, using high-resolution atomic force, confocal, and total internal reflection fluorescence microscopy. We visualized the native arrangement and dense packing of photosystem I (PSI), photosystem II (PSII), and cytochrome (Cyt) b6f within thylakoid membranes at the molecular level. Furthermore, we functionally tagged PSI, PSII, Cyt b6f, and ATP synthase individually with fluorescent proteins, and revealed the heterogeneous distribution of these four photosynthetic complexes and determined their dynamic features within the crowding membrane environment using live-cell fluorescence imaging. We characterized red light-induced clustering localization and adjustable diffusion of photosynthetic complexes in thylakoid membranes, representative of the reorganization of photosynthetic apparatus in response to environmental changes. Understanding the organization and dynamics of photosynthetic membranes is essential for rational design and construction of artificial photosynthetic systems to underpin bioenergy development. Knowledge of cyanobacterial thylakoid membranes could also be extended to other cell membranes, such as chloroplast and mitochondrial membranes.
Collapse
Affiliation(s)
- Selene Casella
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Fang Huang
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - David Mason
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK; Centre for Cell Imaging, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Guo-Yan Zhao
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK; College of Life Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Giles N Johnson
- School of Earth and Environmental Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Conrad W Mullineaux
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Lu-Ning Liu
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK.
| |
Collapse
|
25
|
Golub M, Hejazi M, Kölsch A, Lokstein H, Wieland DCF, Zouni A, Pieper J. Solution structure of monomeric and trimeric photosystem I of Thermosynechococcus elongatus investigated by small-angle X-ray scattering. PHOTOSYNTHESIS RESEARCH 2017; 133:163-173. [PMID: 28258466 DOI: 10.1007/s11120-017-0342-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/23/2017] [Indexed: 06/06/2023]
Abstract
The structure of monomeric and trimeric photosystem I (PS I) of Thermosynechococcus elongatus BP1 (T. elongatus) was investigated by small-angle X-ray scattering (SAXS). The scattering data reveal that the protein-detergent complexes possess radii of gyration of 58 and 78 Å in the cases of monomeric and trimeric PS I, respectively. The results also show that the samples are monodisperse, virtually free of aggregation, and contain empty detergent micelles. The shape of the protein-detergent complexes can be well approximated by elliptical cylinders with a height of 78 Å. Monomeric PS I in buffer solution exhibits minor and major radii of the elliptical cylinder of about 50 and 85 Å, respectively. In the case of trimeric PS I, both radii are equal to about 110 Å. The latter model can be shown to accommodate three elliptical cylinders equal to those describing monomeric PS I. A structure reconstitution also reveals that the protein-detergent complexes are larger than their respective crystal structures. The reconstituted structures are larger by about 20 Å mainly in the region of the hydrophobic surfaces of the monomeric and trimeric PS I complexes. This seeming contradiction can be resolved by the addition of a detergent belt constituted by a monolayer of dodecyl-β-D-maltoside molecules. Assuming a closest possible packing, a number of roughly 1024 and 1472 detergent molecules can be determined for monomeric and trimeric PS I, respectively. Taking the monolayer of detergent molecules into account, the solution structure can be almost perfectly modeled by the crystal structures of monomeric and trimeric PS I.
Collapse
Affiliation(s)
- Maksym Golub
- Institute of Physics, University of Tartu, Wilhelm Ostwaldi 1, 50411, Tartu, Estonia
| | - Mahdi Hejazi
- Humboldt Universität zu Berlin, Philipp Str. 13, 10115, Berlin, Germany
| | - Adrian Kölsch
- Humboldt Universität zu Berlin, Philipp Str. 13, 10115, Berlin, Germany
| | - Heiko Lokstein
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16, Prague, Czech Republic
| | - D C Florian Wieland
- Department for Metalic Biomaterials, Institute for Materials Research, Helmholtz Zentrum Geesthacht, 21502, Geesthacht, Germany
| | - Athina Zouni
- Humboldt Universität zu Berlin, Philipp Str. 13, 10115, Berlin, Germany
| | - Jörg Pieper
- Institute of Physics, University of Tartu, Wilhelm Ostwaldi 1, 50411, Tartu, Estonia.
| |
Collapse
|
26
|
Zeaxanthin and echinenone modify the structure of photosystem I trimer in Synechocystis sp. PCC 6803. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:510-518. [DOI: 10.1016/j.bbabio.2017.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/27/2017] [Accepted: 05/01/2017] [Indexed: 01/26/2023]
|
27
|
El-Khouly ME, El-Mohsnawy E, Fukuzumi S. Solar energy conversion: From natural to artificial photosynthesis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2017. [DOI: 10.1016/j.jphotochemrev.2017.02.001] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
28
|
Yurina NP, Popov VO, Krasnovsky AA. Remembering Navasard V. Karapetyan (1936-2015). PHOTOSYNTHESIS RESEARCH 2017; 132:221-226. [PMID: 28315133 DOI: 10.1007/s11120-017-0361-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/22/2017] [Indexed: 06/06/2023]
Abstract
Navasard Vaganovich Karapetyan (September 6, 1936-March 6, 2015) began his scientific career at the Bach Institute of Biochemistry of the Russian Academy of Sciences, Moscow, and was associated with this institute for over 56 years. He worked in the area of biochemistry and biophysics of photosynthesis and was especially known for his studies on chlorophyll a fluorescence in higher plants and cyanobacteria, molecular organization of Photosystem I, photoprotective energy dissipation, and dynamics of energy migration in the two photosystems. We present here a brief biography and comments on the work of Navasard Karapetyan. We remember him as an enthusiastic person who had an unflagging curiosity, energy and profound sincere interest in many aspects of photosynthesis research.
Collapse
Affiliation(s)
- Nadezhda P Yurina
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2, Leninsky Ave., Moscow, Russia, 119071.
| | - Vladimir O Popov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2, Leninsky Ave., Moscow, Russia, 119071
| | - Alexander A Krasnovsky
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2, Leninsky Ave., Moscow, Russia, 119071
| |
Collapse
|
29
|
Shubin VV, Terekhova IV, Bolychevtseva YV, El-Mohsnawy E, Rögner M, Mäntele W, Kopczak MJ, Džafić E. Thermostability of photosystem I trimers and monomers from the cyanobacterium Thermosynechococcus elongatus. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 179:17-22. [PMID: 28213141 DOI: 10.1016/j.saa.2017.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/30/2017] [Accepted: 02/04/2017] [Indexed: 06/06/2023]
Abstract
The performance of solar energy conversion into alternative energy sources in artificial systems highly depends on the thermostability of photosystem I (PSI) complexes Terasaki et al. (2007), Iwuchukwu et al. (2010), Kothe et al. (2013) . To assess the thermostability of PSI complexes from the thermophilic cyanobacterium Thermosynechococcus elongatus heating induced perturbations on the level of secondary structure of the proteins were studied. Changes were monitored by Fourier transform infrared (FT-IR) spectra in the mid-IR region upon slow heating (1°C per minute) of samples in D2O phosphate buffer (pD 7.4) from 20°C to 100°C. These spectra showed distinct changes in the Amide I region of PSI complexes as a function of the rising temperature. Absorbance at the Amide I maximum of PSI monomers (centered around 1653cm-1), gradually dropped in two temperature intervals, i.e. 60-75 and 80-90°C. In contrast, absorbance at the Amide I maximum of PSI trimers (around 1656cm-1) dropped only in one temperature interval 80-95°C. The thermal profile of the spectral shift of α-helices bands in the region 1656-1642cm-1 confirms the same two temperature intervals for PSI monomers and only one interval for trimers. Apparently, the observed absorbance changes at the Amide I maximum during heating of PSI monomers and trimers are caused by deformation and unfolding of α-helices. The absence of absorbance changes in the interval of 20-65°C in PSI trimers is probably caused by a greater stability of protein secondary structure as compared to that in monomers. Upon heating above 80°C a large part of α-helices both in trimers and monomers converts to unordered and aggregated structures. Spectral changes of PSI trimers and monomers heated up to 100°C are irreversible due to protein denaturation and non-specific aggregation of complexes leading to new absorption bands at 1618-1620cm-1. We propose that monomers shield the denaturation sensitive sides at the monomer/monomer interface within a trimer, making the oligomeric structure more stable against thermal stress.
Collapse
Affiliation(s)
- Vladimir V Shubin
- Baсh Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld.2, Leninsky Ave., Moscow 119071, Russia
| | - Irina V Terekhova
- Baсh Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld.2, Leninsky Ave., Moscow 119071, Russia.
| | - Yulia V Bolychevtseva
- Baсh Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld.2, Leninsky Ave., Moscow 119071, Russia
| | - Eithar El-Mohsnawy
- Biochemie der Pflanzen, Ruhr Universität Bochum, 44780 Bochum, Germany; Botany Department, Faculty of Science, Kafrelsheikh University, 33511 Kafrelsheikh, Egypt
| | - Matthias Rögner
- Biochemie der Pflanzen, Ruhr Universität Bochum, 44780 Bochum, Germany
| | - Werner Mäntele
- Institut für Biophysik, J.W. Goethe Universität Frankfurt, 60438 Frankfurt, Germany
| | - Marta J Kopczak
- Biochemie der Pflanzen, Ruhr Universität Bochum, 44780 Bochum, Germany
| | - Enela Džafić
- Institut für Biophysik, J.W. Goethe Universität Frankfurt, 60438 Frankfurt, Germany
| |
Collapse
|
30
|
Szewczyk S, Giera W, D'Haene S, van Grondelle R, Gibasiewicz K. Comparison of excitation energy transfer in cyanobacterial photosystem I in solution and immobilized on conducting glass. PHOTOSYNTHESIS RESEARCH 2017; 132:111-126. [PMID: 27696181 PMCID: PMC5387024 DOI: 10.1007/s11120-016-0312-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 09/26/2016] [Indexed: 05/21/2023]
Abstract
Excitation energy transfer in monomeric and trimeric forms of photosystem I (PSI) from the cyanobacterium Synechocystis sp. PCC 6803 in solution or immobilized on FTO conducting glass was compared using time-resolved fluorescence. Deposition of PSI on glass preserves bi-exponential excitation decay of ~4-7 and ~21-25 ps lifetimes characteristic of PSI in solution. The faster phase was assigned in part to photochemical quenching (charge separation) of excited bulk chlorophylls and in part to energy transfer from bulk to low-energy (red) chlorophylls. The slower phase was assigned to photochemical quenching of the excitation equilibrated over bulk and red chlorophylls. The main differences between dissolved and immobilized PSI (iPSI) are: (1) the average excitation decay in iPSI is about 11 ps, which is faster by a few ps than for PSI in solution due to significantly faster excitation quenching of bulk chlorophylls by charge separation (~10 ps instead of ~15 ps) accompanied by slightly weaker coupling of bulk and red chlorophylls; (2) the number of red chlorophylls in monomeric PSI increases twice-from 3 in solution to 6 after immobilization-as a result of interaction with neighboring monomers and conducting glass; despite the increased number of red chlorophylls, the excitation decay accelerates in iPSI; (3) the number of red chlorophylls in trimeric PSI is 4 (per monomer) and remains unchanged after immobilization; (4) in all the samples under study, the free energy gap between mean red (emission at ~710 nm) and mean bulk (emission at ~686 nm) emitting states of chlorophylls was estimated at a similar level of 17-27 meV. All these observations indicate that despite slight modifications, dried PSI complexes adsorbed on the FTO surface remain fully functional in terms of excitation energy transfer and primary charge separation that is particularly important in the view of photovoltaic applications of this photosystem.
Collapse
Affiliation(s)
- Sebastian Szewczyk
- Department of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614, Poznan, Poland
| | - Wojciech Giera
- Department of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614, Poznan, Poland
| | - Sandrine D'Haene
- Department of Physics and Astronomy, Vrije Universiteit, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Rienk van Grondelle
- Department of Physics and Astronomy, Vrije Universiteit, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Krzysztof Gibasiewicz
- Department of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614, Poznan, Poland.
| |
Collapse
|
31
|
Cryo-EM structure of a tetrameric cyanobacterial photosystem I complex reveals novel subunit interactions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1619-1626. [DOI: 10.1016/j.bbabio.2016.06.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/25/2016] [Accepted: 06/28/2016] [Indexed: 11/23/2022]
|
32
|
Magnuson A, Cardona T. Thylakoid membrane function in heterocysts. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:309-19. [PMID: 26545609 DOI: 10.1016/j.bbabio.2015.10.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/30/2015] [Accepted: 10/29/2015] [Indexed: 01/19/2023]
Abstract
Multicellular cyanobacteria form different cell types in response to environmental stimuli. Under nitrogen limiting conditions a fraction of the vegetative cells in the filament differentiate into heterocysts. Heterocysts are specialized in atmospheric nitrogen fixation and differentiation involves drastic morphological changes on the cellular level, such as reorganization of the thylakoid membranes and differential expression of thylakoid membrane proteins. Heterocysts uphold a microoxic environment to avoid inactivation of nitrogenase by developing an extra polysaccharide layer that limits air diffusion into the heterocyst and by upregulating heterocyst-specific respiratory enzymes. In this review article, we summarize what is known about the thylakoid membrane in heterocysts and compare its function with that of the vegetative cells. We emphasize the role of photosynthetic electron transport in providing the required amounts of ATP and reductants to the nitrogenase enzyme. In the light of recent high-throughput proteomic and transcriptomic data, as well as recently discovered electron transfer pathways in cyanobacteria, our aim is to broaden current views of the bioenergetics of heterocysts. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic systems in bacteria, edited by Conrad Mullineaux.
Collapse
Affiliation(s)
- Ann Magnuson
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, SE-75120, Uppsala, Sweden.
| | - Tanai Cardona
- Department of Life Sciences, Imperial College London, London SW7 2AZ, England, UK
| |
Collapse
|
33
|
Tóth TN, Chukhutsina V, Domonkos I, Knoppová J, Komenda J, Kis M, Lénárt Z, Garab G, Kovács L, Gombos Z, van Amerongen H. Carotenoids are essential for the assembly of cyanobacterial photosynthetic complexes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1153-65. [DOI: 10.1016/j.bbabio.2015.05.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 05/26/2015] [Accepted: 05/29/2015] [Indexed: 01/15/2023]
|
34
|
Skandary S, Konrad A, Hussels M, Meixner AJ, Brecht M. Orientations between Red Antenna States of Photosystem I Monomers from Thermosynechococcus elongatus Revealed by Single-Molecule Spectroscopy. J Phys Chem B 2015. [DOI: 10.1021/acs.jpcb.5b04483] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sepideh Skandary
- IPTC
and Lisa+ Center, University of Tübingen, D-72076 Tübingen, Germany
| | - Alexander Konrad
- IPTC
and Lisa+ Center, University of Tübingen, D-72076 Tübingen, Germany
| | - Martin Hussels
- IPTC
and Lisa+ Center, University of Tübingen, D-72076 Tübingen, Germany
| | - Alfred J. Meixner
- IPTC
and Lisa+ Center, University of Tübingen, D-72076 Tübingen, Germany
| | - Marc Brecht
- IPTC
and Lisa+ Center, University of Tübingen, D-72076 Tübingen, Germany
- Zurich University of Applied Science (ZHAW), CH-8401 Winterthur, Switzerland
| |
Collapse
|
35
|
Karapetyan NV, Bolychevtseva YV, Yurina NP, Terekhova IV, Shubin VV, Brecht M. Long-wavelength chlorophylls in photosystem I of cyanobacteria: origin, localization, and functions. BIOCHEMISTRY (MOSCOW) 2014; 79:213-20. [PMID: 24821447 DOI: 10.1134/s0006297914030067] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The structural organization of photosystem I (PSI) complexes in cyanobacteria and the origin of the PSI antenna long-wavelength chlorophylls and their role in energy migration, charge separation, and dissipation of excess absorbed energy are discussed. The PSI complex in cyanobacterial membranes is organized preferentially as a trimer with the core antenna enriched with long-wavelength chlorophylls. The contents of long-wavelength chlorophylls and their spectral characteristics in PSI trimers and monomers are species-specific. Chlorophyll aggregates in PSI antenna are potential candidates for the role of the long-wavelength chlorophylls. The red-most chlorophylls in PSI trimers of the cyanobacteria Arthrospira platensis and Thermosynechococcus elongatus can be formed as a result of interaction of pigments peripherally localized on different monomeric complexes within the PSI trimers. Long-wavelength chlorophylls affect weakly energy equilibration within the heterogeneous PSI antenna, but they significantly delay energy trapping by P700. When the reaction center is open, energy absorbed by long-wavelength chlorophylls migrates to P700 at physiological temperatures, causing its oxidation. When the PSI reaction center is closed, the P700 cation radical or P700 triplet state (depending on the P700 redox state and the PSI acceptor side cofactors) efficiently quench the fluorescence of the long-wavelength chlorophylls of PSI and thus protect the complex against photodestruction.
Collapse
Affiliation(s)
- N V Karapetyan
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, 119071, Russia.
| | | | | | | | | | | |
Collapse
|
36
|
Kłodawska K, Kovács L, Várkonyi Z, Kis M, Sozer Ö, Laczkó-Dobos H, Kóbori O, Domonkos I, Strzałka K, Gombos Z, Malec P. Elevated Growth Temperature Can Enhance Photosystem I Trimer Formation and Affects Xanthophyll Biosynthesis in Cyanobacterium Synechocystis sp. PCC6803 Cells. ACTA ACUST UNITED AC 2014; 56:558-71. [DOI: 10.1093/pcp/pcu199] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
37
|
Gordiichuk PI, Wetzelaer GJAH, Rimmerman D, Gruszka A, de Vries JW, Saller M, Gautier DA, Catarci S, Pesce D, Richter S, Blom PWM, Herrmann A. Solid-state biophotovoltaic cells containing photosystem I. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:4863-9. [PMID: 24862686 DOI: 10.1002/adma.201401135] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/17/2014] [Indexed: 05/20/2023]
Abstract
The large multiprotein complex, photosystem I (PSI), which is at the heart of light-dependent reactions in photosynthesis, is integrated as the active component in a solid-state organic photovoltaic cell. These experiments demonstrate that photoactive megadalton protein complexes are compatible with solution processing of organic-semiconductor materials and operate in a dry non-natural environment that is very different from the biological membrane.
Collapse
Affiliation(s)
- Pavlo I Gordiichuk
- Polymer Chemistry and Bioengineering Group, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Metabolic engineering of cyanobacteria for the production of hydrogen from water. Biochem Soc Trans 2014; 41:1254-9. [PMID: 24059516 DOI: 10.1042/bst20130122] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Requirements concerning the construction of a minimal photosynthetic design cell with direct coupling of water-splitting photosynthesis and H2 production are discussed in the present paper. Starting from a cyanobacterial model cell, Synechocystis PCC 6803, potentials and possible limitations are outlined and realization strategies are presented. In extension, the limits of efficiency of all major biological components can be approached in a semi-artificial system consisting of two electrochemically coupled half-cells without the physiological constraints of a living cell.
Collapse
|
39
|
Schlodder E, Lendzian F, Meyer J, Çetin M, Brecht M, Renger T, Karapetyan N. Long-wavelength limit of photochemical energy conversion in Photosystem I. J Am Chem Soc 2014; 136:3904-18. [PMID: 24517238 PMCID: PMC3959156 DOI: 10.1021/ja412375j] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Indexed: 11/30/2022]
Abstract
In Photosystem I (PS I) long-wavelength chlorophylls (LWC) of the core antenna are known to extend the spectral region up to 750 nm for absorbance of light that drives photochemistry. Here we present clear evidence that even far-red light with wavelengths beyond 800 nm, clearly outside the LWC absorption bands, can still induce photochemical charge separation in PS I throughout the full temperature range from 295 to 5 K. At room temperature, the photoaccumulation of P700(+•) was followed by the absorbance increase at 826 nm. At low temperatures (T < 100 K), the formation of P700(+•)FA/B(-•) was monitored by the characteristic EPR signals of P700(+•) and FA/B(-•) and by the characteristic light-minus-dark absorbance difference spectrum in the QY region. P700 oxidation was observed upon selective excitation at 754, 785, and 808 nm, using monomeric and trimeric PS I core complexes of Thermosynechococcus elongatus and Arthrospira platensis, which differ in the amount of LWC. The results show that the LWC cannot be responsible for the long-wavelength excitation-induced charge separation at low temperatures, where thermal uphill energy transfer is frozen out. Direct energy conversion of the excitation energy from the LWC to the primary radical pair, e.g., via a superexchange mechanism, is excluded, because no dependence on the content of LWC was observed. Therefore, it is concluded that electron transfer through PS I is induced by direct excitation of a proposed charge transfer (CT) state in the reaction center. A direct signature of this CT state is seen in absorbance spectra of concentrated PS I samples, which reveal a weak and featureless absorbance band extending beyond 800 nm, in addition to the well-known bands of LWC (C708, C719 and C740) in the range between 700 and 750 nm. The present findings suggest that nature can exploit CT states for extending the long wavelength limit in PSI even beyond that of LWC. Similar mechanisms may work in other photosynthetic systems and in chemical systems capable of photoinduced electron transfer processes in general.
Collapse
Affiliation(s)
- Eberhard Schlodder
- Max-Volmer-Laboratorium für Biophysikalische Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Friedhelm Lendzian
- Max-Volmer-Laboratorium für Biophysikalische Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Jenny Meyer
- Max-Volmer-Laboratorium für Biophysikalische Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Marianne Çetin
- Max-Volmer-Laboratorium für Biophysikalische Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Marc Brecht
- Institut für
Physikalische und Theoretische Physik, Eberhard-Karls-Universität
Tübingen, Auf
der Morgenstelle 14, 71976 Tübingen, Germany
| | - Thomas Renger
- Institut
für Theoretische Physik, Johannes
Kepler Universität, Abteilung Theoretische
Biophysik, Altenberger
Str. 69, Linz, Austria
| | - Navasard
V. Karapetyan
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| |
Collapse
|
40
|
Nguyen K, Bruce BD. Growing green electricity: progress and strategies for use of photosystem I for sustainable photovoltaic energy conversion. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1553-66. [PMID: 24388916 DOI: 10.1016/j.bbabio.2013.12.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 12/17/2013] [Accepted: 12/25/2013] [Indexed: 10/25/2022]
Abstract
Oxygenic photosynthesis is driven via sequential action of Photosystem II (PSII) and (PSI)reaction centers via the Z-scheme. Both of these pigment-membrane protein complexes are found in cyanobacteria, algae, and plants. Unlike PSII, PSI is remarkably stable and does not undergo limiting photo-damage. This stability, as well as other fundamental structural differences, makes PSI the most attractive reaction centers for applied photosynthetic applications. These applied applications exploit the efficient light harvesting and high quantum yield of PSI where the isolated PSI particles are redeployed providing electrons directly as a photocurrent or, via a coupled catalyst to yield H₂. Recent advances in molecular genetics, synthetic biology, and nanotechnology have merged to allow PSI to be integrated into a myriad of biohybrid devices. In photocurrent producing devices, PSI has been immobilized onto various electrode substrates with a continuously evolving toolkit of strategies and novel reagents. However, these innovative yet highly variable designs make it difficult to identify the rate-limiting steps and/or components that function as bottlenecks in PSI-biohybrid devices. In this study we aim to highlight these recent advances with a focus on identifying the similarities and differences in electrode surfaces, immobilization/orientation strategies, and artificial redox mediators. Collectively this work has been able to maintain an annual increase in photocurrent density (Acm⁻²) of ~10-fold over the past decade. The potential drawbacks and attractive features of some of these schemes are also discussed with their feasibility on a large-scale. As an environmentally benign and renewable resource, PSI may provide a new sustainable source of bioenergy. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy.
Collapse
Affiliation(s)
- Khoa Nguyen
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Barry D Bruce
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA; Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA; Bredesen Center for Interdisciplinary Research and Education, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
41
|
Mechanisms Modulating Energy Arriving at Reaction Centers in Cyanobacteria. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2014. [DOI: 10.1007/978-94-017-9032-1_22] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
42
|
Hartmann V, Kothe T, Pöller S, El-Mohsnawy E, Nowaczyk MM, Plumeré N, Schuhmann W, Rögner M. Redox hydrogels with adjusted redox potential for improved efficiency in Z-scheme inspired biophotovoltaic cells. Phys Chem Chem Phys 2014; 16:11936-41. [DOI: 10.1039/c4cp00380b] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Kothe T, Plumeré N, Badura A, Nowaczyk MM, Guschin DA, Rögner M, Schuhmann W. Combination of a photosystem 1-based photocathode and a photosystem 2-based photoanode to a Z-scheme mimic for biophotovoltaic applications. Angew Chem Int Ed Engl 2013; 52:14233-6. [PMID: 24323676 PMCID: PMC4230396 DOI: 10.1002/anie.201303671] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/13/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Tim Kothe
- Plant Biochemistry, Ruhr-Universität BochumUniversitätsstrasse 150, 44780 Bochum (Germany)
| | - Nicolas Plumeré
- Analytische Chemie—Elektroanalytik & Sensorik and Center for Electrochemical Sciences—CESRuhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum (Germany)
| | - Adrian Badura
- Plant Biochemistry, Ruhr-Universität BochumUniversitätsstrasse 150, 44780 Bochum (Germany)
| | - Marc M Nowaczyk
- Plant Biochemistry, Ruhr-Universität BochumUniversitätsstrasse 150, 44780 Bochum (Germany)
| | - Dmitrii A Guschin
- Analytische Chemie—Elektroanalytik & Sensorik and Center for Electrochemical Sciences—CESRuhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum (Germany)
| | | | | |
Collapse
|
44
|
Kothe T, Plumeré N, Badura A, Nowaczyk MM, Guschin DA, Rögner M, Schuhmann W. Die Kombination einer auf Photosystem 1 basierenden Photokathode und einer auf Photosystem 2 basierenden Photoanode zu einem Z-Schema-Analogon für biophotovoltaische Anwendungen. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201303671] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Schartner J, Güldenhaupt J, Mei B, Rögner M, Muhler M, Gerwert K, Kötting C. Universal Method for Protein Immobilization on Chemically Functionalized Germanium Investigated by ATR-FTIR Difference Spectroscopy. J Am Chem Soc 2013; 135:4079-87. [DOI: 10.1021/ja400253p] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jonas Schartner
- Department
of Biophysics and ‡Department of Plant Biochemistry, Faculty of Biology
and Biotechnology, and §Laboratory of Industrial Chemistry, Faculty of Chemistry
and Biochemistry, Ruhr-University Bochum, Germany
| | - Jörn Güldenhaupt
- Department
of Biophysics and ‡Department of Plant Biochemistry, Faculty of Biology
and Biotechnology, and §Laboratory of Industrial Chemistry, Faculty of Chemistry
and Biochemistry, Ruhr-University Bochum, Germany
| | - Bastian Mei
- Department
of Biophysics and ‡Department of Plant Biochemistry, Faculty of Biology
and Biotechnology, and §Laboratory of Industrial Chemistry, Faculty of Chemistry
and Biochemistry, Ruhr-University Bochum, Germany
| | - Matthias Rögner
- Department
of Biophysics and ‡Department of Plant Biochemistry, Faculty of Biology
and Biotechnology, and §Laboratory of Industrial Chemistry, Faculty of Chemistry
and Biochemistry, Ruhr-University Bochum, Germany
| | - Martin Muhler
- Department
of Biophysics and ‡Department of Plant Biochemistry, Faculty of Biology
and Biotechnology, and §Laboratory of Industrial Chemistry, Faculty of Chemistry
and Biochemistry, Ruhr-University Bochum, Germany
| | - Klaus Gerwert
- Department
of Biophysics and ‡Department of Plant Biochemistry, Faculty of Biology
and Biotechnology, and §Laboratory of Industrial Chemistry, Faculty of Chemistry
and Biochemistry, Ruhr-University Bochum, Germany
| | - Carsten Kötting
- Department
of Biophysics and ‡Department of Plant Biochemistry, Faculty of Biology
and Biotechnology, and §Laboratory of Industrial Chemistry, Faculty of Chemistry
and Biochemistry, Ruhr-University Bochum, Germany
| |
Collapse
|
46
|
Salomon E, Bar-Eyal L, Sharon S, Keren N. Balancing photosynthetic electron flow is critical for cyanobacterial acclimation to nitrogen limitation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012. [PMID: 23201479 DOI: 10.1016/j.bbabio.2012.11.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Nitrogen limitation forces photosynthetic organisms to reallocate available nitrogen to essential functions. At the same time, it increases the probability of photo-damage by limiting the rate of energy-demanding metabolic processes, downstream of the photosynthetic apparatus. Non-diazotrophic cyanobacteria cope with this situation by decreasing the size of their phycobilisome antenna and by modifying their photosynthetic apparatus. These changes can serve two purposes: to provide extra amino-acids and to decrease excitation pressure. We examined the effects of nitrogen limitation on the form and function of the photosynthetic apparatus. Our aim was to study which of the two demands serve as the driving force for the remodeling of the photosynthetic apparatus, under different growth conditions. We found that a drastic reduction in light intensity allowed cells to maintain a more functional photosynthetic apparatus: the phycobilisome antenna was bigger, the activity of both photosystems was higher and the levels of photosystem (PS) proteins were higher. Pre-acclimating cells to Mn limitation, under which the activity of both PSI and PSII is diminished, results in a very similar response. The rate of PSII photoinhibition, in nitrogen limited cells, was found to be directly related to the activity of the photosynthetic apparatus. These data indicate that, under our experimental conditions, photo-damage avoidance was the more prominent determinant during the acclimation process. The combinations of limiting factors tested here is by no means artificial. Similar scenarios can take place under environmental conditions and should be taken into account when estimating nutrient limitations in nature.
Collapse
Affiliation(s)
- Eitan Salomon
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | |
Collapse
|
47
|
Kargul J, Janna Olmos JD, Krupnik T. Structure and function of photosystem I and its application in biomimetic solar-to-fuel systems. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:1639-1653. [PMID: 22784471 DOI: 10.1016/j.jplph.2012.05.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 05/09/2012] [Accepted: 05/11/2012] [Indexed: 06/01/2023]
Abstract
Photosystem I (PSI) is one of the most efficient biological macromolecular complexes that converts solar energy into condensed energy of chemical bonds. Despite high structural complexity, PSI operates with a quantum yield close to 1.0 and to date, no man-made synthetic system approached this remarkable efficiency. This review highlights recent developments in dissecting molecular structure and function of the prokaryotic and eukaryotic PSI. It also overviews progress in the application of this complex as a natural photocathode for production of hydrogen within the biomimetic solar-to-fuel nanodevices.
Collapse
Affiliation(s)
- Joanna Kargul
- Department of Plant Molecular Physiology, University of Warsaw, ul. Miecznikowa 1, 02-096 Warsaw, Poland.
| | | | | |
Collapse
|
48
|
Collins AM, Liberton M, Jones HD, Garcia OF, Pakrasi HB, Timlin JA. Photosynthetic pigment localization and thylakoid membrane morphology are altered in Synechocystis 6803 phycobilisome mutants. PLANT PHYSIOLOGY 2012; 158:1600-9. [PMID: 22331410 PMCID: PMC3320172 DOI: 10.1104/pp.111.192849] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 02/09/2012] [Indexed: 05/03/2023]
Abstract
Cyanobacteria are oxygenic photosynthetic prokaryotes that are the progenitors of the chloroplasts of algae and plants. These organisms harvest light using large membrane-extrinsic phycobilisome antenna in addition to membrane-bound chlorophyll-containing proteins. Similar to eukaryotic photosynthetic organisms, cyanobacteria possess thylakoid membranes that house photosystem (PS) I and PSII, which drive the oxidation of water and the reduction of NADP+, respectively. While thylakoid morphology has been studied in some strains of cyanobacteria, the global distribution of PSI and PSII within the thylakoid membrane and the corresponding location of the light-harvesting phycobilisomes are not known in detail, and such information is required to understand the functioning of cyanobacterial photosynthesis on a larger scale. Here, we have addressed this question using a combination of electron microscopy and hyperspectral confocal fluorescence microscopy in wild-type Synechocystis species PCC 6803 and a series of mutants in which phycobilisomes are progressively truncated. We show that as the phycobilisome antenna is diminished, large-scale changes in thylakoid morphology are observed, accompanied by increased physical segregation of the two photosystems. Finally, we quantified the emission intensities originating from the two photosystems in vivo on a per cell basis to show that the PSI:PSII ratio is progressively decreased in the mutants. This results from both an increase in the amount of photosystem II and a decrease in the photosystem I concentration. We propose that these changes are an adaptive strategy that allows cells to balance the light absorption capabilities of photosystems I and II under light-limiting conditions.
Collapse
Affiliation(s)
| | | | | | | | | | - Jerilyn A. Timlin
- Department of Bioenergy and Defense Technologies, Sandia National Laboratories, Albuquerque, New Mexico 87185 (A.M.C., H.D.T.J., O.F.G., J.A.T); and Department of Biology, Washington University, St. Louis, Missouri 63130 (M.L., H.B.P.)
| |
Collapse
|
49
|
Kaňa R, Kotabová E, Komárek O, Sedivá B, Papageorgiou GC, Govindjee, Prášil O. The slow S to M fluorescence rise in cyanobacteria is due to a state 2 to state 1 transition. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1237-47. [PMID: 22402228 DOI: 10.1016/j.bbabio.2012.02.024] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 02/13/2012] [Accepted: 02/20/2012] [Indexed: 11/17/2022]
Abstract
In dark-adapted plants and algae, chlorophyll a fluorescence induction peaks within 1s after irradiation due to well documented photochemical and non-photochemical processes. Here we show that the much slower fluorescence rise in cyanobacteria (the so-called "S to M rise" in tens of seconds) is due to state 2 to state 1 transition. This has been demonstrated in particular for Synechocystis PCC6803, using its RpaC(-) mutant (locked in state 1) and its wild-type cells kept in hyperosmotic suspension (locked in state 2). In both cases, the inhibition of state changes correlates with the disappearance of the S to M fluorescence rise, confirming its assignment to the state 2 to state 1 transition. The general physiological relevance of the SM rise is supported by its occurrence in several cyanobacterial strains: Synechococcus (PCC 7942, WH 5701) and diazotrophic single cell cyanobacterium (Cyanothece sp. ATCC 51142). We also show here that the SM fluorescence rise, and also the state transition changes are less prominent in filamentous diazotrophic cyanobacterium Nostoc sp. (PCC 7120) and absent in phycobilisome-less cyanobacterium Prochlorococcus marinus PCC 9511. Surprisingly, it is also absent in the phycobiliprotein rod containing Acaryochloris marina (MBIC 11017). All these results show that the S to M fluorescence rise reflects state 2 to state 1 transition in cyanobacteria with phycobilisomes formed by rods and core parts. We show that the pronounced SM fluorescence rise may reflect a protective mechanism for excess energy dissipation in those cyanobacteria (e.g. in Synechococcus PCC 7942) that are less efficient in other protective mechanisms, such as blue light induced non-photochemical quenching. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.
Collapse
Affiliation(s)
- Radek Kaňa
- Institute of Microbiology, Academy of Sciences, Třeboň, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
50
|
Nowaczyk MM, Krause K, Mieseler M, Sczibilanski A, Ikeuchi M, Rögner M. Deletion of psbJ leads to accumulation of Psb27-Psb28 photosystem II complexes in Thermosynechococcus elongatus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1339-45. [PMID: 22387395 DOI: 10.1016/j.bbabio.2012.02.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 02/14/2012] [Accepted: 02/15/2012] [Indexed: 01/16/2023]
Abstract
The life cycle of Photosystem II (PSII) is embedded in a network of proteins that guides the complex through biogenesis, damage and repair. Some of these proteins, such as Psb27 and Psb28, are involved in cofactor assembly for which they are only transiently bound to the preassembled complex. In this work we isolated and analyzed PSII from a ΔpsbJ mutant of the thermophilic cyanobacterium Thermosynechococcus elongatus. From the four different PSII complexes that could be separated the most prominent one revealed a monomeric Psb27-Psb28 PSII complex with greatly diminished oxygen-evolving activity. The MALDI-ToF mass spectrometry analysis of intact low molecular weight subunits (<10kDa) depicted wild type PSII with the absence of PsbJ. Relative quantification of the PsbA1/PsbA3 ratio by LC-ESI mass spectrometry using (15)N labeled PsbA3-specific peptides indicated the complete replacement of PsbA1 by the stress copy PsbA3 in the mutant, even under standard growth conditions (50μmol photons m(-2) s(-1)). This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.
Collapse
Affiliation(s)
- Marc M Nowaczyk
- Lehrstuhl für Biochemie der Pflanzen, Ruhr-Universität Bochum, Bochum, Germany.
| | | | | | | | | | | |
Collapse
|