1
|
Khalifa O, Al-Akl NS, Arredouani A. Differential expression of cardiometabolic and inflammation markers and signaling pathways between overweight/obese Qatari adults with high and low plasma salivary α-amylase activity. Front Endocrinol (Lausanne) 2024; 15:1421358. [PMID: 39411310 PMCID: PMC11473332 DOI: 10.3389/fendo.2024.1421358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/02/2024] [Indexed: 10/19/2024] Open
Abstract
Background The relationship between salivary α-amylase activity (sAAa) and susceptibility to cardiovascular disorders lacks a definitive consensus in available studies. To fill this knowledge gap, the present study endeavors to investigate this association among overweight/obese otherwise healthy Qatari adults. The study specifically categorizes participants based on their sAAa into high and low subgroups, aiming to provide a more comprehensive understanding of the potential link between sAAa levels and cardiovascular and inflammation markers in this population. Methods Plasma samples of 264 Qatari overweight/obese (Ow/Ob) participants were used to quantify the sAAa and to profile the proteins germane to cardiovascular, cardiometabolic, metabolism, and organ damage in low sAAa (LsAAa) and high sAAa (HsAAa) subjects using the Olink technology. Comprehensive statistical tools as well as chemometric and enrichments analyses were used to identify differentially expressed proteins (DEPs) and their associated signaling pathways and cellular functions. Results A total of ten DEPs were detected, among them five were upregulated (QPCT, LCN2, PON2, DPP7, CRKL) while five were down regulated in the LsAAa subgroup compared to the HsAAa subgroup (ARG1, CTSH, SERPINB6, OSMR, ALDH3A). Functional enrichment analysis highlighted several relevant signaling pathways and cellular functions enriched in the DEPs, including myocardial dysfunction, disorder of blood pressure, myocardial infraction, apoptosis of cardiomyocytes, hypertension, chronic inflammatory disorder, immunes-mediated inflammatory disease, inflammatory response, activation of leukocytes and activation of phagocytes. Conclusion Our study unveils substantial alterations within numerous canonical pathways and cellular or molecular functions that bear relevance to cardiometabolic disorders among Ow/Ob Qatari adults exhibiting LsAAa and HsAAa in the plasma. A more comprehensive exploration of these proteins and their associated pathways and functions offers the prospect of elucidating the mechanistic underpinnings inherent in the documented relationship between sAAa and metabolic disorders.
Collapse
Affiliation(s)
- Olfa Khalifa
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Neyla S. Al-Akl
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Abdelilah Arredouani
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| |
Collapse
|
2
|
Tassone G, Pozzi C, Mangani S. Metal Ion Binding to Human Glutaminyl Cyclase: A Structural Perspective. Int J Mol Sci 2024; 25:8279. [PMID: 39125848 PMCID: PMC11312887 DOI: 10.3390/ijms25158279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Glutaminyl-peptide cyclotransferases (QCs) convert the N-terminal glutamine or glutamate residues of protein and peptide substrates into pyroglutamate (pE) by releasing ammonia or a water molecule. The N-terminal pE modification protects peptides/proteins against proteolytic degradation by amino- or exopeptidases, increasing their stability. Mammalian QC is abundant in the brain and a large amount of evidence indicates that pE peptides are involved in the onset of neural human pathologies such as Alzheimer's and Huntington's disease and synucleinopathies. Hence, human QC (hQC) has become an intensively studied target for drug development against these diseases. Soon after its characterization, hQC was identified as a Zn-dependent enzyme, but a partial restoration of the enzyme activity in the presence of the Co(II) ion was also reported, suggesting a possible role of this metal ion in catalysis. The present work aims to investigate the structure of demetallated hQC and of the reconstituted enzyme with Zn(II) and Co(II) and their behavior in the presence of known inhibitors. Furthermore, our structural determinations provide a possible explanation for the presence of the mononuclear metal binding site of hQC, despite the presence of the same conserved metal binding motifs present in distantly related dinuclear aminopeptidase enzymes.
Collapse
Affiliation(s)
- Giusy Tassone
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy;
| | - Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy;
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), Via Luigi Sacconi 6, I-50019 Sesto Fiorentino, Italy
| | - Stefano Mangani
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy;
| |
Collapse
|
3
|
Chen D, Chen Q, Qin X, Tong P, Peng L, Zhang T, Xia C. Development and evolution of human glutaminyl cyclase inhibitors (QCIs): an alternative promising approach for disease-modifying treatment of Alzheimer's disease. Front Aging Neurosci 2023; 15:1209863. [PMID: 37600512 PMCID: PMC10435661 DOI: 10.3389/fnagi.2023.1209863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023] Open
Abstract
Human glutaminyl cyclase (hQC) is drawing considerable attention and emerging as a potential druggable target for Alzheimer's disease (AD) due to its close involvement in the pathology of AD via the post-translational pyroglutamate modification of amyloid-β. A recent phase 2a study has shown promising early evidence of efficacy for AD with a competitive benzimidazole-based QC inhibitor, PQ912, which also demonstrated favorable safety profiles. This finding has sparked new hope for the treatment of AD. In this review, we briefly summarize the discovery and evolution of hQC inhibitors, with a particular interest in classic Zinc binding group (ZBG)-containing chemicals reported in recent years. Additionally, we highlight several high-potency inhibitors and discuss new trends and challenges in the development of QC inhibitors as an alternative and promising disease-modifying therapy for AD.
Collapse
Affiliation(s)
- Daoyuan Chen
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Qingxiu Chen
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Xiaofei Qin
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Peipei Tong
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Liping Peng
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Tao Zhang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Institute of Basic Medicine, Fujian Medical University, Fuzhou, China
| | - Chunli Xia
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| |
Collapse
|
4
|
Xia Y, Li F, Zhang X, Balamkundu S, Tang F, Hu S, Lescar J, Tam JP, Liu CF. A Cascade Enzymatic Reaction Scheme for Irreversible Transpeptidative Protein Ligation. J Am Chem Soc 2023; 145:6838-6844. [PMID: 36924109 DOI: 10.1021/jacs.2c13628] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Enzymatic peptide ligation holds great promise in the study of protein functions and development of protein therapeutics. Owing to their high catalytic efficiency and a minimal tripeptide recognition motif, peptidyl asparaginyl ligases (PALs) are particularly useful tools for bioconjugation. However, as an inherent limitation of transpeptidases, PAL-mediated ligation is reversible, requiring a large excess of one of the ligation partners to shift the reaction equilibrium in the forward direction. Herein, we report a method to make PAL-mediated intermolecular ligation irreversible by coupling it to glutaminyl cyclase (QC)-catalyzed pyroglutamyl formation. In this method, the acyl donor substrate of PALs is designed to have glutamine at the P1' position of the Asn-P1'-P2' tripeptide PAL recognition motif. Upon ligation with an acyl acceptor substrate, the acyl donor substrate releases a leaving group in which the exposed N-terminal glutamine is cyclized by QC, quenching the Gln Nα-amine in a lactam. Using this method, PAL-mediated ligation can achieve near-quantitative yields even at an equal molar ratio between the two ligation partners. We have demonstrated this method for a wide range of applications, including protein-to-protein ligations. We anticipate that this cascade enzymatic reaction scheme will make PAL enzymes well suited for numerous new uses in biotechnology.
Collapse
Affiliation(s)
- Yiyin Xia
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Fupeng Li
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Xiaohong Zhang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | | | - Fan Tang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Side Hu
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Julien Lescar
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - James P Tam
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Chuan-Fa Liu
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| |
Collapse
|
5
|
Zhang Y, Wang Y, Zhao Z, Peng W, Wang P, Xu X, Zhao C. Glutaminyl cyclases, the potential targets of cancer and neurodegenerative diseases. Eur J Pharmacol 2022; 931:175178. [DOI: 10.1016/j.ejphar.2022.175178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/03/2022]
|
6
|
Wiloch MZ, Jönsson-Niedziółka M. Very small changes in the peptide sequence alter the redox properties of Aβ(11-16)-Cu(II) and pAβ(11–16)-Cu(II) β-amyloid complexes. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Hartlage-Rübsamen M, Bluhm A, Moceri S, Machner L, Köppen J, Schenk M, Hilbrich I, Holzer M, Weidenfeller M, Richter F, Coras R, Serrano GE, Beach TG, Schilling S, von Hörsten S, Xiang W, Schulze A, Roßner S. A glutaminyl cyclase-catalyzed α-synuclein modification identified in human synucleinopathies. Acta Neuropathol 2021; 142:399-421. [PMID: 34309760 PMCID: PMC8357657 DOI: 10.1007/s00401-021-02349-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 12/22/2022]
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disorder that is neuropathologically characterized by degeneration of dopaminergic neurons of the substantia nigra (SN) and formation of Lewy bodies and Lewy neurites composed of aggregated α-synuclein. Proteolysis of α-synuclein by matrix metalloproteinases was shown to facilitate its aggregation and to affect cell viability. One of the proteolysed fragments, Gln79-α-synuclein, possesses a glutamine residue at its N-terminus. We argue that glutaminyl cyclase (QC) may catalyze the pyroglutamate (pGlu)79-α-synuclein formation and, thereby, contribute to enhanced aggregation and compromised degradation of α-synuclein in human synucleinopathies. Here, the kinetic characteristics of Gln79-α-synuclein conversion into the pGlu-form by QC are shown using enzymatic assays and mass spectrometry. Thioflavin T assays and electron microscopy demonstrated a decreased potential of pGlu79-α-synuclein to form fibrils. However, size exclusion chromatography and cell viability assays revealed an increased propensity of pGlu79-α-synuclein to form oligomeric aggregates with high neurotoxicity. In brains of wild-type mice, QC and α-synuclein were co-expressed by dopaminergic SN neurons. Using a specific antibody against the pGlu-modified neo-epitope of α-synuclein, pGlu79-α-synuclein aggregates were detected in association with QC in brains of two transgenic mouse lines with human α-synuclein overexpression. In human brain samples of PD and dementia with Lewy body subjects, pGlu79-α-synuclein was shown to be present in SN neurons, in a number of Lewy bodies and in dystrophic neurites. Importantly, there was a spatial co-occurrence of pGlu79-α-synuclein with the enzyme QC in the human SN complex and a defined association of QC with neuropathological structures. We conclude that QC catalyzes the formation of oligomer-prone pGlu79-α-synuclein in human synucleinopathies, which may—in analogy to pGlu-Aβ peptides in Alzheimer’s disease—act as a seed for pathogenic protein aggregation.
Collapse
|
8
|
Bersin LM, Patel SM, Topp EM. Effect of 'pH' on the Rate of Pyroglutamate Formation in Solution and Lyophilized Solids. Mol Pharm 2021; 18:3116-3124. [PMID: 34232660 DOI: 10.1021/acs.molpharmaceut.1c00338] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
N-terminal glutamate can cyclize to form pyroglutamate (pGlu) in pharmaceutically relevant peptides and proteins. The reaction occurs nonenzymatically during storage for monoclonal antibodies and shows a strong 'pH' dependence in solution, but the solid-state reaction has not been studied in detail. This work investigates the effect of 'pH' and buffer species on pGlu formation for a model peptide (EVQLVESGGGLVQPGGSLR) in lyophilized solids and in solution. The model peptide was formulated from 'pH' 4 to 'pH' 9 in citrate, citrate-phosphate, phosphate, and carbonate buffers and stored at 50 °C for at least 10 weeks. pGlu formation and loss of the parent peptide were monitored by reversed-phase high-performance liquid chromatography. The apparent 'pH' dependence of the reaction rate in the solid state differed markedly from that in solution. Interestingly, in the 'pH' range often used to formulate mAbs ('pH' 5.5-6), the rate of pGlu formation in the solid state was greater than that in solution. The results have implications for the rational design of stable formulations of peptides and proteins, and for the transition from solid to solution formulations during development.
Collapse
Affiliation(s)
- Lia M Bersin
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907-2091, United States
| | - Sajal M Patel
- Dosage Form Design & Development, Biopharmaceutical Development, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland 20878, United States
| | - Elizabeth M Topp
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907-2091, United States.,National Institute for Bioprocessing Research and Training, Belfield, Blackrock, County Dublin A94 X099, Ireland
| |
Collapse
|
9
|
Production, composition, and mode of action of the painful defensive venom produced by a limacodid caterpillar, Doratifera vulnerans. Proc Natl Acad Sci U S A 2021; 118:2023815118. [PMID: 33893140 DOI: 10.1073/pnas.2023815118] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Venoms have evolved independently several times in Lepidoptera. Limacodidae is a family with worldwide distribution, many of which are venomous in the larval stage, but the composition and mode of action of their venom is unknown. Here, we use imaging technologies, transcriptomics, proteomics, and functional assays to provide a holistic picture of the venom system of a limacodid caterpillar, Doratifera vulnerans Contrary to dogma that defensive venoms are simple in composition, D. vulnerans produces a complex venom containing 151 proteinaceous toxins spanning 59 families, most of which are peptides <10 kDa. Three of the most abundant families of venom peptides (vulnericins) are 1) analogs of the adipokinetic hormone/corazonin-related neuropeptide, some of which are picomolar agonists of the endogenous insect receptor; 2) linear cationic peptides derived from cecropin, an insect innate immune peptide that kills bacteria and parasites by disrupting cell membranes; and 3) disulfide-rich knottins similar to those that dominate spider venoms. Using venom fractionation and a suite of synthetic venom peptides, we demonstrate that the cecropin-like peptides are responsible for the dominant pain effect observed in mammalian in vitro and in vivo nociception assays and therefore are likely to cause pain after natural envenomations by D. vulnerans Our data reveal convergent molecular evolution between limacodids, hymenopterans, and arachnids and demonstrate that lepidopteran venoms are an untapped source of novel bioactive peptides.
Collapse
|
10
|
Lamers S, Feng Q, Cheng Y, Yu S, Sun B, Lukman M, Jiang J, Ruiz-Carrillo D. Structural and kinetic characterization of Porphyromonas gingivalis glutaminyl cyclase. Biol Chem 2021; 402:759-768. [PMID: 33823093 DOI: 10.1515/hsz-2020-0298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/16/2021] [Indexed: 11/15/2022]
Abstract
Porphyromonas gingivalis is a bacterial species known to be involved in the pathogenesis of chronic periodontitis, that more recently has been as well associated with Alzheimer's disease. P. gingivalis expresses a glutaminyl cyclase (PgQC) whose human ortholog is known to participate in the beta amyloid peptide metabolism. We have elucidated the crystal structure of PgQC at 1.95 Å resolution in unbound and in inhibitor-complexed forms. The structural characterization of PgQC confirmed that PgQC displays a mammalian fold rather than a bacterial fold. Our biochemical characterization indicates that PgQC uses a mammalian-like catalytic mechanism enabled by the residues Asp149, Glu182, Asp183, Asp218, Asp267 and His299. In addition, we could observe that a non-conserved Trp193 may drive differences in the binding affinity of ligands which might be useful for drug development. With a screening of a small molecule library, we have identified a benzimidazole derivative rendering PgQC inhibition in the low micromolar range that might be amenable for further medicinal chemistry development.
Collapse
Affiliation(s)
- Sebastiaan Lamers
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu215123, China
| | - Qiaoli Feng
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu215123, China
| | - Yili Cheng
- Department of Health and Environmental Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu215123, China
| | - Sihong Yu
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu215123, China
| | - Bo Sun
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai201204, China
| | - Maxwell Lukman
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu215123, China
| | - Jie Jiang
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu215123, China
| | - David Ruiz-Carrillo
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu215123, China
| |
Collapse
|
11
|
Dileep KV, Sakai N, Ihara K, Kato-Murayama M, Nakata A, Ito A, Sivaraman DM, Shin JW, Yoshida M, Shirouzu M, Zhang KYJ. Piperidine-4-carboxamide as a new scaffold for designing secretory glutaminyl cyclase inhibitors. Int J Biol Macromol 2020; 170:415-423. [PMID: 33373636 DOI: 10.1016/j.ijbiomac.2020.12.118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 11/16/2022]
Abstract
Alzheimer's disease (AD), a common chronic neurodegenerative disease, has become a major public health concern. Despite years of research, therapeutics for AD are limited. Overexpression of secretory glutaminyl cyclase (sQC) in AD brain leads to the formation of a highly neurotoxic pyroglutamate variant of amyloid beta, pGlu-Aβ, which acts as a potential seed for the aggregation of full length Aβ. Preventing the formation of pGlu-Aβ through inhibition of sQC has become an attractive disease-modifying therapy in AD. In this current study, through a pharmacophore assisted high throughput virtual screening, we report a novel sQC inhibitor (Cpd-41) with a piperidine-4-carboxamide moiety (IC50 = 34 μM). Systematic molecular docking, MD simulations and X-ray crystallographic analysis provided atomistic details of the binding of Cpd-41 in the active site of sQC. The unique mode of binding and moderate toxicity of Cpd-41 make this molecule an attractive candidate for designing high affinity sQC inhibitors.
Collapse
Affiliation(s)
- K V Dileep
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Naoki Sakai
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Kentaro Ihara
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Miyuki Kato-Murayama
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Akiko Nakata
- Seed Compounds Exploratory Unit for Drug Discovery Platform, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Akihiro Ito
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Laboratory of Cell Signaling, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - D M Sivaraman
- Laboratory for Advanced Genomics Circuit, Centre for Integrative Medical Sciences, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan; Department of Pathology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695 011, Kerala, India
| | - Jay W Shin
- Laboratory for Advanced Genomics Circuit, Centre for Integrative Medical Sciences, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Minoru Yoshida
- Seed Compounds Exploratory Unit for Drug Discovery Platform, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Department of Biotechnology, Graduate School of Agricultural Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Kam Y J Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
12
|
Nakayoshi T, Kato K, Kurimoto E, Oda A. Computational Studies on the Mechanisms of Nonenzymatic Intramolecular Cyclization of the Glutamine Residues Located at N-Termini Catalyzed by Inorganic Phosphate Species. ACS OMEGA 2020; 5:9162-9170. [PMID: 32363268 PMCID: PMC7191561 DOI: 10.1021/acsomega.9b04384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/02/2020] [Indexed: 05/13/2023]
Abstract
Glutamine (Gln) residues located at N-termini undergo spontaneous intramolecular cyclization, causing the formation of pyroglutamic acid (pGlu) residues. pGlu residues have been detected at the N-termini in various peptides and proteins. The formation of pGlu residues during the fermentation and purification processes of antibody drugs is one of the concerns in the design and formulation of these drugs and has been reported to proceed rapidly in a phosphate buffer. In this study, we have examined the phosphate-catalyzed mechanisms of the pGlu residue formation from N-terminal Gln residues via quantum chemical calculations using B3LYP density functional methods. Single-point energies were calculated using the second-order Møller-Plesset perturbation theory. We performed the calculations for the model compound in which an uncharged N-terminal Gln residue is capped with a methyl amino group on the C-terminal. The activation energy of the formation of pGlu residues was calculated as 83.8 kJ mol-1, which was lower than that of the typical nonenzymatic reaction of amino acid residues. In addition, the computational results indicate that the flexibility of the main and side chains in N-terminal Gln residues was necessary for the formation of pGlu residues to proceed. In the obtained pathway, inorganic phosphate species act as the catalyst by mediating the proton transfer.
Collapse
Affiliation(s)
- Tomoki Nakayoshi
- Graduate
School of Pharmacy, Meijo University, 150 Yagotoyama,
Tempaku-ku, Nagoya, Aichi 468-8503, Japan
- Institute
of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Koichi Kato
- Graduate
School of Pharmacy, Meijo University, 150 Yagotoyama,
Tempaku-ku, Nagoya, Aichi 468-8503, Japan
- Department
of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya, Aichi 463-8521, Japan
| | - Eiji Kurimoto
- Graduate
School of Pharmacy, Meijo University, 150 Yagotoyama,
Tempaku-ku, Nagoya, Aichi 468-8503, Japan
| | - Akifumi Oda
- Graduate
School of Pharmacy, Meijo University, 150 Yagotoyama,
Tempaku-ku, Nagoya, Aichi 468-8503, Japan
- Institute
of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Institute
for Protein Research, Osaka University, 3-2 Yamadaoka,
Suita, Osaka 565-0871, Japan
- . Phone: +81-52-832-1151
| |
Collapse
|
13
|
Vanuopadath M, Shaji SK, Raveendran D, Nair BG, Nair SS. Delineating the venom toxin arsenal of Malabar pit viper (Trimeresurus malabaricus) from the Western Ghats of India and evaluating its immunological cross-reactivity and in vitro cytotoxicity. Int J Biol Macromol 2020; 148:1029-1045. [PMID: 31982532 DOI: 10.1016/j.ijbiomac.2020.01.226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 02/07/2023]
Abstract
The venom protein components of Malabar pit viper (Trimeresurus malabaricus) were identified by combining SDS-PAGE and ion-exchange chromatography pre-fractionation techniques with LC-MS/MS incorporating Novor and PEAKS-assisted de novo sequencing strategies. Total 97 proteins that belong to 16 protein families such as L-amino acid oxidase, metalloprotease, serine protease, phospholipase A2, 5'-nucleotidase, C-type lectins/snaclecs and disintegrin were recognized from the venom of a single exemplar species. Of the 97 proteins, eighteen were identified through de novo approaches. Immunological cross-reactivity assessed through ELISA and western blot indicate that the Indian antivenoms binds less effectively to Malabar pit viper venom components compared to that of Russell's viper venom. The in vitro cell viability assays suggest that compared to the normal cells, MPV venom induces concentration dependent cell death in various cancer cells. Moreover, crude venom resulted in chromatin condensation and apoptotic bodies implying the induction of apoptosis. Taken together, the present study enabled in dissecting the venom proteome of Trimeresurus malabaricus and revealed the immuno-cross-reactivity profiles of commercially available Indian polyvalent antivenoms that, in turn, is expected to provide valuable insights on the need in improving antivenom preparations against its bite.
Collapse
Affiliation(s)
| | | | - Dileepkumar Raveendran
- Indriyam Biologics Pvt. Ltd., SCTIMST-TIMed, BMT Wing-Poojappura, Thiruvananthapuram 695 012, Kerala, India
| | | | | |
Collapse
|
14
|
Occurrence, properties and biological significance of pyroglutamyl peptides derived from different food sources. FOOD SCIENCE AND HUMAN WELLNESS 2019. [DOI: 10.1016/j.fshw.2019.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
15
|
Vijayan DK, Zhang KY. Human glutaminyl cyclase: Structure, function, inhibitors and involvement in Alzheimer’s disease. Pharmacol Res 2019; 147:104342. [DOI: 10.1016/j.phrs.2019.104342] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/19/2019] [Accepted: 07/02/2019] [Indexed: 12/20/2022]
|
16
|
Vijayasarathy M, Basheer SM, Balaram P. Cone Snail Glutaminyl Cyclase Sequences from Transcriptomic Analysis and Mass Spectrometric Characterization of Two Pyroglutamyl Conotoxins. J Proteome Res 2018; 17:2695-2703. [DOI: 10.1021/acs.jproteome.8b00132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Marimuthu Vijayasarathy
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Soorej M. Basheer
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
- Department of Molecular Biology, Kannur University, Nileshwaram Campus, Kasargod 671314, Kerala, India
| | - Padmanabhan Balaram
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| |
Collapse
|
17
|
Hartlage-Rübsamen M, Bluhm A, Piechotta A, Linnert M, Rahfeld JU, Demuth HU, Lues I, Kuhn PH, Lichtenthaler SF, Roßner S, Höfling C. Immunohistochemical Evidence from APP-Transgenic Mice for Glutaminyl Cyclase as Drug Target to Diminish pE-Abeta Formation. Molecules 2018; 23:molecules23040924. [PMID: 29673150 PMCID: PMC6017857 DOI: 10.3390/molecules23040924] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/05/2018] [Accepted: 04/10/2018] [Indexed: 02/06/2023] Open
Abstract
Oligomeric assemblies of neurotoxic amyloid beta (Abeta) peptides generated by proteolytical processing of the amyloid precursor protein (APP) play a key role in the pathogenesis of Alzheimer’s disease (AD). In recent years, a substantial heterogeneity of Abeta peptides with distinct biophysical and cell biological properties has been demonstrated. Among these, a particularly neurotoxic and disease-specific Abeta variant is N-terminally truncated and modified to pyroglutamate (pE-Abeta). Cell biological and animal experimental studies imply the catalysis of this modification by the enzyme glutaminyl cyclase (QC). However, direct histopathological evidence in transgenic animals from comparative brain region and cell type-specific expression of transgenic hAPP and QC, on the one hand, and on the formation of pE-Abeta aggregates, on the other, is lacking. Here, using single light microscopic, as well as triple immunofluorescent, labeling, we report the deposition of pE-Abeta only in the brain regions of APP-transgenic Tg2576 mice with detectable human APP and endogenous QC expression, such as the hippocampus, piriform cortex, and amygdala. Brain regions showing human APP expression without the concomitant presence of QC (the anterodorsal thalamic nucleus and perifornical nucleus) do not display pE-Abeta plaque formation. However, we also identified brain regions with substantial expression of human APP and QC in the absence of pE-Abeta deposition (the Edinger-Westphal nucleus and locus coeruleus). In these brain regions, the enzymes required to generate N-truncated Abeta peptides as substrates for QC might be lacking. Our observations provide additional evidence for an involvement of QC in AD pathogenesis via QC-catalyzed pE-Abeta formation.
Collapse
Affiliation(s)
| | - Alexandra Bluhm
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany.
| | - Anke Piechotta
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120 Halle (Saale), Germany.
| | - Miriam Linnert
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120 Halle (Saale), Germany.
| | - Jens-Ulrich Rahfeld
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120 Halle (Saale), Germany.
| | - Hans-Ulrich Demuth
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120 Halle (Saale), Germany.
| | - Inge Lues
- Probiodrug AG, 06120 Halle (Saale), Germany.
| | - Peer-Hendrik Kuhn
- Institute of Pathology, Technical University of Munich, 81675 Munich, Germany.
| | - Stefan F Lichtenthaler
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 81377 Munich, Germany.
- Munich Cluster of Systems Neurology (SyNergy), 81377 Munich, Germany.
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany.
- Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany.
| | - Steffen Roßner
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany.
| | - Corinna Höfling
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany.
| |
Collapse
|
18
|
Hoffmann T, Meyer A, Heiser U, Kurat S, Böhme L, Kleinschmidt M, Bühring KU, Hutter-Paier B, Farcher M, Demuth HU, Lues I, Schilling S. Glutaminyl Cyclase Inhibitor PQ912 Improves Cognition in Mouse Models of Alzheimer's Disease-Studies on Relation to Effective Target Occupancy. J Pharmacol Exp Ther 2017; 362:119-130. [PMID: 28446518 DOI: 10.1124/jpet.117.240614] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/24/2017] [Indexed: 12/22/2022] Open
Abstract
Numerous studies suggest that the majority of amyloid-β (Aβ) peptides deposited in Alzheimer's disease (AD) are truncated and post-translationally modified at the N terminus. Among these modified species, pyroglutamyl-Aβ (pE-Aβ, including N3pE-Aβ40/42 and N11pE-Aβ40/42) has been identified as particularly neurotoxic. The N-terminal modification renders the peptide hydrophobic, accelerates formation of oligomers, and reduces degradation by peptidases, leading ultimately to the accumulation of the peptide and progression of AD. It has been shown that the formation of pyroglutamyl residues is catalyzed by glutaminyl cyclase (QC). Here, we present data about the pharmacological in vitro and in vivo efficacy of the QC inhibitor (S)-1-(1H-benzo[d]imidazol-5-yl)-5-(4-propoxyphenyl)imidazolidin-2-one (PQ912), the first-in-class compound that is in clinical development. PQ912 inhibits human, rat, and mouse QC activity, with Ki values ranging between 20 and 65 nM. Chronic oral treatment of hAPPSLxhQC double-transgenic mice with approximately 200 mg/kg/day via chow shows a significant reduction of pE-Aβ levels and concomitant improvement of spatial learning in a Morris water maze test paradigm. This dose results in a brain and cerebrospinal fluid concentration of PQ912 which relates to a QC target occupancy of about 60%. Thus, we conclude that >50% inhibition of QC activity in the brain leads to robust treatment effects. Secondary pharmacology experiments in mice indicate a fairly large potency difference for Aβ cyclization compared with cyclization of physiologic substrates, suggesting a robust therapeutic window in humans. This information constitutes an important translational guidance for predicting the therapeutic dose range in clinical studies with PQ912.
Collapse
Affiliation(s)
- Torsten Hoffmann
- Probiodrug AG, Halle, Germany (T.H., A.M., U.H., L.B., K.-U.B., I.L.); QPS Austria, Grambach, Austria (S.K., B.H.-P., M.F.); and Fraunhofer Institute for Cell Therapy and Immunology, Department for Drug Design and Target Validation, Halle, Germany (M.K., H.-U.D., S.S.)
| | - Antje Meyer
- Probiodrug AG, Halle, Germany (T.H., A.M., U.H., L.B., K.-U.B., I.L.); QPS Austria, Grambach, Austria (S.K., B.H.-P., M.F.); and Fraunhofer Institute for Cell Therapy and Immunology, Department for Drug Design and Target Validation, Halle, Germany (M.K., H.-U.D., S.S.)
| | - Ulrich Heiser
- Probiodrug AG, Halle, Germany (T.H., A.M., U.H., L.B., K.-U.B., I.L.); QPS Austria, Grambach, Austria (S.K., B.H.-P., M.F.); and Fraunhofer Institute for Cell Therapy and Immunology, Department for Drug Design and Target Validation, Halle, Germany (M.K., H.-U.D., S.S.)
| | - Stephan Kurat
- Probiodrug AG, Halle, Germany (T.H., A.M., U.H., L.B., K.-U.B., I.L.); QPS Austria, Grambach, Austria (S.K., B.H.-P., M.F.); and Fraunhofer Institute for Cell Therapy and Immunology, Department for Drug Design and Target Validation, Halle, Germany (M.K., H.-U.D., S.S.)
| | - Livia Böhme
- Probiodrug AG, Halle, Germany (T.H., A.M., U.H., L.B., K.-U.B., I.L.); QPS Austria, Grambach, Austria (S.K., B.H.-P., M.F.); and Fraunhofer Institute for Cell Therapy and Immunology, Department for Drug Design and Target Validation, Halle, Germany (M.K., H.-U.D., S.S.)
| | - Martin Kleinschmidt
- Probiodrug AG, Halle, Germany (T.H., A.M., U.H., L.B., K.-U.B., I.L.); QPS Austria, Grambach, Austria (S.K., B.H.-P., M.F.); and Fraunhofer Institute for Cell Therapy and Immunology, Department for Drug Design and Target Validation, Halle, Germany (M.K., H.-U.D., S.S.)
| | - Karl-Ulrich Bühring
- Probiodrug AG, Halle, Germany (T.H., A.M., U.H., L.B., K.-U.B., I.L.); QPS Austria, Grambach, Austria (S.K., B.H.-P., M.F.); and Fraunhofer Institute for Cell Therapy and Immunology, Department for Drug Design and Target Validation, Halle, Germany (M.K., H.-U.D., S.S.)
| | - Birgit Hutter-Paier
- Probiodrug AG, Halle, Germany (T.H., A.M., U.H., L.B., K.-U.B., I.L.); QPS Austria, Grambach, Austria (S.K., B.H.-P., M.F.); and Fraunhofer Institute for Cell Therapy and Immunology, Department for Drug Design and Target Validation, Halle, Germany (M.K., H.-U.D., S.S.)
| | - Martina Farcher
- Probiodrug AG, Halle, Germany (T.H., A.M., U.H., L.B., K.-U.B., I.L.); QPS Austria, Grambach, Austria (S.K., B.H.-P., M.F.); and Fraunhofer Institute for Cell Therapy and Immunology, Department for Drug Design and Target Validation, Halle, Germany (M.K., H.-U.D., S.S.)
| | - Hans-Ulrich Demuth
- Probiodrug AG, Halle, Germany (T.H., A.M., U.H., L.B., K.-U.B., I.L.); QPS Austria, Grambach, Austria (S.K., B.H.-P., M.F.); and Fraunhofer Institute for Cell Therapy and Immunology, Department for Drug Design and Target Validation, Halle, Germany (M.K., H.-U.D., S.S.)
| | - Inge Lues
- Probiodrug AG, Halle, Germany (T.H., A.M., U.H., L.B., K.-U.B., I.L.); QPS Austria, Grambach, Austria (S.K., B.H.-P., M.F.); and Fraunhofer Institute for Cell Therapy and Immunology, Department for Drug Design and Target Validation, Halle, Germany (M.K., H.-U.D., S.S.)
| | - Stephan Schilling
- Probiodrug AG, Halle, Germany (T.H., A.M., U.H., L.B., K.-U.B., I.L.); QPS Austria, Grambach, Austria (S.K., B.H.-P., M.F.); and Fraunhofer Institute for Cell Therapy and Immunology, Department for Drug Design and Target Validation, Halle, Germany (M.K., H.-U.D., S.S.)
| |
Collapse
|
19
|
Identification of Glutaminyl Cyclase Genes Involved in Pyroglutamate Modification of Fungal Lignocellulolytic Enzymes. mBio 2017; 8:mBio.02231-16. [PMID: 28096492 PMCID: PMC5241404 DOI: 10.1128/mbio.02231-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The breakdown of plant biomass to simple sugars is essential for the production of second-generation biofuels and high-value bioproducts. Currently, enzymes produced from filamentous fungi are used for deconstructing plant cell wall polysaccharides into fermentable sugars for biorefinery applications. A post-translational N-terminal pyroglutamate modification observed in some of these enzymes occurs when N-terminal glutamine or glutamate is cyclized to form a five-membered ring. This modification has been shown to confer resistance to thermal denaturation for CBH-1 and EG-1 cellulases. In mammalian cells, the formation of pyroglutamate is catalyzed by glutaminyl cyclases. Using the model filamentous fungus Neurospora crassa, we identified two genes (qc-1 and qc-2) that encode proteins homologous to mammalian glutaminyl cyclases. We show that qc-1 and qc-2 are essential for catalyzing the formation of an N-terminal pyroglutamate on CBH-1 and GH5-1. CBH-1 and GH5-1 produced in a Δqc-1 Δqc-2 mutant, and thus lacking the N-terminal pyroglutamate modification, showed greater sensitivity to thermal denaturation, and for GH5-1, susceptibility to proteolytic cleavage. QC-1 and QC-2 are endoplasmic reticulum (ER)-localized proteins. The pyroglutamate modification is predicted to occur in a number of additional fungal proteins that have diverse functions. The identification of glutaminyl cyclases in fungi may have implications for production of lignocellulolytic enzymes, heterologous expression, and biotechnological applications revolving around protein stability. Pyroglutamate modification is the post-translational conversion of N-terminal glutamine or glutamate into a cyclized amino acid derivative. This modification is well studied in animal systems but poorly explored in fungal systems. In Neurospora crassa, we show that this modification takes place in the ER and is catalyzed by two well-conserved enzymes, ubiquitously conserved throughout the fungal kingdom. We demonstrate that the modification is important for the structural stability and aminopeptidase resistance of CBH-1 and GH5-1, two important cellulase enzymes utilized in industrial plant cell wall deconstruction. Many additional fungal proteins predicted in the genome of N. crassa and other filamentous fungi are predicted to carry an N-terminal pyroglutamate modification. Pyroglutamate addition may also be a useful way to stabilize secreted proteins and peptides, which can be easily produced in fungal production systems.
Collapse
|
20
|
Characterization and quantification of oxyntomodulin in human and rat plasma using high-resolution accurate mass LC–MS. Bioanalysis 2016; 8:1579-1595. [DOI: 10.4155/bio-2016-0012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background: A thorough understanding of the biological role of oxyntomodulin (OXM) has been limited by the availability of sensitive and specific analytical tools for reliable in vivo characterization. Here, we utilized immunoaffinity capture coupled with high-resolution accurate mass LC–MS detection to quantify OXM and its primary catabolites. Results: Quantification of intact OXM 1–37 in human and rat plasma occurred in pre- and post-prandial samples. Profiles for the major catabolites were observed allowing kinetic differences to be assessed between species. Conclusion: A validated assay in human and rat plasma was obtained for OXM 1–37 and its catabolites, 3–37 and 4–37. The value of full scan high-resolution accurate mass detection without selected reaction monitoring for low-abundance peptide quantification was also demonstrated.
Collapse
|
21
|
Cynis H, Frost JL, Crehan H, Lemere CA. Immunotherapy targeting pyroglutamate-3 Aβ: prospects and challenges. Mol Neurodegener 2016; 11:48. [PMID: 27363697 PMCID: PMC4929720 DOI: 10.1186/s13024-016-0115-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 06/24/2016] [Indexed: 12/17/2022] Open
Abstract
Immunization against amyloid-β (Aβ) peptides deposited in Alzheimer’s disease (AD) has shown considerable therapeutic effect in animal models however, the translation into human Alzheimer’s patients is challenging. In recent years, a number of promising Aβ immunotherapy trials failed to reach primary study endpoints. Aside from uncertainties in the selection of patients and the start and duration of treatment, these results also suggest that the mechanisms underlying AD are still not fully understood. Thorough characterizations of protein aggregates in AD brain have revealed a conspicuous heterogeneity of Aβ peptides enabling the study of the toxic potential of each of the major forms. One such form, amino-terminally truncated and modified pyroglutamate (pGlu)-3 Aβ peptide appears to play a seminal role for disease initiation, qualifying it as novel target for immunotherapy approaches.
Collapse
Affiliation(s)
- Holger Cynis
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB636, Boston, MA, 02115, USA.,Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120, Halle, Germany
| | - Jeffrey L Frost
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB636, Boston, MA, 02115, USA.,University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA, 01605, USA
| | - Helen Crehan
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB636, Boston, MA, 02115, USA
| | - Cynthia A Lemere
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB636, Boston, MA, 02115, USA.
| |
Collapse
|
22
|
Becker A, Eichentopf R, Sedlmeier R, Waniek A, Cynis H, Koch B, Stephan A, Bäuscher C, Kohlmann S, Hoffmann T, Kehlen A, Berg S, Freyse EJ, Osmand A, Plank AC, Roßner S, von Hörsten S, Graubner S, Demuth HU, Schilling S. IsoQC (QPCTL) knock-out mice suggest differential substrate conversion by glutaminyl cyclase isoenzymes. Biol Chem 2016; 397:45-55. [DOI: 10.1515/hsz-2015-0192] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/12/2015] [Indexed: 11/15/2022]
Abstract
Abstract
Secretory peptides and proteins are frequently modified by pyroglutamic acid (pE, pGlu) at their N-terminus. This modification is catalyzed by the glutaminyl cyclases QC and isoQC. Here, we decipher the roles of the isoenzymes by characterization of IsoQC-/- mice. These mice show a significant reduction of glutaminyl cyclase activity in brain and peripheral tissue, suggesting ubiquitous expression of the isoQC enzyme. An assay of substrate conversion in vivo reveals impaired generation of the pGlu-modified C-C chemokine ligand 2 (CCL2, MCP-1) in isoQC-/- mice. The pGlu-formation was also impaired in primary neurons, which express significant levels of QC. Interestingly, however, the formation of the neuropeptide hormone thyrotropin-releasing hormone (TRH), assessed by immunohistochemistry and hormonal analysis of hypothalamic-pituitary-thyroid axis, was not affected in isoQC-/-, which contrasts to QC-/-. Thus, the results reveal differential functions of isoQC and QC in the formation of the pGlu-peptides CCL2 and TRH. Substrates requiring extensive prohormone processing in secretory granules, such as TRH, are primarily converted by QC. In contrast, protein substrates such as CCL2 appear to be primarily converted by isoQC. The results provide a new example, how subtle differences in subcellular localization of enzymes and substrate precursor maturation might influence pGlu-product formation.
Collapse
|
23
|
Hennekens CH, A Bensadon B, Zivin R, Gaziano JM. Hypothesis: glutaminyl cyclase inhibitors decrease risks of Alzheimer’s disease and related dementias. Expert Rev Neurother 2015; 15:1245-8. [DOI: 10.1586/14737175.2015.1088784] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Marino G, Eckhard U, Overall CM. Protein Termini and Their Modifications Revealed by Positional Proteomics. ACS Chem Biol 2015; 10:1754-64. [PMID: 26042555 DOI: 10.1021/acschembio.5b00189] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A myriad of co- and post-translational modifications occur at protein N- and C-termini, resulting in an extra layer of proteome complexity and an additional source of protein regulation. Here, we review N- and C-terminal modifications and the contemporary positional proteomics techniques used to isolate protein terminal peptides from complex protein mixtures and characterize their diversity and occurrence in biological systems. Furthermore, these degradomics strategies--often referred to as N- and C-terminomics--represent dedicated high-throughput techniques to study proteolysis in dynamic living systems. Over the past decade, terminomics studies have provided indispensable information on the functional states of individual proteins, cell types, tissues, and biological processes and delivered fundamental new data for the Human Proteome Project, including high confidence identifications of many so-called "missing proteins", which had not been identified by traditional proteomics analyses.
Collapse
Affiliation(s)
- Giada Marino
- Centre
for Blood Research, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ulrich Eckhard
- Centre
for Blood Research, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher M. Overall
- Centre
for Blood Research, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Department
of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
25
|
Seifert F, Demuth HU, Weichler T, Ludwig HH, Tittmann K, Schilling S. Phosphate ions and glutaminyl cyclases catalyze the cyclization of glutaminyl residues by facilitating synchronized proton transfers. Bioorg Chem 2015; 60:98-101. [DOI: 10.1016/j.bioorg.2015.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/14/2015] [Accepted: 04/15/2015] [Indexed: 10/23/2022]
|
26
|
Barbosa EF, Monge-Fuentes V, Oliveira NB, Tavares R, Xavier MAE, Bemquerer MP, Silva LP. Protein characterisation of Brosimum gaudichaudii Trécul latex and study of nanostructured latex film formation. IET Nanobiotechnol 2014; 8:222-9. [PMID: 25429501 DOI: 10.1049/iet-nbt.2013.0042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Brosimum gaudichaudii Tréc. (Moraceae) is a common Brazilian Cerrado plant known by its pharmaceutical industry relevance. The authors investigated the latex protein components and potential biotechnological applications. Some protein fragments had their sequences elucidated, presenting similarities to jacalin and Kunitz-type trypsin inhibitors. Amino acid residue modifications were found, such as glutamine N-terminal residue cyclisation into pyroglutamic acid residue, and mass differences corresponding to hexoses and N-acetylhexosamine presence. The latex was used to produce a nanoscale structured film, which presented an increased attraction and reduced adhesion behaviours. The film presented high homogeneity, as observed by low nanoroughness values, probably because of its intrinsic components, such as the jacalin-like protein that has known agglutination properties. The immobilised Kunitz-type trypsin inhibitor presence in the latex film allow us to point out to applications related to this inhibition, as in active food packaging, since these peptidase inhibitors are able to inhibit pests and microorganism proliferation.
Collapse
Affiliation(s)
- Eduardo F Barbosa
- Postgraduate Program in Animal Biology, Institute of Biological Sciences, University of Brasília, UnB, Brasília, Brazil
| | - Victoria Monge-Fuentes
- Postgraduate Program in Animal Biology, Institute of Biological Sciences, University of Brasília, UnB, Brasília, Brazil
| | - Natiela B Oliveira
- Postgraduate Program in Animal Biology, Institute of Biological Sciences, University of Brasília, UnB, Brasília, Brazil
| | - Rebecca Tavares
- Postgraduate Program in Animal Biology, Institute of Biological Sciences, University of Brasília, UnB, Brasília, Brazil
| | - Mary-Ann E Xavier
- Postgraduate Program in Animal Biology, Institute of Biological Sciences, University of Brasília, UnB, Brasília, Brazil
| | - Marcelo Porto Bemquerer
- Laboratory of Mass Spectrometry, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| | - Luciano P Silva
- Postgraduate Program in Animal Biology, Institute of Biological Sciences, University of Brasília, UnB, Brasília, Brazil.
| |
Collapse
|
27
|
Wang YM, Huang KF, Tsai IH. Snake venom glutaminyl cyclases: Purification, cloning, kinetic study, recombinant expression, and comparison with the human enzyme. Toxicon 2014; 86:40-50. [DOI: 10.1016/j.toxicon.2014.04.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/18/2014] [Accepted: 04/29/2014] [Indexed: 11/17/2022]
|
28
|
Masotti F, De Noni I, Cattaneo S, Brasca M, Rosi V, Stuknyte M, Morandi S, Pellegrino L. Occurrence, origin and fate of pyroglutamyl-γ3-casein in cheese. Int Dairy J 2013. [DOI: 10.1016/j.idairyj.2013.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
29
|
Glutaminyl cyclase-mediated toxicity of pyroglutamate-beta amyloid induces striatal neurodegeneration. BMC Neurosci 2013; 14:108. [PMID: 24083638 PMCID: PMC3850634 DOI: 10.1186/1471-2202-14-108] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 09/18/2013] [Indexed: 11/20/2022] Open
Abstract
Background Posttranslational modifications of beta amyloid (Aβ) have been shown to affect its biophysical and neurophysiological properties. One of these modifications is N-terminal pyroglutamate (pE) formation. Enzymatic glutaminyl cyclase (QC) activity catalyzes cyclization of truncated Aβ(3-x), generating pE3-Aβ. Compared to unmodified Aβ, pE3-Aβ is more hydrophobic and neurotoxic. In addition, it accelerates aggregation of other Aβ species. To directly investigate pE3-Aβ formation and toxicity in vivo, transgenic (tg) ETNA (E at the truncated N-terminus of Aβ) mice expressing truncated human Aβ(3–42) were generated and comprehensively characterized. To further investigate the role of QC in pE3-Aβ formation in vivo, ETNA mice were intercrossed with tg mice overexpressing human QC (hQC) to generate double tg ETNA-hQC mice. Results Expression of truncated Aβ(3–42) was detected mainly in the lateral striatum of ETNA mice, leading to progressive accumulation of pE3-Aβ. This ultimately resulted in astrocytosis, loss of DARPP-32 immunoreactivity, and neuronal loss at the sites of pE3-Aβ formation. Neuropathology in ETNA mice was associated with behavioral alterations. In particular, hyperactivity and impaired acoustic sensorimotor gating were detected. Double tg ETNA-hQC mice showed similar Aβ levels and expression sites, while pE3-Aβ were significantly increased, entailing increased astrocytosis and neuronal loss. Conclusions ETNA and ETNA-hQC mice represent novel mouse models for QC-mediated toxicity of truncated and pE-modified Aβ. Due to their significant striatal neurodegeneration these mice can also be used for analysis of striatal regulation of basal locomotor activity and sensorimotor gating, and possibly for DARPP-32-dependent neurophysiology and neuropathology. The spatio-temporal correlation of pE3-Aβ and neuropathology strongly argues for an important role of this Aβ species in neurodegenerative processes in these models.
Collapse
|
30
|
Adamson SW, Browning RE, Chao CC, Bateman RC, Ching WM, Karim S. Molecular characterization of tick salivary gland glutaminyl cyclase. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:781-93. [PMID: 23770496 PMCID: PMC3740044 DOI: 10.1016/j.ibmb.2013.05.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 05/21/2013] [Accepted: 05/26/2013] [Indexed: 05/26/2023]
Abstract
Glutaminyl cyclase (QC) catalyzes the cyclization of N-terminal glutamine residues into pyroglutamate. This post-translational modification extends the half-life of peptides and, in some cases, is essential in binding to their cognate receptor. Due to its potential role in the post-translational modification of tick neuropeptides, we report the molecular, biochemical and physiological characterization of salivary gland QC during the prolonged blood feeding of the black-legged tick (Ixodes scapularis) and the gulf-coast tick (Amblyomma maculatum). QC sequences from I. scapularis and A. maculatum showed a high degree of amino acid identity to each other and other arthropods and residues critical for zinc binding/catalysis (D159, E202, and H330) or intermediate stabilization (E201, W207, D248, D305, F325, and W329) are conserved. Analysis of QC transcriptional gene expression kinetics depicts an upregulation during the bloodmeal of adult female ticks prior to fast-feeding phases in both I. scapularis and A. maculatum suggesting a functional link with bloodmeal uptake. QC enzymatic activity was detected in saliva and extracts of tick salivary glands and midguts. Recombinant QC was shown to be catalytically active. Furthermore, knockdown of QC transcript by RNA interference resulted in lower enzymatic activity, and small, unviable egg masses in both studied tick species as well as lower engorged tick weights for I. scapularis. These results suggest that the post-translational modification of neurotransmitters and other bioactive peptides by QC is critical to oviposition and potentially other physiological processes. Moreover, these data suggest that tick-specific QC-modified neurotransmitters/hormones or other relevant parts of this system could potentially be used as novel physiological targets for tick control.
Collapse
Affiliation(s)
- Steven W. Adamson
- Department of Biological Sciences, the University of Southern Mississippi, 118 College Drive # 5018, Hattiesburg, MS 39406, USA
| | - Rebecca E. Browning
- Department of Biological Sciences, the University of Southern Mississippi, 118 College Drive # 5018, Hattiesburg, MS 39406, USA
| | - Chien-Chung Chao
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD 20892
| | - Robert C. Bateman
- College of Osteopathic Medicine, William Carey University, 498 Tuscan Avenue, Hattiesburg, MS 39401, USA
| | - Wei-Mei Ching
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD 20892
| | - Shahid Karim
- Department of Biological Sciences, the University of Southern Mississippi, 118 College Drive # 5018, Hattiesburg, MS 39406, USA
| |
Collapse
|
31
|
Frost JL, Le KX, Cynis H, Ekpo E, Kleinschmidt M, Palmour RM, Ervin FR, Snigdha S, Cotman CW, Saido TC, Vassar RJ, St George-Hyslop P, Ikezu T, Schilling S, Demuth HU, Lemere CA. Pyroglutamate-3 amyloid-β deposition in the brains of humans, non-human primates, canines, and Alzheimer disease-like transgenic mouse models. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:369-81. [PMID: 23747948 DOI: 10.1016/j.ajpath.2013.05.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/29/2013] [Accepted: 05/02/2013] [Indexed: 01/27/2023]
Abstract
Amyloid-β (Aβ) peptides, starting with pyroglutamate at the third residue (pyroGlu-3 Aβ), are a major species deposited in the brain of Alzheimer disease (AD) patients. Recent studies suggest that this isoform shows higher toxicity and amyloidogenecity when compared to full-length Aβ peptides. Here, we report the first comprehensive and comparative IHC evaluation of pyroGlu-3 Aβ deposition in humans and animal models. PyroGlu-3 Aβ immunoreactivity (IR) is abundant in plaques and cerebral amyloid angiopathy of AD and Down syndrome patients, colocalizing with general Aβ IR. PyroGlu-3 Aβ is further present in two nontransgenic mammalian models of cerebral amyloidosis, Caribbean vervets, and beagle canines. In addition, pyroGlu-3 Aβ deposition was analyzed in 12 different AD-like transgenic mouse models. In contrast to humans, all transgenic models showed general Aβ deposition preceding pyroGlu-3 Aβ deposition. The findings varied greatly among the mouse models concerning age of onset and cortical brain region. In summary, pyroGlu-3 Aβ is a major species of β-amyloid deposited early in diffuse and focal plaques and cerebral amyloid angiopathy in humans and nonhuman primates, whereas it is deposited later in a subset of focal and vascular amyloid in AD-like transgenic mouse models. Given the proposed decisive role of pyroGlu-3 Aβ peptides for the development of human AD pathology, this study provides insights into the usage of animal models in AD studies.
Collapse
Affiliation(s)
- Jeffrey L Frost
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Güttler BHO, Cynis H, Seifert F, Ludwig HH, Porzel A, Schilling S. A quantitative analysis of spontaneous isoaspartate formation from N-terminal asparaginyl and aspartyl residues. Amino Acids 2013; 44:1205-14. [DOI: 10.1007/s00726-012-1454-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 12/24/2012] [Indexed: 10/27/2022]
|
33
|
Masters CL, Selkoe DJ. Biochemistry of amyloid β-protein and amyloid deposits in Alzheimer disease. Cold Spring Harb Perspect Med 2012; 2:a006262. [PMID: 22675658 PMCID: PMC3367542 DOI: 10.1101/cshperspect.a006262] [Citation(s) in RCA: 395] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Progressive cerebral deposition of the amyloid β-protein (Aβ) in brain regions serving memory and cognition is an invariant and defining feature of Alzheimer disease. A highly similar but less robust process accompanies brain aging in many nondemented humans, lower primates, and some other mammals. The discovery of Aβ as the subunit of the amyloid fibrils in meningocerebral blood vessels and parenchymal plaques has led to innumerable studies of its biochemistry and potential cytotoxic properties. Here we will review the discovery of Aβ, numerous aspects of its complex biochemistry, and current attempts to understand how a range of Aβ assemblies, including soluble oligomers and insoluble fibrils, may precipitate and promote neuronal and glial alterations that underlie the development of dementia. Although the role of Aβ as a key molecular factor in the etiology of Alzheimer disease remains controversial, clinical trials of amyloid-lowering agents, reviewed elsewhere in this book, are poised to resolve the question of its pathogenic primacy.
Collapse
Affiliation(s)
- Colin L Masters
- The Mental Health Research Institute, The University of Melbourne, Parkville 3010, Australia.
| | | |
Collapse
|
34
|
Pyroglutamate-Aβ 3 and 11 colocalize in amyloid plaques in Alzheimer's disease cerebral cortex with pyroglutamate-Aβ 11 forming the central core. Neurosci Lett 2011; 505:109-12. [PMID: 22001577 DOI: 10.1016/j.neulet.2011.09.071] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 09/21/2011] [Accepted: 09/30/2011] [Indexed: 10/16/2022]
Abstract
N-terminal truncated amyloid beta (Aβ) derivatives, especially the forms having pyroglutamate at the 3 position (AβpE3) or at the 11 position (AβpE11) have become the topic of considerable study. AβpE3 is known to make up a substantial portion of the Aβ species in senile plaques while AβpE11 has received less attention. We have generated very specific polyclonal antibodies against both species. Each antibody recognizes only the antigen against which it was generated on Western blots and neither recognizes full length Aβ. Both anti-AβpE3 and anti-AβpE11 stain senile plaques specifically in Alzheimer's disease cerebral cortex and colocalize with Aβ, as shown by confocal microscopy. In a majority of plaques examined, AβpE11 was observed to be the dominant form in the innermost core. These data suggest that AβpE11 may serve as a generating site for senile plaque formation.
Collapse
|
35
|
Cynis H, Hoffmann T, Friedrich D, Kehlen A, Gans K, Kleinschmidt M, Rahfeld JU, Wolf R, Wermann M, Stephan A, Haegele M, Sedlmeier R, Graubner S, Jagla W, Müller A, Eichentopf R, Heiser U, Seifert F, Quax PHA, de Vries MR, Hesse I, Trautwein D, Wollert U, Berg S, Freyse EJ, Schilling S, Demuth HU. The isoenzyme of glutaminyl cyclase is an important regulator of monocyte infiltration under inflammatory conditions. EMBO Mol Med 2011; 3:545-58. [PMID: 21774078 PMCID: PMC3377097 DOI: 10.1002/emmm.201100158] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 06/01/2011] [Accepted: 06/08/2011] [Indexed: 02/06/2023] Open
Abstract
Acute and chronic inflammatory disorders are characterized by detrimental cytokine and chemokine expression. Frequently, the chemotactic activity of cytokines depends on a modified N-terminus of the polypeptide. Among those, the N-terminus of monocyte chemoattractant protein 1 (CCL2 and MCP-1) is modified to a pyroglutamate (pE-) residue protecting against degradation in vivo. Here, we show that the N-terminal pE-formation depends on glutaminyl cyclase activity. The pE-residue increases stability against N-terminal degradation by aminopeptidases and improves receptor activation and signal transduction in vitro. Genetic ablation of the glutaminyl cyclase iso-enzymes QC (QPCT) or isoQC (QPCTL) revealed a major role of isoQC for pE1-CCL2 formation and monocyte infiltration. Consistently, administration of QC-inhibitors in inflammatory models, such as thioglycollate-induced peritonitis reduced monocyte infiltration. The pharmacologic efficacy of QC/isoQC-inhibition was assessed in accelerated atherosclerosis in ApoE3*Leiden mice, showing attenuated atherosclerotic pathology following chronic oral treatment. Current strategies targeting CCL2 are mainly based on antibodies or spiegelmers. The application of small, orally available inhibitors of glutaminyl cyclases represents an alternative therapeutic strategy to treat CCL2-driven disorders such as atherosclerosis/restenosis and fibrosis.
Collapse
|
36
|
Schilling S, Kohlmann S, Bäuscher C, Sedlmeier R, Koch B, Eichentopf R, Becker A, Cynis H, Hoffmann T, Berg S, Freyse EJ, von Hörsten S, Rossner S, Graubner S, Demuth HU. Glutaminyl cyclase knock-out mice exhibit slight hypothyroidism but no hypogonadism: implications for enzyme function and drug development. J Biol Chem 2011; 286:14199-208. [PMID: 21330373 PMCID: PMC3077621 DOI: 10.1074/jbc.m111.229385] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Indexed: 11/06/2022] Open
Abstract
Glutaminyl cyclases (QCs) catalyze the formation of pyroglutamate (pGlu) residues at the N terminus of peptides and proteins. Hypothalamic pGlu hormones, such as thyrotropin-releasing hormone and gonadotropin-releasing hormone are essential for regulation of metabolism and fertility in the hypothalamic pituitary thyroid and gonadal axes, respectively. Here, we analyzed the consequences of constitutive genetic QC ablation on endocrine functions and on the behavior of adult mice. Adult homozygous QC knock-out mice are fertile and behave indistinguishably from wild type mice in tests of motor function, cognition, general activity, and ingestion behavior. The QC knock-out results in a dramatic drop of enzyme activity in the brain, especially in hypothalamus and in plasma. Other peripheral organs like liver and spleen still contain QC activity, which is most likely caused by its homolog isoQC. The serum gonadotropin-releasing hormone, TSH, and testosterone concentrations were not changed by QC depletion. The serum thyroxine was decreased by 24% in homozygous QC knock-out animals, suggesting a mild hypothyroidism. QC knock-out mice were indistinguishable from wild type with regard to blood glucose and glucose tolerance, thus differing from reports of thyrotropin-releasing hormone knock-out mice significantly. The results suggest a significant formation of the hypothalamic pGlu hormones by alternative mechanisms, like spontaneous cyclization or conversion by isoQC. The different effects of QC depletion on the hypothalamic pituitary thyroid and gonadal axes might indicate slightly different modes of substrate conversion of both enzymes. The absence of significant abnormalities in QC knock-out mice suggests the presence of a therapeutic window for suppression of QC activity in current drug development.
Collapse
Affiliation(s)
| | | | | | | | - Birgit Koch
- From Probiodrug AG, Weinbergweg 22, 06120 Halle/Saale
| | | | | | - Holger Cynis
- From Probiodrug AG, Weinbergweg 22, 06120 Halle/Saale
| | | | - Sabine Berg
- the Institute of Diabetes, “Gerhardt Katsch,” 17495 Karlsburg
| | | | - Stephan von Hörsten
- the University of Erlangen-Nürnberg, Franz-Penzoldt-Center, Palmsanlage 5, 91054 Erlangen, and
| | - Steffen Rossner
- the Paul Flechsig Institute for Brain Research, University of Leipzig, Jahnallee 59, 04109 Leipzig, Germany
| | | | - Hans-Ulrich Demuth
- From Probiodrug AG, Weinbergweg 22, 06120 Halle/Saale
- Ingenium GmbH, Fraunhoferstrasse 13, 82152 Martinsried
| |
Collapse
|
37
|
Huang KF, Liaw SS, Huang WL, Chia CY, Lo YC, Chen YL, Wang AHJ. Structures of human Golgi-resident glutaminyl cyclase and its complexes with inhibitors reveal a large loop movement upon inhibitor binding. J Biol Chem 2011; 286:12439-49. [PMID: 21288892 DOI: 10.1074/jbc.m110.208595] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Aberrant pyroglutamate formation at the N terminus of certain peptides and proteins, catalyzed by glutaminyl cyclases (QCs), is linked to some pathological conditions, such as Alzheimer disease. Recently, a glutaminyl cyclase (QC) inhibitor, PBD150, was shown to be able to reduce the deposition of pyroglutamate-modified amyloid-β peptides in brain of transgenic mouse models of Alzheimer disease, leading to a significant improvement of learning and memory in those transgenic animals. Here, we report the 1.05-1.40 Å resolution structures, solved by the sulfur single-wavelength anomalous dispersion phasing method, of the Golgi-luminal catalytic domain of the recently identified Golgi-resident QC (gQC) and its complex with PBD150. We also describe the high-resolution structures of secretory QC (sQC)-PBD150 complex and two other gQC-inhibitor complexes. gQC structure has a scaffold similar to that of sQC but with a relatively wider and negatively charged active site, suggesting a distinct substrate specificity from sQC. Upon binding to PBD150, a large loop movement in gQC allows the inhibitor to be tightly held in its active site primarily by hydrophobic interactions. Further comparisons of the inhibitor-bound structures revealed distinct interactions of the inhibitors with gQC and sQC, which are consistent with the results from our inhibitor assays reported here. Because gQC and sQC may play different biological roles in vivo, the different inhibitor binding modes allow the design of specific inhibitors toward gQC and sQC.
Collapse
Affiliation(s)
- Kai-Fa Huang
- Institute of Biological Chemistry, Core Facility for Protein Production and X-ray Structural Analysis, Academia Sinica, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
38
|
Carrillo DR, Parthier C, Jänckel N, Grandke J, Stelter M, Schilling S, Boehme M, Neumann P, Wolf R, Demuth HU, Stubbs MT, Rahfeld JU. Kinetic and structural characterization of bacterial glutaminyl cyclases from Zymomonas mobilis and Myxococcus xanthus. Biol Chem 2010; 391:1419-28. [DOI: 10.1515/bc.2010.130] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Although enzymes responsible for the cyclization of amino-terminal glutamine residues are present in both plant and mammal species, none have yet been characterized in bacteria. Based on low sequence homologies to plant glutaminyl cyclases (QCs), we cloned the coding sequences of putative microbial QCs from Zymomonas mobilis (ZmQC) and Myxococcus xanthus (MxQC). The two recombinant enzymes exhibited distinct QC activity, with specificity constants k
cat
/K
m of 1.47±0.33 mm
-1 s-1 (ZmQC) and 142±32.7 mm
-1 s-1 (MxQC) towards the fluorescent substrate glutamine-7-amino-4-methyl-coumarine. The measured pH-rate profile of the second order rate constant displayed an interesting deviation towards the acidic limb of the pH chart in the case of ZmQC, whereas MxQC showed maximum activity in the mild alkaline pH range. Analysis of the enzyme variants ZmQCGlu46Gln and MxQCGln46Glu show that the exchanged residues play a significant role in the pH behaviour of the respective enzymes. In addition, we determined the three dimensional crystal structures of both enzymes. The tertiary structure is defined by a five-bladed β-propeller anchored by a core cation. The structures corroborate the putative location of the active site and confirm the proposed relation between bacterial and plant glutaminyl cyclases.
Collapse
|