1
|
Ng MY, Song ZJ, Tan CH, Bassetto M, Hagen T. Structural investigations on the mitochondrial uncouplers niclosamide and FCCP. FEBS Open Bio 2024; 14:1057-1071. [PMID: 38750619 PMCID: PMC11216929 DOI: 10.1002/2211-5463.13817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 02/26/2024] [Accepted: 05/02/2024] [Indexed: 07/03/2024] Open
Abstract
There has been renewed interest in using mitochondrial uncoupler compounds such as niclosamide and carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP) for the treatment of obesity, hepatosteatosis and diseases where oxidative stress plays a role. However, both FCCP and niclosamide have undesirable effects that are not due to mitochondrial uncoupling, such as inhibition of mitochondrial oxygen consumption by FCCP and induction of DNA damage by niclosamide. Through structure-activity analysis, we identified FCCP analogues that do not inhibit mitochondrial oxygen consumption but still provided good, although less potent, uncoupling activity. We also characterized the functional role of the niclosamide 4'-nitro group, the phenolic hydroxy group and the anilide amino group in mediating uncoupling activity. Our structural investigations provide important information that will aid further drug development.
Collapse
Affiliation(s)
- Mei Ying Ng
- Department of Biochemistry, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- Present address:
Department of Cancer BiologyDana‐Farber Cancer InstituteBostonMAUSA
| | - Zhi Jian Song
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical SciencesNanyang Technological UniversitySingapore
| | - Choon Hong Tan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical SciencesNanyang Technological UniversitySingapore
| | - Marcella Bassetto
- School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life SciencesCardiff UniversityUK
| | - Thilo Hagen
- Department of Biochemistry, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| |
Collapse
|
2
|
Jasper L, Scarcia P, Rust S, Reunert J, Palmieri F, Marquardt T. Uridine Treatment of the First Known Case of SLC25A36 Deficiency. Int J Mol Sci 2021; 22:ijms22189929. [PMID: 34576089 PMCID: PMC8470663 DOI: 10.3390/ijms22189929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
SLC25A36 is a pyrimidine nucleotide carrier playing an important role in maintaining mitochondrial biogenesis. Deficiencies in SLC25A36 in mouse embryonic stem cells have been associated with mtDNA depletion as well as mitochondrial dysfunction. In human beings, diseases triggered by SLC25A36 mutations have not been described yet. We report the first known case of SLC25A36 deficiency in a 12-year-old patient with hypothyroidism, hyperinsulinism, hyperammonemia, chronical obstipation, short stature, along with language and general developmental delay. Whole exome analysis identified the homozygous mutation c.803dupT, p.Ser269llefs*35 in the SLC25A36 gene. Functional analysis of mutant SLC25A36 protein in proteoliposomes showed a virtually abolished transport activity. Immunoblotting results suggest that the mutant SLC25A36 protein in the patient undergoes fast degradation. Supplementation with oral uridine led to an improvement of thyroid function and obstipation, increase of growth and developmental progress. Our findings suggest an important role of SLC25A36 in hormonal regulations and oral uridine as a safe and effective treatment.
Collapse
Affiliation(s)
- Luisa Jasper
- Department of Pediatrics, University Hospital of Münster, Albert-Schweitzer-Campus 1, Gebäude A13, 48149 Münster, Germany; (L.J.); (S.R.); (J.R.)
| | - Pasquale Scarcia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona 4, 70125 Bari, Italy;
| | - Stephan Rust
- Department of Pediatrics, University Hospital of Münster, Albert-Schweitzer-Campus 1, Gebäude A13, 48149 Münster, Germany; (L.J.); (S.R.); (J.R.)
| | - Janine Reunert
- Department of Pediatrics, University Hospital of Münster, Albert-Schweitzer-Campus 1, Gebäude A13, 48149 Münster, Germany; (L.J.); (S.R.); (J.R.)
| | - Ferdinando Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona 4, 70125 Bari, Italy;
- Correspondence: (F.P.); (T.M.)
| | - Thorsten Marquardt
- Department of Pediatrics, University Hospital of Münster, Albert-Schweitzer-Campus 1, Gebäude A13, 48149 Münster, Germany; (L.J.); (S.R.); (J.R.)
- Correspondence: (F.P.); (T.M.)
| |
Collapse
|
3
|
Oxoglutarate Carrier Inhibition Reduced Melanoma Growth and Invasion by Reducing ATP Production. Pharmaceutics 2020; 12:pharmaceutics12111128. [PMID: 33238375 PMCID: PMC7700517 DOI: 10.3390/pharmaceutics12111128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 11/21/2022] Open
Abstract
Recent findings indicate that (a) mitochondria in proliferating cancer cells are functional, (b) cancer cells use more oxygen than normal cells for oxidative phosphorylation, and (c) cancer cells critically rely on cytosolic NADH transported into mitochondria via the malate-aspartate shuttle (MAS) for ATP production. In a spontaneous lung cancer model, tumor growth was reduced by 50% in heterozygous oxoglutarate carrier (OGC) knock-out mice compared with wild-type counterparts. To determine the mechanism through which OGC promotes tumor growth, the effects of the OGC inhibitor N-phenylmaleimide (NPM) on mitochondrial activity, oxygen consumption, and ATP production were evaluated in melanoma cell lines. NPM suppressed oxygen consumption and decreased ATP production in melanoma cells in a dose-dependent manner. NPM also reduced the proliferation of melanoma cells. To test the effects of NPM on tumor growth and metastasis in vivo, NPM was administered in a human melanoma xenograft model. NPM reduced tumor growth by approximately 50% and reduced melanoma invasion by 70% at a dose of 20 mg/kg. Therefore, blocking OGC activity may be a useful approach for cancer therapy.
Collapse
|
4
|
Monné M, Daddabbo L, Giannossa LC, Nicolardi MC, Palmieri L, Miniero DV, Mangone A, Palmieri F. Mitochondrial ATP-Mg/phosphate carriers transport divalent inorganic cations in complex with ATP. J Bioenerg Biomembr 2017; 49:369-380. [PMID: 28695448 DOI: 10.1007/s10863-017-9721-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 06/22/2017] [Indexed: 12/16/2022]
Abstract
The ATP-Mg/phosphate carriers (APCs) modulate the intramitochondrial adenine nucleotide pool size. In this study the concentration-dependent effects of Mg2+ and other divalent cations (Me2+) on the transport of [3H]ATP in liposomes reconstituted with purified human and Arabidopsis APCs (hAPCs and AtAPCs, respectively, including some lacking their N-terminal domains) have been investigated. The transport of Me2+ mediated by these proteins was also measured. In the presence of a low external concentration of [3H]ATP (12 μM) and increasing concentrations of Me2+, Mg2+ stimulated the activity (measured as initial transport rate of [3H]ATP) of hAPCs and decreased that of AtAPCs; Fe2+ and Zn2+ stimulated markedly hAPCs and moderately AtAPCs; Ca2+ and Mn2+ markedly AtAPCs and moderately hAPCs; and Cu2+ decreased the activity of both hAPCs and AtAPCs. All the Me2+-dependent effects correlated well with the amount of ATP-Me complex present. The transport of [14C]AMP, which has a much lower ability of complexation than ATP, was not affected by the presence of the Me2+ tested, except Cu2+. Furthermore, the transport of [3H]ATP catalyzed by the ATP/ADP carrier, which is known to transport only free ATP and ADP, was inhibited by all the Me2+ tested in an inverse relationship with the formation of the ATP-Me complex. Finally, direct measurements of Mg2+, Mn2+, Fe2+, Zn2+ and Cu2+ showed that they are cotransported with ATP by both hAPCs and AtAPCs. It is likely that in vivo APCs transport free ATP and ATP-Mg complex to different degrees, and probably trace amounts of other Me2+ in complex with ATP.
Collapse
Affiliation(s)
- Magnus Monné
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125, Bari, Italy.,Department of Sciences, University of Basilicata, Via Ateneo Lucano 10, 85100, Potenza, Italy
| | - Lucia Daddabbo
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125, Bari, Italy
| | | | - Maria Cristina Nicolardi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125, Bari, Italy
| | - Luigi Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125, Bari, Italy.,Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, 70126, Bari, Italy
| | - Daniela Valeria Miniero
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125, Bari, Italy
| | - Annarosa Mangone
- Department of Chemistry, University of Bari, Via E. Orabona 4, 70126, Bari, Italy
| | - Ferdinando Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125, Bari, Italy. .,Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, 70126, Bari, Italy.
| |
Collapse
|
5
|
Avocado oil induces long-term alleviation of oxidative damage in kidney mitochondria from type 2 diabetic rats by improving glutathione status. J Bioenerg Biomembr 2017; 49:205-214. [DOI: 10.1007/s10863-017-9697-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/06/2017] [Indexed: 12/24/2022]
|
6
|
Curcio R, Muto L, Pierri CL, Montalto A, Lauria G, Onofrio A, Fiorillo M, Fiermonte G, Lunetti P, Vozza A, Capobianco L, Cappello AR, Dolce V. New insights about the structural rearrangements required for substrate translocation in the bovine mitochondrial oxoglutarate carrier. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1473-80. [DOI: 10.1016/j.bbapap.2016.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 11/26/2022]
|
7
|
Kishita Y, Pajak A, Bolar NA, Marobbio CMT, Maffezzini C, Miniero DV, Monné M, Kohda M, Stranneheim H, Murayama K, Naess K, Lesko N, Bruhn H, Mourier A, Wibom R, Nennesmo I, Jespers A, Govaert P, Ohtake A, Van Laer L, Loeys BL, Freyer C, Palmieri F, Wredenberg A, Okazaki Y, Wedell A. Intra-mitochondrial Methylation Deficiency Due to Mutations in SLC25A26. Am J Hum Genet 2015; 97:761-8. [PMID: 26522469 PMCID: PMC4667130 DOI: 10.1016/j.ajhg.2015.09.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 09/29/2015] [Indexed: 01/24/2023] Open
Abstract
S-adenosylmethionine (SAM) is the predominant methyl group donor and has a large spectrum of target substrates. As such, it is essential for nearly all biological methylation reactions. SAM is synthesized by methionine adenosyltransferase from methionine and ATP in the cytoplasm and subsequently distributed throughout the different cellular compartments, including mitochondria, where methylation is mostly required for nucleic-acid modifications and respiratory-chain function. We report a syndrome in three families affected by reduced intra-mitochondrial methylation caused by recessive mutations in the gene encoding the only known mitochondrial SAM transporter, SLC25A26. Clinical findings ranged from neonatal mortality resulting from respiratory insufficiency and hydrops to childhood acute episodes of cardiopulmonary failure and slowly progressive muscle weakness. We show that SLC25A26 mutations cause various mitochondrial defects, including those affecting RNA stability, protein modification, mitochondrial translation, and the biosynthesis of CoQ10 and lipoic acid.
Collapse
Affiliation(s)
- Yoshihito Kishita
- Division of Functional Genomics & Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan
| | - Aleksandra Pajak
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Division of Metabolic Diseases, Department of Laboratory Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Nikhita Ajit Bolar
- Department of Medical Genetics, Faculty of Medicine and Health Sciences, Antwerp University Hospital, University of Antwerp, Antwerp 2650, Belgium
| | - Carlo M T Marobbio
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Edoardo Orabona 4, 70125 Bari, Italy
| | - Camilla Maffezzini
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Division of Metabolic Diseases, Department of Laboratory Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Daniela V Miniero
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Edoardo Orabona 4, 70125 Bari, Italy
| | - Magnus Monné
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Edoardo Orabona 4, 70125 Bari, Italy; Department of Sciences, University of Basilicata, Via Ateneo Lucano 10, 85100 Potenza, Italy
| | - Masakazu Kohda
- Division of Translational Research, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan
| | - Henrik Stranneheim
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 171 76 Stockholm, Sweden; Science for Life Laboratory and Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Kei Murayama
- Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho, Midori, Chiba 266-0007, Japan
| | - Karin Naess
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 171 76 Stockholm, Sweden; Department of Laboratory Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Nicole Lesko
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 171 76 Stockholm, Sweden; Department of Laboratory Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Helene Bruhn
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 171 76 Stockholm, Sweden; Department of Laboratory Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Arnaud Mourier
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Rolf Wibom
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 171 76 Stockholm, Sweden; Department of Laboratory Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Inger Nennesmo
- Department of Pathology, Karolinska University Hospital, 171 77 Stockholm, Sweden
| | - Ann Jespers
- Paola Children's Hospital, ZNA Middelheim, Antwerp 2650, Belgium
| | - Paul Govaert
- Paola Children's Hospital, ZNA Middelheim, Antwerp 2650, Belgium
| | - Akira Ohtake
- Department of Pediatrics, Saitama Medical University, 38 Morohongo Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Lut Van Laer
- Department of Medical Genetics, Faculty of Medicine and Health Sciences, Antwerp University Hospital, University of Antwerp, Antwerp 2650, Belgium
| | - Bart L Loeys
- Department of Medical Genetics, Faculty of Medicine and Health Sciences, Antwerp University Hospital, University of Antwerp, Antwerp 2650, Belgium; Department of Genetics, Radboud University Medical Center, Nijmegen, 6525 GA, the Netherlands
| | - Christoph Freyer
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Division of Metabolic Diseases, Department of Laboratory Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden; Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Ferdinando Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Edoardo Orabona 4, 70125 Bari, Italy.
| | - Anna Wredenberg
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Division of Metabolic Diseases, Department of Laboratory Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden; Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 171 76 Stockholm, Sweden.
| | - Yasushi Okazaki
- Division of Functional Genomics & Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan; Division of Translational Research, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan
| | - Anna Wedell
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Division of Metabolic Diseases, Department of Laboratory Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden; Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 171 76 Stockholm, Sweden; Science for Life Laboratory and Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
| |
Collapse
|
8
|
Porcelli V, Longo A, Palmieri L, Closs EI, Palmieri F. Asymmetric dimethylarginine is transported by the mitochondrial carrier SLC25A2. Amino Acids 2015; 48:427-36. [PMID: 26403849 DOI: 10.1007/s00726-015-2096-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/08/2015] [Indexed: 11/29/2022]
Abstract
Asymmetric dimethyl L-arginine (ADMA) is generated within cells and in mitochondria when proteins with dimethylated arginine residues are degraded. The aim of this study was to identify the carrier protein(s) that transport ADMA across the inner mitochondrial membrane. It was found that the recombinant, purified mitochondrial solute carrier SLC25A2 when reconstituted into liposomes efficiently transports ADMA in addition to its known substrates arginine, lysine, and ornithine and in contrast to the other known mitochondrial amino acid transporters SLC25A12, SLC25A13, SLC25A15, SLC25A18, SLC25A22, and SLC25A29. The widely expressed SLC25A2 transported ADMA across the liposomal membrane in both directions by both unidirectional transport and exchange against arginine or lysine. The SLC25A2-mediated ADMA transport followed first-order kinetics, was nearly as fast as the transport of the best SLC25A2 substrates known so far, and was highly specific as symmetric dimethylarginine (SDMA) was not transported at all. Furthermore, ADMA inhibited SLC25A2 activity with an inhibition constant of 0.38 ± 0.04 mM, whereas SDMA inhibited it poorly. We propose that a major function of SLC25A2 is to export ADMA from mitochondria missing the mitochondrial ADMA-metabolizing enzyme AGXT2. There is evidence that ADMA can also be imported into mitochondria, e.g., in kidney proximal tubulus cells, to be metabolized by AGXT2. SLC25A2 may also mediate this transport function.
Collapse
Affiliation(s)
- Vito Porcelli
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona 4, 70125, Bari, Italy
| | - Antonella Longo
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona 4, 70125, Bari, Italy
| | - Luigi Palmieri
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona 4, 70125, Bari, Italy
| | - Ellen I Closs
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg-University, Obere Zahlbacher Strasse 67, 55101, Mainz, Germany
| | - Ferdinando Palmieri
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona 4, 70125, Bari, Italy.
| |
Collapse
|
9
|
Functional characterization and organ distribution of three mitochondrial ATP-Mg/Pi carriers in Arabidopsis thaliana. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1220-30. [PMID: 26140942 DOI: 10.1016/j.bbabio.2015.06.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/15/2015] [Accepted: 06/29/2015] [Indexed: 11/22/2022]
Abstract
The Arabidopsis thaliana genome contains 58 membrane proteins belonging to the mitochondrial carrier family. Three members of this family, here named AtAPC1, AtAPC2, and AtAPC3, exhibit high structural similarities to the human mitochondrial ATP-Mg(2+)/phosphate carriers. Under normal physiological conditions the AtAPC1 gene was expressed at least five times more than the other two AtAPC genes in flower, leaf, stem, root and seedlings. However, in stress conditions the expression levels of AtAPC1 and AtAPC3 change. Direct transport assays with recombinant and reconstituted AtAPC1, AtAPC2 and AtAPC3 showed that they transport phosphate, AMP, ADP, ATP, adenosine 5'-phosphosulfate and, to a lesser extent, other nucleotides. AtAPC2 and AtAPC3 also had the ability to transport sulfate and thiosulfate. All three AtAPCs catalyzed a counter-exchange transport that was saturable and inhibited by pyridoxal-5'-phosphate. The transport activities of AtAPCs were also inhibited by the addition of EDTA or EGTA and stimulated by the addition of Ca(2+). Given that phosphate and sulfate can be recycled via their own specific carriers, these findings indicate that AtAPCs can catalyze net transfer of adenine nucleotides across the inner mitochondrial membrane in exchange for phosphate (or sulfate), and that this transport is regulated both at the transcriptional level and by Ca(2+).
Collapse
|
10
|
Marobbio CMT, Punzi G, Pierri CL, Palmieri L, Calvello R, Panaro MA, Palmieri F. Pathogenic potential of SLC25A15 mutations assessed by transport assays and complementation of Saccharomyces cerevisiae ORT1 null mutant. Mol Genet Metab 2015; 115:27-32. [PMID: 25818551 DOI: 10.1016/j.ymgme.2015.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/09/2015] [Accepted: 03/09/2015] [Indexed: 01/25/2023]
Abstract
HHH syndrome is an autosomal recessive urea cycle disorder caused by alterations in the SLC25A15 gene encoding the mitochondrial ornithine carrier 1, which catalyzes the transport of cytosolic ornithine into the mitochondria in exchange for intramitochondrial citrulline. In this study the functional effects of several SLC25A15 missense mutations p.G27R, p.M37R, p.N74A, p.F188L, p.F188Y, p.S200K, p.R275Q and p.R275K have been tested by transport assays in reconstituted liposomes and complementation of Saccharomyces cerevisiae ORT1 null mutant in arginine-less synthetic complete medium. The HHH syndrome-causing mutations p.G27R, p.M37R, p.F188L and p.R275Q had impaired transport and did not complement ORT1∆ cells (except p.M37R slightly after 5 days in solid medium). The experimentally produced mutations p.N74A, p.S200K and p.R275K exhibited normal or considerable transport activity and complemented ORT1∆ cells after 3 days (p.N74A, p.S200K) or 5 days (p.R275K) incubation. Furthermore, the experimentally produced p.F188Y mutation displayed a substantial transport activity but did not complement the ORT1∆ cells in both liquid and solid media. In view of the disagreement in the results obtained between the two methods, it is recommended that the method of complementing the S. cerevisiae ORT1 knockout strain is used complimentary with the measurement of the catalytic activity, in order to distinguish HHH syndrome-causing mutations from isomorphisms.
Collapse
Affiliation(s)
- Carlo M T Marobbio
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, via Orabona 4, 70125 Bari, Italy
| | - Giuseppe Punzi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, via Orabona 4, 70125 Bari, Italy
| | - Ciro L Pierri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, via Orabona 4, 70125 Bari, Italy
| | - Luigi Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, via Orabona 4, 70125 Bari, Italy
| | - Rosa Calvello
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, via Orabona 4, 70125 Bari, Italy
| | - Maria A Panaro
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, via Orabona 4, 70125 Bari, Italy
| | - Ferdinando Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, via Orabona 4, 70125 Bari, Italy.
| |
Collapse
|
11
|
Di Noia MA, Todisco S, Cirigliano A, Rinaldi T, Agrimi G, Iacobazzi V, Palmieri F. The human SLC25A33 and SLC25A36 genes of solute carrier family 25 encode two mitochondrial pyrimidine nucleotide transporters. J Biol Chem 2014; 289:33137-48. [PMID: 25320081 DOI: 10.1074/jbc.m114.610808] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human genome encodes 53 members of the solute carrier family 25 (SLC25), also called the mitochondrial carrier family, many of which have been shown to transport inorganic anions, amino acids, carboxylates, nucleotides, and coenzymes across the inner mitochondrial membrane, thereby connecting cytosolic and matrix functions. Here two members of this family, SLC25A33 and SLC25A36, have been thoroughly characterized biochemically. These proteins were overexpressed in bacteria and reconstituted in phospholipid vesicles. Their transport properties and kinetic parameters demonstrate that SLC25A33 transports uracil, thymine, and cytosine (deoxy)nucleoside di- and triphosphates by an antiport mechanism and SLC25A36 cytosine and uracil (deoxy)nucleoside mono-, di-, and triphosphates by uniport and antiport. Both carriers also transported guanine but not adenine (deoxy)nucleotides. Transport catalyzed by both carriers was saturable and inhibited by mercurial compounds and other inhibitors of mitochondrial carriers to various degrees. In confirmation of their identity (i) SLC25A33 and SLC25A36 were found to be targeted to mitochondria and (ii) the phenotypes of Saccharomyces cerevisiae cells lacking RIM2, the gene encoding the well characterized yeast mitochondrial pyrimidine nucleotide carrier, were overcome by expressing SLC25A33 or SLC25A36 in these cells. The main physiological role of SLC25A33 and SLC25A36 is to import/export pyrimidine nucleotides into and from mitochondria, i.e. to accomplish transport steps essential for mitochondrial DNA and RNA synthesis and breakdown.
Collapse
Affiliation(s)
- Maria Antonietta Di Noia
- From the Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, via Orabona 4, 70125 Bari, Italy, Department of Sciences, University of Basilicata, via N. Sauro 85, 85100 Potenza, Italy
| | - Simona Todisco
- From the Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, via Orabona 4, 70125 Bari, Italy
| | - Angela Cirigliano
- Pasteur Institute-Cenci Bolognetti Foundation, Department of Biology and Biotechnology "Charles Darwin," University of Rome La Sapienza, 00185 Rome, Italy, Associazione Gian Franco Lupo "Un Sorriso alla Vita," ASM Azienda Sanitaria Locale di Matera, via Montescaglioso 75100 Matera, Italy, and
| | - Teresa Rinaldi
- Pasteur Institute-Cenci Bolognetti Foundation, Department of Biology and Biotechnology "Charles Darwin," University of Rome La Sapienza, 00185 Rome, Italy
| | - Gennaro Agrimi
- From the Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, via Orabona 4, 70125 Bari, Italy
| | - Vito Iacobazzi
- From the Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, via Orabona 4, 70125 Bari, Italy, Center of Excellence in Comparative Genomics, University of Bari, via Orabona 4, 70125 Bari, Italy
| | - Ferdinando Palmieri
- From the Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, via Orabona 4, 70125 Bari, Italy, Center of Excellence in Comparative Genomics, University of Bari, via Orabona 4, 70125 Bari, Italy
| |
Collapse
|
12
|
Porcelli V, Fiermonte G, Longo A, Palmieri F. The human gene SLC25A29, of solute carrier family 25, encodes a mitochondrial transporter of basic amino acids. J Biol Chem 2014; 289:13374-84. [PMID: 24652292 DOI: 10.1074/jbc.m114.547448] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human genome encodes 53 members of the solute carrier family 25 (SLC25), also called the mitochondrial carrier family, many of which have been shown to transport carboxylates, amino acids, nucleotides, and cofactors across the inner mitochondrial membrane, thereby connecting cytosolic and matrix functions. In this work, a member of this family, SLC25A29, previously reported to be a mitochondrial carnitine/acylcarnitine- or ornithine-like carrier, has been thoroughly characterized biochemically. The SLC25A29 gene was overexpressed in Escherichia coli, and the gene product was purified and reconstituted in phospholipid vesicles. Its transport properties and kinetic parameters demonstrate that SLC25A29 transports arginine, lysine, homoarginine, methylarginine and, to a much lesser extent, ornithine and histidine. Carnitine and acylcarnitines were not transported by SLC25A29. This carrier catalyzed substantial uniport besides a counter-exchange transport, exhibited a high transport affinity for arginine and lysine, and was saturable and inhibited by mercurial compounds and other inhibitors of mitochondrial carriers to various degrees. The main physiological role of SLC25A29 is to import basic amino acids into mitochondria for mitochondrial protein synthesis and amino acid degradation.
Collapse
Affiliation(s)
- Vito Porcelli
- From the Department of Biosciences, Biotechnologies and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology and
| | | | | | | |
Collapse
|
13
|
Todisco S, Di Noia MA, Castegna A, Lasorsa FM, Paradies E, Palmieri F. The Saccharomyces cerevisiae gene YPR011c encodes a mitochondrial transporter of adenosine 5'-phosphosulfate and 3'-phospho-adenosine 5'-phosphosulfate. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:326-34. [PMID: 24296033 DOI: 10.1016/j.bbabio.2013.11.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/15/2013] [Accepted: 11/21/2013] [Indexed: 11/19/2022]
Abstract
The genome of Saccharomyces cerevisiae contains 35 members of the mitochondrial carrier family, nearly all of which have been functionally characterized. In this study, the identification of the mitochondrial carrier for adenosine 5'-phosphosulfate (APS) is described. The corresponding gene (YPR011c) was overexpressed in bacteria. The purified protein was reconstituted into phospholipid vesicles and its transport properties and kinetic parameters were characterized. It transported APS, 3'-phospho-adenosine 5'-phosphosulfate, sulfate and phosphate almost exclusively by a counter-exchange mechanism. Transport was saturable and inhibited by bongkrekic acid and other inhibitors. To investigate the physiological significance of this carrier in S. cerevisiae, mutants were subjected to thermal shock at 45°C in the presence of sulfate and in the absence of methionine. At 45°C cells lacking YPR011c, engineered cells (in which APS is produced only in mitochondria) and more so the latter cells, in which the exit of mitochondrial APS is prevented by the absence of YPR011cp, were less thermotolerant. Moreover, at the same temperature all these cells contained less methionine and total glutathione than wild-type cells. Our results show that S. cerevisiae mitochondria are equipped with a transporter for APS and that YPR011cp-mediated mitochondrial transport of APS occurs in S. cerevisiae under thermal stress conditions.
Collapse
Affiliation(s)
- Simona Todisco
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, via Orabona 4, 70125 Bari, Italy; Center of Excellence in Comparative Genomics, University of Bari, Italy
| | | | - Alessandra Castegna
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, via Orabona 4, 70125 Bari, Italy; Center of Excellence in Comparative Genomics, University of Bari, Italy
| | - Francesco Massimo Lasorsa
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, via Orabona 4, 70125 Bari, Italy; CNR Institute of Biomembranes and Bioenergetics, via Amendola 165/A, 70126 Bari, Italy
| | - Eleonora Paradies
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, via Orabona 4, 70125 Bari, Italy; CNR Institute of Biomembranes and Bioenergetics, via Amendola 165/A, 70126 Bari, Italy
| | - Ferdinando Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, via Orabona 4, 70125 Bari, Italy; Center of Excellence in Comparative Genomics, University of Bari, Italy.
| |
Collapse
|
14
|
Mitochondrial glutamate carriers from Drosophila melanogaster: biochemical, evolutionary and modeling studies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:1245-55. [PMID: 23850633 DOI: 10.1016/j.bbabio.2013.07.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 06/26/2013] [Accepted: 07/02/2013] [Indexed: 12/13/2022]
Abstract
The mitochondrial carriers are members of a family of transport proteins that mediate solute transport across the inner mitochondrial membrane. Two isoforms of the glutamate carriers, GC1 and GC2 (encoded by the SLC25A22 and SLC25A18 genes, respectively), have been identified in humans. Two independent mutations in SLC25A22 are associated with severe epileptic encephalopathy. In the present study we show that two genes (CG18347 and CG12201) phylogenetically related to the human GC encoding genes are present in the D. melanogaster genome. We have functionally characterized the proteins encoded by CG18347 and CG12201, designated as DmGC1p and DmGC2p respectively, by overexpression in Escherichia coli and reconstitution into liposomes. Their transport properties demonstrate that DmGC1p and DmGC2p both catalyze the transport of glutamate across the inner mitochondrial membrane. Computational approaches have been used in order to highlight residues of DmGC1p and DmGC2p involved in substrate binding. Furthermore, gene expression analysis during development and in various adult tissues reveals that CG18347 is ubiquitously expressed in all examined D. melanogaster tissues, while the expression of CG12201 is strongly testis-biased. Finally, we identified mitochondrial glutamate carrier orthologs in 49 eukaryotic species in order to attempt the reconstruction of the evolutionary history of the glutamate carrier function. Comparison of the exon/intron structure and other key features of the analyzed orthologs suggests that eukaryotic glutamate carrier genes descend from an intron-rich ancestral gene already present in the common ancestor of lineages that diverged as early as bilateria and radiata.
Collapse
|
15
|
Monné M, Miniero DV, Iacobazzi V, Bisaccia F, Fiermonte G. The mitochondrial oxoglutarate carrier: from identification to mechanism. J Bioenerg Biomembr 2013; 45:1-13. [PMID: 23054077 DOI: 10.1007/s10863-012-9475-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The 2-oxoglutarate carrier (OGC) belongs to the mitochondrial carrier protein family whose members are responsible for the exchange of metabolites, cofactors and nucleotides between the cytoplasm and mitochondrial matrix. Initially, OGC was characterized by determining substrate specificity, kinetic parameters of transport, inhibitors and molecular probes that form covalent bonds with specific residues. It was shown that OGC specifically transports oxoglutarate and certain carboxylic acids. The substrate specificity combination of OGC is unique, although many of its substrates are also transported by other mitochondrial carriers. The abundant recombinant expression of bovine OGC in Escherichia coli and its ability to functionally reconstitute into proteoliposomes made it possible to deduce the individual contribution of each and every residue of OGC to the transport activity by a complete set of cys-scanning mutants. These studies give experimental support for a substrate binding site constituted by three major contact points on the even-numbered α-helices and identifies other residues as important for transport function through their crucial positions in the structure for conserved interactions and the conformational changes of the carrier during the transport cycle. The results of these investigations have led to utilize OGC as a model protein for understanding the transport mechanism of mitochondrial carriers.
Collapse
Affiliation(s)
- Magnus Monné
- Department of Biosciences, Biotechnology and Pharmacological Sciences, Laboratory of Biochemistry and Molecular Biology, University of Bari, Via E. Orabona 4, 70125 Bari, Italy.
| | | | | | | | | |
Collapse
|
16
|
Abstract
Membrane transport processes, at both the plasma membranes and intracellular membranes, play critical roles in renal function and are a determining factor in the susceptibility of renal epithelial cells to blood-borne drugs and toxic chemicals. Proximal tubular epithelial cells possess a large array of transport proteins for organic anions, organic cations, and peptides on both basolateral and brush-border plasma membranes. Although these transporters function in excretion of waste products and reabsorption of nutrients, they also play a role in the susceptibility of the kidneys to drugs and other toxicants in the blood. The proximal tubules are typically the primary target cells because they are the first epithelial cell population exposed to such chemicals in either the renal plasma or glomerular filtrate and because of their large array of membrane transporters. Besides transport across the basolateral and brush-border plasma membranes, transport across intracellular membranes such as the mitochondrial inner membrane is a critical determinant of metabolite distribution. To illustrate the function of these transporters, carrier-mediated processes for transport of the tripeptide and antioxidant glutathione across the basolateral, brush-border, and mitochondrial inner membranes of the renal proximal tubule are reviewed. Studies are summarized that have identified the involvement of specific carrier proteins and characterized the role of these transporters in glutathione metabolism and turnover, susceptibility of the proximal tubules to oxidative and other stresses, and modulation in disease and other pathological processes.
Collapse
Affiliation(s)
- L H Lash
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
17
|
Oppedisano F, Galluccio M, Indiveri C. Inactivation by Hg2+ and methylmercury of the glutamine/amino acid transporter (ASCT2) reconstituted in liposomes: Prediction of the involvement of a CXXC motif by homology modelling. Biochem Pharmacol 2010; 80:1266-73. [PMID: 20599776 DOI: 10.1016/j.bcp.2010.06.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 06/19/2010] [Accepted: 06/21/2010] [Indexed: 10/19/2022]
Abstract
The effect of HgCl(2), methylmercury and mersalyl on the glutamine/amino acid (ASCT2) transporter reconstituted in liposomes has been studied. Mercuric compounds externally added to the proteoliposomes, inhibited the glutamine/glutamine antiport catalyzed by the reconstituted transporter. Similar effects were observed by pre-treating the proteoliposomes with the mercurials and then removing unreacted compounds before the transport assay. The inhibition was reversed by DTE, cysteine and N-acetyl-cysteine but not by S-carboxymethyl-cysteine. The data demonstrated that the inhibition was due to covalent reaction of mercuric compounds with Cys residue(s) of the transporter. The IC(50) of the transporter for HgCl(2), methylmercury and mersalyl, were 1.4+/-0.10, 2.4+/-0.16 or 3.1+/-0.19 microM, respectively. Kinetic studies of the inhibition showed that the reagents behaved as non-competitive inhibitor. The presence of glutamine or Na(+) during the incubation of the mercuric compounds with the proteoliposomes did not exerted any protective effect on the inhibition. None of the compounds was transported by the reconstituted transporter. A metal binding motif CXXC has been predicted as possible site of interaction of the mercuric compounds with the transporter on the basis of the homology structural model of ASCT2 obtained using the glutamate transporter homologue from Pyrococcus horikoshii as template.
Collapse
Affiliation(s)
- Francesca Oppedisano
- Department of Cell Biology, University of Calabria, Via P.Bucci 4c, 87036 Arcavacata di Rende, Italy
| | | | | |
Collapse
|
18
|
Madeo M, Carrisi C, Iacopetta D, Capobianco L, Cappello AR, Bucci C, Palmieri F, Mazzeo G, Montalto A, Dolce V. Abundant expression and purification of biologically active mitochondrial citrate carrier in baculovirus-infected insect cells. J Bioenerg Biomembr 2009; 41:289-97. [PMID: 19629661 DOI: 10.1007/s10863-009-9226-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2009] [Accepted: 06/14/2009] [Indexed: 10/20/2022]
Abstract
Heterologous expression of recombinant proteins is an essential technology for protein characterization. A major obstacle to investigating the biochemical properties of membrane proteins is the difficulty in obtaining sufficient amounts of functional protein. Here we report the successful expression of the tricarboxylate (or citrate) carrier (CIC) of eel (Anguilla anguilla) from Spodoptera frugiperda (Sf9) cells using the baculovirus expression system. The recombinant CIC was purified by affinity chromatography on Ni(2+)-NTA agarose; the yield of the purified active protein was 0.4-0.5 mg/l of culture. The transport characteristics of the recombinant CIC and the effects of inhibitors on transport are similar to those determined for eel liver mitochondrial CIC. Because the CIC is one member of an extensive family of mitochondrial transport proteins, it is likely that the procedure used in this study to express and purify this carrier can be successfully applied to other mitochondrial transport proteins, thus providing sufficient protein for functional characterization.
Collapse
Affiliation(s)
- Marianna Madeo
- Department of Pharmaco-Biology, University of Calabria, Cosenza, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Zara V, Ferramosca A, Capobianco L, Baltz KM, Randel O, Rassow J, Palmieri F, Papatheodorou P. Biogenesis of yeast dicarboxylate carrier: the carrier signature facilitates translocation across the mitochondrial outer membrane. J Cell Sci 2007; 120:4099-106. [DOI: 10.1242/jcs.018929] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A family of related carrier proteins mediates the exchange of metabolites across the mitochondrial inner membrane. The carrier signature Px[D/E]xx[K/R] is a highly conserved sequence motif in all members of this family. To determine its function in the biogenesis of carrier proteins, we used the dicarboxylate carrier (DIC) of yeast as a model protein. We found that the carrier signature was dispensable in binding of the newly synthesized protein to the import receptor Tom70, but that it was specifically required for efficient translocation across the mitochondrial outer membrane. To determine the relevance of individual amino acid residues of the carrier signature in the transport activity of the protein, we exchanged defined residues with alanine and reconstituted the mutant proteins in vitro. Substitution of the carrier signature in helix H1 reduced the transport activity for [33P]-phosphate by approximately 90% and an additional substitution of the carrier signature in helix H5 blocked the transport activity completely. We conclude that the carrier signature of the dicarboxylate carrier is involved both in the biogenesis and in the transport activity of the functional protein.
Collapse
Affiliation(s)
- Vincenzo Zara
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Via Provinciale Lecce-Monteroni, I-73100 Lecce, Italy
| | - Alessandra Ferramosca
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Via Provinciale Lecce-Monteroni, I-73100 Lecce, Italy
| | - Loredana Capobianco
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Via Provinciale Lecce-Monteroni, I-73100 Lecce, Italy
- Dipartimento Farmaco-Biologico, Università di Bari, I-70125 Bari, Italy
| | - Katrin M. Baltz
- Institut für Physiologische Chemie, Medizinische Fakultät der Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - Olga Randel
- Institut für Physiologische Chemie, Medizinische Fakultät der Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - Joachim Rassow
- Institut für Physiologische Chemie, Medizinische Fakultät der Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | | | - Panagiotis Papatheodorou
- Institut für Physiologische Chemie, Medizinische Fakultät der Ruhr-Universität Bochum, D-44780 Bochum, Germany
| |
Collapse
|
20
|
Cappello AR, Miniero DV, Curcio R, Ludovico A, Daddabbo L, Stipani I, Robinson AJ, Kunji ERS, Palmieri F. Functional and structural role of amino acid residues in the odd-numbered transmembrane alpha-helices of the bovine mitochondrial oxoglutarate carrier. J Mol Biol 2007; 369:400-12. [PMID: 17442340 DOI: 10.1016/j.jmb.2007.03.048] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 03/16/2007] [Accepted: 03/19/2007] [Indexed: 11/30/2022]
Abstract
The mitochondrial oxoglutarate carrier (OGC) plays an important role in the malate-aspartate shuttle, the oxoglutarate-isocitrate shuttle and gluconeogenesis. To establish amino acid residues that are important for function, each residue in the transmembrane alpha-helices H1, H3 and H5 was replaced systematically by a cysteine in a fully functional mutant carrier that was devoid of cysteine residues. The transport activity of the mutant carriers was measured in the presence and absence of sulfhydryl reagents. The observed effects were rationalized by using a comparative structural model of the OGC. Most of the residues that are critical for function are found at the bottom of the cavity and they belong to the signature motifs P-X-[DE]-X-X-[KR] that form a network of three inter-helical salt bridges that close the carrier at the matrix side. The OGC deviates from most other carriers, because it has a conserved leucine (L144) rather than a positively charged residue in the signature motif of the second repeat and thus the salt bridge network is lacking one salt bridge. Incomplete salt-bridge networks due to hydrophobic, aromatic or polar substitutions are observed in other dicarboxylate, phosphate and adenine nucleotide transporters. The interaction between the carrier and the substrate has to provide the activation energy to trigger the re-arrangement of the salt-bridge network and other structural changes required for substrate translocation. For substrates such as malate, which has only two carboxylic and one hydroxyl group, a reduction in the number of salt bridges in the network may be required to lower the energy barrier for translocation. Another group of key residues, consisting of T36, A134, and T233, is close to the putative substrate binding site and substitutions or modifications of these residues may interfere with substrate binding and ion coupling. Residues G32, A35, Q40, G130, G133, A134, G230, and S237 are potentially engaged in inter-helical interactions and they may be involved in the movements of the alpha-helices during translocation.
Collapse
Affiliation(s)
- Anna R Cappello
- Department of Pharmaco-Biology, Laboratory of Biochemistry and Molecular Biology, University of Bari, Via E. Orabona 4, 70125 Bari, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
|
22
|
Kabe Y, Ohmori M, Shinouchi K, Tsuboi Y, Hirao S, Azuma M, Watanabe H, Okura I, Handa H. Porphyrin accumulation in mitochondria is mediated by 2-oxoglutarate carrier. J Biol Chem 2006; 281:31729-35. [PMID: 16920706 DOI: 10.1074/jbc.m604729200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heme (Fe-protoporphyrin IX), an endogenous porphyrin derivative, is an essential molecule in living aerobic organisms and plays a role in a variety of physiological processes such as oxygen transport, respiration, and signal transduction. For the biosynthesis of heme or the mitochondrial heme proteins, heme or its biosynthetic precursor porphyrin must be transported into mitochondria from cytosol. The mechanism of porphyrin accumulation in the mitochondrial inner membrane is unclear. In the present study, we analyzed the mechanism of mitochondrial translocation of porphyrin derivatives. We showed that palladium meso-tetra(4-carboxyphenyl)porphyrin (PdTCPP), a phosphorescent porphyrin derivative, accumulated in the mitochondria of several cell lines. Using affinity latex beads, we showed that 2-oxoglutarate carrier (OGC), the mitochondrial transporter of 2-oxoglutarate, bound to PdTCPP, and in vitro PdTCPP inhibited 2-oxoglutarate uptake into mitochondria in a competitive manner (Ki = 15 microM). Interestingly, all types of porphyrin derivatives examined in this study competitively inhibited 2-oxoglutarate uptake into mitochondria, including protoporphyrin IX, coproporphyrin III, and hemin. Furthermore, mitochondrial accumulation of porphyrins was inhibited by 2-oxoglutarate or OGC inhibitor. These results suggested that porphyrin accumulation in mitochondria is mediated by OGC and that porphyrins are able to competitively inhibit 2-oxoglutarate uptake into mitochondria. This is the first report of a putative mechanism for accumulation of porphyrins in the mitochondrial inner membrane.
Collapse
Affiliation(s)
- Yasuaki Kabe
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Mitochondrial glutathione transport: physiological, pathological and toxicological implications. Chem Biol Interact 2006; 163:54-67. [PMID: 16600197 DOI: 10.1016/j.cbi.2006.03.001] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Revised: 02/28/2006] [Accepted: 03/01/2006] [Indexed: 01/05/2023]
Abstract
Although most cellular glutathione (GSH) is in the cytoplasm, a distinctly regulated pool is present in mitochondria. Inasmuch as GSH synthesis is primarily restricted to the cytoplasm, the mitochondrial pool must derive from transport of cytoplasmic GSH across the mitochondrial inner membrane. Early studies in liver mitochondria primarily focused on the relationship between GSH status and membrane permeability and energetics. Because GSH is an anion at physiological pH, this suggested that some of the organic anion carriers present in the inner membrane could function in GSH transport. Indeed, studies by Lash and colleagues in isolated mitochondria from rat kidney showed that most of the transport (>80%) in that tissue could be accounted for by function of the dicarboxylate carrier (DIC, Slc25a10) and the oxoglutarate carrier (OGC, Slc25a11), which mediate electroneutral exchange of dicarboxylates for inorganic phosphate and 2-oxoglutarate for other dicarboxylates, respectively. The identity and function of specific carrier proteins in other tissues is less certain, although the OGC is expressed in heart, liver, and brain and the DIC is expressed in liver and kidney. An additional carrier that transports 2-oxoglutarate, the oxodicarboxylate or oxoadipate carrier (ODC; Slc25a21), has been described in rat and human liver and its expression has a wide tissue distribution, although its potential function in GSH transport has not been investigated. Overexpression of the cDNA for the DIC and OGC in a renal proximal tubule-derived cell line, NRK-52E cells, showed that enhanced carrier expression and activity protects against oxidative stress and chemically induced apoptosis. This has implications for development of novel therapeutic approaches for treatment of human diseases and pathological states. Several conditions, such as alcoholic liver disease, cirrhosis or other chronic biliary obstructive diseases, and diabetic nephropathy, are associated with depletion or oxidation of the mitochondrial GSH pool in liver or kidney.
Collapse
|
24
|
Capobianco L, Impagnatiello T, Ferramosca A, Zara V. The mitochondrial tricarboxylate carrier of silver eel: chemical modification by sulfhydryl reagents. BMB Rep 2005; 37:515-21. [PMID: 15479612 DOI: 10.5483/bmbrep.2004.37.5.515] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The tricarboxylate (or citrate) carrier was purified from eel liver mitochondria and functionally reconstituted into liposomes. Incubation of the proteoliposomes with various sulfhydryl reagents led to inhibition of the reconstituted citrate transport activity. Preincubation of the proteoliposomes with reversible SH reagents, such as mercurials and methanethiosulfonates, protected the eel liver tricarboxylate carrier against inactivation by the irreversible reagent N-(1-pyrenyl)maleimide (PM). Citrate and L-malate, two substrates of the tricarboxylate carrier, protected the protein against inactivation by sulfhydryl reagents and decreased the fluorescent PM bound to the purified protein. These results suggest that the eel liver tricarboxylate carrier requires a single population of free cysteine(s) in order to manifest catalytic activity. The reactive cysteine(s) is most probably located at or near the substrate binding site of the carrier protein.
Collapse
Affiliation(s)
- Loredana Capobianco
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università di Lecce, Via Prov.le Lecce-Monteroni, I-73100 Lecce, Italy
| | | | | | | |
Collapse
|
25
|
Jordens EZ, Palmieri L, Huizing M, van den Heuvel LP, Sengers RCA, Dörner A, Ruitenbeek W, Trijbels FJ, Valsson J, Sigfusson G, Palmieri F, Smeitink JAM. Adenine nucleotide translocator 1 deficiency associated with Sengers syndrome. Ann Neurol 2002; 52:95-9. [PMID: 12112053 DOI: 10.1002/ana.10214] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sengers syndrome is characterized by congenital cataracts, hypertrophic cardiomyopathy, mitochondrial myopathy, and lactic acidosis, but no abnormalities have been found with routine mitochondrial biochemical diagnostics (the determination of pyruvate oxidation rates and enzyme measurements). In immunoblot analysis, the protein content of the mitochondrial adenine nucleotide translocator 1 (ANT1) was found to be strongly reduced in the muscle tissues of two unrelated patients with Sengers syndrome. In addition, low residual adenine nucleotide translocator activity was detected upon the reconstitution of detergent-solubilized mitochondrial extracts from the patients' skeletal or heart muscle into liposomes. Sequence analysis and linkage analysis showed that ANT1 was not the primary genetic cause of Sengers syndrome. We propose that transcriptional, translational, or posttranslational events are responsible for the ANT1 deficiency associated with the syndrome.
Collapse
Affiliation(s)
- Eric Z Jordens
- Department of Pediatrics, University Medical Center Nijmegen, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Natuzzi D, Daddabbo L, Stipani V, Cappello AR, Miniero DV, Capobianco L, Stipani I. Inactivation of the reconstituted oxoglutarate carrier from bovine heart mitochondria by pyridoxal 5'-phosphate. J Bioenerg Biomembr 1999; 31:535-41. [PMID: 10682911 DOI: 10.1023/a:1026414826457] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The effect of pyridoxal 5'-phosphate and some other lysine reagents on the purified, reconstituted mitochondrial oxoglutarate transport protein has been investigated. The inhibition of oxoglutarate/oxoglutarate exchange by pyridoxal 5'-phosphate can be reversed by passing the proteoliposomes through a Sephadex column but the reduction of the Schiff's base by sodium borohydride yielded an irreversible inactivation of the oxoglutarate carrier protein. Pyridoxal 5'-phosphate, which caused a time- and concentration-dependent inactivation of oxoglutarate transport with an IC50 of 0.5 mM, competed with the substrate for binding to the oxoglutarate carrier (Ki = 0.4 mM). Kinetic analysis of oxoglutarate transport inhibition by pyridoxal 5'-phosphate indicated that modification of a single amino acid residue/carrier molecule was sufficient for complete inhibition of oxoglutarate transport. After reduction with sodium borohydride [3H]pyridoxal 5'-phosphate bound covalently to the oxoglutarate carrier. Incubation of the proteoliposomes with oxoglutarate or L-malate protected the carrier against inactivation and no radioactivity was found associated with the carrier protein. In contrast, glutarate and substrates of other mitochondrial carrier proteins were unable to protect the carrier. Mersalyl, which is a known sulfhydryl reagent, also failed to protect the oxoglutarate carrier against inhibition by pyridoxal 5'-phosphate. These results indicate that pyridoxal 5'-phosphate interacts with the oxoglutarate carrier at a site(s) (i.e., a lysine residue(s) and/or the amino-terminal glycine residue) which is essential for substrate translocation and may be localized at or near the substrate-binding site.
Collapse
Affiliation(s)
- D Natuzzi
- Department of Pharmaco-Biology, University of Bari, Italy
| | | | | | | | | | | | | |
Collapse
|
27
|
González-Barroso MM, Fleury C, Jiménez MA, Sanz JM, Romero A, Bouillaud F, Rial E. Structural and functional study of a conserved region in the uncoupling protein UCP1: the three matrix loops are involved in the control of transport. J Mol Biol 1999; 292:137-49. [PMID: 10493863 DOI: 10.1006/jmbi.1999.3049] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been reported that the region 261-269 of the uncoupling protein from brown adipose tissue mitochondria, UCP1, has an important role in the control of its proton translocating activity. Thus the deletion of residues Phe267-Lys268-Gly269 leads to the loss of the nucleotide regulation of the protein, while the complete deletion of the segment leads to the formation of a pore. The region displays sequence homology with the DNA-binding domain of the estrogen receptor. The present report analyzes the structure, by NMR and circular dichroism, of a 20 amino acid residue peptide containing the residues of interest. We demonstrate that residues 263-268 adopt an alpha-helical structure. The helix is at the N-terminal end of the sixth transmembrane domain. The functional significance of this helix has been examined by site-directed mutagenesis of the protein expressed recombinantly in yeasts. Alterations in the structure or orientation of the region leads to an impairment of the regulation, by nucleotides and fatty acids, of the transport activity. UCP1 is one member of the family formed by the carriers of the mitochondrial inner membrane. The family is characterized by a tripartite structure with three repeated segments of about 100 amino acid residues. Two of the mutations have also been performed in the first and second matrix loops and the effect on UCP1 function is very similar. We conclude that the three matrix loops contribute to the formation of the gating domain in UCP1 and propose that they form a hydrophobic pocket that accommodates the purine moiety of the bound nucleotide.
Collapse
|
28
|
Fiermonte G, Palmieri L, Dolce V, Lasorsa FM, Palmieri F, Runswick MJ, Walker JE. The sequence, bacterial expression, and functional reconstitution of the rat mitochondrial dicarboxylate transporter cloned via distant homologs in yeast and Caenorhabditis elegans. J Biol Chem 1998; 273:24754-9. [PMID: 9733776 DOI: 10.1074/jbc.273.38.24754] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The dicarboxylate carrier (DIC) belongs to a family of transport proteins found in the inner mitochondrial membranes. The biochemical properties of the mammalian protein have been characterized, but the protein is not abundant. It is difficult to purify and had not been sequenced. We have used the sequence of the distantly related yeast DIC to identify a related protein encoded in the genome of Caenorhabditis elegans. Then, related murine expressed sequence tags were identified with the worm sequence, and the murine sequence was used to isolate the cDNA for the rat homolog. The sequences of the worm and rat proteins have features characteristic of the family of mitochondrial transport proteins. Both proteins were expressed in bacteria and reconstituted into phospholipid vesicles where their transport characteristics closely resembled those of whole rat mitochondria and of the rat DIC reconstituted into vesicles. As expected from the role of the DIC in gluconeogenesis and ureogenesis, its transcripts were detected in rat liver and kidney, but unexpectedly, they were also detected in rat heart and brain tissues where the protein may fulfill other roles, possibly in supplying substrates to the Krebs cycle.
Collapse
Affiliation(s)
- G Fiermonte
- Department of Pharmaco-Biology, Laboratory of Biochemistry and Molecular Biology, University of Bari, Via Orabona 4, 70125 Bari, Italy
| | | | | | | | | | | | | |
Collapse
|
29
|
Fiermonte G, Dolce V, Palmieri F. Expression in Escherichia coli, functional characterization, and tissue distribution of isoforms A and B of the phosphate carrier from bovine mitochondria. J Biol Chem 1998; 273:22782-7. [PMID: 9712911 DOI: 10.1074/jbc.273.35.22782] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The two isoforms of the mammalian mitochondrial phosphate carrier (PiC), A and B, differing in the sequence near the N terminus, arise from alternative splicing of a primary transcript of the PiC gene (Dolce, V., Iacobazzi, V., Palmieri, F., and Walker, J. E. (1994) J. Biol. Chem. 269, 10451-10460). To date, the PiC isoforms A and B have not been studied at the protein level. To explore the tissue-distribution and the potential functional differences between the two isoforms, polyclonal site-directed antibodies specific for PiC-A and PiC-B were raised, and the two bovine isoforms were obtained by expression in Escherichia coli and reconstituted into phospholipid vesicles. Western blot analysis demonstrated that isoform A is present in high amounts in heart, skeletal muscle, and diaphragm mitochondria, whereas isoform B is present in the mitochondria of all tissues examined. Heart and liver bovine mitochondria contained 69 and 0 pmol of PiC-A/mg of protein, and 10 and 8 pmol of PiC-B/mg of protein, respectively. In the reconstituted system the pure recombinant isoforms A and B both catalyzed the two known modes of transport (Pi/Pi antiport and Pi/H+ symport) and exhibited similar properties of substrate specificity and inhibitor sensitivity. However, they strongly differed in their kinetic parameters. The transport affinities of isoform B for phosphate and arsenate were found to be 3-fold lower than those of isoform A. Furthermore, the maximum transport rate of isoform B is about 3-fold higher than that of isoform A. These results support the hypothesis that the sequence divergence between PiC-A and PiC-B may have functional significance in determining the affinity and the translocation rate of the substrate through the PiC molecule.
Collapse
Affiliation(s)
- G Fiermonte
- Department of Pharmaco-Biology, Laboratory of Biochemistry and Molecular Biology, University of Bari, 70125 Bari, Italy
| | | | | |
Collapse
|
30
|
Rial E, González-Barroso MM, Fleury C, Bouillaud F. The structure and function of the brown fat uncoupling protein UCP1: current status. Biofactors 1998; 8:209-19. [PMID: 9914821 DOI: 10.1002/biof.5520080307] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The uncoupling protein of brown adipose tissue (UCP1) is a transporter that allows the dissipation as heat of the proton gradient generated by the respiratory chain. The discovery of new UCPs in other mammalian tissues and even in plants suggests that the proton permeability of the mitochondrial inner membrane can be regulated and its control is exerted by specialised proteins. The UCP1 is regulated both at the gene and the mitochondrial level to ensure a high thermogenic capacity to the tissue. The members of the mitochondrial transporter family, which includes the UCPs, present two behaviours with carrier and channel transport modes. It has been proposed that this property reflects a functional organization in two domains: a channel and a gating domain. Mounting evidence suggest that the matrix loops contribute to the formation of the gating domain and thus they are determinants to the control of transport activity.
Collapse
Affiliation(s)
- E Rial
- Centro de Investigaciones Biológicas, C.S.I.C., Madrid, Spain.
| | | | | | | |
Collapse
|
31
|
Indiveri C, Iacobazzi V, Giangregorio N, Palmieri F. The mitochondrial carnitine carrier protein: cDNA cloning, primary structure and comparison with other mitochondrial transport proteins. Biochem J 1997; 321 ( Pt 3):713-9. [PMID: 9032458 PMCID: PMC1218127 DOI: 10.1042/bj3210713] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
GENBANK/o acid sequence of the rat carnitine carrier protein, a component of the inner membranes of mitochondria, has been deduced from the sequences of overlapping cDNA clones. These clones were generated in polymerase chain reactions with primers and probes based on amino acid sequence information, obtained from the direct sequencing of internal peptides of the purified carnitine carrier protein from rat. The protein sequence of the carrier, including the initiator methionine, has a length of 301 amino acids. The mature protein has a modified alpha-amino group, although the nature of this modification and the precise position of the N-terminal residue have not been ascertained. Analysis of the carnitine carrier sequence shows that the protein contains a 3-fold repeated sequence about 100 amino acids in length. Dot plot comparisons and sequence alignment demonstrate that these repeated domains are related to each other and also to the repeats of similar length that are present in the other mitochondrial carrier proteins sequenced so far. The hydropathy analysis of the carnitine carrier supports the view that the domains are folded into similar structural motifs, consisting of two transmembrane alpha-helices joined by an extensive extramembranous hydrophilic region. Southern blotting experiments suggest that both the human and the rat genomes contain single genes for the carnitine carrier. These studies provide the primary structure of the mitochondrial carnitine carrier protein and allow us to identify this metabolically important transporter as a member of the mitochondrial carrier family, and the sixth of the members whose biochemical function has already been identified.
Collapse
Affiliation(s)
- C Indiveri
- Department of Pharmaco-Biology, University of Bari, Italy
| | | | | | | |
Collapse
|