1
|
Perveen S, Hamedi A, Pasdaran A, Heidari R, Azam MSU, Tabassum S, Mehmood R, Peng J. Anti-inflammatory potential of some eudesmanolide and guaianolide sesquiterpenes. Inflammopharmacology 2024; 32:1489-1498. [PMID: 37962696 DOI: 10.1007/s10787-023-01375-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 10/19/2023] [Indexed: 11/15/2023]
Abstract
Ten sesquiterpene lactones isolated from Anvillea garcinii (Burm.f.) DC ethanolic extract were assessed for their anti-inflammatory potential by myeloperoxidase (MPO) activity assignment, and mice paw swelling model. 3α,4α-10β-trihydroxy-8α-acetyloxyguaian-12,6α-olide (1), epi-vulgarin (3), 9a-hydroxyparthenolide (4), garcinamine C (7), garcinamine D (8), garcinamine E (9), and 4, 9-dihydroxyguaian-10(14)-en-12-olide (10) showed explicit anti-inflammatory activity in rodent paw edema and MPO assignment. The findings of this study showed that the α-methylene γ-lactone moiety does not always guarantee an anti-inflammatory effect, but the presence of proline at the C3 of the lactone ring improves the binding of sesquiterpene lactones with MPO isoenzymes, resulting in a more potent inhibition.
Collapse
Affiliation(s)
- Shagufta Perveen
- Department of Chemistry, School of Computer, Mathematical, and Natural Sciences, Morgan State University, Baltimore, MD, 21251, USA.
| | - Azadeh Hamedi
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ardalan Pasdaran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Muhammad Shafiq Ul Azam
- Department of Radiology, Yeovil district hospital Somerset foundation trust (NHS), BA21 4AT,, Yeovil, Somerset, UK
| | - Sobia Tabassum
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University, Islamabad, Lahore Campus, Pakistan
| | - Rashad Mehmood
- Department of Chemistry, Division of Science and Technology, University of Education, Township, Lahore, Pakistan
| | - Jiangnan Peng
- Department of Chemistry, School of Computer, Mathematical, and Natural Sciences, Morgan State University, Baltimore, MD, 21251, USA
| |
Collapse
|
2
|
Pereira GS, Percebom I, Mendes S, Souza PSS, Diniz LFA, Costa MF, Lopes BRP, Toledo KA. Quercetin inhibits neutrophil extracellular traps release and their cytotoxic effects on A549 cells, as well the release and enzymatic activity of elastase and myeloperoxidase. BRAZ J BIOL 2024; 84:e252936. [DOI: 10.1590/1519-6984.252936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 02/21/2022] [Indexed: 11/21/2022] Open
Abstract
Abstract Neutrophil extracellular traps (NETs) were first reported as a microbicidal strategy for activated neutrophils. Through an immunologic response against several stimuli, neutrophils release their DNA together with proteins from granules, nucleus, and cytoplasm (e.g., elastase and myeloperoxidase). To date, NETs have been implicated in tissue damage during intense inflammatory processes, mainly when their release is dependent on oxygen radical generation. Flavonoids are antioxidant and anti-inflammatory agents; of these, quercetin is commonly found in our daily diet. Therefore, quercetin could exert some protective activity against tissue damage induced by NETs. In our in vitro assays, quercetin reduced NETs, myeloperoxidase (MPO), and elastase release from neutrophils stimulated with phorbol 12-myristate 13-acetate (PMA). The activity of these enzymes also decreased in the presence of quercetin. Quercetin also reduced the cytotoxic effect of NETs on alveolar cells (A549 cell line). Further, in silico assays indicated favorable interactions between quercetin and NET proteins (MPO and elastase). Overall, our results demonstrate that quercetin decreases deleterious cellular effects of NETs by reducing their release from activated neutrophils, and diminishing the enzymatic activity of MPO and elastase, possibly through direct interaction.
Collapse
Affiliation(s)
| | | | - S. Mendes
- Universidade Estadual Paulista, Brasil
| | - P. S. S. Souza
- Universidade Estadual Paulista, Brasil; Universidade Estadual Paulista, Brasil
| | - L. F. A. Diniz
- Universidade Estadual Paulista, Brasil; Universidade Estadual Paulista, Brasil
| | - M. F. Costa
- Universidade Estadual Paulista, Brasil; Universidade Estadual Paulista, Brasil
| | - B. R. P. Lopes
- Universidade Estadual Paulista, Brasil; Universidade Estadual Paulista, Brasil
| | - K. A. Toledo
- Universidade Estadual Paulista, Brasil; Universidade Estadual Paulista, Brasil
| |
Collapse
|
3
|
Exploring the Potential of Black Soldier Fly Larval Proteins as Bioactive Peptide Sources through in Silico Gastrointestinal Proteolysis: A Cheminformatic Investigation. Catalysts 2023. [DOI: 10.3390/catal13030605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
Despite their potential as a protein source for human consumption, the health benefits of black soldier fly larvae (BSFL) proteins following human gastrointestinal (GI) digestion are poorly understood. This computational study explored the potential of BSFL proteins to release health-promoting peptides after human GI digestion. Twenty-six proteins were virtually proteolyzed with GI proteases. The resultant peptides were screened for high GI absorption and non-toxicity. Shortlisted peptides were searched against the BIOPEP-UWM and Scopus databases to identify their bioactivities. The potential of the peptides as inhibitors of myeloperoxidase (MPO), NADPH oxidase (NOX), and xanthine oxidase (XO), as well as a disruptor of Keap1–Nrf2 protein–protein interaction, were predicted using molecular docking and dynamics simulation. Our results revealed that about 95% of the 5218 fragments generated from the proteolysis of BSFL proteins came from muscle proteins. Dipeptides comprised the largest group (about 25%) of fragments arising from each muscular protein. Screening of 1994 di- and tripeptides using SwissADME and STopTox tools revealed 65 unique sequences with high GI absorption and non-toxicity. A search of the databases identified 16 antioxidant peptides, 14 anti-angiotensin-converting enzyme peptides, and 17 anti-dipeptidyl peptidase IV peptides among these sequences. Results from molecular docking and dynamic simulation suggest that the dipeptide DF has the potential to inhibit Keap1–Nrf2 interaction and interact with MPO within a short time frame, whereas the dipeptide TF shows promise as an XO inhibitor. BSFL peptides were likely weak NOX inhibitors. Our in silico results suggest that upon GI digestion, BSFL proteins may yield high-GI-absorbed and non-toxic peptides with potential health benefits. This study is the first to investigate the bioactivity of peptides liberated from BSFL proteins following human GI digestion. Our findings provide a basis for further investigations into the potential use of BSFL proteins as a functional food ingredient with significant health benefits.
Collapse
|
4
|
Saylam M, Aydın Köse F, Pabuccuoglu A, Barut Celepci D, Aygün M, Pabuccuoglu V. Design, synthesis, and biological activity studies on benzimidazole derivatives targeting myeloperoxidase. Eur J Med Chem 2023; 248:115083. [PMID: 36634456 DOI: 10.1016/j.ejmech.2022.115083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/30/2022] [Accepted: 12/30/2022] [Indexed: 01/02/2023]
Abstract
Myeloperoxidase (MPO) plays a key role in human antimicrobial system by oxidizing vital molecules of microorganisms in phagolysosomes through produced hypochlorous acid (HOCl). However, MPO can be released outside the phagocyte and produces reactive intermediates leading to tissue damage. MPO, as a local mediator of tissue damage, has been associated with inflammatory diseases such as renal injury, multiple sclerosis, cardiovascular and neurodegenerative diseases. Therefore, the enzyme currently draws attention as a potential therapeutic target. In this study, isomeric 1,3-dihydro-2H-benzo[d]imidazole-2-thione derivatives having amide, hydrazide and hydroxamic acid groups either on nitrogen or on sulphur atom were designed and their inhibitory activity was determined on chlorination and peroxidation cycles of MPO. Among the compounds, 2-(2-thioxo-2,3-dihydro-1H-benzo[d]imidazole-1-yl)acetohydrazide(C19) was found as the most active inhibitor on both cycles.
Collapse
Affiliation(s)
- Merve Saylam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Turkey.
| | - Fadime Aydın Köse
- Department of Biochemistry, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Turkey
| | - Aysun Pabuccuoglu
- Department of Biochemistry, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Duygu Barut Celepci
- Department of Physics, Faculty of Science, Dokuz Eylul Univeristy, Izmir, Turkey
| | - Muhittin Aygün
- Department of Physics, Faculty of Science, Dokuz Eylul Univeristy, Izmir, Turkey
| | - Varol Pabuccuoglu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, Izmir, Turkey.
| |
Collapse
|
5
|
Solo P, Arockia doss M, Prasanna D. Designing and docking studies of imidazole-based drugs as potential inhibitors of myeloperoxidase (MPO) mediated inflammation and oxidative stress. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Computational Screening for the Anticancer Potential of Seed-Derived Antioxidant Peptides: A Cheminformatic Approach. Molecules 2021; 26:molecules26237396. [PMID: 34885982 PMCID: PMC8659047 DOI: 10.3390/molecules26237396] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 11/17/2022] Open
Abstract
Some seed-derived antioxidant peptides are known to regulate cellular modulators of ROS production, including those proposed to be promising targets of anticancer therapy. Nevertheless, research in this direction is relatively slow owing to the inevitable time-consuming nature of wet-lab experimentations. To help expedite such explorations, we performed structure-based virtual screening on seed-derived antioxidant peptides in the literature for anticancer potential. The ability of the peptides to interact with myeloperoxidase, xanthine oxidase, Keap1, and p47phox was examined. We generated a virtual library of 677 peptides based on a database and literature search. Screening for anticancer potential, non-toxicity, non-allergenicity, non-hemolyticity narrowed down the collection to five candidates. Molecular docking found LYSPH as the most promising in targeting myeloperoxidase, xanthine oxidase, and Keap1, whereas PSYLNTPLL was the best candidate to bind stably to key residues in p47phox. Stability of the four peptide-target complexes was supported by molecular dynamics simulation. LYSPH and PSYLNTPLL were predicted to have cell- and blood-brain barrier penetrating potential, although intolerant to gastrointestinal digestion. Computational alanine scanning found tyrosine residues in both peptides as crucial to stable binding to the targets. Overall, LYSPH and PSYLNTPLL are two potential anticancer peptides that deserve deeper exploration in future.
Collapse
|
7
|
Abstract
Myeloperoxidase participates in innate immune defense mechanism through formation of microbicidal reactive oxidants and diffusible radical species. A unique activity is its ability to use chloride as a cosubstrate with hydrogen peroxide to generate chlorinating oxidants such as hypochlorous acid, a potent antimicrobial agent. However, chronic MPO activation can lead to indiscriminate protein modification causing tissue damage, and has been associated with chronic inflammatory diseases, atherosclerosis, and acute cardiovascular events. This has attracted considerable interest in the development of therapeutically useful MPO inhibitors. Today, based on the profound knowledge of structure and function of MPO and its biochemical and biophysical differences with the other homologous human peroxidases, various rational and high-throughput screening attempts were performed in developing specific irreversible and reversible inhibitors. The most prominent candidates as well as MPO inhibitors already studied in clinical trials are introduced and discussed.
Collapse
|
8
|
Romero-Aguilar L, Cárdenas-Monroy C, Garrido-Bazán V, Aguirre J, Guerra-Sánchez G, Pardo JP. On the use of n-octyl gallate and salicylhydroxamic acid to study the alternative oxidase role. Arch Biochem Biophys 2020; 694:108603. [PMID: 32986977 DOI: 10.1016/j.abb.2020.108603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/28/2020] [Accepted: 09/24/2020] [Indexed: 10/23/2022]
Abstract
The alternative oxidase (AOX) catalyzes the transfer of electrons from ubiquinol to oxygen without the translocation of protons across the inner mitochondrial membrane. This enzyme has been proposed to participate in the regulation of cell growth, sporulation, yeast-mycelium transition, resistance to reactive oxygen species, infection, and production of secondary metabolites. Two approaches have been used to evaluate AOX function: incubation of cells for long periods of time with AOX inhibitors or deletion of AOX gene. However, AOX inhibitors might have different targets. To test non-specific effects of n-octyl gallate (nOg) and salicylhydroxamic acid (SHAM) on fungal physiology we measured the growth and respiratory capacity of two fungal strains lacking (Ustilago maydis-Δaox and Saccharomyces cerevisiae) and three species containing the AOX gene (U. maydis WT, Debaryomyces hansenii, and Aspergillus nidulans). For U. maydis, a strong inhibition of growth and respiratory capacity by SHAM was observed, regardless of the presence of AOX. Similarly, A. nidulans mycelial growth was inhibited by low concentrations of nOg independently of AOX expression. In contrast, these inhibitors had no effect or had a minor effect on S. cerevisiae and D. hansenii growth. These results show that nOg and SHAM have AOX independent effects which vary in different microorganisms, indicating that studies based on long-term incubation of cells with these inhibitors should be considered as inconclusive.
Collapse
Affiliation(s)
- Lucero Romero-Aguilar
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Copilco, Cd. Universitaria, Coyoacán, 04510, Ciudad de México, Mexico
| | - Christian Cárdenas-Monroy
- Ciencia Forense, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Copilco, Cd. Universitaria, Coyoacán, 04510, Ciudad de México, Mexico
| | - Verónica Garrido-Bazán
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Copilco, Cd. Universitaria, Coyoacán, 04510, Ciudad de México, Mexico
| | - Jesus Aguirre
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Copilco, Cd. Universitaria, Coyoacán, 04510, Ciudad de México, Mexico
| | - Guadalupe Guerra-Sánchez
- Departamento de Microbiología, Laboratorio de Bioquímica y Biotecnología de Hongos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala S/N., Miguel Hidalgo, 11350, Ciudad de México, Mexico
| | - Juan Pablo Pardo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Copilco, Cd. Universitaria, Coyoacán, 04510, Ciudad de México, Mexico.
| |
Collapse
|
9
|
Jeelani R, Jahanbakhsh S, Kohan-Ghadr HR, Thakur M, Khan S, Aldhaheri SR, Yang Z, Andreana P, Morris R, Abu-Soud HM. Mesna (2-mercaptoethane sodium sulfonate) functions as a regulator of myeloperoxidase. Free Radic Biol Med 2017; 110:54-62. [PMID: 28552694 PMCID: PMC6859649 DOI: 10.1016/j.freeradbiomed.2017.05.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/13/2017] [Accepted: 05/24/2017] [Indexed: 12/19/2022]
Abstract
Myeloperoxidase (MPO), an abundant protein in neutrophils, monocytes, and macrophages, is thought to play a critical role in the pathogenesis of various disorders ranging from cardiovascular diseases to cancer. We show that mesna (2-mercaptoethanesulfonic acid sodium salt), a detoxifying agent, which inhibits side effects of oxazaphosphorine chemotherapy, functions as a potent inhibitor of MPO; modulating its catalytic activity and function. Using rapid kinetic methods, we examined the interactions of mesna with MPO compounds I and II and ferric forms in the presence and absence of chloride (Cl-), the preferred substrate of MPO. Our results suggest that low mesna concentrations dramatically influenced the build-up, duration, and decay of steady-state levels of Compound I and Compound II, which is the rate-limiting intermediate in the classic peroxidase cycle. Whereas, higher mesna concentrations facilitate the porphyrin-to-adjacent amino acid electron transfer allowing the formation of an unstable transient intermediate, Compound I*, that displays a characteristic spectrum similar to Compound I. In the absence of plasma level of chloride, mesna not only accelerated the formation and decay of Compound II but also reduced its stability in a dose depend manner. Mesna competes with Cl-, inhibiting MPO's chlorinating activity with an IC50 of 5µM, and switches the reaction from a 2e- to a 1e- pathway allowing the enzyme to function only with catalase-like activity. A kinetic model which shows the dual regulation through which mesna interacts with MPO and regulates its downstream inflammatory pathways is presented further validating the repurposing of mesna as an anti-inflammatory drug.
Collapse
Affiliation(s)
- Roohi Jeelani
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, United States
| | - Seyedehameneh Jahanbakhsh
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, United States
| | - Hamid-Reza Kohan-Ghadr
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, United States
| | - Mili Thakur
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, United States
| | - Sana Khan
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, United States
| | - Sarah R Aldhaheri
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, United States
| | - Zhe Yang
- Department of Microbiology, Immunology and Biochemistry, Wayne State University School of Medicine, Detroit, MI, 48201, United States
| | - Peter Andreana
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, University of Toledo, Toledo, OH 43606, United States
| | - Robert Morris
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, United States; Karmanos Cancer Institute, Detroit, MI, 48201, United States
| | - Husam M Abu-Soud
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, United States; Department of Microbiology, Immunology and Biochemistry, Wayne State University School of Medicine, Detroit, MI, 48201, United States.
| |
Collapse
|
10
|
Soubhye J, Chikh Alard I, Aldib I, Prévost M, Gelbcke M, De Carvalho A, Furtmüller PG, Obinger C, Flemmig J, Tadrent S, Meyer F, Rousseau A, Nève J, Mathieu V, Zouaoui Boudjeltia K, Dufrasne F, Van Antwerpen P. Discovery of Novel Potent Reversible and Irreversible Myeloperoxidase Inhibitors Using Virtual Screening Procedure. J Med Chem 2017; 60:6563-6586. [DOI: 10.1021/acs.jmedchem.7b00285] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Jalal Soubhye
- Laboratoire
de Chimie Pharmaceutique Organique, Faculté de Pharmacie, Université Libre de Bruxelles, Campus de la Plaine, Boulevard du
Triomphe, 1050 Bruxelles, Belgium
| | - Ibaa Chikh Alard
- Laboratoire
de Pharmacie Galénique et Biopharmacie, Faculté de Pharmacie, Université Libre de Bruxelles, Campus de la Plaine, Boulevard du
Triomphe, 1050 Bruxelles, Belgium
| | - Iyas Aldib
- Laboratoire
de Chimie Pharmaceutique Organique, Faculté de Pharmacie, Université Libre de Bruxelles, Campus de la Plaine, Boulevard du
Triomphe, 1050 Bruxelles, Belgium
| | - Martine Prévost
- Laboratoire
de Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles, Campus de la Plaine, Boulevard du Triomphe, 1050 Bruxelles, Belgium
| | - Michel Gelbcke
- Laboratoire
de Chimie Pharmaceutique Organique, Faculté de Pharmacie, Université Libre de Bruxelles, Campus de la Plaine, Boulevard du
Triomphe, 1050 Bruxelles, Belgium
| | - Annelise De Carvalho
- Laboratoire
de Cancérologie et Toxicologie Expérimentale, Faculté
de Pharmacie, Université Libre de Bruxelles, Campus de la Plaine, Boulevard du Triomphe, 1050 Bruxelles, Belgium
| | - Paul G. Furtmüller
- Department
of Chemistry, BOKU—University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Christian Obinger
- Department
of Chemistry, BOKU—University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Jörg Flemmig
- Institute
for Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Haertelstrasse 16−18, 04107 Leipzig, Germany
| | - Sara Tadrent
- Laboratoire
de Chimie Pharmaceutique Organique, Faculté de Pharmacie, Université Libre de Bruxelles, Campus de la Plaine, Boulevard du
Triomphe, 1050 Bruxelles, Belgium
| | - Franck Meyer
- Laboratory
of Biopolymers and Supramolecular Nanomaterials, Faculty of Pharmacy, Université Libre de Bruxelles, Campus de la Plaine, Boulevard du
Triomphe, 1050 Bruxelles, Belgium
| | - Alexandre Rousseau
- Laboratory
of Experimentral Medicine, CHU Charleroi, A. Vsale Hospital, and Université Libre de Bruxelles, 6110 Montigny-le-Tilleul, Belgium
| | - Jean Nève
- Laboratoire
de Chimie Pharmaceutique Organique, Faculté de Pharmacie, Université Libre de Bruxelles, Campus de la Plaine, Boulevard du
Triomphe, 1050 Bruxelles, Belgium
| | - Véronique Mathieu
- Laboratoire
de Cancérologie et Toxicologie Expérimentale, Faculté
de Pharmacie, Université Libre de Bruxelles, Campus de la Plaine, Boulevard du Triomphe, 1050 Bruxelles, Belgium
| | - Karim Zouaoui Boudjeltia
- Laboratory
of Experimentral Medicine, CHU Charleroi, A. Vsale Hospital, and Université Libre de Bruxelles, 6110 Montigny-le-Tilleul, Belgium
| | - François Dufrasne
- Laboratoire
de Chimie Pharmaceutique Organique, Faculté de Pharmacie, Université Libre de Bruxelles, Campus de la Plaine, Boulevard du
Triomphe, 1050 Bruxelles, Belgium
| | - Pierre Van Antwerpen
- Laboratoire
de Chimie Pharmaceutique Organique, Faculté de Pharmacie, Université Libre de Bruxelles, Campus de la Plaine, Boulevard du
Triomphe, 1050 Bruxelles, Belgium
- Analytical
Platform of the Faculty of Pharmacy, Université Libre de Bruxelles, Campus de la Plaine, Boulevard du Triomphe, 1050 Bruxelles, Belgium
| |
Collapse
|
11
|
Novel bis-arylalkylamines as myeloperoxidase inhibitors: Design, synthesis, and structure-activity relationship study. Eur J Med Chem 2016; 123:746-762. [DOI: 10.1016/j.ejmech.2016.07.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/05/2016] [Accepted: 07/22/2016] [Indexed: 01/15/2023]
|
12
|
Abstract
BACKGROUND Despite its important role in the immune system, myeloperoxidase (MPO) is implicated in a wide range of inflammatory syndromes due to its oxidative product HOCl. The oxidative damages caused by MPO make it a new target for developing promising anti-inflammatory agents. In this paper, we tried to understand the mechanism of MPO inhibition in order to facilitate the drug design, to develop more accurate virtual tests and to understand the structure-activity relationship. RESULTS Based on docking experiments, kinetic studies and in vitro tests, it is determined that a potent MPO inhibitor must possess an oxidizable group in addition to a high affinity with the active site. At last, a new hit was found in this work namely 4-(3-hydroxy-phenoxy)-butylamine (5) that has IC50 of 86 nM. CONCLUSION Hydroxy-phenoxy alkylamine derivatives were found to be promising MPO inhibitors and they may represent an important starting point in the development of more potent MPO inhibitors.
Collapse
|
13
|
Flemmig J, Gau J, Schlorke D, Arnhold J. Lactoperoxidase as a potential drug target. Expert Opin Ther Targets 2015; 20:447-61. [DOI: 10.1517/14728222.2016.1112378] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jörg Flemmig
- Institute for Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Härtelstraße 16 – 18, 04107 Leipzig, Germany
- Translational Centre for Regenerative Medicine (TRM) Leipzig, University of Leipzig, Leipzig, Germany
| | - Jana Gau
- Institute for Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Härtelstraße 16 – 18, 04107 Leipzig, Germany
| | - Denise Schlorke
- Institute for Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Härtelstraße 16 – 18, 04107 Leipzig, Germany
- Translational Centre for Regenerative Medicine (TRM) Leipzig, University of Leipzig, Leipzig, Germany
| | - Jürgen Arnhold
- Institute for Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Härtelstraße 16 – 18, 04107 Leipzig, Germany
- Translational Centre for Regenerative Medicine (TRM) Leipzig, University of Leipzig, Leipzig, Germany
| |
Collapse
|
14
|
Chavali B, Masquelin T, Nilges MJ, Timm DE, Stout SL, Matter WF, Jin N, Jadhav PK, Deng GG. ESR and X-ray Structure Investigations on the Binding and Mechanism of Inhibition of the Native State of Myeloperoxidase with Low Molecular Weight Fragments. APPLIED MAGNETIC RESONANCE 2015; 46:853-873. [PMID: 26224994 PMCID: PMC4515242 DOI: 10.1007/s00723-015-0698-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 04/01/2015] [Indexed: 03/24/2024]
Abstract
As an early visitor to the injured loci, neutrophil-derived human Myeloperoxidase (hMPO) offers an attractive protein target to modulate the inflammation of the host tissue through suitable inhibitors. We describe a novel methodology of using low temperature ESR spectroscopy (6 K) and FAST™ technology to screen a diverse series of small molecules that inhibit the peroxidase function through reversible binding to the native state of MPO. Our initial efforts to profile molecules on the inhibition of MPO-initiated nitration of the Apo-A1 peptide (AEYHAKATEHL) assay showed several potent (with sub-micro molar IC50s) but spurious inhibitors that either do not bind to the heme pocket in the enzyme or retain high (>50 %) anti oxidant potential. Such molecules when taken forward for X-ray did not yield inhibitor-bound co-crystals. We then used ESR to confirm direct binding to the native state enzyme, by measuring the binding-induced shift in the electronic parameter g to rank order the molecules. Molecules with a higher rank order-those with g-shift Rrelative ≥15-yielded well-formed protein-bound crystals (n = 33 structures). The co-crystal structure with the LSN217331 inhibitor reveals that the chlorophenyl group projects away from the heme along the edges of the Phe366 and Phe407 side chain phenyl rings thereby sterically restricting the access to the heme by the substrates like H2O2. Both ESR and antioxidant screens were used to derive the mechanism of action (reversibility, competitive substrate inhibition, and percent antioxidant potential). In conclusion, our results point to a viable path forward to target the native state of MPO to tame local inflammation.
Collapse
Affiliation(s)
- Balagopalakrishna Chavali
- />Division of Tailored Therapeutics and Imaging, Lilly Corporate Center, Eli Lilly and Company, Bldg.87/C04, Column S17 DC 1940, 893 S Delaware Street, Indianapolis, IN 46285 USA
| | - Thierry Masquelin
- />Discovery Chemistry Research and Technologies, Lilly Corporate Center, Eli Lilly and Company, 893 S Delaware Street, Indianapolis, IN 46285 USA
| | - Mark J. Nilges
- />School of Molecular and Cellular Biology and Illinois EPR Research Center, Illinois EPR Research Center, 506 S. Mathews St., Urbana, IL 61801 USA
| | - David E. Timm
- />Discovery Chemistry Research and Technologies, Lilly Corporate Center, Eli Lilly and Company, 893 S Delaware Street, Indianapolis, IN 46285 USA
| | - Stephanie L. Stout
- />Discovery Chemistry Research and Technologies, Lilly Corporate Center, Eli Lilly and Company, 893 S Delaware Street, Indianapolis, IN 46285 USA
| | - William F. Matter
- />Division of Endocrine and Cardiovascular Research, Lilly Corporate Center, Eli Lilly and Company, 893 S Delaware Street, Indianapolis, IN 46285 USA
| | - Najia Jin
- />Division of Endocrine and Cardiovascular Research, Lilly Corporate Center, Eli Lilly and Company, 893 S Delaware Street, Indianapolis, IN 46285 USA
| | - Prabhakar K. Jadhav
- />Discovery Chemistry Research and Technologies, Lilly Corporate Center, Eli Lilly and Company, 893 S Delaware Street, Indianapolis, IN 46285 USA
| | - Gary G. Deng
- />Division of Endocrine and Cardiovascular Research, Lilly Corporate Center, Eli Lilly and Company, 893 S Delaware Street, Indianapolis, IN 46285 USA
| |
Collapse
|
15
|
Van Antwerpen P, Zouaoui Boudjeltia K. Rational drug design applied to myeloperoxidase inhibition. Free Radic Res 2015; 49:711-20. [DOI: 10.3109/10715762.2015.1027201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
16
|
Bacterial and algal orthologs of prostaglandin H₂synthase: novel insights into the evolution of an integral membrane protein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:83-94. [PMID: 25281773 DOI: 10.1016/j.bbamem.2014.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 09/09/2014] [Accepted: 09/23/2014] [Indexed: 01/01/2023]
Abstract
Prostaglandin H₂synthase (PGHS; EC 1.14.99.1), a bi-functional heme enzyme that contains cyclooxygenase and peroxidase activities, plays a central role in the inflammatory response, pain, and blood clotting in higher eukaryotes. In this review, we discuss the progenitors of the mammalian enzyme by using modern bioinformatics and homology modeling to draw comparisons between this well-studied system and its orthologs from algae and bacterial sources. A clade of bacterial and algal orthologs is described that have salient structural features distinct from eukaryotic counterparts, including the lack of a dimerization and EGF-like domains, the absence of gene duplicates, and minimal membrane-binding domains. The functional implications of shared and variant features are discussed.
Collapse
|
17
|
Forbes LV, Sjögren T, Auchère F, Jenkins DW, Thong B, Laughton D, Hemsley P, Pairaudeau G, Turner R, Eriksson H, Unitt JF, Kettle AJ. Potent reversible inhibition of myeloperoxidase by aromatic hydroxamates. J Biol Chem 2013; 288:36636-47. [PMID: 24194519 DOI: 10.1074/jbc.m113.507756] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The neutrophil enzyme myeloperoxidase (MPO) promotes oxidative stress in numerous inflammatory pathologies by producing hypohalous acids. Its inadvertent activity is a prime target for pharmacological control. Previously, salicylhydroxamic acid was reported to be a weak reversible inhibitor of MPO. We aimed to identify related hydroxamates that are good inhibitors of the enzyme. We report on three hydroxamates as the first potent reversible inhibitors of MPO. The chlorination activity of purified MPO was inhibited by 50% by a 5 nm concentration of a trifluoromethyl-substituted aromatic hydroxamate, HX1. The hydroxamates were specific for MPO in neutrophils and more potent toward MPO compared with a broad range of redox enzymes and alternative targets. Surface plasmon resonance measurements showed that the strength of binding of hydroxamates to MPO correlated with the degree of enzyme inhibition. The crystal structure of MPO-HX1 revealed that the inhibitor was bound within the active site cavity above the heme and blocked the substrate channel. HX1 was a mixed-type inhibitor of the halogenation activity of MPO with respect to both hydrogen peroxide and halide. Spectral analyses demonstrated that hydroxamates can act variably as substrates for MPO and convert the enzyme to a nitrosyl ferrous intermediate. This property was unrelated to their ability to inhibit MPO. We propose that aromatic hydroxamates bind tightly to the active site of MPO and prevent it from producing hypohalous acids. This mode of reversible inhibition has potential for blocking the activity of MPO and limiting oxidative stress during inflammation.
Collapse
Affiliation(s)
- Louisa V Forbes
- From the Centre for Free Radical Research, Department of Pathology, University of Otago Christchurch, Christchurch 8140, New Zealand
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sun X, Yang J, Norberg T, Baltzer L. A synthetic polypeptide conjugate from a 42-residue polypeptide and salicylhydroxamic acid binds human myeloperoxidase with high affinity. J Pept Sci 2012; 18:731-9. [PMID: 23086900 DOI: 10.1002/psc.2459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 09/12/2012] [Accepted: 09/21/2012] [Indexed: 11/10/2022]
Abstract
Myeloperoxidase (MPO) is a 150 kD tetrameric heme protein consisting of two heavy chains and two light chains, which is present in neutrophils, white blood cells, at concentrations between 2% and 5% and plays an important role in the innate immune system. The MPO concentration in serum or plasma has been shown to be linked to the risk for cardiovascular diseases, and MPO is considered to be a high potential diagnostic biomarker. To develop a molecule that binds MPO, salicylhydroxamic acid (SHA), a substrate analog inhibitor of MPO with a KD=2 μM, was conjugated to a designed set of 42-residue polypeptide scaffolds via 9- and 11-carbon atom aliphatic spacers to form 20 different protein binder candidates, and their interactions with MPO were evaluated by surface plasmon resonance analysis. The polypeptide conjugate 4C37L34C11SHA was found to bind to MPO with an affinity that could be estimated to have a dissociation constant of around 400 pM, nearly four orders of magnitude higher than that of SHA. Inhibition of binding to MPO by free SHA was observed in competition experiments demonstrating that the binding of the polypeptide conjugate is dominated by the interactions of SHA with the heme cavity. Although still in the future, the discovery of these new synthetic binders for MPO suggests a route to clinical diagnostic tests in vivo or in vitro, independent of antibodies.
Collapse
Affiliation(s)
- Xiaojiao Sun
- Department of Chemistry-BMC, Uppsala University, PO Box 576, SE-751 23, Uppsala, Sweden
| | | | | | | |
Collapse
|
19
|
Forbes LV, Furtmüller PG, Khalilova I, Turner R, Obinger C, Kettle AJ. Isoniazid as a substrate and inhibitor of myeloperoxidase: Identification of amine adducts and the influence of superoxide dismutase on their formation. Biochem Pharmacol 2012; 84:949-60. [DOI: 10.1016/j.bcp.2012.07.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 07/17/2012] [Accepted: 07/18/2012] [Indexed: 12/01/2022]
|
20
|
Aldib I, Soubhye J, Zouaoui Boudjeltia K, Vanhaeverbeek M, Rousseau A, Furtmüller PG, Obinger C, Dufrasne F, Nève J, Van Antwerpen P, Prévost M. Evaluation of New Scaffolds of Myeloperoxidase Inhibitors by Rational Design Combined with High-Throughput Virtual Screening. J Med Chem 2012; 55:7208-18. [DOI: 10.1021/jm3007245] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Iyas Aldib
- Laboratoire de Chimie Pharmaceutique Organique, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium
| | - Jalal Soubhye
- Laboratoire de Chimie Pharmaceutique Organique, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium
| | - Karim Zouaoui Boudjeltia
- Laboratory of Experimentral Medicine, CHU Charleroi, A. Vesale Hospital, Université Libre de Bruxelles, Montigny-le-Tilleul, Belgium
| | - Michel Vanhaeverbeek
- Laboratory of Experimentral Medicine, CHU Charleroi, A. Vesale Hospital, Université Libre de Bruxelles, Montigny-le-Tilleul, Belgium
| | - Alexandre Rousseau
- Laboratory of Experimentral Medicine, CHU Charleroi, A. Vesale Hospital, Université Libre de Bruxelles, Montigny-le-Tilleul, Belgium
| | - Paul G. Furtmüller
- Department of Chemistry, Division of Biochemistry at the Vienna Institute of BioTechnology, BOKU—University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna
| | - Christian Obinger
- Department of Chemistry, Division of Biochemistry at the Vienna Institute of BioTechnology, BOKU—University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna
| | - Francois Dufrasne
- Laboratoire de Chimie Pharmaceutique Organique, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium
| | - Jean Nève
- Laboratoire de Chimie Pharmaceutique Organique, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium
| | - Pierre Van Antwerpen
- Laboratoire de Chimie Pharmaceutique Organique, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium
- Analytical Platform of the Faculty of Pharmacy, Université Libre de Bruxelles, Brussels, Belgium
| | - Martine Prévost
- Laboratoire de Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
21
|
Malvezzi A, Queiroz RF, de Rezende L, Augusto O, Amaral ATD. MPO Inhibitors Selected by Virtual Screening. Mol Inform 2011; 30:605-13. [DOI: 10.1002/minf.201100016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 05/16/2011] [Indexed: 11/06/2022]
|
22
|
de Serrano V, Franzen S. Structural evidence for stabilization of inhibitor binding by a protein cavity in the dehaloperoxidase-hemoglobin from Amphitrite ornata. Biopolymers 2011; 98:27-35. [DOI: 10.1002/bip.21674] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 04/13/2011] [Accepted: 04/18/2011] [Indexed: 01/23/2023]
|
23
|
Gumiero A, Murphy EJ, Metcalfe CL, Moody PC, Raven EL. An analysis of substrate binding interactions in the heme peroxidase enzymes: A structural perspective. Arch Biochem Biophys 2010; 500:13-20. [DOI: 10.1016/j.abb.2010.02.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 02/23/2010] [Accepted: 02/27/2010] [Indexed: 11/29/2022]
|
24
|
First structural evidence for the mode of diffusion of aromatic ligands and ligand-induced closure of the hydrophobic channel in heme peroxidases. J Biol Inorg Chem 2010; 15:1099-107. [DOI: 10.1007/s00775-010-0669-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 04/27/2010] [Indexed: 11/26/2022]
|
25
|
Singh AK, Kumar RP, Pandey N, Singh N, Sinha M, Bhushan A, Kaur P, Sharma S, Singh TP. Mode of binding of the tuberculosis prodrug isoniazid to heme peroxidases: binding studies and crystal structure of bovine lactoperoxidase with isoniazid at 2.7 A resolution. J Biol Chem 2009; 285:1569-76. [PMID: 19907057 DOI: 10.1074/jbc.m109.060327] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Isoniazid (INH) is an anti-tuberculosis prodrug that is activated by mammalian lactoperoxidase and Mycobacterium tuberculosis catalase peroxidase (MtCP). We report here binding studies, an enzyme assay involving INH, and the crystal structure of the complex of bovine lactoperoxidase (LPO) with INH to illuminate binding properties and INH activation as well as the mode of diffusion and interactions together with a detailed structural and functional comparison with MtCP. The structure determination shows that isoniazid binds to LPO at the substrate binding site on the distal heme side. The substrate binding site is connected to the protein surface through a long hydrophobic channel. The acyl hydrazide moiety of isoniazid interacts with Phe(422) O, Gln(423) O(epsilon1), and Phe(254) O. In this arrangement, pyridinyl nitrogen forms a hydrogen bond with a water molecule, W-1, which in turn forms three hydrogen bonds with Fe(3+), His(109) N(epsilon2), and Gln(105) N(epsilon2). The remaining two sides of isoniazid form hydrophobic interactions with the atoms of heme pyrrole ring A, C(beta) and C(gamma) atoms of Glu(258), and C(gamma) and C(delta) atoms of Arg(255). The binding studies indicate that INH binds to LPO with a value of 0.9 x 10(-6) m for the dissociation constant. The nitro blue tetrazolium reduction assay shows that INH is activated by the reaction of LPO-H(2)O(2) with INH. This suggests that LPO can be used for INH activation. It also indicates that the conversion of INH into isonicotinoyl radical by LPO may be the cause of INH toxicity.
Collapse
Affiliation(s)
- Amit K Singh
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110 029, India
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Singh AK, Singh N, Sinha M, Bhushan A, Kaur P, Srinivasan A, Sharma S, Singh TP. Binding modes of aromatic ligands to mammalian heme peroxidases with associated functional implications: crystal structures of lactoperoxidase complexes with acetylsalicylic acid, salicylhydroxamic acid, and benzylhydroxamic acid. J Biol Chem 2009; 284:20311-8. [PMID: 19465478 PMCID: PMC2740456 DOI: 10.1074/jbc.m109.010280] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Indexed: 11/06/2022] Open
Abstract
The binding and structural studies of bovine lactoperoxidase with three aromatic ligands, acetylsalicylic acid (ASA), salicylhydoxamic acid (SHA), and benzylhydroxamic acid (BHA) show that all the three compounds bind to lactoperoxidase at the substrate binding site on the distal heme side. The binding of ASA occurs without perturbing the position of conserved heme water molecule W-1, whereas both SHA and BHA displace it by the hydroxyl group of their hydroxamic acid moieties. The acetyl group carbonyl oxygen atom of ASA forms a hydrogen bond with W-1, which in turn makes three other hydrogen-bonds, one each with heme iron, His-109 N(epsilon2), and Gln-105 N(epsilon2). In contrast, in the complexes of SHA and BHA, the OH group of hydroxamic acid moiety in both complexes interacts with heme iron directly with Fe-OH distances of 3.0 and 3.2A respectively. The OH is also hydrogen bonded to His-109 N(epsilon2) and Gln-105N(epsilon2). The plane of benzene ring of ASA is inclined at 70.7 degrees from the plane of heme moiety, whereas the aromatic planes of SHA and BHA are nearly parallel to the heme plane with inclinations of 15.7 and 6.2 degrees , respectively. The mode of ASA binding provides the information about the mechanism of action of aromatic substrates, whereas the binding characteristics of SHA and BHA indicate the mode of inhibitor binding.
Collapse
Affiliation(s)
- Amit K. Singh
- From the Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110 029, India
| | - Nagendra Singh
- From the Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110 029, India
| | - Mau Sinha
- From the Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110 029, India
| | - Asha Bhushan
- From the Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110 029, India
| | - Punit Kaur
- From the Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110 029, India
| | - Alagiri Srinivasan
- From the Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110 029, India
| | - Sujata Sharma
- From the Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110 029, India
| | - Tej P. Singh
- From the Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110 029, India
| |
Collapse
|
27
|
Shiba Y, Kinoshita T, Chuman H, Taketani Y, Takeda E, Kato Y, Naito M, Kawabata K, Ishisaka A, Terao J, Kawai Y. Flavonoids as substrates and inhibitors of myeloperoxidase: molecular actions of aglycone and metabolites. Chem Res Toxicol 2008; 21:1600-9. [PMID: 18620432 DOI: 10.1021/tx8000835] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Myeloperoxidase (MPO), secreted by activated neutrophils and macrophages at the site of inflammation, may be implicated in the oxidation of protein/lipoprotein during the development of cardiovascular diseases. Flavonoids have been suggested to act as antioxidative and anti-inflammatory agents in vivo; however, their molecular actions have not yet been fully understood. In this study, we examined the molecular basis of the inhibitory effects of dietary flavonoids, such as quercetin, and their metabolites on the catalytic reaction of MPO using a combination of biological assays and theoretical calculation studies. Immunohistochemical staining showed that a quercetin metabolite was colocalized with macrophages, MPO, and dityrosine, an MPO-derived oxidation product of tyrosine, in human atherosclerotic aorta. Quercetin and the plasma metabolites inhibited the formation of dityrosine catalyzed by the MPO enzyme and HL-60 cells in a dose-dependent manner. Spectrometric analysis indicated that quercetin might act as a cosubstrate of MPO resulting in the formation of the oxidized quercetin. Quantitative structure-activity relationship studies showed that the inhibitory actions of flavonoids strongly depended not only on radical scavenging activity but also on hydrophobicity (log P). The requirement of a set of hydroxyl groups at the 3, 5, and 4'-positions and C2-C3 double bond was suggested for the inhibitory effect. The binding of quercetin and the metabolites to a hydrophobic region at the entrance to the distal heme pocket of MPO was also proposed by a computer docking simulation. The current study provides the structure-activity relationships for flavonoids as the anti-inflammatory dietary constituents targeting the MPO-derived oxidative reactions in vivo.
Collapse
Affiliation(s)
- Yuko Shiba
- Department of Food Science, Graduate School of Nutrition and Biosciences, The University of Tokushima, Tokushima 770-8503, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kessler J, Obinger C, Eales G. Factors influencing the study of peroxidase-generated iodine species and implications for thyroglobulin synthesis. Thyroid 2008; 18:769-74. [PMID: 18631006 DOI: 10.1089/thy.2007.0310] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A key issue in the mechanism of thyroglobulin (Tg) iodination by thyroperoxidase (TPO) is whether a TPO-bound iodine intermediate directly iodinates Tg-incorporated tyrosines (specific iodination) or whether reactive iodine species released from TPO effectuate Tg iodination (nonspecific iodination). We addressed these alternatives by (a) determining the aqueous equilibria of the iodine species potentially involved in the kinetic studies of TPO-mediated iodination, and (b) reviewing the structure of the substrate channel in mammalian peroxidases. Redox-potentiometric analysis of aqueous iodine combined with integrated mathematical modelling demonstrates that I2 reacts with water to form several iodine species including hypoiodious acid (HOI). The HOI/I2 ratio depends on time, iodide concentration, buffering agents, and pH varying dramatically from pH 4 to 7.4. These factors may confound the use of Michaelis-Menten kinetics to determine the mechanism of TPO-catalyzed iodination since both I2 and HOI iodinate tyrosine but with different specificities and reaction rates. Consequently there is as yet no conclusive kinetic evidence that iodination occurs via formation of a TPO-bound iodinated intermediate. Furthermore, knowledge of TPO structure, gained from X-ray crystallographic studies indicates that access of Tg-bound tyrosyl groups to the active site of TPO is not possible. Thus the emerging conclusion is that the mechanism of Tg iodination is nonspecific. This is consistent with the occurrence of thyroid hormone formation in prevertebrate ascidians which exhibit TPO-like activity but lack the Tg gene.
Collapse
Affiliation(s)
- Jack Kessler
- Symbollon Pharmaceuticals, Inc., Framingham, Massachusetts, USA.
| | | | | |
Collapse
|
29
|
Galijasevic S, Abdulhamid I, Abu-Soud HM. Potential role of tryptophan and chloride in the inhibition of human myeloperoxidase. Free Radic Biol Med 2008; 44:1570-7. [PMID: 18279680 PMCID: PMC2861567 DOI: 10.1016/j.freeradbiomed.2008.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 01/09/2008] [Indexed: 01/04/2023]
Abstract
Myeloperoxidase (MPO) binds H2O2 in the absence and presence of chloride (Cl-) and catalyzes the formation of potent oxidants through 1e(-) and 2e(-) oxidation pathways. These potent oxidants have been implicated in the pathogenesis of various diseases including atherosclerosis, asthma, arthritis, and cancer. Thus, inhibition of MPO and its by-products may have a wide application in biological systems. Using direct rapid kinetic measurements and H2O2-selective electrodes, we show that tryptophan (Trp), an essential amino acid, is linked kinetically to the inhibition of MPO catalysis under physiological conditions. Trp inactivated MPO in the absence and presence of plasma levels of Cl(-), to various degrees, through binding to MPO, forming the inactive complexes Trp-MPO and Trp-MPO-Cl, and accelerating formation of MPO Compound II, an inactive form of MPO. Inactivation of MPO was mirrored by the direct conversion of MPO-Fe(III) to MPO Compound II without any sign of Compound I accumulation. This behavior indicates that Trp binding modulates the formation of MPO intermediates and their decay rates. Importantly, Trp is a poor substrate for MPO Compound II and has no role in destabilizing complex formation. Thus, the overall MPO catalytic activity will be limited by: (1) the dissociation of Trp from Trp-MPO and Trp-MPO-Cl complexes, (2) the affinity of MPO Compound I toward Cl(-) versus Trp, and (3) the slow conversion of MPO Compound II to MPO-Fe(III). Importantly, Trp-dependent inhibition of MPO occurred at a wide range of concentrations that span various physiological and supplemental ranges.
Collapse
Affiliation(s)
- Semira Galijasevic
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | |
Collapse
|
30
|
Malle E, Furtmüller PG, Sattler W, Obinger C. Myeloperoxidase: a target for new drug development? Br J Pharmacol 2007; 152:838-54. [PMID: 17592500 PMCID: PMC2078229 DOI: 10.1038/sj.bjp.0707358] [Citation(s) in RCA: 293] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Myeloperoxidase (MPO), a member of the haem peroxidase-cyclooxygenase superfamily, is abundantly expressed in neutrophils and to a lesser extent in monocytes and certain type of macrophages. MPO participates in innate immune defence mechanism through formation of microbicidal reactive oxidants and diffusible radical species. A unique activity of MPO is its ability to use chloride as a cosubstrate with hydrogen peroxide to generate chlorinating oxidants such as hypochlorous acid, a potent antimicrobial agent. However, evidence has emerged that MPO-derived oxidants contribute to tissue damage and the initiation and propagation of acute and chronic vascular inflammatory disease. The fact that circulating levels of MPO have been shown to predict risks for major adverse cardiac events and that levels of MPO-derived chlorinated compounds are specific biomarkers for disease progression, has attracted considerable interest in the development of therapeutically useful MPO inhibitors. Today, detailed information on the structure of ferric MPO and its complexes with low- and high-spin ligands is available. This, together with a thorough understanding of reaction mechanisms including redox properties of intermediates, enables a rationale attempt in developing specific MPO inhibitors that still maintain MPO activity during host defence and bacterial killing but interfere with pathophysiologically persistent activation of MPO. The various approaches to inhibit enzyme activity of MPO and to ameliorate adverse effects of MPO-derived oxidants will be discussed. Emphasis will be put on mechanism-based inhibitors and high-throughput screening of compounds as well as the discussion of physiologically useful HOCl scavengers.
Collapse
Affiliation(s)
- E Malle
- Center of Molecular Medicine, Institute of Molecular Biology and Biochemistry, Medical University of Graz Graz, Austria
- Author for correspondence:
| | - P G Furtmüller
- Division of Biochemistry, Department of Chemistry, BOKU – University of Natural Resources and Applied Life Sciences Vienna, Austria
| | - W Sattler
- Center of Molecular Medicine, Institute of Molecular Biology and Biochemistry, Medical University of Graz Graz, Austria
| | - C Obinger
- Division of Biochemistry, Department of Chemistry, BOKU – University of Natural Resources and Applied Life Sciences Vienna, Austria
- Author for correspondence:
| |
Collapse
|
31
|
Zederbauer M, Furtmüller PG, Bellei M, Stampler J, Jakopitsch C, Battistuzzi G, Moguilevsky N, Obinger C. Disruption of the aspartate to heme ester linkage in human myeloperoxidase: impact on ligand binding, redox chemistry, and interconversion of redox intermediates. J Biol Chem 2007; 282:17041-52. [PMID: 17438335 DOI: 10.1074/jbc.m610685200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In human heme peroxidases the prosthetic group is covalently attached to the protein via two ester linkages between conserved glutamate and aspartate residues and modified methyl groups on pyrrole rings A and C. Here, monomeric recombinant myeloperoxidase (MPO) and the variants D94V and D94N were produced in Chinese hamster ovary cell lines. Disruption of the Asp(94) to heme ester bond decreased the one-electron reduction potential E'(0) [Fe(III)/Fe(II)] from 1 to -55 mV at pH 7.0 and 25 degrees C, whereas the kinetics of binding of low spin ligands and of compound I formation was unaffected. By contrast, in both variants rates of compound I reduction by chloride and bromide (but not iodide and thiocyanate) were substantially decreased compared with the wild-type protein. Bimolecular rates of compound II (but not compound I) reduction by ascorbate and tyrosine were slightly diminished in D94V and D94N. The presented biochemical and biophysical data suggest that the Asp(94) to heme linkage is no precondition for the autocatalytic formation of the other two covalent links found in MPO. The findings are discussed with respect to the known active site structure of MPO and its complexes with ligands.
Collapse
Affiliation(s)
- Martina Zederbauer
- Division of Biochemistry, Department of Chemistry, BOKU-University of Natural Resources and Applied Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Zederbauer M, Furtmüller PG, Brogioni S, Jakopitsch C, Smulevich G, Obinger C. Heme to protein linkages in mammalian peroxidases: impact on spectroscopic, redox and catalytic properties. Nat Prod Rep 2007; 24:571-84. [PMID: 17534531 DOI: 10.1039/b604178g] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Martina Zederbauer
- BOKU-University of Natural Resources and Applied Life Sciences, Department of Chemistry, Division of Biochemistry, Muthgasse 18, A-1190 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
33
|
Lockney D, Miksovská J. Characterization of carbon monoxide photodissociation from Fe(II)LPO with photoacoustic calorimetry. J Phys Chem B 2007; 110:24165-70. [PMID: 17125388 DOI: 10.1021/jp0641233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lactoperoxidase belongs to a family of mammalian peroxidases that catalyze the oxidation of halides and small organic molecules in the presence of H2O2. We have used photoacoustic calorimetry to characterize thermodynamic parameters associated with ligand dissociation from bovine milk lactoperoxidase. Upon CO photorelease, a prompt (tau < 50 ns) exothermic volume contraction (DeltaH = -20 +/- 7 kcal mol-1 and DeltaH = -2 +/- 1 mL mol-1) was measured at pH 7.0 and 4.0, whereas an endothermic expansion (DeltaH = 30 +/- 13 kcal mol-1 and DeltaV = 9 +/- 2 mL mol(-1)) was observed at pH 10.0 and 7.0 in the presence of 500 mM NaCl. We attribute the observed volume and enthalpy changes to electrostriction arising from changes in the charge distribution associated with a reorganization of the heme binding pocket upon ligand dissociation. It is likely that cleavage of the Fe-CO bond is accompanied by distortion of a salt bridge between Arg557 and the heme propionate group, resulting in the observed electrostriction due to changes in charge distribution.
Collapse
Affiliation(s)
- Dustin Lockney
- Chemistry Department, Marshall University, One John Marshall Drive, Huntington, West Virginia 25755, USA
| | | |
Collapse
|
34
|
Persad AS, Kameoka Y, Kanda S, Niho Y, Suzuki K. Arginine to cysteine mutation (R499C) found in a Japanese patient with complete myeloperoxidase deficiency. Gene Expr 2006; 13:67-71. [PMID: 17017121 PMCID: PMC6032473 DOI: 10.3727/000000006783991863] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Animal models suggest that a deficiency in myeloperoxidase (MPO; EC 1.11.1.7), a lysosomal hemoprotein involved in host defense, may be associated with a decreased level of immunity. A nonsynonymous mutation, resulting in an arginine to cysteine substitution (Arg499Cys or R499C), has been identified in the exon 9 genetic coding region of a Japanese patient with complete MPO deficiency. Genetic analysis revealed that the mRNA of the patient could be correctly transcribed then further translated into a peptide sequence. However, the Western blot analysis confirmed the absence of MPO peptides. An initial screening assay of the patient's blood exhibited an abnormal hematograph, and no MPO activity was detected. To determine if this mutation might be associated with MPO deficiency, DNA samples for 387 controls were examined. Genetic analysis was performed using standard PCR techniques for amplification and sequencing. None of the control samples possessed the R499C substitution. This mutation is in close proximity to a different mutation (G501S) previously found in another Japanese MPO-deficient patient, and the amino acid, H502, which is strongly involved in heme binding, leading to the speculation that heme binding may play a role in complete MPO deficiency.
Collapse
Affiliation(s)
- Amanda S. Persad
- *Department of Bioactive Molecules, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yosuke Kameoka
- †Division of Genetic Resources, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | | | | | - Kazuo Suzuki
- *Department of Bioactive Molecules, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| |
Collapse
|
35
|
Furtmüller PG, Zederbauer M, Jantschko W, Helm J, Bogner M, Jakopitsch C, Obinger C. Active site structure and catalytic mechanisms of human peroxidases. Arch Biochem Biophys 2005; 445:199-213. [PMID: 16288970 DOI: 10.1016/j.abb.2005.09.017] [Citation(s) in RCA: 261] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Revised: 09/27/2005] [Accepted: 09/28/2005] [Indexed: 11/30/2022]
Abstract
Myeloperoxidase (MPO), eosinophil peroxidase, lactoperoxidase, and thyroid peroxidase are heme-containing oxidoreductases (EC 1.7.1.11), which bind ligands and/or undergo a series of redox reactions. Though sharing functional and structural homology, reflecting their phylogenetic origin, differences are observed regarding their spectral features, substrate specificities, redox properties, and kinetics of interconversion of the relevant redox intermediates ferric and ferrous peroxidase, compound I, compound II, and compound III. Depending on substrate availability, these heme enzymes path through the halogenation cycle and/or the peroxidase cycle and/or act as poor (pseudo-)catalases. Based on the published crystal structures of free MPO and its complexes with cyanide, bromide and thiocyanate as well as on sequence analysis and modeling, we critically discuss structure-function relationships. This analysis highlights similarities and distinguishing features within the mammalian peroxidases and intents to provide the molecular and enzymatic basis to understand the prominent role of these heme enzymes in host defense against infection, hormone biosynthesis, and pathogenesis.
Collapse
Affiliation(s)
- Paul G Furtmüller
- Department of Chemistry, Division of Biochemistry, Metalloprotein Research Group, Muthgasse 18, A-1190 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
36
|
Allegra M, Furtmüller PG, Jantschko W, Zederbauer M, Tesoriere L, Livrea MA, Obinger C. Mechanism of interaction of betanin and indicaxanthin with human myeloperoxidase and hypochlorous acid. Biochem Biophys Res Commun 2005; 332:837-44. [PMID: 15913556 DOI: 10.1016/j.bbrc.2005.05.031] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Accepted: 05/06/2005] [Indexed: 11/25/2022]
Abstract
Hypochlorous acid (HOCl) is the most powerful oxidant produced by human neutrophils and contributes to the damage caused by these inflammatory cells. It is produced from H2O2 and chloride by the heme enzyme myeloperoxidase (MPO). Based on findings that betalains provide antioxidant and anti-inflammatory effects, we performed the present kinetic study on the interaction between the betalains, betanin and indicaxanthin, with the redox intermediates, compound I and compound II of MPO, and its major cytotoxic product HOCl. It is shown that both betalains are good peroxidase substrates for MPO and function as one-electron reductants of its redox intermediates, compound I and compound II. Compound I is reduced to compound II with a second-order rate constant of (1.5+/-0.1) x 10(6) M(-1) s(-1) (betanin) and (1.1+/-0.2) x 10(6) M(-1) s(-1) (indicaxanthin), respectively, at pH 7.0 and 25 degrees C. Formation of ferric (native) MPO from compound II occurs with a second-order rate constant of (1.1+/-0.1) x 10(5) M(-1) s(-1) (betanin) and (2.9+/-0.1) x 10(5) M(-1) s(-1) (indicaxanthin), respectively. In addition, both betalains can effectively scavenge hypochlorous acid with determined rates of (1.8+/-0.2) x 10(4) M(-1) s(-1) (betanin) and (7.7+/-0.1) x 10(4) M(-1) s(-1) (indicaxanthin) at pH 7.0 and 25 degrees C. At neutral pH and depending on their concentration, both betalains can exhibit a stimulating and inhibitory effect on the chlorination activity of MPO, whereas at pH 5.0 only inhibitory effects were observed even at micromolar concentrations. These findings are discussed with respect to our knowledge of the enzymatic mechanisms of MPO.
Collapse
Affiliation(s)
- Mario Allegra
- Department of Pharmaceutical, Toxicological and Biological Chemistry, University of Palermo, Via Carlo Forlanini, 90123 Palermo, Italy
| | | | | | | | | | | | | |
Collapse
|
37
|
Boutin JA, Audinot V, Ferry G, Delagrange P. Molecular tools to study melatonin pathways and actions. Trends Pharmacol Sci 2005; 26:412-9. [PMID: 15992934 DOI: 10.1016/j.tips.2005.06.006] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Revised: 05/16/2005] [Accepted: 06/16/2005] [Indexed: 12/15/2022]
Abstract
Melatonin, an indoleamine neurohormone that is synthesized mainly in the pineal gland and derived from 5-HT, has many effects on a wide range of physio-pathological functions. Some of these effects are mediated by the interactions of melatonin with the two melatonin MT1 and MT2 receptors. Other effects are often suggested to be due to the chemical antioxidant nature of this indoleamine, and are observed at high, non-physiological concentrations. However, it is increasingly believed that some of these effects are due to interactions with other protein targets. In this review, we summarize the molecular pharmacology of melatonin, including the main enzymes involved in its synthesis and catabolism, and the proteins that mediate its actions. Furthermore, various compounds, mainly inhibitors and antagonists, that can be used to dissect these functions and pathways are presented.
Collapse
Affiliation(s)
- Jean A Boutin
- Pharmacologie Moléculaire et Cellulaire, Institut de Recherches Servier, 125, chemin de Ronde 78290 Croissy-sur-Seine, France.
| | | | | | | |
Collapse
|
38
|
Tahboub YR, Galijasevic S, Diamond MP, Abu-Soud HM. Thiocyanate modulates the catalytic activity of mammalian peroxidases. J Biol Chem 2005; 280:26129-36. [PMID: 15894800 DOI: 10.1074/jbc.m503027200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We investigated the potential role of the co-substrate, thiocyanate (SCN-), in modulating the catalytic activity of myeloperoxidase (MPO) and other members of the mammalian peroxidase superfamily (lactoperoxidase (LPO) and eosinophil peroxidase (EPO)). Pre-incubation of SCN- with MPO generates a more complex biological setting, because SCN- serves as either a substrate or inhibitor, causing diverse impacts on the MPO heme iron microenvironment. Consistent with this hypothesis, the relationship between the association rate constant of nitric oxide binding to MPO-Fe(III) as a function of SCN- concentration is bell-shaped, with a trough comparable with normal SCN- plasma levels. Rapid kinetic measurements indicate that MPO, EPO, and LPO Compound I formation occur at rates slower than complex decay, and its formation serves to simultaneously catalyze SCN- via 1e- and 2e- oxidation pathways. For the three enzymes, Compound II formation is a fundamental feature of catalysis and allows the enzymes to operate at a fraction of their possible maximum activities. MPO and EPO Compound II is relatively stable and decays gradually within minutes to ground state upon H2O2 exhaustion. In contrast, LPO Compound II is unstable and decays within seconds to ground state, suggesting that SCN- may serve as a substrate for Compound II. Compound II formation can be partially or completely prevented by increasing SCN- concentration, depending on the experimental conditions. Collectively, these results illustrate for the first time the potential mechanistic differences of these three enzymes. A modified kinetic model, which incorporates our current findings with the mammalian peroxidases classic cycle, is presented.
Collapse
Affiliation(s)
- Yahya R Tahboub
- Department of Obstetrics and Gynecology, The C. S. Mott Center for Human Growth and Development, Wayne State University, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
39
|
Tsourkas A, Newton G, Perez JM, Basilion JP, Weissleder R. Detection of Peroxidase/H2O2-Mediated Oxidation with Enhanced Yellow Fluorescent Protein. Anal Chem 2005; 77:2862-7. [PMID: 15859603 DOI: 10.1021/ac0480747] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The ability to sense oxidative stress in live cells and organisms would have far-reaching implications for biotechnology, drug discovery, and potentially medical imaging. We hypothesized that tyrosine-containing fluorescent proteins could be used as switches for sensing oxidative stress, based on their sensitivity to environmental and structural variations. We therefore tested purified EGFP, EYFP, ECFP, and DsRed proteins against the heme-peroxidase/H(2)O(2) reaction. We found that peroxidase-mediated oxidation resulted in up to 99.5% quenching of EYFP fluorescence (but not that of other fluorescent proteins) in a dose-dependent manner. Western blotting revealed inter- and intramolecular cross-linking. The observed detection limit for hydrogen peroxide was approximately 100 nM, well below the extracellular levels previously reported to occur in mammalian tissue during signaling. Combined expression of EYFP (quenchable) and ECFP or EGFP (nonquenchable) is expected to allow sensitive monitoring of oxidative stress.
Collapse
Affiliation(s)
- Andrew Tsourkas
- Center for Molecular Imaging Research, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | | | | | | | | |
Collapse
|
40
|
Kaczor A, Szczepanski J, Vala M, Proniewicz LM. Matrix-isolation and computational study of salicylhydroxamic acid and its photochemical degradation. Phys Chem Chem Phys 2005; 7:1960-5. [DOI: 10.1039/b418033j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Ouellet M, Aitken SM, English AM, Percival MD. Aromatic hydroxamic acids and hydrazides as inhibitors of the peroxidase activity of prostaglandin H2 synthase-2. Arch Biochem Biophys 2004; 431:107-18. [PMID: 15464732 DOI: 10.1016/j.abb.2004.07.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Revised: 07/29/2004] [Indexed: 11/28/2022]
Abstract
The cyclooxygenase activity of the bifunctional enzyme prostaglandin H(2) synthase-2 (PGHS-2) is the target of non-steroidal anti-inflammatory drugs. Inhibition of the peroxidase activity of PGHS has been less studied. Using Soret absorption changes, the binding of aromatic hydroxamic acids to the peroxidase site of PGHS-2 was examined to investigate the structural determinants of inhibition. Typical of mammalian peroxidases, the K(d) for benzhydroxamic acid (42mM) is much greater than that for salicylhydroxamic acid (475microM). Binding of the hydroxamic acid tepoxalin (25microM) resulted in only minor Soret changes. However, tepoxalin is an efficient reducing cosubstrate, indicating that it is an alternative electron donor rather than an inhibitor of the peroxidase activity. Aromatic hydrazides are metabolically activated inhibitors of peroxidases. 2-Naphthoichydrazide (2-NZH) caused the time- and concentration-dependent inhibition of both PGHS-2 peroxidase and cyclooxygenase activities. H(2)O(2) was required for the inactivation of both PGHS-2 activities and indomethacin (which binds at the cyclooxygenase site) did not affect the peroxidase inhibitory potency of 2-NZH. A series of aromatic hydrazides were found to be potent inhibitors of PGHS-2 peroxidase activity with IC(50) values in the 6-100microM range for 13 of the 18 hydrazides examined. Selective inhibition of PGHS-2 over myeloperoxidase and horseradish peroxidase isozyme C was increased by certain ring substitutions. In particular, a chloro group para to the hydrazide moiety increased the PGHS-2 selectivity relative to both myeloperoxidase and horseradish peroxidase isozyme C.
Collapse
Affiliation(s)
- Marc Ouellet
- Department of Biochemistry and Molecular Biology, Merck Frosst Centre for Therapeutic Research, P.O. Box 1005, Pointe-Claire-Dorval, Que., Canada H9R 4P8
| | | | | | | |
Collapse
|
42
|
Ohashi YY, Kameoka Y, Persad AS, Koi F, Yamagoe S, Hashimoto K, Suzuki K. Novel missense mutation found in a Japanese patient with myeloperoxidase deficiency. Gene 2004; 327:195-200. [PMID: 14980716 DOI: 10.1016/j.gene.2003.11.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2003] [Revised: 11/05/2003] [Accepted: 11/14/2003] [Indexed: 11/22/2022]
Abstract
Myeloperoxidase (MPO; EC 1.11.1.7) plays an important role in the host defense mechanism against microbial diseases. The neutrophil disorder characterized by the lack of MPO activity, is speculated to be associated with a decreased level of immunity. A Japanese patient was identified with complete MPO deficiency through automated hematography. Neutrophil function analysis revealed that MPO activity was significantly diminished with slightly elevated superoxide production. Mutational analysis of the patient revealed a glycine to serine substitution (G501S) in the exon 9 region. This mutation was not detected in the 96 healthy controls analyzed. The amino acid substitution found may be responsible for the failure of mature MPO production in the patient. This is the first case of MPO deficiency of G501S missense mutation identified in a Japanese patient.
Collapse
Affiliation(s)
- Yuko Y Ohashi
- Department of Bioactive Molecules, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
Gupta K, Selinsky BS, Kaub CJ, Katz AK, Loll PJ. The 2.0 A resolution crystal structure of prostaglandin H2 synthase-1: structural insights into an unusual peroxidase. J Mol Biol 2004; 335:503-18. [PMID: 14672659 DOI: 10.1016/j.jmb.2003.10.073] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Prostaglandin H2 synthase (EC 1.14.99.1) is an integral membrane enzyme containing a cyclooxygenase site, which is the target for the non-steroidal anti-inflammatory drugs, and a spatially distinct peroxidase site. Previous crystallographic studies of this clinically important drug target have been hindered by low resolution. We present here the 2.0 A resolution X-ray crystal structure of ovine prostaglandin H2 synthase-1 in complex with alpha-methyl-4-biphenylacetic acid, a defluorinated analog of the non-steroidal anti-inflammatory drug flurbiprofen. Detergent molecules are seen to bind to the protein's membrane-binding domain, and their positions suggest the depth to which this domain is likely to penetrate into the lipid bilayer. The relation of the enzyme's proximal heme ligand His388 to the heme iron is atypical for a peroxidase; the iron-histidine bond is unusually long and a substantial tilt angle is observed between the heme and imidazole planes. A molecule of glycerol, used as a cryoprotectant during diffraction experiments, is seen to bind in the peroxidase site, offering the first view of any ligand in this active site. Insights gained from glycerol binding may prove useful in the design of a peroxidase-specific ligand.
Collapse
Affiliation(s)
- Kushol Gupta
- Department of Biochemistry, Drexel University College of Medicine, 245 N 15th Street, Mailstop 497, Philadelphia, PA 19102-1192, USA
| | | | | | | | | |
Collapse
|
44
|
Garavito RM, Mulichak AM. The structure of mammalian cyclooxygenases. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2003; 32:183-206. [PMID: 12574066 DOI: 10.1146/annurev.biophys.32.110601.141906] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cyclooxygenases-1 and -2 (COX-1 and COX-2, also known as prostaglandin H2 synthases-1 and -2) catalyze the committed step in prostaglandin synthesis. COX-1 and -2 are of particular interest because they are the major targets of nonsteroidal antiinflammatory drugs (NSAIDs) including aspirin, ibuprofen, and the new COX-2-selective inhibitors. Inhibition of the COXs with NSAIDs acutely reduces inflammation, pain, and fever, and long-term use of these drugs reduces the incidence of fatal thrombotic events, as well as the development of colon cancer and Alzheimer's disease. In this review, we examine how the structures of COXs relate mechanistically to cyclooxygenase and peroxidase catalysis and how alternative fatty acid substrates bind within the COX active site. We further examine how NSAIDs interact with COXs and how differences in the structure of COX-2 result in enhanced selectivity toward COX-2 inhibitors.
Collapse
Affiliation(s)
- R Michael Garavito
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, USA.
| | | |
Collapse
|
45
|
Kaczor A, Proniewicz LM. NMR spectra of salicylohydroxamic acid in DMSO-d6 solution: a DFT study. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/j.theochem.2003.08.119] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
46
|
Brennan ML, Wu W, Fu X, Shen Z, Song W, Frost H, Vadseth C, Narine L, Lenkiewicz E, Borchers MT, Lusis AJ, Lee JJ, Lee NA, Abu-Soud HM, Ischiropoulos H, Hazen SL. A tale of two controversies: defining both the role of peroxidases in nitrotyrosine formation in vivo using eosinophil peroxidase and myeloperoxidase-deficient mice, and the nature of peroxidase-generated reactive nitrogen species. J Biol Chem 2002; 277:17415-27. [PMID: 11877405 DOI: 10.1074/jbc.m112400200] [Citation(s) in RCA: 412] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nitrotyrosine is widely used as a marker of post-translational modification by the nitric oxide ((.)NO, nitrogen monoxide)-derived oxidant peroxynitrite (ONOO(-)). However, since the discovery that myeloperoxidase (MPO) and eosinophil peroxidase (EPO) can generate nitrotyrosine via oxidation of nitrite (NO(2)(-)), several questions have arisen. First, the relative contribution of peroxidases to nitrotyrosine formation in vivo is unknown. Further, although evidence suggests that the one-electron oxidation product, nitrogen dioxide ((*)NO(2)), is the primary species formed, neither a direct demonstration that peroxidases form this gas nor studies designed to test for the possible concomitant formation of the two-electron oxidation product, ONOO(-), have been reported. Using multiple distinct models of acute inflammation with EPO- and MPO-knockout mice, we now demonstrate that leukocyte peroxidases participate in nitrotyrosine formation in vivo. In some models, MPO and EPO played a dominant role, accounting for the majority of nitrotyrosine formed. However, in other leukocyte-rich acute inflammatory models, no contribution for either MPO or EPO to nitrotyrosine formation could be demonstrated. Head-space gas analysis of helium-swept reaction mixtures provides direct evidence that leukocyte peroxidases catalytically generate (*)NO(2) formation using H(2)O(2) and NO(2)(-) as substrates. However, formation of an additional oxidant was suggested since both enzymes promote NO(2)(-)-dependent hydroxylation of targets under acidic conditions, a chemical reactivity shared with ONOO(-) but not (*)NO(2). Collectively, our results demonstrate that: 1) MPO and EPO contribute to tyrosine nitration in vivo; 2) the major reactive nitrogen species formed by leukocyte peroxidase-catalyzed oxidation of NO(2)(-) is the one-electron oxidation product, (*)NO(2); 3) as a minor reaction, peroxidases may also catalyze the two-electron oxidation of NO(2)(-), producing a ONOO(-)-like product. We speculate that the latter reaction generates a labile Fe-ONOO complex, which may be released following protonation under acidic conditions such as might exist at sites of inflammation.
Collapse
Affiliation(s)
- Marie-Luise Brennan
- Department of Cell Biology, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Defects in leukocyte-mediated initiation of lipid peroxidation in plasma as studied in myeloperoxidase-deficient subjects: systematic identification of multiple endogenous diffusible substrates for myeloperoxidase in plasma. Blood 2002. [DOI: 10.1182/blood.v99.5.1802.h8001802_1802_1810] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
More than a decade ago it was demonstrated that neutrophil activation in plasma results in the time-dependent formation of lipid hydroperoxides through an unknown, ascorbate-sensitive pathway. It is now shown that the mechanism involves myeloperoxidase (MPO)-dependent use of multiple low-molecular–weight substrates in plasma, generating diffusible oxidant species. Addition of activated human neutrophils (from healthy subjects) to plasma (50%, vol/vol) resulted in the peroxidation of endogenous plasma lipids by catalase-, heme poison-, and ascorbate-sensitive pathways, as assessed by high-performance liquid chromatography (HPLC) with on-line electrospray ionization tandem mass spectrometric analysis of free and lipid-bound 9-HETE and 9-HODE. In marked contrast, neutrophils isolated from multiple subjects with MPO deficiency failed to initiate peroxidation of plasma lipids, but they did so after supplementation with isolated human MPO. MPO-dependent use of a low-molecular–weight substrate(s) in plasma for initiating lipid peroxidation was illustrated by demonstrating that the filtrate of plasma (10-kd MWt cutoff) could supply components required for low-density lipoprotein lipid peroxidation in the presence of MPO and H2O2. Subsequent HPLC fractionation of plasma filtrate (10-kd MWt cutoff) by sequential column chromatography identified nitrite, tyrosine, and thiocyanate as major endogenous substrates and 17β-estradiol as a novel minor endogenous substrate in plasma for MPO in promoting peroxidation of plasma lipids. These results strongly suggest that the MPO–H2O2system of human leukocytes serves as a physiological mechanism for initiating lipid peroxidation in vivo.
Collapse
|
48
|
Jantschko W, Furtmüller PG, Allegra M, Livrea MA, Jakopitsch C, Regelsberger G, Obinger C. Redox intermediates of plant and mammalian peroxidases: a comparative transient-kinetic study of their reactivity toward indole derivatives. Arch Biochem Biophys 2002; 398:12-22. [PMID: 11811944 DOI: 10.1006/abbi.2001.2674] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A comparative study on the reactivity of five indole derivatives (tryptamine, N-acetyltryptamine, tryptophan, melatonin, and serotonin), with the redox intermediates compound I (k2) and compound II (k3) of the plant enzyme horseradish peroxidase (HRP) and the two mammalian enzymes lactoperoxidase (LPO) and myeloperoxidase (MPO), was performed using the sequential-mixing stopped-flow technique. The calculated bimolecular rate constants (k2, k3) revealed substantial differences regarding the oxidazibility of the substrates by redox intermediates at pH 7.0 and 25 degrees C. With HRP it was shown that k2 and k3 are mainly determined by the reduction potential (Eo') of the substrate with k2 being 7-45 times higher than k3. Compound I of mammalian peroxidases was a much better oxidant than HRP compound I with the consequence that the influence of the indole structure on k2 of LPO and MPO was small varying by a factor of only 88 and 38, respectively, which is in strong contrast to a factor of 160,000 determined for k2 of HRP. Interestingly, the k3 values for all three enzymes were very similar. Oxidation of substrates by mammalian peroxidase compound II is strongly constrained by the nature of the substrate. The k3 values for the five indoles varied by a factor of 3,570 (LPO) and 200,000 (MPO), suggesting that the reduction potential of compound II of mammalian peroxidase is less positive than that of compound I, which is in contrast to the plant enzyme.
Collapse
Affiliation(s)
- Walter Jantschko
- Institute of Chemistry, University of Agricultural Sciences, Muthgasse 18, Vienna, A-1190, Austria
| | | | | | | | | | | | | |
Collapse
|
49
|
Loll PJ, Sharkey CT, O'Connor SJ, Dooley CM, O'Brien E, Devocelle M, Nolan KB, Selinsky BS, Fitzgerald DJ. O-acetylsalicylhydroxamic acid, a novel acetylating inhibitor of prostaglandin H2 synthase: structural and functional characterization of enzyme-inhibitor interactions. Mol Pharmacol 2001; 60:1407-13. [PMID: 11723249 DOI: 10.1124/mol.60.6.1407] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aspirin is unique among clinically used nonsteroidal antiinflammatory drugs in that it irreversibly inactivates prostaglandin (PG) H2 synthase (PGHS) via acetylation of an active-site serine residue. We report the synthesis and characterization of a novel acetylating agent, O-acetylsalicylhydroxamic acid (AcSHA), which inhibits PGE2 synthesis in vivo and blocks the cyclooxygenase activity of PGHS in vitro. AcSHA requires the presence of the active-site residue Ser-529 to be active against human PGHS-1; the S529A mutant is resistant to inactivation by the inhibitor. Analysis of PGHS inactivation by AcSHA, coupled with the X-ray crystal structure of the complex of ovine PGHS-1 with AcSHA, confirms that the inhibitor elicits its effects via acetylation of Ser-529 in the cyclooxygenase active site. The crystal structure reveals an intact inhibitor molecule bound in the enzyme's cyclooxygenase active-site channel, hydrogen bonding with Arg-119 of the enzyme. The structure-activity profile of AcSHA can be rationalized in terms of the crystal structure of the enzyme-ligand complex. AcSHA may prove useful as a lead compound to facilitate the development of new acetylating inhibitors.
Collapse
Affiliation(s)
- P J Loll
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Nève J, Parij N, Moguilevsky N. Inhibition of the myeloperoxidase chlorinating activity by non-steroidal anti-inflammatory drugs investigated with a human recombinant enzyme. Eur J Pharmacol 2001; 417:37-43. [PMID: 11301057 DOI: 10.1016/s0014-2999(01)00895-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) were investigated for their ability to affect the chlorinating activity of human myeloperoxidase and to scavenge HOCl, the main myeloperoxidase system product. Fourteen drugs representative of various NSAIDs families were tested with the chlorination of taurine used as a detection system. All were unable to inhibit taurine chlorination in a system without myeloperoxidase. In contrast, most of them induced a dose-dependent inhibition of the taurine chlorination mediated by a myeloperoxidase/H2O2/Cl- system. This took place at variable drug concentrations and IC50 were calculated. The inhibitory effect was therefore due to a direct interaction with the enzyme rather than to HOCl scavenging. A spectroscopic method used to measure the myeloperoxidase compound II lifetime in presence of the different drugs showed that all the drugs, which inhibited chlorination activity were able to induce accumulation of compound II. The extent of chlorinating activity inhibition (IC50) was inversely related to the duration of the block of enzyme in compound II form. This further demonstrates that myeloperoxidase is an interesting target for anti-inflammatory therapy. The recombinant myeloperoxidase used for the first time in this kind of study was as convenient for pharmacological purposes as the purified one.
Collapse
Affiliation(s)
- J Nève
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Free University of Brussels, Campus Plaine 205-5, B-1050, Brussels, Belgium.
| | | | | |
Collapse
|