1
|
Xie J, Islam S, Wang L, Zheng X, Xu M, Su X, Huang S, Suits L, Yang G, Eswara P, Cai J, Ming LJ. A tale of two old drugs tetracycline and salicylic acid with new perspectives-Coordination chemistry of their Co(II) and Ni(II) complexes, redox activity of Cu(II) complex, and molecular interactions. J Inorg Biochem 2025; 262:112757. [PMID: 39423693 DOI: 10.1016/j.jinorgbio.2024.112757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/13/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
Extensive use of the broad-spectrum tetracycline antibiotics (TCs) has resulted their wide spread in the environment and drive new microecological balances, including the infamous antibiotic resistance. TCs require metal ions for their antibiotic activity and resistance via interactions with ribosome and tetracycline repressor TetR, respectively, at specific metal-binding sites. Moreover, the Lewis-acidic metal center(s) in metallo-TCs can interact with Lewis-basic moieties of many bioactive secondary metabolites, which in turn may alter their associated chemical equilibria and biological activities. Thus, it is ultimately important to reveal detailed coordination chemistry of metallo-TC complexes. Herein, we report (a) conclusive specific Co2+, Ni2+, and Cu2+-binding of TC revealed by paramagnetic 1H NMR, showing different conformations of the coordination and different metal-binding sites in solution and solid state, (b) significant metal-mediated activity of Cu-TC toward catechol oxidation with different mechanisms by air and H2O2 (i.e., mono- and di-nuclear pathways, respectively), (c) interactions of metallo-TCs with bioactive salicylic acid and its precursor benzoic acid, and (d) noticeable change of TC antibiotic activity by metal and salicylic acid. The results imply that TCs may play broad and versatile roles in maintaining certain equilibria in microecological environments in addition to their well-established antibiotic activity. We hope the results may foster further exploration of previously unknown metal-mediated activities of metallo-TC complexes and other metalloantibiotics.
Collapse
Affiliation(s)
- Jinhua Xie
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China
| | - Shahedul Islam
- Department of Chemistry, University of South Florida, Tampa, FL 33620-5250, USA
| | - Le Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China
| | - Xiaojing Zheng
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Mengsheng Xu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China
| | - Xiqi Su
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China
| | - Shaohua Huang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Logan Suits
- Department of Molecular Biosciences, ISA6207, University of South Florida, Tampa, FL 33620, USA
| | - Guang Yang
- Department of Chemistry, University of South Florida, Tampa, FL 33620-5250, USA
| | - Prahathees Eswara
- Department of Molecular Biosciences, ISA6207, University of South Florida, Tampa, FL 33620, USA
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL 33620-5250, USA
| | - Li-June Ming
- Department of Chemistry, University of South Florida, Tampa, FL 33620-5250, USA; Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, PR China.
| |
Collapse
|
2
|
Müntener T, Joss D, Häussinger D, Hiller S. Pseudocontact Shifts in Biomolecular NMR Spectroscopy. Chem Rev 2022; 122:9422-9467. [PMID: 35005884 DOI: 10.1021/acs.chemrev.1c00796] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Paramagnetic centers in biomolecules, such as specific metal ions that are bound to a protein, affect the nuclei in their surrounding in various ways. One of these effects is the pseudocontact shift (PCS), which leads to strong chemical shift perturbations of nuclear spins, with a remarkably long range of 50 Å and beyond. The PCS in solution NMR is an effect originating from the anisotropic part of the dipole-dipole interaction between the magnetic momentum of unpaired electrons and nuclear spins. The PCS contains spatial information that can be exploited in multiple ways to characterize structure, function, and dynamics of biomacromolecules. It can be used to refine structures, magnify effects of dynamics, help resonance assignments, allows for an intermolecular positioning system, and gives structural information in sensitivity-limited situations where all other methods fail. Here, we review applications of the PCS in biomolecular solution NMR spectroscopy, starting from early works on natural metalloproteins, following the development of non-natural tags to chelate and attach lanthanoid ions to any biomolecular target to advanced applications on large biomolecular complexes and inside living cells. We thus hope to not only highlight past applications but also shed light on the tremendous potential the PCS has in structural biology.
Collapse
Affiliation(s)
- Thomas Müntener
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Daniel Joss
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Daniel Häussinger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Sebastian Hiller
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| |
Collapse
|
3
|
Newsome AG, Culver CA, van Breemen RB. Nature's palette: the search for natural blue colorants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:6498-511. [PMID: 24930897 DOI: 10.1021/jf501419q] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The food and beverage industry is seeking to broaden the palette of naturally derived colorants. Although considerable effort has been devoted to the search for new blue colorants in fruits and vegetables, less attention has been directed toward blue compounds from other sources such as bacteria and fungi. The current work reviews known organic blue compounds from natural plant, animal, fungal, and microbial sources. The scarcity of blue-colored metabolites in the natural world relative to metabolites of other colors is discussed, and structural trends common among natural blue compounds are identified. These compounds are grouped into seven structural classes and evaluated for their potential as new color additives.
Collapse
Affiliation(s)
- Andrew G Newsome
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy , 833 South Wood Street, M/C 781, Chicago, Illinois 60612, United States
| | | | | |
Collapse
|
4
|
Morgada MN, Abriata LA, Zitare U, Alvarez-Paggi D, Murgida DH, Vila AJ. Control of the Electronic Ground State on an Electron-Transfer Copper Site by Second-Sphere Perturbations. Angew Chem Int Ed Engl 2014; 53:6188-92. [DOI: 10.1002/anie.201402083] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 02/24/2014] [Indexed: 01/07/2023]
|
5
|
Morgada MN, Abriata LA, Zitare U, Alvarez-Paggi D, Murgida DH, Vila AJ. Control of the Electronic Ground State on an Electron-Transfer Copper Site by Second-Sphere Perturbations. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201402083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
6
|
Swart M, Johansson MP. Density Functional Study on UV/VIS Spectra of Copper-Protein Active Sites: The Effect of Mutations. Chem Biodivers 2012; 9:1728-38. [DOI: 10.1002/cbdv.201200058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
7
|
An NMR structural study of nickel-substituted rubredoxin. J Biol Inorg Chem 2009; 15:409-20. [PMID: 19997764 DOI: 10.1007/s00775-009-0613-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2009] [Accepted: 11/10/2009] [Indexed: 10/20/2022]
Abstract
The Ni(II) and Zn(II) derivatives of Desulfovibrio vulgaris rubredoxin (DvRd) have been studied by NMR spectroscopy to probe the structure at the metal centre. The beta CH(2) proton pairs from the cysteines that bind the Ni(II) atom have been identified using 1D nuclear Overhauser enhancement (NOE) difference spectra and sequence specifically assigned via NOE correlations to neighbouring protons and by comparison with the published X-ray crystal structure of a Ni(II) derivative of Clostridium pasteurianum rubredoxin. The solution structures of DvRd(Zn) and DvRd(Ni) have been determined and the paramagnetic form refined using pseudocontact shifts. The determination of the magnetic susceptibility anisotropy tensor allowed the contact and pseudocontact contributions to the observed chemical shifts to be obtained. Analysis of the pseudocontact and contact chemical shifts of the cysteine H beta protons and backbone protons close to the metal centre allowed conclusions to be drawn as to the geometry and hydrogen-bonding pattern at the metal binding site. The importance of NH-S hydrogen bonds at the metal centre for the delocalization of electron spin density is confirmed for rubredoxins and can be extrapolated to metal centres in Cu proteins: amicyanin, plastocyanin, stellacyanin, azurin and pseudoazurin.
Collapse
|
8
|
X-ray structure and spectroscopic characterization of divalent dinuclear cobalt complexes containing carboxylate- and phosphodiester- auxiliary bridges. Inorganica Chim Acta 2009. [DOI: 10.1016/j.ica.2009.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Myers WK, Duesler EN, Tierney DL. Integrated paramagnetic resonance of high-spin Co(II) in axial symmetry: chemical separation of dipolar and contact electron-nuclear couplings. Inorg Chem 2008; 47:6701-10. [PMID: 18605690 DOI: 10.1021/ic800245k] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Integrated paramagnetic resonance, utilizing electron paramagnetic resonance (EPR), NMR, and electron-nuclear double resonance (ENDOR), of a series of cobalt bis-trispyrazolylborates, Co(Tp ( x )) 2, are reported. Systematic substitutions at the ring carbons and on the apical boron provide a unique opportunity to separate through-bond and through-space contributions to the NMR hyperfine shifts for the parent, unsubstituted Tp complex. A simple relationship between the chemical shift difference (delta H - delta Me) and the contact shift of the proton in that position is developed. This approach allows independent extraction of the isotropic hyperfine coupling, A iso, for each proton in the molecule. The Co..H contact coupling energies derived from the NMR, together with the known metrics of the compounds, were used to predict the ENDOR couplings at g perpendicular. Proton ENDOR data is presented that shows good agreement with the NMR-derived model. ENDOR signals from all other magnetic nuclei in the complex ( (14)N, coordinating and noncoordinating, (11)B and (13)C) are also reported.
Collapse
Affiliation(s)
- William K Myers
- Department of Chemistry and Chemical Biology, The University of New Mexico, Albuquerque, New Mexico 87131, USA
| | | | | |
Collapse
|
10
|
Abstract
Copper-containing nitrite reductases (NiRs) possess type 1 (T1) and type 2 (T2) copper sites and can be either green or blue in color owing to differences at their T1 centers. The active sites of a green and a blue NiR were studied by utilizing their T1CuI/T2CoII and T1CoII/T2CoII-substituted forms. The UV/Vis spectra of these derivatives highlight the similarity of the T2 centers in these enzymes and that T1 site differences are also present in the CoII forms. The paramagnetic NMR spectra of T1CuI/T2CoII enzymes allow hyperfine shifted resonances from the three T2 His ligands to be assigned: these exhibit remarkably similar positions in the spectra of both NiRs, emphasizing the homology of the T2 centers. The addition of nitrite results in subtle alterations in the paramagnetic NMR spectra of the T1CuI/T2CoII forms at pH<7, which indicate a geometry change upon the binding of substrate. Shifted resonances from all of the T1 site ligands have been assigned and the CoII--N(His) interactions are alike, whereas the CbetaH proton resonances of the Cys ligand exhibit subtle chemical shift differences in the blue and green NiRs. The strength of the axial CoII--S(Met) interaction is similar in the two NiRs studied, but the altered conformation of the side chain of this ligand results in a dramatically different chemical shift pattern for the CgammaH protons. This indicates an alteration in the bonding of the axial ligand in these derivatives, which could be influential in the CuII proteins.
Collapse
Affiliation(s)
- Katsuko Sato
- Institute for Cell and Molecular Biosciences, Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne, NE2 4HH, UK
| | | |
Collapse
|
11
|
Riley EA, Petros AK, Smith KA, Gibney BR, Tierney DL. Frequency-switching inversion-recovery for severely hyperfine-shifted NMR: evidence of asymmetric electron relaxation in high-spin Co(II). Inorg Chem 2007; 45:10016-8. [PMID: 17140197 DOI: 10.1021/ic061207h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new method for reliably measuring longitudinal relaxation rates for severely hyperfine-shifted NMR signals in aqueous solutions is presented. The method is illustrated for a well-defined cobalt tetracysteinate, with relevance to cobalt-substituted metalloproteins. The relaxation measurements are indicative of asymmetric electronic relaxation of the high-spin Co(II) ion.
Collapse
Affiliation(s)
- Erin A Riley
- Department of Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | | | | | | | | |
Collapse
|
12
|
|
13
|
Czernuszewicz RS, Fraczkiewicz G, Zareba AA. A detailed resonance Raman spectrum of Nickel(II)-substituted Pseudomonas aeruginosa azurin. Inorg Chem 2005; 44:5745-52. [PMID: 16060626 DOI: 10.1021/ic050553g] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nickel(II) and cobalt(II) derivatives of the blue copper protein Pseudomonas aeruginosa azurin have been studied by resonance Raman (RR) spectroscopy at liquid-nitrogen temperatures. Vibrational assignments for the observed RR bands of Ni(II)-azurin have been made through a study of (62)Ni-substituted azurin. A comparison of Ni(II)-azurin RR spectra with those of the wild type (Cu-containing) protein showed Ni(II)-S(Cys) stretching vibrations, nu(Ni-S)(Cys), at substantially lower frequencies (approximately 360 versus approximately 400 cm(-1), respectively), indicating that the Ni(II)-S(Cys) bond is much weaker than the corresponding Cu(II)-S(Cys) bond. Resonance enhanced predominantly nu(Ni-N)(His) modes indicate that the metal-N(His) bond distances in the Ni(II) derivative are the same as those in native azurin. The vibrational data also confirm a tetrahedral disposition of ligands about the metal in Ni(II)-azurin found in the protein crystallographic structures. As expected, excitation profile measurements on Ni(II)-azurin show that the nu(Ni-S)(Cys) assignable modes give maxima at the 440-nm absorption band, which confirms a S(Cys) --> Ni(II) charge-transfer origin of the 440-nm electronic transition in Ni(II)-substituted azurin.
Collapse
|
14
|
Matsunaga Y, Fujisawa K, Ibi N, Miyashita Y, Okamoto KI. Structural and Spectroscopic Characterization of First-Row Transition Metal(II) Substituted Blue Copper Model Complexes with Hydrotris(pyrazolyl)borate. Inorg Chem 2004; 44:325-35. [PMID: 15651879 DOI: 10.1021/ic049814x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
[CuL(SC(6)F(5))] (1) (L = hydrotris(3,5-diisopropyl-1-pyrazolyl)borate anion) has been reported as a good model for blue copper proteins [Kitajima, N.; Fujisawa, K.; Tanaka, M.; Moro-oka, Y. J. Am. Chem. Soc. 1992, 114, 9232-9233]. To obtain more structural and spectroscopic insight, the first-row transition metal(II) substituted complexes of Cu(II) (1) to Mn(II) (2), Fe(II) (3), Co(II) (4), Ni(II) (5), and Zn(II) (6) were synthesized and their crystal structures were determined. These model complexes have a distorted tetrahedral geometry arising from the tripodal ligand L. The d value, which is defined by the distance from the N(2)S basal plane to the metal(II) ion, and the bond angles such as N-M-N and S-M-N are good indicators of these structural distortions. The obtained complexes were characterized by UV-vis absorption, EPR, NMR, far-IR, and FT-Raman spectroscopies and electrochemical and magnetic properties. In UV-vis absorption spectra, the sulfur-to-metal(II) CT bands and the d-d transition bands are observed for 1 and 3-5. For 1, the strong sulfur to Cu(II) CT band at 663 nm, which is one of the unique properties of blue copper proteins, is observed. The CT energies of the Fe(II) (3), Co(II) (4), and Ni(II) (5) complexes are shifted to higher energy (308 and 355 nm for 3, 311 and 340 nm for 4, 357 and 434 nm for 5) and are almost the same as the corresponding Co(II)- and Ni(II)-substituted blue copper proteins. In the far-IR spectra, three far-IR absorption bands for 2-6 at ca. 400, ca. 350, and ca. 310 cm(-1) are also observed similar to those for 1. Other properties are consistent with their distorted tetrahedral geometries.
Collapse
Affiliation(s)
- Yuki Matsunaga
- Department of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| | | | | | | | | |
Collapse
|
15
|
Dennison C, Harrison MD. The Active-Site Structure of Umecyanin, the Stellacyanin from Horseradish Roots. J Am Chem Soc 2004; 126:2481-9. [PMID: 14982457 DOI: 10.1021/ja0375378] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The type 1 copper sites of cupredoxins typically have a His(2)Cys equatorial ligand set with a weakly interacting axial Met, giving a distorted tetrahedral geometry. Natural variations to this coordination environment are known, and we have utilized paramagnetic (1)H NMR spectroscopy to study the active-site structure of umecyanin (UMC), a stellacyanin with an axial Gln ligand. The assigned spectra of the Cu(II) UMC and its Ni(II) derivative [Ni(II) UMC] demonstrate that this protein has the typical His(2)Cys equatorial coordination observed in other structurally characterized cupredoxins. The NMR spectrum of the Cu(II) protein does not exhibit any paramagnetically shifted resonances from the axial ligand, showing that this residue does not contribute to the singly occupied molecular orbital (SOMO) in Cu(II) UMC. The assigned paramagnetic (1)H NMR spectrum of Ni(II) UMC demonstrates that the axial Gln ligand coordinates in a monodentate fashion via its side-chain amide oxygen atom. The alkaline transition, a feature common to stellacyanins, influences all of the ligating residues but does not alter the coordination mode of the axial Gln ligand in UMC. The structural features which result in Cu(II) UMC possessing a classic type 1 site as compared to the perturbed type 1 center observed for other stellacyanins do not have a significant influence on the paramagnetic (1)H NMR spectra of the Cu(II) or Ni(II) proteins.
Collapse
Affiliation(s)
- Christopher Dennison
- School of Natural Sciences, Bedson Building, University of Newcastle upon Tyne, Newcastle upon Tyne, NE1 7RU, UK.
| | | |
Collapse
|
16
|
Banci L, Pierattelli R, Vila AJ. Nuclear magnetic resonance spectroscopy studies on copper proteins. ADVANCES IN PROTEIN CHEMISTRY 2003; 60:397-449. [PMID: 12418182 DOI: 10.1016/s0065-3233(02)60058-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Affiliation(s)
- Lucia Banci
- CERM, University of Florence, 50019 Sesto Fiorentino, Italy
| | | | | |
Collapse
|
17
|
Dennison C, Sato K. Paramagnetic 1H NMR spectrum of nickel(II) pseudoazurin: investigation of the active site structure and the acid and alkaline transitions. Inorg Chem 2002; 41:6662-72. [PMID: 12470061 DOI: 10.1021/ic020303p] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The paramagnetic (1)H NMR spectrum of Ni(II) pseudoazurin [(PA)Ni(II)] possesses a number of resonances exhibiting sizable Fermi-contact shifts. These have been assigned to protons associated with the four ligating amino acids, His40, Cys78, His81, and Met86. The shifts experienced by the C(gamma)H protons of the axial Met86 ligand are unprecedented compared to other Ni(II)- and Co(II)-substituted cupredoxins (the C(gamma)(1)H signal is found at 432.5 ppm at 25 degrees C). The large shift of protons of the axial Met86 ligand highlights a strong Ni(II)-S(Met) interaction in (PA)Ni(II). The paramagnetic (1)H NMR spectrum of (PA)Ni(II) is altered by decreasing and increasing the pH value from 8.0. At acidic pH a number of the hyperfine-shifted resonances undergo limited changes in their chemical shift values. This effect is assigned to the surface His6 residue whose protonation results in a structural modification of the active site. Increasing the pH value from 8.0 has a more significant effect on the paramagnetic (1)H NMR spectrum of (PA)Ni(II), and the alkaline transition can now be assigned to two surface lysine residues close to the active site of the protein. The effect of altering pH on the (1)H NMR spectrum of Ni(II) pseudoazurin is smaller than that previously observed in the Cu(II) protein indicating more limited structural rearrangements at the non-native metal site.
Collapse
|
18
|
Donaire A, Jiménez B, Fernández CO, Pierattelli R, Niizeki T, Moratal JM, Hall JF, Kohzuma T, Hasnain SS, Vila AJ. Metal-ligand interplay in blue copper proteins studied by 1H NMR spectroscopy: Cu(II)-pseudoazurin and Cu(II)-rusticyanin. J Am Chem Soc 2002; 124:13698-708. [PMID: 12431099 DOI: 10.1021/ja0267019] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The blue copper proteins (BCPs), pseudoazurin from Achromobacter cycloclastes and rusticyanin from Thiobacillus ferrooxidans, have been investigated by (1)H NMR at a magnetic field of 18.8 T. Hyperfine shifts of the protons belonging to the coordinated ligands have been identified by exchange spectroscopy, including the indirect detection for those resonances that cannot be directly observed (the beta-CH(2) of the Cys ligand, and the NH amide hydrogen bonded to the S(gamma)(Cys) atom). These data reveal that the Cu(II)-Cys interaction in pseudoazurin and rusticyanin is weakened compared to that in classic blue sites (plastocyanin and azurin). This weakening is not induced by a stronger interaction with the axial ligand, as found in stellacyanin, but might be determined by the protein folding around the metal site. The average chemical shift of the beta-CH(2) Cys ligand in all BCPs can be correlated to geometric factors of the metal site (the Cu-S(gamma)(Cys) distance and the angle between the CuN(His)N(His) plane and the Cu-S(gamma)(Cys) vector). It is concluded that the degree of tetragonal distortion is not necessarily related to the strength of the Cu(II)-S(gamma)(Cys) bond. The copper-His interaction is similar in all BCPs, even for the solvent-exposed His ligand. It is proposed that the copper xy magnetic axes in blue sites are determined by subtle geometrical differences, particularly the orientation of the His ligands. Finally, the observed chemical shifts for beta-CH(2) Cys and Ser NH protons in rusticyanin suggest that a less negative charge at the sulfur atom could contribute to the high redox potential (680 mV) of this protein.
Collapse
Affiliation(s)
- Antonio Donaire
- Biophysics Section and Instituto de Biología Molecular y Celular de Rosario (IBR), University of Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Amicosante M, Sanarico N, Berretta F, Arroyo J, Lombardi G, Lechler R, Colizzi V, Saltini C. Beryllium binding to HLA-DP molecule carrying the marker of susceptibility to berylliosis glutamate beta 69. Hum Immunol 2001; 62:686-93. [PMID: 11423174 DOI: 10.1016/s0198-8859(01)00261-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Berylliosis is a chronic granulomatous disorder caused by inhalation of Be dusts that is driven by the accumulation of Be-specific CD4+ Th1-cells at disease sites. Susceptibility to berylliosis has been associated with the supratypic variant of HLA-DP gene coding for glutamate at position beta69 (HLA-DPbetaGlu69). The aim of this study was to test the hypothesis that the HLA-DPbetaGlu69 residue plays a role in the interaction with Be. To this end, soluble HLA-DP2 molecule (carrying betaGlu69) and its mutated form carrying lysine at position beta69 (HLA-DP2Lys69) were produced in Drosophila melanogaster and then used in a Be binding assays. BeSO4 (1-1000 microM) was used to compete for the binding of the biotinilated invariant chain-derived peptide CLIP (50 microM). BeSO4 was capable of compete out biotin-CLIP binding from the HLA-DP2 (IC50%: 4.5 microM of BeSO4 at pH 5.0 and 5.5 microM of BeSO4 at pH 7.5), but not from the HLA-DP2Lys69 molecule (IC50%: 480 microM of BeSO4 at pH 5.0 and 220 microM of BeSO4 at pH 7.5). Moreover, the binding of NFLD.M60, a MoAb recognizing an epitope in the HLA-DP peptide binding region, to the HLA-DP2, but not to the HLA-DP2Lys69 soluble molecules was inhibited BeSO4. NFLD.M60 binding to HLA-DP2, but not to HLA-DP2Lys69 stably transfected murine cells was also inhibited by Be both at pH 5.0 and at pH 7.5. The data indicate a direct interaction of Be with the HLA-DPGlu69 molecule, in the absence of antigen processing.
Collapse
Affiliation(s)
- M Amicosante
- Laboratory of Clinical Pathology, I.R.C.C.S. L. Spallanzani, Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Schnepf R, Hörth P, Bill E, Wieghardt K, Hildebrandt P, Haehnel W. De novo design and characterization of copper centers in synthetic four-helix-bundle proteins. J Am Chem Soc 2001; 123:2186-95. [PMID: 11456864 DOI: 10.1021/ja001880k] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The design and chemical synthesis of de novo metalloproteins on cellulose membranes with the structure of an antiparallel four-helix bundle is described. All possible combinations of three different sets of amphiphilic helices were assembled on cyclic peptide templates which were bound by a cleavable linker to the cellulose. In the hydrophobic interior, the four-helix bundle proteins carry a cysteine and several histidines at various positions for copper ligation. This approach was used successfully to synthesize, for the first time, copper proteins based on a four-helix bundle. UV-vis spectra monitored on the solid support showed ligation of copper(II) by about one-third out of the 96 synthesized proteins and tetrahedral complexes of cobalt(II) by most of these proteins. Three of the most stable copper-binding proteins were synthesized in solution and their structural properties analyzed by spectroscopic methods. Circular dichroism, one-dimensional NMR, and size-exclusion chromatography indicate a folding into a compact state containing a high degree of secondary structure with a reasonably ordered hydrophobic core. They displayed UV-vis absorption, resonance Raman, and EPR spectra intermediate between those of type 1 and type 2 copper centers. The present approach provides a sound basis for further optimizing the copper binding and its functional properties by using combinatorial protein chemistry guided by rational principles.
Collapse
Affiliation(s)
- R Schnepf
- Contribution from the Albert-Ludwigs-Universität Freiburg, Institut für Biologie II/Biochemie, Schänzlestrasse 1, D-79104 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Bertini I, Fernández CO, Karlsson BG, Leckner J, Luchinat C, Malmström BG, Nersissian AM, Pierattelli R, Shipp E, Valentine JS, Vila AJ. Structural Information through NMR Hyperfine Shifts in Blue Copper Proteins. J Am Chem Soc 2000. [DOI: 10.1021/ja992674j] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ivano Bertini
- Contribution from the Magnetic Resonance Center, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy, LANAIS RMN-300, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina, Department of Molecular Biotechnology, Chalmers University of Technology, P.O. Box 462 SE-405 30 Göteborg, Sweden, Department of Chemistry, Biochemistry and Biophysics, Göteborg University, SE-40530 Göteborg, Sweden, Department of Chemistry and
| | - Claudio O. Fernández
- Contribution from the Magnetic Resonance Center, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy, LANAIS RMN-300, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina, Department of Molecular Biotechnology, Chalmers University of Technology, P.O. Box 462 SE-405 30 Göteborg, Sweden, Department of Chemistry, Biochemistry and Biophysics, Göteborg University, SE-40530 Göteborg, Sweden, Department of Chemistry and
| | - B. Göran Karlsson
- Contribution from the Magnetic Resonance Center, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy, LANAIS RMN-300, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina, Department of Molecular Biotechnology, Chalmers University of Technology, P.O. Box 462 SE-405 30 Göteborg, Sweden, Department of Chemistry, Biochemistry and Biophysics, Göteborg University, SE-40530 Göteborg, Sweden, Department of Chemistry and
| | - Johan Leckner
- Contribution from the Magnetic Resonance Center, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy, LANAIS RMN-300, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina, Department of Molecular Biotechnology, Chalmers University of Technology, P.O. Box 462 SE-405 30 Göteborg, Sweden, Department of Chemistry, Biochemistry and Biophysics, Göteborg University, SE-40530 Göteborg, Sweden, Department of Chemistry and
| | - Claudio Luchinat
- Contribution from the Magnetic Resonance Center, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy, LANAIS RMN-300, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina, Department of Molecular Biotechnology, Chalmers University of Technology, P.O. Box 462 SE-405 30 Göteborg, Sweden, Department of Chemistry, Biochemistry and Biophysics, Göteborg University, SE-40530 Göteborg, Sweden, Department of Chemistry and
| | - Bo G. Malmström
- Contribution from the Magnetic Resonance Center, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy, LANAIS RMN-300, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina, Department of Molecular Biotechnology, Chalmers University of Technology, P.O. Box 462 SE-405 30 Göteborg, Sweden, Department of Chemistry, Biochemistry and Biophysics, Göteborg University, SE-40530 Göteborg, Sweden, Department of Chemistry and
| | - Aram M. Nersissian
- Contribution from the Magnetic Resonance Center, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy, LANAIS RMN-300, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina, Department of Molecular Biotechnology, Chalmers University of Technology, P.O. Box 462 SE-405 30 Göteborg, Sweden, Department of Chemistry, Biochemistry and Biophysics, Göteborg University, SE-40530 Göteborg, Sweden, Department of Chemistry and
| | - Roberta Pierattelli
- Contribution from the Magnetic Resonance Center, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy, LANAIS RMN-300, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina, Department of Molecular Biotechnology, Chalmers University of Technology, P.O. Box 462 SE-405 30 Göteborg, Sweden, Department of Chemistry, Biochemistry and Biophysics, Göteborg University, SE-40530 Göteborg, Sweden, Department of Chemistry and
| | - Eric Shipp
- Contribution from the Magnetic Resonance Center, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy, LANAIS RMN-300, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina, Department of Molecular Biotechnology, Chalmers University of Technology, P.O. Box 462 SE-405 30 Göteborg, Sweden, Department of Chemistry, Biochemistry and Biophysics, Göteborg University, SE-40530 Göteborg, Sweden, Department of Chemistry and
| | - Joan S. Valentine
- Contribution from the Magnetic Resonance Center, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy, LANAIS RMN-300, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina, Department of Molecular Biotechnology, Chalmers University of Technology, P.O. Box 462 SE-405 30 Göteborg, Sweden, Department of Chemistry, Biochemistry and Biophysics, Göteborg University, SE-40530 Göteborg, Sweden, Department of Chemistry and
| | - Alejandro J. Vila
- Contribution from the Magnetic Resonance Center, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy, LANAIS RMN-300, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina, Department of Molecular Biotechnology, Chalmers University of Technology, P.O. Box 462 SE-405 30 Göteborg, Sweden, Department of Chemistry, Biochemistry and Biophysics, Göteborg University, SE-40530 Göteborg, Sweden, Department of Chemistry and
| |
Collapse
|
22
|
Buning C, Canters GW, Comba P, Dennison C, Jeuken L, Melter M, Sanders-Loehr J. Loop-Directed Mutagenesis of the Blue Copper Protein Amicyanin fromParacoccus versutusand Its Effect on the Structure and the Activity of the Type-1 Copper Site. J Am Chem Soc 2000. [DOI: 10.1021/ja992796b] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Potolicchio I, Festucci A, Hausler P, Sorrentino R. HLA-DP molecules bind cobalt: a possible explanation for the genetic association with hard metal disease. Eur J Immunol 1999; 29:2140-7. [PMID: 10427976 DOI: 10.1002/(sici)1521-4141(199907)29:07<2140::aid-immu2140>3.0.co;2-q] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Metal dust inhalation induces an interstitial lung disease which may progress to pulmonary fibrosis (hard metal disease, HMD). Cobalt is believed to be the pathogenic agent of HMD. A strong genetic association of HMD with some HLA-DP alleles has been reported although the role of these molecules in the occurrence of the fibrotic disorder remains unclear. A possible explanation of these findings is that HLA-DP but not other HLA class II molecules can bind cobalt. This could have as a consequence an HLA-DP-mediated specific activation of the immune system. To test this hypothesis, we have set up an in vitro binding assay using 57Co and purified HLA-DP and -DR molecules. The results indicate that HLA-DP but not HLA-DR molecules bind cobalt. Moreover, the presence of HLA-DP Glu beta69, which is associated with susceptibility to HMD, determines a higher metal uptake. Molecular modelling of HLA-DP2 molecules places the Glu beta69 residue in a position relevant in determining peptide specificity. The possibility that binding of cobalt by HLA-DP molecules can interfere with their antigen presenting functions is discussed.
Collapse
Affiliation(s)
- I Potolicchio
- Department of Cell Biology and Development, University La Sapienza, Rome, Italy
| | | | | | | |
Collapse
|
24
|
Dennison C, Kohzuma T. Alkaline Transition of Pseudoazurin from Achromobacter cycloclastes Studied by Paramagnetic NMR and Its Effect on Electron Transfer. Inorg Chem 1999. [DOI: 10.1021/ic981242r] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christopher Dennison
- Department of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland, and Department of Chemistry, Ibaraki University, Mito, Ibaraki 310, Japan
| | - Takamitsu Kohzuma
- Department of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland, and Department of Chemistry, Ibaraki University, Mito, Ibaraki 310, Japan
| |
Collapse
|
25
|
Abstract
1H NMR data applied to the paramagnetic cobalt(II) derivative of azurin from Pseudomonas aeruginosa have made it possible to show that the metal ion is bound to the protein in the unfolded state. The relaxation data as well as the low magnetic anisotropy of the metal ion indicate that the cobalt ion is tetrahedral in the unfolded form. The cobalt ligands have been identified as the residues Gly45, His46, Cys112 and His117. Met121 is not coordinated in the unfolded state. In this state, the metal ion is not constrained to adopt a bipyramidal geometry, as imposed by the protein when it is folded. This is clear confirmation of the rack-induced bonding mechanism previously proposed for the metal ion in azurin.
Collapse
Affiliation(s)
- C Romero
- Departamento de Química Inorgánica, Universitat de Valencia, Burjassot, Spain
| | | | | |
Collapse
|
26
|
Probing the metal site in Rhus vernicifera stellacyanin by Ni(II) substitution and paramagnetic NMR spectroscopy. Inorganica Chim Acta 1998. [DOI: 10.1016/s0020-1693(97)06073-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Messerschmidt A, Prade L, Kroes SJ, Sanders-Loehr J, Huber R, Canters GW. Rack-induced metal binding vs. flexibility: Met121His azurin crystal structures at different pH. Proc Natl Acad Sci U S A 1998; 95:3443-8. [PMID: 9520385 PMCID: PMC19855 DOI: 10.1073/pnas.95.7.3443] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/1998] [Indexed: 02/06/2023] Open
Abstract
The rack-induced bonding mechanism of metals to proteins is a useful concept for explaining the generation of metal sites in electron transfer proteins, such as the blue copper proteins, that are designed for rapid electron transfer. The trigonal pyramidal structure imposed by the protein with three strong equatorial ligands (one Cys and two His) provides a favorable geometry for both cuprous and cupric oxidation states. However, the crystal structures of the Met121His mutant of azurin from Alcaligenes denitrificans at pH 6.5 (1.89- and 1.91-A resolutions) and pH 3.5 (2.45-A resolution) show that the preformed metal binding cavity in the protein is more flexible than expected. At high pH (6.5), the Cu site retains the same three equatorial ligands as in the wild-type azurin and adds His121 as a fourth strong ligand, creating a tetrahedral copper site geometry with a green color referred to as 1.5 type. In the low pH (3.5) structure, the protonation of His121 causes a conformational change in residues 117-123, moving His121 away from the copper. The empty coordination site is occupied by an oxygen atom of a nitrate molecule of the buffer solution. This axial ligand is coordinated less strongly, generating a distorted tetrahedral copper geometry with a blue color and spectroscopic properties of a type-1 site. These crystal structures demonstrate that blue copper proteins are flexible enough to permit a range of movement of the Cu atom along the axial direction of the trigonal pyramid.
Collapse
Affiliation(s)
- A Messerschmidt
- Max-Planck-Institut für Biochemie, D-82152 Martinsried, Germany.
| | | | | | | | | | | |
Collapse
|
28
|
Salgado J, Kroes SJ, Berg A, Moratal JM, Canters GW. The dynamic properties of the M121H azurin metal site as studied by NMR of the paramagnetic Cu(II) and Co(II) metalloderivatives. J Biol Chem 1998; 273:177-85. [PMID: 9417062 DOI: 10.1074/jbc.273.1.177] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The M121H azurin mutant in solution presents various species in equilibrium that can be detected and studied by 1H NMR of the Cu(II) and Co(II) paramagnetic metalloderivatives. In both cases up to three species are observed in slow exchange, the proportions of which are different for the two metalloderivatives. Above pH 5 the major species displays a tetrahedral coordination in which the His121 can be observed as a coordinated residue. Its metal site corresponds to a new type of site that is defined as a type 1.5 site. The second and third species resemble the wild type (type 1) azurin and, above pH 4.5, they are present only at a low concentration. At low pH a protonation process increases the proportion of both type 1 species at the expense of the type 1.5 species. This process, characterized by a pKa = 4.3, is assigned to the protonation of His121. At high pH the NMR spectrum of the Co(II)-M121H azurin experiences an additional transition, which is not observed in the case of the Cu(II) protein. The dynamic properties of the M121H metal site appear to be related to changes in the coordination geometry and the strength of the axial interaction between the Ndelta1 (His121) and the metal.
Collapse
Affiliation(s)
- J Salgado
- Leiden Institute of Chemistry, University of Leiden, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
29
|
Vila AJ, Ramirez BE, Di Bilio AJ, Mizoguchi TJ, Richards JH, Gray HB. Paramagnetic NMR Spectroscopy of Cobalt(II) and Copper(II) Derivatives of Pseudomonas aeruginosa His46Asp Azurin. Inorg Chem 1997; 36:4567-4570. [PMID: 11670122 DOI: 10.1021/ic9703282] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
NMR spectra of paramagnetic Co(II) and Cu(II) derivatives of Pseudomonas aeruginosa His46Asp azurin have been investigated. In each derivative, assignment of hyperfine-shifted resonances outside the diamagnetic envelope of spectra recorded at 200 and 500 MHz confirms that the Asp carboxylate is coordinated to the paramagnetic metal center. The reduced paramagnetic shifts of the Cys112 proton resonances in Cu(II) and Co(II) His46Asp azurins compared to those of the corresponding wild type proteins indicate that metal-S(Cys) bonding is weakened in this mutant. The downfield shifts of the gamma-CH(2) of Met121 suggest a stronger interaction between the metal and the Met thioether group than is present in the wild type protein. Molecular modeling of the metal site structure indicates a distorted tetrahedral geometry with Asp46 (monodentate carboxylate), Cys112, and His117 equatorial ligands. In this structure, the metal ion is shifted 0.3 Å out of the O(Asp)S(Cys)N(His) trigonal plane toward Met121.
Collapse
Affiliation(s)
- A. J. Vila
- Beckman Institute, California Institute of Technology, Pasadena, California 91125
| | | | | | | | | | | |
Collapse
|
30
|
Fernández CO, Sannazzaro AI, Vila AJ. Alkaline transition of Rhus vernicifera stellacyanin, an unusual blue copper protein. Biochemistry 1997; 36:10566-70. [PMID: 9265638 DOI: 10.1021/bi970504i] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Stellacyanin from Rhus vernificera is a blue copper protein in which the metal is coordinated to a Cys, two His, and a Gln residue. It displays a low redox potential, a fast electron exchange rate, and a reversible alkaline transition. We have studied this transition in Cu(II)- and Co(II)-stellacyanin by means of electronic and NMR spectroscopy. The data indicate that a conformational rearrangement of the metal site occurs at high pH. A drastic alteration in the Gln coordination mode, as initially proposed, is discarded. These results show that the metal site in stellacyanin is more flexible than the sites of other blue copper proteins. The present study demonstrates that the paramagnetic shifts of the bound Cys in the Co(II) derivative are sensitive indicators of the electron delocalization and conformational changes experienced by this residue.
Collapse
Affiliation(s)
- C O Fernández
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000 Rosario, Argentina
| | | | | |
Collapse
|
31
|
Beinert H. Copper in biological systems. A report from the 7th Manziana Conference, held at Santa Severa, September 11-15, 1995. J Inorg Biochem 1996; 64:79-135. [PMID: 8864234 DOI: 10.1016/0162-0134(96)00083-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this fifty-seven page report, the author attempts to give the essence of the twenty-four lectures and of an about equal number of posters, including subjects of discussion, that were presented at an international conference on copper proteins held in Italy. The report deals with research carried out up to mid-1995 and contains 140 literature references and thirty-three figures or schemes.
Collapse
Affiliation(s)
- H Beinert
- Institute for Enzyme Research, Graduate School, College of Agricultural and Life Sciences, University of Wisconsin--Madison, USA
| |
Collapse
|
32
|
Vila AJ, Fernández CO. Structure of the Metal Site in Rhus vernicifera Stellacyanin: A Paramagnetic NMR Study on Its Co(II) Derivative. J Am Chem Soc 1996. [DOI: 10.1021/ja9601346] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alejandro J. Vila
- Contribution from the Area Biofísica, Departamento de Química Biológica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina, and LANAIS RMN 300, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1033 Buenos Aires, Argentina
| | - Claudio O. Fernández
- Contribution from the Area Biofísica, Departamento de Química Biológica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina, and LANAIS RMN 300, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1033 Buenos Aires, Argentina
| |
Collapse
|