1
|
Guo C, Cheng M, Li W, Gross ML. Precursor Reagent Hydrophobicity Affects Membrane Protein Footprinting. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2700-2710. [PMID: 37967285 PMCID: PMC10924779 DOI: 10.1021/jasms.3c00272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Membrane proteins (MPs) play a crucial role in cell signaling, molecular transport, and catalysis and thus are at the heart of designing pharmacological targets. Although structural characterization of MPs at the molecular level is essential to elucidate their biological function, it poses a significant challenge for structural biology. Although mass spectrometry-based protein footprinting may be developed into a powerful approach for studying MPs, the hydrophobic character of membrane regions makes structural characterization difficult using water-soluble footprinting reagents. Herein, we evaluated a small series of MS-based photoactivated iodine reagents with different hydrophobicities. We used tip sonication to facilitate diffusion into micelles, thus enhancing reagent access to the hydrophobic core of MPs. Quantification of the modification extent in hydrophilic extracellular and hydrophobic transmembrane domains provides structurally sensitive information at the residue-level as measured by proteolysis and LC-MS/MS for a model MP, vitamin K epoxide reductase (VKOR). It also reveals a relationship between the reagent hydrophobicity and its preferential labeling sites in the local environment. The outcome should guide the future development of chemical probes for MPs and promote a direction for relatively high-throughput information-rich characterization of MPs in biochemistry and drug discovery.
Collapse
|
2
|
Hong JD, Palczewski K. A short story on how chromophore is hydrolyzed from rhodopsin for recycling. Bioessays 2023; 45:e2300068. [PMID: 37454357 PMCID: PMC10614701 DOI: 10.1002/bies.202300068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 07/18/2023]
Abstract
The photocycle of visual opsins is essential to maintain the light sensitivity of the retina. The early physical observations of the rhodopsin photocycle by Böll and Kühne in the 1870s inspired over a century's worth of investigations on rhodopsin biochemistry. A single photon isomerizes the Schiff-base linked 11-cis-retinylidene chromophore of rhodopsin, converting it to the all-trans agonist to elicit phototransduction through photoactivated rhodopsin (Rho*). Schiff base hydrolysis of the agonist is a key step in the photocycle, not only diminishing ongoing phototransduction but also allowing for entry and binding of fresh 11-cis chromophore to regenerate the rhodopsin pigment and maintain light sensitivity. Many challenges have been encountered in measuring the rate of this hydrolysis, but recent advancements have facilitated studies of the hydrolysis within the native membrane environment of rhodopsin. These techniques can now be applied to study hydrolysis of agonist in other opsin proteins that mediate phototransduction or chromophore turnover. In this review, we discuss the progress that has been made in characterizing the rhodopsin photocycle and the journey to characterize the hydrolysis of its all-trans-retinylidene agonist.
Collapse
Affiliation(s)
- John D. Hong
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California Irvine, Irvine, CA 92697, USA
- Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California Irvine, Irvine, CA 92697, USA
- Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92697, USA
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
3
|
McKenzie-Coe A, Montes NS, Jones LM. Hydroxyl Radical Protein Footprinting: A Mass Spectrometry-Based Structural Method for Studying the Higher Order Structure of Proteins. Chem Rev 2021; 122:7532-7561. [PMID: 34633178 DOI: 10.1021/acs.chemrev.1c00432] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hydroxyl radical protein footprinting (HRPF) coupled to mass spectrometry has been successfully used to investigate a plethora of protein-related questions. The method, which utilizes hydroxyl radicals to oxidatively modify solvent-accessible amino acids, can inform on protein interaction sites and regions of conformational change. Hydroxyl radical-based footprinting was originally developed to study nucleic acids, but coupling the method with mass spectrometry has enabled the study of proteins. The method has undergone several advancements since its inception that have increased its utility for more varied applications such as protein folding and the study of biotherapeutics. In addition, recent innovations have led to the study of increasingly complex systems including cell lysates and intact cells. Technological advances have also increased throughput and allowed for better control of experimental conditions. In this review, we provide a brief history of the field of HRPF and detail recent innovations and applications in the field.
Collapse
Affiliation(s)
- Alan McKenzie-Coe
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| | - Nicholas S Montes
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| | - Lisa M Jones
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| |
Collapse
|
4
|
Taghon GJ, Rowe JB, Kapolka NJ, Isom DG. Predictable cholesterol binding sites in GPCRs lack consensus motifs. Structure 2021; 29:499-506.e3. [PMID: 33508215 PMCID: PMC9162085 DOI: 10.1016/j.str.2021.01.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 11/17/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022]
Abstract
A rich diversity of transmembrane G protein-coupled receptors (GPCRs) are used by eukaryotes to sense physical and chemical signals. In humans alone, 800 GPCRs comprise the largest and most therapeutically targeted receptor class. Recent advances in GPCR structural biology have produced hundreds of GPCR structures solved by X-ray diffraction and increasingly, cryo-electron microscopy (cryo-EM). Many of these structures are stabilized by site-specific cholesterol binding, but it is unclear whether these interactions are a product of recurring cholesterol-binding motifs and if observed patterns of cholesterol binding differ by experimental technique. Here, we comprehensively analyze the location and composition of cholesterol binding sites in the current set of 473 human GPCR structural chains. Our findings establish that cholesterol binds similarly in cryo-EM and X-ray structures and show that 92% of cholesterol molecules on GPCR surfaces reside in predictable locations that lack discernable cholesterol-binding motifs.
Collapse
Affiliation(s)
- Geoffrey J Taghon
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, RMSB 6078A, Miami, FL 33136, USA
| | - Jacob B Rowe
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, RMSB 6078A, Miami, FL 33136, USA
| | - Nicholas J Kapolka
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, RMSB 6078A, Miami, FL 33136, USA
| | - Daniel G Isom
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, RMSB 6078A, Miami, FL 33136, USA; University of Miami Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA; University of Miami Institute for Data Science and Computing, Miami, FL 33136, USA.
| |
Collapse
|
5
|
Tadi S, Misra SK, Sharp JS. Inline Liquid Chromatography-Fast Photochemical Oxidation of Proteins for Targeted Structural Analysis of Conformationally Heterogeneous Mixtures. Anal Chem 2021; 93:3510-3516. [PMID: 33560821 DOI: 10.1021/acs.analchem.0c04872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Structural analysis of proteins in a conformationally heterogeneous mixture has long been a difficult problem in structural biology. In structural analysis by covalent labeling mass spectrometry, conformational heterogeneity results in data reflecting a weighted average of all conformers, complicating data analysis and potentially causing misinterpretation of results. Here, we describe a method coupling size-exclusion chromatography (SEC) with hydroxyl radical protein footprinting using inline fast photochemical oxidation of proteins (FPOP). Using a controlled synthetic mixture of holomyoglobin and apomyoglobin, we validate that we can achieve accurate footprints of each conformer using LC-FPOP when compared to offline FPOP of each pure conformer. We then applied LC-FPOP to analyze the adalimumab heat-shock aggregation process. We found that the LC-FPOP footprint of unaggregated adalimumab was consistent with a previously published footprint of the native IgG. The LC-FPOP footprint of the aggregation product indicated that heat-shock aggregation primarily protected the hinge region, suggesting that this region is involved with the heat-shock aggregation process of this molecule. LC-FPOP offers a new method to probe dynamic conformationally heterogeneous mixtures that can be separated by SEC such as biopharmaceutical aggregates and to obtain accurate information on the topography of each conformer.
Collapse
Affiliation(s)
| | | | - Joshua S Sharp
- GenNext Technologies, Inc., Half Moon Bay, California 94037, United States
| |
Collapse
|
6
|
Liu XR, Zhang MM, Gross ML. Mass Spectrometry-Based Protein Footprinting for Higher-Order Structure Analysis: Fundamentals and Applications. Chem Rev 2020; 120:4355-4454. [PMID: 32319757 PMCID: PMC7531764 DOI: 10.1021/acs.chemrev.9b00815] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Proteins adopt different higher-order structures (HOS) to enable their unique biological functions. Understanding the complexities of protein higher-order structures and dynamics requires integrated approaches, where mass spectrometry (MS) is now positioned to play a key role. One of those approaches is protein footprinting. Although the initial demonstration of footprinting was for the HOS determination of protein/nucleic acid binding, the concept was later adapted to MS-based protein HOS analysis, through which different covalent labeling approaches "mark" the solvent accessible surface area (SASA) of proteins to reflect protein HOS. Hydrogen-deuterium exchange (HDX), where deuterium in D2O replaces hydrogen of the backbone amides, is the most common example of footprinting. Its advantage is that the footprint reflects SASA and hydrogen bonding, whereas one drawback is the labeling is reversible. Another example of footprinting is slow irreversible labeling of functional groups on amino acid side chains by targeted reagents with high specificity, probing structural changes at selected sites. A third footprinting approach is by reactions with fast, irreversible labeling species that are highly reactive and footprint broadly several amino acid residue side chains on the time scale of submilliseconds. All of these covalent labeling approaches combine to constitute a problem-solving toolbox that enables mass spectrometry as a valuable tool for HOS elucidation. As there has been a growing need for MS-based protein footprinting in both academia and industry owing to its high throughput capability, prompt availability, and high spatial resolution, we present a summary of the history, descriptions, principles, mechanisms, and applications of these covalent labeling approaches. Moreover, their applications are highlighted according to the biological questions they can answer. This review is intended as a tutorial for MS-based protein HOS elucidation and as a reference for investigators seeking a MS-based tool to address structural questions in protein science.
Collapse
Affiliation(s)
| | | | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA, 63130
| |
Collapse
|
7
|
Marinko J, Huang H, Penn WD, Capra JA, Schlebach JP, Sanders CR. Folding and Misfolding of Human Membrane Proteins in Health and Disease: From Single Molecules to Cellular Proteostasis. Chem Rev 2019; 119:5537-5606. [PMID: 30608666 PMCID: PMC6506414 DOI: 10.1021/acs.chemrev.8b00532] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Indexed: 12/13/2022]
Abstract
Advances over the past 25 years have revealed much about how the structural properties of membranes and associated proteins are linked to the thermodynamics and kinetics of membrane protein (MP) folding. At the same time biochemical progress has outlined how cellular proteostasis networks mediate MP folding and manage misfolding in the cell. When combined with results from genomic sequencing, these studies have established paradigms for how MP folding and misfolding are linked to the molecular etiologies of a variety of diseases. This emerging framework has paved the way for the development of a new class of small molecule "pharmacological chaperones" that bind to and stabilize misfolded MP variants, some of which are now in clinical use. In this review, we comprehensively outline current perspectives on the folding and misfolding of integral MPs as well as the mechanisms of cellular MP quality control. Based on these perspectives, we highlight new opportunities for innovations that bridge our molecular understanding of the energetics of MP folding with the nuanced complexity of biological systems. Given the many linkages between MP misfolding and human disease, we also examine some of the exciting opportunities to leverage these advances to address emerging challenges in the development of therapeutics and precision medicine.
Collapse
Affiliation(s)
- Justin
T. Marinko
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Hui Huang
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Wesley D. Penn
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - John A. Capra
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
- Department
of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37245, United States
| | - Jonathan P. Schlebach
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Charles R. Sanders
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
| |
Collapse
|
8
|
Morton SA, Gupta S, Petzold CJ, Ralston CY. Recent Advances in X-Ray Hydroxyl Radical Footprinting at the Advanced Light Source Synchrotron. Protein Pept Lett 2018; 26:70-75. [PMID: 30484401 DOI: 10.2174/0929866526666181128125725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/30/2018] [Accepted: 11/06/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Synchrotron hydroxyl radical footprinting is a relatively new structural method used to investigate structural features and conformational changes of nucleic acids and proteins in the solution state. It was originally developed at the National Synchrotron Light Source at Brookhaven National Laboratory in the late nineties, and more recently, has been established at the Advanced Light Source at Lawrence Berkeley National Laboratory. The instrumentation for this method is an active area of development, and includes methods to increase dose to the samples while implementing high-throughput sample delivery methods. CONCLUSION Improving instrumentation to irradiate biological samples in real time using a sample droplet generator and inline fluorescence monitoring to rapidly determine dose response curves for samples will significantly increase the range of biological problems that can be investigated using synchrotron hydroxyl radical footprinting.
Collapse
Affiliation(s)
- Simon A Morton
- Advanced Light Source Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Sayan Gupta
- Advanced Light Source Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Christopher J Petzold
- Advanced Light Source Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.,Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Corie Y Ralston
- Molecular Biology and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
9
|
Membrane properties that shape the evolution of membrane enzymes. Curr Opin Struct Biol 2018; 51:80-91. [PMID: 29597094 DOI: 10.1016/j.sbi.2018.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 02/07/2023]
Abstract
Spectacular recent progress in structural biology has led to determination of the structures of many integral membrane enzymes that catalyze reactions in which at least one substrate also is membrane bound. A pattern of results seems to be emerging in which the active site chemistry of these enzymes is usually found to be analogous to what is observed for water soluble enzymes catalyzing the same reaction types. However, in light of the chemical, structural, and physical complexity of cellular membranes plus the presence of transmembrane gradients and potentials, these enzymes may be subject to membrane-specific regulatory mechanisms that are only now beginning to be uncovered. We review the membrane-specific environmental traits that shape the evolution of membrane-embedded biocatalysts.
Collapse
|
10
|
Lai JK, Ambia J, Wang Y, Barth P. Enhancing Structure Prediction and Design of Soluble and Membrane Proteins with Explicit Solvent-Protein Interactions. Structure 2017; 25:1758-1770.e8. [PMID: 28966016 PMCID: PMC5909693 DOI: 10.1016/j.str.2017.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/25/2017] [Accepted: 09/01/2017] [Indexed: 11/29/2022]
Abstract
Solvent molecules interact intimately with proteins and can profoundly regulate their structure and function. However, accurately and efficiently modeling protein solvation effects at the molecular level has been challenging. Here, we present a method that improves the atomic-level modeling of soluble and membrane protein structures and binding by efficiently predicting de novo protein-solvent molecule interactions. The method predicted with unprecedented accuracy buried water molecule positions, solvated protein conformations, and challenging mutational effects on protein binding. When applied to homology modeling, solvent-bound membrane protein structures, pockets, and cavities were recapitulated with near-atomic precision even from distant homologs. Blindly refined atomic-level structures of evolutionary distant G protein-coupled receptors imply strikingly different functional roles of buried solvent between receptor classes. The method should prove useful for refining low-resolution protein structures, accurately modeling drug-binding sites in structurally uncharacterized receptors, and designing solvent-mediated protein catalysis, recognition, ligand binding, and membrane protein signaling.
Collapse
Affiliation(s)
- Jason K Lai
- Department of Pharmacology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Joaquin Ambia
- Department of Pharmacology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yumeng Wang
- Structural and Computational Biology and Molecular Biophysics Graduate Program, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Patrick Barth
- Department of Pharmacology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Structural and Computational Biology and Molecular Biophysics Graduate Program, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
11
|
Spyrakis F, Ahmed MH, Bayden AS, Cozzini P, Mozzarelli A, Kellogg GE. The Roles of Water in the Protein Matrix: A Largely Untapped Resource for Drug Discovery. J Med Chem 2017; 60:6781-6827. [PMID: 28475332 DOI: 10.1021/acs.jmedchem.7b00057] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The value of thoroughly understanding the thermodynamics specific to a drug discovery/design study is well known. Over the past decade, the crucial roles of water molecules in protein structure, function, and dynamics have also become increasingly appreciated. This Perspective explores water in the biological environment by adopting its point of view in such phenomena. The prevailing thermodynamic models of the past, where water was seen largely in terms of an entropic gain after its displacement by a ligand, are now known to be much too simplistic. We adopt a set of terminology that describes water molecules as being "hot" and "cold", which we have defined as being easy and difficult to displace, respectively. The basis of these designations, which involve both enthalpic and entropic water contributions, are explored in several classes of biomolecules and structural motifs. The hallmarks for characterizing water molecules are examined, and computational tools for evaluating water-centric thermodynamics are reviewed. This Perspective's summary features guidelines for exploiting water molecules in drug discovery.
Collapse
Affiliation(s)
- Francesca Spyrakis
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino , Via Pietro Giuria 9, 10125 Torino, Italy
| | - Mostafa H Ahmed
- Department of Medicinal Chemistry & Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University , Richmond, Virginia 23298-0540, United States
| | - Alexander S Bayden
- CMD Bioscience , 5 Science Park, New Haven, Connecticut 06511, United States
| | - Pietro Cozzini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Laboratorio di Modellistica Molecolare, Università degli Studi di Parma , Parco Area delle Scienze 59/A, 43121 Parma, Italy
| | - Andrea Mozzarelli
- Dipartimento di Scienze degli Alimenti e del Farmaco, Laboratorio di Biochimica, Università degli Studi di Parma , Parco Area delle Scienze 23/A, 43121 Parma, Italy.,Istituto di Biofisica, Consiglio Nazionale delle Ricerche , Via Moruzzi 1, 56124 Pisa, Italy
| | - Glen E Kellogg
- Department of Medicinal Chemistry & Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University , Richmond, Virginia 23298-0540, United States
| |
Collapse
|
12
|
Lu Y, Zhang H, Niedzwiedzki DM, Jiang J, Blankenship RE, Gross ML. Fast Photochemical Oxidation of Proteins Maps the Topology of Intrinsic Membrane Proteins: Light-Harvesting Complex 2 in a Nanodisc. Anal Chem 2016; 88:8827-34. [PMID: 27500903 PMCID: PMC5201186 DOI: 10.1021/acs.analchem.6b01945] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although membrane proteins are crucial participants in photosynthesis and other biological processes, many lack high-resolution structures. Prior to achieving a high-resolution structure, we are investigating whether MS-based footprinting can provide coarse-grained protein structure by following structural changes that occur upon ligand binding, pH change, and membrane binding. Our platform probes topology and conformation of membrane proteins by combining MS-based footprinting, specifically fast photochemical oxidation of proteins (FPOP), and lipid Nanodiscs, which are more similar to the native membrane environment than are the widely used detergent micelles. We describe here results that show a protein's outer membrane regions are more heavily footprinted by OH radicals whereas the regions spanning the lipid bilayer remain inert to the labeling. Nanodiscs generally exhibit more protection of membrane proteins compared to detergent micelles and less shielding to those protein residues that exist outside the membrane. The combination of immobilizing the protein in Nanodiscs and footprinting with FPOP is a feasible approach to map extra-membrane protein surfaces, even at the amino-acid level, and to illuminate intrinsic membrane protein topology.
Collapse
Affiliation(s)
- Yue Lu
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
- Photosynthetic Antenna Research Center, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Hao Zhang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
- Photosynthetic Antenna Research Center, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Dariusz M. Niedzwiedzki
- Photosynthetic Antenna Research Center, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Jing Jiang
- Photosynthetic Antenna Research Center, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Robert E. Blankenship
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
- Photosynthetic Antenna Research Center, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
- Photosynthetic Antenna Research Center, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
13
|
Mummadisetti MP, Frankel LK, Bellamy HD, Sallans L, Goettert JS, Brylinski M, Bricker TM. Use of Protein Cross-Linking and Radiolytic Labeling To Elucidate the Structure of PsbO within Higher-Plant Photosystem II. Biochemistry 2016; 55:3204-13. [PMID: 27203407 DOI: 10.1021/acs.biochem.6b00365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We have used protein cross-linking with the zero-length cross-linker 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide, and radiolytic footprinting coupled with high-resolution tandem mass spectrometry, to examine the structure of higher-plant PsbO when it is bound to Photosystem II. Twenty intramolecular cross-linked residue pairs were identified. On the basis of this cross-linking data, spinach PsbO was modeled using the Thermosynechococcus vulcanus PsbO structure as a template, with the cross-linking distance constraints incorporated using the MODELLER program. Our model of higher-plant PsbO identifies several differences between the spinach and cyanobacterial proteins. The N-terminal region is particularly interesting, as this region has been suggested to be important for oxygen evolution and for the specific binding of PsbO to Photosystem II. Additionally, using radiolytic mapping, we have identified regions on spinach PsbO that are shielded from the bulk solvent. These domains may represent regions on PsbO that interact with other components, as yet unidentified, of the photosystem.
Collapse
Affiliation(s)
- Manjula P Mummadisetti
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| | - Laurie K Frankel
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| | - Henry D Bellamy
- The J. Bennett Johnston, Sr. Center for Advanced Microstructures & Devices, Louisiana State University , Baton Rouge, Louisiana 70806, United States
| | - Larry Sallans
- The Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati , Cincinnati, Ohio 45221, United States
| | - Jost S Goettert
- The J. Bennett Johnston, Sr. Center for Advanced Microstructures & Devices, Louisiana State University , Baton Rouge, Louisiana 70806, United States
| | - Michal Brylinski
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| | - Terry M Bricker
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
14
|
Dynamic Viral Glycoprotein Machines: Approaches for Probing Transient States That Drive Membrane Fusion. Viruses 2016; 8:v8010015. [PMID: 26761026 PMCID: PMC4728575 DOI: 10.3390/v8010015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/11/2015] [Accepted: 12/31/2015] [Indexed: 01/10/2023] Open
Abstract
The fusion glycoproteins that decorate the surface of enveloped viruses undergo dramatic conformational changes in the course of engaging with target cells through receptor interactions and during cell entry. These refolding events ultimately drive the fusion of viral and cellular membranes leading to delivery of the genetic cargo. While well-established methods for structure determination such as X-ray crystallography have provided detailed structures of fusion proteins in the pre- and post-fusion fusion states, to understand mechanistically how these fusion glycoproteins perform their structural calisthenics and drive membrane fusion requires new analytical approaches that enable dynamic intermediate states to be probed. Methods including structural mass spectrometry, small-angle X-ray scattering, and electron microscopy have begun to provide new insight into pathways of conformational change and fusion protein function. In combination, the approaches provide a significantly richer portrait of viral fusion glycoprotein structural variation and fusion activation as well as inhibition by neutralizing agents. Here recent studies that highlight the utility of these complementary approaches will be reviewed with a focus on the well-characterized influenza virus hemagglutinin fusion glycoprotein system.
Collapse
|
15
|
Wang L, Chance MR. Detection of structural waters and their role in structural dynamics of rhodopsin activation. Methods Mol Biol 2015; 1271:97-111. [PMID: 25697519 DOI: 10.1007/978-1-4939-2330-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Conserved structural waters trapped within GPCRs may form water networks indispensable for GPCR's signaling functions. Radiolysis-based hydroxyl radical footprinting (HRF) strategies coupled to mass spectrometry have been used to explore the structural waters within rhodopsin in multiple signaling states. These approaches, combined with (18)O labeling, can be used to identify the locations of structural waters in the transmembrane region and measure rates of water exchange with bulk solvent. Reorganizations of structural waters upon activation of signaling can be explicitly observed with this approach, and this provides a unique look at the structural modules driving the signaling process.
Collapse
Affiliation(s)
- Liwen Wang
- Case center for Proteomics & Bioinformatics, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | | |
Collapse
|
16
|
Mummadisetti MP, Frankel LK, Bellamy HD, Sallans L, Goettert JS, Brylinski M, Limbach PA, Bricker TM. Use of protein cross-linking and radiolytic footprinting to elucidate PsbP and PsbQ interactions within higher plant Photosystem II. Proc Natl Acad Sci U S A 2014; 111:16178-83. [PMID: 25349426 PMCID: PMC4234589 DOI: 10.1073/pnas.1415165111] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein cross-linking and radiolytic footprinting coupled with high-resolution mass spectrometry were used to examine the structure of PsbP and PsbQ when they are bound to Photosystem II. In its bound state, the N-terminal 15-amino-acid residue domain of PsbP, which is unresolved in current crystal structures, interacts with domains in the C terminus of the protein. These interactions may serve to stabilize the structure of the N terminus and may facilitate PsbP binding and function. These interactions place strong structural constraints on the organization of PsbP when associated with the Photosystem II complex. Additionally, amino acid residues in the structurally unresolved loop 3A domain of PsbP ((90)K-(107)V), (93)Y and (96)K, are in close proximity (≤ 11.4 Å) to the N-terminal (1)E residue of PsbQ. These findings are the first, to our knowledge, to identify a putative region of interaction between these two components. Cross-linked domains within PsbQ were also identified, indicating that two PsbQ molecules can interact in higher plants in a manner similar to that observed by Liu et al. [(2014) Proc Natl Acad Sci 111(12):4638-4643] in cyanobacterial Photosystem II. This interaction is consistent with either intra-Photosystem II dimer or inter-Photosystem II dimer models in higher plants. Finally, OH(•) produced by synchrotron radiolysis of water was used to oxidatively modify surface residues on PsbP and PsbQ. Domains on the surface of both protein subunits were resistant to modification, indicating that they were shielded from water and appear to define buried regions that are in contact with other Photosystem II components.
Collapse
Affiliation(s)
- Manjula P Mummadisetti
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, Louisiana State University, Baton Rouge, LA 70803
| | - Laurie K Frankel
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, Louisiana State University, Baton Rouge, LA 70803
| | - Henry D Bellamy
- The J. Bennett Johnston, Sr. Center for Advanced Microstructures & Devices, and
| | - Larry Sallans
- The Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221
| | - Jost S Goettert
- The J. Bennett Johnston, Sr. Center for Advanced Microstructures & Devices, and
| | - Michal Brylinski
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, Louisiana State University, Baton Rouge, LA 70803; Center for Computation & Technology, Louisiana State University, Baton Rouge, LA 70806; and
| | - Patrick A Limbach
- The Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221
| | - Terry M Bricker
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, Louisiana State University, Baton Rouge, LA 70803;
| |
Collapse
|
17
|
Konermann L, Pan Y. Exploring membrane protein structural features by oxidative labeling and mass spectrometry. Expert Rev Proteomics 2014. [DOI: 10.1586/epr.12.42] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
18
|
Affiliation(s)
| | | | - Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Case
Western Reserve University, 2109 Adelbert Road, Cleveland, Ohio 44106-4965,
United States
| |
Collapse
|
19
|
Moreira IS. Structural features of the G-protein/GPCR interactions. Biochim Biophys Acta Gen Subj 2013; 1840:16-33. [PMID: 24016604 DOI: 10.1016/j.bbagen.2013.08.027] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 01/07/2023]
Abstract
BACKGROUND The details of the functional interaction between G proteins and the G protein coupled receptors (GPCRs) have long been subjected to extensive investigations with structural and functional assays and a large number of computational studies. SCOPE OF REVIEW The nature and sites of interaction in the G-protein/GPCR complexes, and the specificities of these interactions selecting coupling partners among the large number of families of GPCRs and G protein forms, are still poorly defined. MAJOR CONCLUSIONS Many of the contact sites between the two proteins in specific complexes have been identified, but the three dimensional molecular architecture of a receptor-Gα interface is only known for one pair. Consequently, many fundamental questions regarding this macromolecular assembly and its mechanism remain unanswered. GENERAL SIGNIFICANCE In the context of current structural data we review the structural details of the interfaces and recognition sites in complexes of sub-family A GPCRs with cognate G-proteins, with special emphasis on the consequences of activation on GPCR structure, the prevalence of preassembled GPCR/G-protein complexes, the key structural determinants for selective coupling and the possible involvement of GPCR oligomerization in this process.
Collapse
Affiliation(s)
- Irina S Moreira
- REQUIMTE/Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.
| |
Collapse
|
20
|
Frankel LK, Sallans L, Bellamy H, Goettert JS, Limbach PA, Bricker TM. Radiolytic mapping of solvent-contact surfaces in Photosystem II of higher plants: experimental identification of putative water channels within the photosystem. J Biol Chem 2013; 288:23565-72. [PMID: 23814046 DOI: 10.1074/jbc.m113.487033] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Photosystem II uses water as an enzymatic substrate. It has been hypothesized that this water is vectored to the active site for water oxidation via water channels that lead from the surface of the protein complex to the Mn4O5Ca metal cluster. The radiolysis of water by synchrotron radiation produces amino acid residue-modifying OH(•) and is a powerful technique to identify regions of proteins that are in contact with water. In this study, we have used this technique to oxidatively modify buried amino acid residues in higher plant Photosystem II membranes. Fourier transform ion cyclotron resonance mass spectrometry was then used to identify these oxidized amino acid residues that were located in several core Photosystem II subunits (D1, D2, CP43, and CP47). While, as expected, the majority of the identified oxidized residues (≈75%) are located on the solvent-exposed surface of the complex, a number of buried residues on these proteins were also modified. These residues form groups which appear to lead from the surface of the complex to the Mn4O5Ca cluster. These residues may be in contact with putative water channels in the photosystem. These results are discussed within the context of a number of largely computational studies that have identified putative water channels in Photosystem II.
Collapse
Affiliation(s)
- Laurie K Frankel
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | | | | | | | | | |
Collapse
|
21
|
Phillips JC. Self-organized criticality in proteins: Hydropathic roughening profiles of G-protein-coupled receptors. PHYSICAL REVIEW E 2013; 87:032709. [DOI: 10.1103/physreve.87.032709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
22
|
Padayatti PS, Wang L, Gupta S, Orban T, Sun W, Salom D, Jordan SR, Palczewski K, Chance MR. A hybrid structural approach to analyze ligand binding by the serotonin type 4 receptor (5-HT4). Mol Cell Proteomics 2013; 12:1259-71. [PMID: 23378516 DOI: 10.1074/mcp.m112.025536] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hybrid structural methods have been used in recent years to understand protein-protein or protein-ligand interactions where high resolution crystallography or NMR data on the protein of interest has been limited. For G protein-coupled receptors (GPCRs), high resolution structures of native structural forms other than rhodopsin have not yet been achieved; gaps in our knowledge have been filled by creative crystallography studies that have developed stable forms of receptors by multiple means. The neurotransmitter serotonin (5-hydroxytryptamine) is a key GPCR-based signaling molecule affecting many physiological manifestations in humans ranging from mood and anxiety to bowel function. However, a high resolution structure of any of the serotonin receptors has not yet been solved. Here, we used structural mass spectrometry along with theoretical computations, modeling, and other biochemical methods to develop a structured model for human serotonin receptor subtype 4(b) in the presence and absence of its antagonist GR125487. Our data confirmed the overall structure predicted by the model and revealed a highly conserved motif in the ligand-binding pocket of serotonin receptors as an important participant in ligand binding. In addition, identification of waters in the transmembrane region provided clues as to likely paths mediating intramolecular signaling. Overall, this study reveals the potential of hybrid structural methods, including mass spectrometry, to probe physiological and functional GPCR-ligand interactions with purified native protein.
Collapse
|
23
|
Latek D, Modzelewska A, Trzaskowski B, Palczewski K, Filipek S. G protein-coupled receptors--recent advances. Acta Biochim Pol 2012; 59:515-529. [PMID: 23251911 PMCID: PMC4322417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 12/05/2012] [Accepted: 12/10/2012] [Indexed: 06/01/2023]
Abstract
The years 2000 and 2007 witnessed milestones in current understanding of G protein-coupled receptor (GPCR) structural biology. In 2000 the first GPCR, bovine rhodopsin, was crystallized and the structure was solved, while in 2007 the structure of β(2)-adrenergic receptor, the first GPCR with diffusible ligands, was determined owing to advances in microcrystallization and an insertion of the fast-folding lysozyme into the receptor. In parallel with those crystallographic studies, the biological and biochemical characterization of GPCRs has advanced considerably because those receptors are molecular targets for many of currently used drugs. Therefore, the mechanisms of activation and signal transduction to the cell interior deduced from known GPCRs structures are of the highest importance for drug discovery. These proteins are the most diversified membrane receptors encoded by hundreds of genes in our genome. They participate in processes responsible for vision, smell, taste and neuronal transmission in response to photons or binding of ions, hormones, peptides, chemokines and other factors. Although the GPCRs share a common seven-transmembrane α-helical bundle structure their binding sites can accommodate thousands of different ligands. The ligands, including agonists, antagonists or inverse agonists change the structure of the receptor. With bound agonists they can form a complex with a suitable G protein, be phosphorylated by kinases or bind arrestin. The discovered signaling cascades invoked by arrestin independently of G proteins makes the GPCR activating scheme more complex such that a ligand acting as an antagonist for G protein signaling can also act as an agonist in arrestin-dependent signaling. Additionally, the existence of multiple ligand-dependent partial activation states as well as dimerization of GPCRs result in a 'microprocessor-like' action of these receptors rather than an 'on-off' switch as was commonly believed only a decade ago.
Collapse
Affiliation(s)
- Dorota Latek
- Biomodeling Laboratory, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Anna Modzelewska
- Biomodeling Laboratory, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Bartosz Trzaskowski
- Biomodeling Laboratory, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio USA
| | - Sławomir Filipek
- Biomodeling Laboratory, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| |
Collapse
|
24
|
Wang CIA, Lewis RJ. Emerging opportunities for allosteric modulation of G-protein coupled receptors. Biochem Pharmacol 2012; 85:153-62. [PMID: 22975406 DOI: 10.1016/j.bcp.2012.09.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 09/03/2012] [Accepted: 09/04/2012] [Indexed: 12/23/2022]
Abstract
Their ubiquitous nature, wide cellular distribution and versatile molecular recognition and signalling help make G-protein binding receptors (GPCRs) the most important class of membrane proteins in clinical medicine, accounting for ∼40% of all current therapeutics. A large percentage of current drugs target the endogenous ligand binding (orthosteric) site, which are structurally and evolutionarily conserved, particularly among members of the same GPCR subfamily. With the recent advances in GPCR X-ray crystallography, new opportunities for developing novel subtype selective drugs have emerged. Given the increasing recognition that the extracellular surface conformation changes in response to ligand binding, it is likely that all GPCRs possess an allosteric site(s) capable of regulating GPCR signalling. Allosteric sites are less structurally conserved than their corresponding orthosteric site and thus provide new opportunities for the development of more selective drugs. Constitutive oligomerisation (dimerisation) identified in many of the GPCRs investigated, adds another dimension to the structural and functional complexity of GPCRs. In this review, we compare 60 crystal structures of nine GPCR subtypes (rhodopsin, ß₂-AR, ß₁-AR, A(2a)-AR, CXCR4, D₃R, H₁R, M₂R, M₃R) across four subfamilies of Class A GPCRs, and discuss mechanisms involved in receptor activation and potential allosteric binding sites across the highly variable extracellular surface of these GPCRs. This analysis has identified a new extracellular salt bridge (ESB-2) that might be exploited in the design of allosteric modulators.
Collapse
Affiliation(s)
- Ching-I Anderson Wang
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072 Australia
| | | |
Collapse
|
25
|
Conformational dynamics of activation for the pentameric complex of dimeric G protein-coupled receptor and heterotrimeric G protein. Structure 2012; 20:826-40. [PMID: 22579250 DOI: 10.1016/j.str.2012.03.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Revised: 03/05/2012] [Accepted: 03/05/2012] [Indexed: 01/08/2023]
Abstract
Photoactivation of rhodopsin (Rho), a G protein-coupled receptor, causes conformational changes that provide a specific binding site for the rod G protein, G(t). In this work we employed structural mass spectrometry techniques to elucidate the structural changes accompanying transition of ground state Rho to photoactivated Rho (Rho(∗)) and in the pentameric complex between dimeric Rho(∗) and heterotrimeric G(t). Observed differences in hydroxyl radical labeling and deuterium uptake between Rho(∗) and the (Rho(∗))(2)-G(t) complex suggest that photoactivation causes structural relaxation of Rho following its initial tightening upon G(t) coupling. In contrast, nucleotide-free G(t) in the complex is significantly more accessible to deuterium uptake allowing it to accept GTP and mediating complex dissociation. Thus, we provide direct evidence that in the critical step of signal amplification, Rho(∗) and G(t) exhibit dissimilar conformational changes when they are coupled in the (Rho(∗))(2)-G(t) complex.
Collapse
|
26
|
Structure and dynamics of protein waters revealed by radiolysis and mass spectrometry. Proc Natl Acad Sci U S A 2012; 109:14882-7. [PMID: 22927377 DOI: 10.1073/pnas.1209060109] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Water is critical for the structure, stability, and functions of macromolecules. Diffraction and NMR studies have revealed structure and dynamics of bound waters at atomic resolution. However, localizing the sites and measuring the dynamics of bound waters, particularly on timescales relevant to catalysis and macromolecular assembly, is quite challenging. Here we demonstrate two techniques: first, temperature-dependent radiolytic hydroxyl radical labeling with a mass spectrometry (MS)-based readout to identify sites of bulk and bound water interactions with surface and internal residue side chains, and second, H(2)(18)O radiolytic exchange coupled MS to measure the millisecond dynamics of bound water interactions with various internal residue side chains. Through an application of the methods to cytochrome c and ubiquitin, we identify sites of water binding and measure the millisecond dynamics of bound waters in protein crevices. As these MS-based techniques are very sensitive and not protein size limited, they promise to provide unique insights into protein-water interactions and water dynamics for both small and large proteins and their complexes.
Collapse
|
27
|
Salon JA, Lodowski DT, Palczewski K. The significance of G protein-coupled receptor crystallography for drug discovery. Pharmacol Rev 2012; 63:901-37. [PMID: 21969326 DOI: 10.1124/pr.110.003350] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Crucial as molecular sensors for many vital physiological processes, seven-transmembrane domain G protein-coupled receptors (GPCRs) comprise the largest family of proteins targeted by drug discovery. Together with structures of the prototypical GPCR rhodopsin, solved structures of other liganded GPCRs promise to provide insights into the structural basis of the superfamily's biochemical functions and assist in the development of new therapeutic modalities and drugs. One of the greatest technical and theoretical challenges to elucidating and exploiting structure-function relationships in these systems is the emerging concept of GPCR conformational flexibility and its cause-effect relationship for receptor-receptor and receptor-effector interactions. Such conformational changes can be subtle and triggered by relatively small binding energy effects, leading to full or partial efficacy in the activation or inactivation of the receptor system at large. Pharmacological dogma generally dictates that these changes manifest themselves through kinetic modulation of the receptor's G protein partners. Atomic resolution information derived from increasingly available receptor structures provides an entrée to the understanding of these events and practically applying it to drug design. Supported by structure-activity relationship information arising from empirical screening, a unified structural model of GPCR activation/inactivation promises to both accelerate drug discovery in this field and improve our fundamental understanding of structure-based drug design in general. This review discusses fundamental problems that persist in drug design and GPCR structural determination.
Collapse
Affiliation(s)
- John A Salon
- Department of Molecular Structure, Amgen Incorporated, Thousand Oaks, California, USA
| | | | | |
Collapse
|
28
|
Pan Y, Ruan X, Valvano MA, Konermann L. Validation of membrane protein topology models by oxidative labeling and mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:889-898. [PMID: 22410873 DOI: 10.1007/s13361-012-0342-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 01/12/2012] [Accepted: 01/17/2012] [Indexed: 05/31/2023]
Abstract
Computer-assisted topology predictions are widely used to build low-resolution structural models of integral membrane proteins (IMPs). Experimental validation of these models by traditional methods is labor intensive and requires modifications that might alter the IMP native conformation. This work employs oxidative labeling coupled with mass spectrometry (MS) as a validation tool for computer-generated topology models. ·OH exposure introduces oxidative modifications in solvent-accessible regions, whereas buried segments (e.g., transmembrane helices) are non-oxidizable. The Escherichia coli protein WaaL (O-antigen ligase) is predicted to have 12 transmembrane helices and a large extramembrane domain (Pérez et al., Mol. Microbiol. 2008, 70, 1424). Tryptic digestion and LC-MS/MS were used to map the oxidative labeling behavior of WaaL. Met and Cys exhibit high intrinsic reactivities with ·OH, making them sensitive probes for solvent accessibility assays. Overall, the oxidation pattern of these residues is consistent with the originally proposed WaaL topology. One residue (M151), however, undergoes partial oxidation despite being predicted to reside within a transmembrane helix. Using an improved computer algorithm, a slightly modified topology model was generated that places M151 closer to the membrane interface. On the basis of the labeling data, it is concluded that the refined model more accurately reflects the actual topology of WaaL. We propose that the combination of oxidative labeling and MS represents a useful strategy for assessing the accuracy of IMP topology predictions, supplementing data obtained in traditional biochemical assays. In the future, it might be possible to incorporate oxidative labeling data directly as constraints in topology prediction algorithms.
Collapse
Affiliation(s)
- Yan Pan
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | | | | | | |
Collapse
|
29
|
Abstract
Visual perception in humans occurs through absorption of electromagnetic radiation from 400 to 780 nm by photoreceptors in the retina. A photon of visible light carries a sufficient amount of energy to cause, when absorbed, a cis,trans-geometric isomerization of the 11-cis-retinal chromophore, a vitamin A derivative bound to rhodopsin and cone opsins of retinal photoreceptors. The unique biochemistry of these complexes allows us to reliably and reproducibly collect continuous visual information about our environment. Moreover, other nonconventional retinal opsins such as the circadian rhythm regulator melanopsin also initiate light-activated signaling based on similar photochemistry.
Collapse
Affiliation(s)
- Krzysztof Palczewski
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| |
Collapse
|
30
|
Liu J, Liu MY, Fu L, Zhu GA, Yan ECY. Chemical kinetic analysis of thermal decay of rhodopsin reveals unusual energetics of thermal isomerization and hydrolysis of Schiff base. J Biol Chem 2011; 286:38408-38416. [PMID: 21921035 PMCID: PMC3207414 DOI: 10.1074/jbc.m111.280602] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 09/07/2011] [Indexed: 11/06/2022] Open
Abstract
The thermal properties of rhodopsin, which set the threshold of our vision, have long been investigated, but the chemical kinetics of the thermal decay of rhodopsin has not been revealed in detail. To understand thermal decay quantitatively, we propose a kinetic model consisting of two pathways: 1) thermal isomerization of 11-cis-retinal followed by hydrolysis of Schiff base (SB) and 2) hydrolysis of SB in dark state rhodopsin followed by opsin-catalyzed isomerization of free 11-cis-retinal. We solve the kinetic model mathematically and use it to analyze kinetic data from four experiments that we designed to assay thermal decay, isomerization, hydrolysis of SB using dark state rhodopsin, and hydrolysis of SB using photoactivated rhodopsin. We apply the model to WT rhodopsin and E181Q and S186A mutants at 55 °C, as well as WT rhodopsin in H(2)O and D(2)O at 59 °C. The results show that the hydrogen-bonding network strongly restrains thermal isomerization but is less important in opsin and activated rhodopsin. Furthermore, the ability to obtain individual rate constants allows comparison of thermal processes under various conditions. Our kinetic model and experiments reveal two unusual energetic properties: the steep temperature dependence of the rates of thermal isomerization and SB hydrolysis in the dark state and a strong deuterium isotope effect on dark state SB hydrolysis. These findings can be applied to study pathogenic rhodopsin mutants and other visual pigments.
Collapse
Affiliation(s)
- Jian Liu
- Department of Chemistry, Yale University, New Haven, Connecticut 06520
| | - Monica Yun Liu
- Department of Chemistry, Yale University, New Haven, Connecticut 06520
| | - Li Fu
- Department of Chemistry, Yale University, New Haven, Connecticut 06520
| | - Gefei Alex Zhu
- Department of Chemistry, Yale University, New Haven, Connecticut 06520
| | - Elsa C Y Yan
- Department of Chemistry, Yale University, New Haven, Connecticut 06520.
| |
Collapse
|
31
|
Barrera NP, Robinson CV. Advances in the mass spectrometry of membrane proteins: from individual proteins to intact complexes. Annu Rev Biochem 2011; 80:247-71. [PMID: 21548785 DOI: 10.1146/annurev-biochem-062309-093307] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Rapid advances in structural genomics and in large-scale proteomic projects have yielded vast amounts of data on soluble proteins and their complexes. Despite these advances, progress in studying membrane proteins using mass spectrometry (MS) has been slow. This is due in part to the inherent solubility and dynamic properties of these proteins, but also to their low abundance and the absence of polar side chains in amino acid residues. Considerable progress in overcoming these challenges is, however, now being made for all levels of structural characterization. This progress includes MS studies of the primary structure of membrane proteins, wherein sophisticated enrichment and trapping procedures are allowing multiple posttranslational modifications to be defined through to the secondary structure level in which proteins and peptides have been probed using hydrogen exchange, covalent, or radiolytic labeling methods. Exciting possibilities now exist to go beyond primary and secondary structure to reveal the tertiary and quaternary interactions of soluble and membrane subunits within intact assemblies of more than 700 kDa.
Collapse
Affiliation(s)
- Nelson P Barrera
- Department of Physiology, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile.
| | | |
Collapse
|
32
|
Liu J, Liu MY, Nguyen JB, Bhagat A, Mooney V, Yan ECY. Thermal properties of rhodopsin: insight into the molecular mechanism of dim-light vision. J Biol Chem 2011; 286:27622-9. [PMID: 21659526 PMCID: PMC3149353 DOI: 10.1074/jbc.m111.233312] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 05/23/2011] [Indexed: 11/06/2022] Open
Abstract
Rhodopsin has developed mechanisms to optimize its sensitivity to light by suppressing dark noise and enhancing quantum yield. We propose that an intramolecular hydrogen-bonding network formed by ∼20 water molecules, the hydrophilic residues, and peptide backbones in the transmembrane region is essential to restrain thermal isomerization, the source of dark noise. We studied the thermal stability of rhodopsin at 55 °C with single point mutations (E181Q and S186A) that perturb the hydrogen-bonding network at the active site. We found that the rate of thermal isomerization increased by 1-2 orders of magnitude in the mutants. Our results illustrate the importance of the intact hydrogen-bonding network for dim-light detection, revealing the functional roles of water molecules in rhodopsin. We also show that thermal isomerization of 11-cis-retinal in solution can be catalyzed by wild-type opsin and that this catalytic property is not affected by the mutations. We characterize the catalytic effect and propose that it is due to steric interactions in the retinal-binding site and increases quantum yield by predetermining the trajectory of photoisomerization. Thus, our studies reveal a balancing act between dark noise and quantum yield, which have opposite effects on the thermal isomerization rate. The acquisition of the hydrogen-bonding network and the tuning of the steric interactions at the retinal-binding site are two important factors in the development of dim-light vision.
Collapse
Affiliation(s)
- Jian Liu
- From the Department of Chemistry, Yale University, New Haven, Connecticut 06520
| | - Monica Yun Liu
- From the Department of Chemistry, Yale University, New Haven, Connecticut 06520
| | - Jennifer B. Nguyen
- From the Department of Chemistry, Yale University, New Haven, Connecticut 06520
| | - Aditi Bhagat
- From the Department of Chemistry, Yale University, New Haven, Connecticut 06520
| | - Victoria Mooney
- From the Department of Chemistry, Yale University, New Haven, Connecticut 06520
| | - Elsa C. Y. Yan
- From the Department of Chemistry, Yale University, New Haven, Connecticut 06520
| |
Collapse
|
33
|
Grossfield A. Recent progress in the study of G protein-coupled receptors with molecular dynamics computer simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:1868-78. [DOI: 10.1016/j.bbamem.2011.03.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 02/23/2011] [Accepted: 03/21/2011] [Indexed: 01/28/2023]
|
34
|
Konermann L, Pan Y, Stocks BB. Protein folding mechanisms studied by pulsed oxidative labeling and mass spectrometry. Curr Opin Struct Biol 2011; 21:634-40. [PMID: 21703846 DOI: 10.1016/j.sbi.2011.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 05/21/2011] [Accepted: 05/26/2011] [Indexed: 12/14/2022]
Abstract
Deciphering the mechanisms of protein folding remains a considerable challenge. In this review we discuss the application of pulsed oxidative labeling for tracking protein structural changes in a time-resolved fashion. Exposure to a microsecond OH pulse at selected time points during folding induces the oxidation of solvent-accessible side chains, whereas buried residues are protected. Oxidative modifications can be detected by mass spectrometry. Folding is associated with dramatic accessibility changes, and therefore this method can provide detailed mechanistic insights. Solvent accessibility patterns are complementary to H/D exchange investigations, which report on the extent of hydrogen bonding. This review highlights the application of pulsed OH labeling to soluble proteins as well as membrane proteins.
Collapse
Affiliation(s)
- Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B7, Canada.
| | | | | |
Collapse
|
35
|
Shim J, Coop A, MacKerell AD. Consensus 3D model of μ-opioid receptor ligand efficacy based on a quantitative Conformationally Sampled Pharmacophore. J Phys Chem B 2011; 115:7487-96. [PMID: 21563754 PMCID: PMC3113728 DOI: 10.1021/jp202542g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Despite being studied for over 30 years, a consensus structure-activity relationship (SAR) that encompasses the full range peptidic and nonpeptidic μ-opioid receptor ligands is still not available. To achieve a consensus SAR the Conformationally Sampled Pharmacophore (CSP) method was applied to develop a predictive model of the efficacy of μ-opioid receptor ligands. Emphasis was placed on predicting the efficacy of a wide range of agonists, partial agonists, and antagonists as well as understanding their mode of interaction with the receptor. Inclusion of all accessible conformations of each ligand, a central feature of the CSP method, enabled structural features between diverse μ-opioid receptor ligands that dictate efficacy to be identified. The models were validated against a diverse collection of peptidic and nonpeptidic ligands, including benzomorphans, fentanyl (4-anilinopiperidine), methadone (3,3-diphenylpropylamines), etonitazene (benzimidazole derivatives), funaltrexamine (C6-substituted 4,5-epoxymorphinan), and herkinorin. The model predicts (1) that interactions of ligands with the B site, as with the 19-alkyl substituents of oripavines, modulate the extent of agonism; (2) that agonists with long N-substituents, as with fentanyl and N-phenethylnormorphine, can bind in an orientation such that the N substitutent interacts with the B site that also allows the basic N-receptor Asp interaction essential for agonism; and (3) that the μ agonist herkinorin, that lacks a basic nitrogen, binds to the receptor in a manner similar to the traditional opioids via interactions mediated by water or a ion. Importantly, the proposed CSP model can be reconciled with previously published SAR models for the μ receptor.
Collapse
Affiliation(s)
- Jihyun Shim
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| | | | | |
Collapse
|
36
|
Kinetic folding mechanism of an integral membrane protein examined by pulsed oxidative labeling and mass spectrometry. J Mol Biol 2011; 410:146-58. [PMID: 21570983 DOI: 10.1016/j.jmb.2011.04.074] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 04/26/2011] [Accepted: 04/29/2011] [Indexed: 11/21/2022]
Abstract
We report the application of pulsed oxidative labeling for deciphering the folding mechanism of a membrane protein. SDS-denatured bacteriorhodopsin (BR) was refolded by mixing with bicelles in the presence of free retinal. At various time points (20 ms to 1 day), the protein was exposed to a microsecond ·OH pulse that induces oxidative modifications at solvent-accessible methionine side chains. The extent of labeling was determined by mass spectrometry. These measurements were complemented by stopped-flow spectroscopy. Major time-dependent changes in solvent accessibility were detected for M20 (helix A) and M118 (helix D). Our kinetic data indicate a sequential folding mechanism, consistent with models previously suggested by others on the basis of optical data. Yet, ·OH labeling provides additional structural insights. An initial folding intermediate I(1) gets populated within 20 ms, concomitantly with formation of helix A. Subsequent structural consolidation leads to a transient species I(2). Noncovalent retinal binding to I(2) induces folding of helix D, thereby generating an intermediate I(R). In the absence of retinal, the latter transition does not take place. Hence, formation of helix D depends on retinal binding, whereas this is not the case for helix A. As the cofactor settles deeper into its binding pocket, a final transient species I(R) is generated. This intermediate converts into native BR within minutes by formation of the retinal-K216 Schiff base linkage. The combination of pulsed covalent labeling and optical spectroscopy employed here should also be suitable for exploring the folding mechanisms of other membrane proteins.
Collapse
|
37
|
Multiscale computational methods for mapping conformational ensembles of G-protein-coupled receptors. COMPUTATIONAL CHEMISTRY METHODS IN STRUCTURAL BIOLOGY 2011; 85:253-80. [DOI: 10.1016/b978-0-12-386485-7.00007-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
38
|
Pan Y, Brown L, Konermann L. Site-directed mutagenesis combined with oxidative methionine labeling for probing structural transitions of a membrane protein by mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:1947-1956. [PMID: 20829064 DOI: 10.1016/j.jasms.2010.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 08/06/2010] [Accepted: 08/09/2010] [Indexed: 05/29/2023]
Abstract
Exposure of the membrane protein bacteriorhodopsin (BR) to SDS induces partial breakdown of the native conformation. The exact structural properties of this SDS state remain a matter of debate, despite its widespread use in BR folding experiments. The current work employs hydroxyl radical (·OH) labeling in conjunction with mass spectrometry (MS)-based peptide mapping for probing the solvent accessibility of individual BR segments in the presence of SDS. Previous work revealed methionine sulfoxide formation to be the dominant oxidative pathway. Those data suggested extensive unfolding of helices A and D in SDS. Unfortunately, the lack of Met residues in helices C and F implies that no direct information on the behavior of the latter two elements could be obtained. Here, we address this problem by employing two variants with additional Met residues, L93M (helix C) and V179M (helix F). The oxidation behavior of the resulting 11 methionines can be grouped into three categories: (1) extensively labeled both in native BR and in SDS (loop residues M32, M68, and M163); (2) protected in the native state but not in SDS (M20, M118); (3) always protected (M56, M60, M93, M145, M179, M209). These data show that a solvent-inaccessible core is retained in SDS. This core consists of partially intact helices B, C, E, F, and G. The termini of these helices are highly dynamic and/or unraveled, particularly on the cytoplasmic side. Overall, this work demonstrates how the use of engineered ·OH labeling sites can provide insights into structural properties of membrane proteins.
Collapse
Affiliation(s)
- Yan Pan
- Department of Chemistry, University of Western Ontario, London, Ontario, Canada
| | | | | |
Collapse
|
39
|
Konermann L, Stocks BB, Czarny T. Laminar Flow Effects During Laser-Induced Oxidative Labeling for Protein Structural Studies by Mass Spectrometry. Anal Chem 2010; 82:6667-74. [DOI: 10.1021/ac101326f] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lars Konermann
- Departments of Chemistry and Biochemistry, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Bradley B. Stocks
- Departments of Chemistry and Biochemistry, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Tomasz Czarny
- Departments of Chemistry and Biochemistry, The University of Western Ontario, London, ON, N6A 5B7, Canada
| |
Collapse
|
40
|
Abstract
Activation of GPCRs (G-protein-coupled receptors) leads to conformational changes that ultimately initiate signal transduction. Activated GPCRs transiently combine with and activate heterotrimeric G-proteins resulting in GTP replacement of GDP on the G-protein alpha subunit. Both the detailed structural changes essential for productive GDP/GTP exchange on the G-protein alpha subunit and the structure of the GPCR-G-protein complex itself have yet to be elucidated. Nevertheless, transient GPCR-G-protein complexes can be trapped by nucleotide depletion, yielding an empty-nucleotide G-protein-GPCR complex that can be isolated. Whereas early biochemical studies indicated formation of a complex between G-protein and activated receptor only, more recent results suggest that G-protein can bind to pre-activated states of receptor or even couple transiently to non-activated receptor to facilitate rapid responses to stimuli. Efficient and reproducible formation of physiologically relevant, conformationally homogenous GPCR-G-protein complexes is a prerequisite for structural studies designed to address these possibilities.
Collapse
|