1
|
Zhang Z, Tringides ML, Morgan CE, Miyagi M, Mears JA, Hoppel CL, Yu EW. High-Resolution Structural Proteomics of Mitochondria Using the 'Build and Retrieve' Methodology. Mol Cell Proteomics 2023; 22:100666. [PMID: 37839702 PMCID: PMC10709515 DOI: 10.1016/j.mcpro.2023.100666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023] Open
Abstract
The application of integrated systems biology to the field of structural biology is a promising new direction, although it is still in the infant stages of development. Here we report the use of single particle cryo-EM to identify multiple proteins from three enriched heterogeneous fractions prepared from human liver mitochondrial lysate. We simultaneously identify and solve high-resolution structures of nine essential mitochondrial enzymes with key metabolic functions, including fatty acid catabolism, reactive oxidative species clearance, and amino acid metabolism. Our methodology also identified multiple distinct members of the acyl-CoA dehydrogenase family. This work highlights the potential of cryo-EM to explore tissue proteomics at the atomic level.
Collapse
Affiliation(s)
- Zhemin Zhang
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Marios L Tringides
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Christopher E Morgan
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Masaru Miyagi
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Jason A Mears
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Charles L Hoppel
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Edward W Yu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.
| |
Collapse
|
2
|
Ma X, Tang Z, Ding W, Liu T, Yang D, Liu W, Ma M. Structure-Based Mechanistic Insights into ColB1, a Flavoprotein Functioning in-trans in the 2,2'-Bipyridine Assembly Line for Cysteine Dehydrogenation. ACS Chem Biol 2023; 18:18-24. [PMID: 36603145 DOI: 10.1021/acschembio.2c00785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The recruitment of trans-acting enzymes by nonribosomal peptide synthetase (NRPS) assembly line is rarely reported. ColB1 is a flavin-dependent dehydrogenase that is recruited by an NRPS terminal condensation domain (Ct domain) and catalyzes peptidyl carrier protein (PCP)-tethered cysteine dehydrogenation in collismycin biosynthesis. We here report the crystal structure of ColB1 complexed with FAD and reveal a typical structural fold of acyl-CoA dehydrogenases (ACADs). However, ColB1 shows distinct structural features from ACADs in substrate recognition both at the entrance of and inside the active site. Site-directed mutagenesis and substrate modeling establish a Glu393-mediated catalytic mechanism, by which the cysteine substrate is sandwiched between Glu393 and FAD to facilitate Cα proton abstraction and Cβ hydride migration. A ColB1-PCP-Ct complex model is generated, providing structural basis for the unique recruitment interactions between ColB1 and the associated NRPS. These results add insights into the mechanisms by which trans-acting enzymes function in an assembly line.
Collapse
Affiliation(s)
- Xueyang Ma
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Zhijun Tang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Wenping Ding
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Tan Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Donghui Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Ming Ma
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| |
Collapse
|
3
|
Sonani RR, Blat A, Dubin G. Crystal structures of apo- and FAD-bound human peroxisomal acyl-CoA oxidase provide mechanistic basis explaining clinical observations. Int J Biol Macromol 2022; 205:203-210. [PMID: 35149097 DOI: 10.1016/j.ijbiomac.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/27/2022] [Accepted: 02/04/2022] [Indexed: 11/17/2022]
Abstract
Peroxisomal acyl-CoA oxidase 1a (ACOX1a) catalyzes the first and rate-limiting step of fatty acid oxidation, the conversion of acyl-CoAs to 2-trans-enoyl-CoAs. The dysfunction of human ACOX1a (hACOX1a) leads to deterioration of the nervous system manifesting in myeloneuropathy, hypotonia and convulsions. Crystal structures of hACOX1a in apo- and cofactor (FAD)-bound forms were solved at 2.00 and 2.09 Å resolution, respectively. hACOX1a exists as a homo-dimer with solvation free energy gain (ΔGo) of -44.7 kcal mol-1. Two FAD molecules bind at the interface of protein monomers completing the active sites. The substrate binding cleft of hACOX1a is wider compared to mitochondrial very-long chain specific acyl-CoA dehydrogenase. Mutations (p.G178C, p.M278V and p.N237S) reported to cause dysfunctionality of hACOX1a are analyzed on its 3D-structure to understand structure-function related perturbations and explain the associated phenotypes.
Collapse
Affiliation(s)
- Ravi R Sonani
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland
| | - Artur Blat
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland
| | - Grzegorz Dubin
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland.
| |
Collapse
|
4
|
Prabantu VM, Naveenkumar N, Srinivasan N. Influence of Disease-Causing Mutations on Protein Structural Networks. Front Mol Biosci 2021; 7:620554. [PMID: 33778000 PMCID: PMC7987782 DOI: 10.3389/fmolb.2020.620554] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/17/2020] [Indexed: 01/18/2023] Open
Abstract
The interactions between residues in a protein tertiary structure can be studied effectively using the approach of protein structure network (PSN). A PSN is a node-edge representation of the structure with nodes representing residues and interactions between residues represented by edges. In this study, we have employed weighted PSNs to understand the influence of disease-causing mutations on proteins of known 3D structures. We have used manually curated information on disease mutations from UniProtKB/Swiss-Prot and their corresponding protein structures of wildtype and disease variant from the protein data bank. The PSNs of the wildtype and disease-causing mutant are compared to analyse variation of global and local dissimilarity in the overall network and at specific sites. We study how a mutation at a given site can affect the structural network at a distant site which may be involved in the function of the protein. We have discussed specific examples of the disease cases where the protein structure undergoes limited structural divergence in their backbone but have large dissimilarity in their all atom networks and vice versa, wherein large conformational alterations are observed while retaining overall network. We analyse the effect of variation of network parameters that characterize alteration of function or stability.
Collapse
Affiliation(s)
| | - Nagarajan Naveenkumar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India.,National Centre for Biological Sciences, TIFR, Bangalore, India.,Bharathidasan University, Tiruchirappalli, India
| | | |
Collapse
|
5
|
Rani N, Hazra S, Singh A, Surolia A. Functional annotation of putative fadE9 of Mycobacterium tuberculosis as isobutyryl-CoA dehydrogenase involved in valine catabolism. Int J Biol Macromol 2019; 122:45-57. [DOI: 10.1016/j.ijbiomac.2018.10.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 10/10/2018] [Accepted: 10/10/2018] [Indexed: 12/21/2022]
|
6
|
Collins RF, Kargas V, Clarke BR, Siebert CA, Clare DK, Bond PJ, Whitfield C, Ford RC. Full-length, Oligomeric Structure of Wzz Determined by Cryoelectron Microscopy Reveals Insights into Membrane-Bound States. Structure 2017; 25:806-815.e3. [PMID: 28434914 DOI: 10.1016/j.str.2017.03.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/25/2017] [Accepted: 03/24/2017] [Indexed: 11/20/2022]
Abstract
Wzz is an integral inner membrane protein involved in regulating the length of lipopolysaccharide O-antigen glycans and essential for the virulence of many Gram-negative pathogens. In all Wzz homologs, the large periplasmic domain is proposed to be anchored by two transmembrane helices, but no information is available for the transmembrane and cytosolic domains. Here we have studied purified oligomeric Wzz complexes using cryoelectron microscopy and resolved the transmembrane regions within a semi-continuous detergent micelle. The transmembrane helices of each monomer display a right-handed super-helical twist, and do not interact with the neighboring transmembrane domains. Modeling, flexible fitting and multiscale simulation approaches were used to study the full-length complex and to provide explanations for the influence of the lipid bilayer on its oligomeric status. Based on structural and in silico observations, we propose a new mechanism for O-antigen chain-length regulation that invokes synergy of Wzz and its polymerase partner, Wzy.
Collapse
Affiliation(s)
- Richard F Collins
- Faculty of Biology, Medicine and Health, The University of Manchester, Dover Street, Manchester M13 9PT, UK
| | - Vasileios Kargas
- Faculty of Biology, Medicine and Health, The University of Manchester, Dover Street, Manchester M13 9PT, UK; Bioinformatics Institute, 30 Biopolis Street, Singapore 138671, Singapore
| | - Brad R Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - C Alistair Siebert
- eBIC, Diamond Light Source Ltd, Diamond House, Harwell Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Daniel K Clare
- eBIC, Diamond Light Source Ltd, Diamond House, Harwell Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Peter J Bond
- Bioinformatics Institute, 30 Biopolis Street, Singapore 138671, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Robert C Ford
- Faculty of Biology, Medicine and Health, The University of Manchester, Dover Street, Manchester M13 9PT, UK.
| |
Collapse
|
7
|
Bonito CA, Nunes J, Leandro J, Louro F, Leandro P, Ventura FV, Guedes RC. Unveiling the Pathogenic Molecular Mechanisms of the Most Common Variant (p.K329E) in Medium-Chain Acyl-CoA Dehydrogenase Deficiency by in Vitro and in Silico Approaches. Biochemistry 2016; 55:7086-7098. [PMID: 27976856 DOI: 10.1021/acs.biochem.6b00759] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is the most common genetic disorder affecting the mitochondrial fatty acid β-oxidation pathway. The mature and functional form of human MCAD (hMCAD) is a homotetramer assembled as a dimer of dimers (monomers A/B and C/D). Each monomer binds a FAD cofactor, necessary for the enzyme's activity. The most frequent mutation in MCADD results from the substitution of a lysine with a glutamate in position 304 of mature hMCAD (p.K329E in the precursor protein). Here, we combined in vitro and in silico approaches to assess the impact of the p.K329E mutation on the protein's structure and function. Our in silico results demonstrated for the first time that the p.K329E mutation, despite lying at the dimer-dimer interface and being deeply buried inside the tetrameric core, seems to affect the tetramer surface, especially the β-domain that forms part of the catalytic pocket wall. Additionally, the molecular dynamics data indicate a stronger impact of the mutation on the protein's motions in dimer A/B, while dimer C/D remains similar to the wild type. For dimer A/B, severe disruptions in the architecture of the pockets and in the FAD and octanoyl-CoA binding affinities were also observed. The presence of unaffected pockets (C/D) in the in silico studies may explain the decreased enzymatic activity determined for the variant protein (46% residual activity). Moreover, the in silico structural changes observed for the p.K329E variant protein provide an explanation for the structural instability observed experimentally, namely, the disturbed oligomeric profile, thermal stability, and conformational flexibility, with respect to the wild-type.
Collapse
Affiliation(s)
- Cátia A Bonito
- Department of Biochemistry and Human Biology, §Medicinal Chemistry, Research Institute for Medicines, iMed.ULisboa, ‡Metabolism and Genetics Group, Research Institute for Medicines, iMed.ULisboa, and ∥Department of Pharmaceutical Chemistry and Therapeutics, Faculty of Pharmacy, Universidade de Lisboa , Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Joana Nunes
- Department of Biochemistry and Human Biology, §Medicinal Chemistry, Research Institute for Medicines, iMed.ULisboa, ‡Metabolism and Genetics Group, Research Institute for Medicines, iMed.ULisboa, and ∥Department of Pharmaceutical Chemistry and Therapeutics, Faculty of Pharmacy, Universidade de Lisboa , Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - João Leandro
- Department of Biochemistry and Human Biology, §Medicinal Chemistry, Research Institute for Medicines, iMed.ULisboa, ‡Metabolism and Genetics Group, Research Institute for Medicines, iMed.ULisboa, and ∥Department of Pharmaceutical Chemistry and Therapeutics, Faculty of Pharmacy, Universidade de Lisboa , Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Filipa Louro
- Department of Biochemistry and Human Biology, §Medicinal Chemistry, Research Institute for Medicines, iMed.ULisboa, ‡Metabolism and Genetics Group, Research Institute for Medicines, iMed.ULisboa, and ∥Department of Pharmaceutical Chemistry and Therapeutics, Faculty of Pharmacy, Universidade de Lisboa , Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Paula Leandro
- Department of Biochemistry and Human Biology, §Medicinal Chemistry, Research Institute for Medicines, iMed.ULisboa, ‡Metabolism and Genetics Group, Research Institute for Medicines, iMed.ULisboa, and ∥Department of Pharmaceutical Chemistry and Therapeutics, Faculty of Pharmacy, Universidade de Lisboa , Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Fátima V Ventura
- Department of Biochemistry and Human Biology, §Medicinal Chemistry, Research Institute for Medicines, iMed.ULisboa, ‡Metabolism and Genetics Group, Research Institute for Medicines, iMed.ULisboa, and ∥Department of Pharmaceutical Chemistry and Therapeutics, Faculty of Pharmacy, Universidade de Lisboa , Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Rita C Guedes
- Department of Biochemistry and Human Biology, §Medicinal Chemistry, Research Institute for Medicines, iMed.ULisboa, ‡Metabolism and Genetics Group, Research Institute for Medicines, iMed.ULisboa, and ∥Department of Pharmaceutical Chemistry and Therapeutics, Faculty of Pharmacy, Universidade de Lisboa , Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
8
|
Bonito CA, Leandro P, Ventura FV, Guedes RC. Insights into Medium-chain Acyl-CoA Dehydrogenase Structure by Molecular Dynamics Simulations. Chem Biol Drug Des 2016; 88:281-92. [PMID: 26992026 DOI: 10.1111/cbdd.12755] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/27/2016] [Accepted: 02/29/2016] [Indexed: 11/29/2022]
Abstract
The medium-chain acyl-CoA dehydrogenase (MCAD) is a mitochondrial enzyme that catalyzes the first step of mitochondrial fatty acid β-oxidation (mFAO) pathway. Its deficiency is the most common genetic disorder of mFAO. Many of the MCAD disease-causing variants, including the most common p.K304E variant, show loss of function due to protein misfolding. Herein, we used molecular dynamics simulations to provide insights into the structural stability and dynamic behavior of MCAD wild-type (MCADwt) and validate a structure that would allow reliable new studies on its variants. Our results revealed that in both proteins the flavin adenine dinucleotide (FAD) has an important structural role on the tetramer stability and also in maintaining the volume of the enzyme catalytic pockets. We confirmed that the presence of substrate changes the dynamics of the catalytic pockets and increases FAD affinity. A comparison between the porcine MCADwt (pMCADwt) and human MCADwt (hMCADwt) structures revealed that both proteins are essentially similar and that the reversion of the double mutant E376G/T255E of hMCAD enzyme does not affect the structure of the protein neither its behavior in simulation. Our validated hMCADwt structure is crucial for complementing and accelerating the experimental studies aiming for the discovery and development of potential stabilizers of MCAD variants as candidates for the treatment of MCAD deficiency (MCADD).
Collapse
Affiliation(s)
- Cátia A Bonito
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, 1649-003, Portugal.,Metabolism and Genetics Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal.,Medicinal Chemistry, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal.,Department of Pharmaceutical Chemistry and Therapeutics, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, 1649-003, Portugal
| | - Paula Leandro
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, 1649-003, Portugal.,Metabolism and Genetics Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Fátima V Ventura
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, 1649-003, Portugal.,Metabolism and Genetics Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Rita C Guedes
- Medicinal Chemistry, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal.,Department of Pharmaceutical Chemistry and Therapeutics, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, 1649-003, Portugal
| |
Collapse
|
9
|
Lund M, Olsen RKJ, Gregersen N. A short introduction to acyl-CoA dehydrogenases; deficiencies and novel treatment strategies. Expert Opin Orphan Drugs 2015. [DOI: 10.1517/21678707.2015.1092869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Insights into Disease-Associated Mutations in the Human Proteome through Protein Structural Analysis. Structure 2015; 23:1362-9. [PMID: 26027735 DOI: 10.1016/j.str.2015.03.028] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/03/2015] [Accepted: 03/06/2015] [Indexed: 01/12/2023]
Abstract
Most known disease-associated mutations are missense mutations involving changes of amino acids of proteins encoded by their genes. Given the plethora of genetic studies, sequenced exomes, and new protein structures determined each year, it is appropriate to revisit the role that structure plays in providing insights into the molecular basis of disease-associated mutations. In that regard, a large-scale structural analysis of 6,025 disease-associated mutations as well as 4,536 neutral variations for comparison was performed. While buried amino acids are common among the disease-associated mutations, as reported previously, more are statistically significantly enriched at observed or predicted functional sites. Interesting findings are that ligand-binding sites adjacent to protein-protein interfaces and residues involved in enzymatic function are especially vulnerable to disease-associated mutations. Finally, a compositional analysis of disease-associated mutations in comparison with variants identified in the 1000 Genomes Project provides a structural rationalization of the most disease-associated residue types.
Collapse
|
11
|
Chai AF, Bulloch EMM, Evans GL, Lott JS, Baker EN, Johnston JM. A covalent adduct of MbtN, an acyl-ACP dehydrogenase from Mycobacterium tuberculosis, reveals an unusual acyl-binding pocket. ACTA ACUST UNITED AC 2015; 71:862-72. [PMID: 25849397 DOI: 10.1107/s1399004715001650] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/25/2015] [Indexed: 11/10/2022]
Abstract
Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis. Access to iron in host macrophages depends on iron-chelating siderophores called mycobactins and is strongly correlated with Mtb virulence. Here, the crystal structure of an Mtb enzyme involved in mycobactin biosynthesis, MbtN, in complex with its FAD cofactor is presented at 2.30 Å resolution. The polypeptide fold of MbtN conforms to that of the acyl-CoA dehydrogenase (ACAD) family, consistent with its predicted role of introducing a double bond into the acyl chain of mycobactin. Structural comparisons and the presence of an acyl carrier protein, MbtL, in the same gene locus suggest that MbtN acts on an acyl-(acyl carrier protein) rather than an acyl-CoA. A notable feature of the crystal structure is the tubular density projecting from N(5) of FAD. This was interpreted as a covalently bound polyethylene glycol (PEG) fragment and resides in a hydrophobic pocket where the substrate acyl group is likely to bind. The pocket could accommodate an acyl chain of 14-21 C atoms, consistent with the expected length of the mycobactin acyl chain. Supporting this, steady-state kinetics show that MbtN has ACAD activity, preferring acyl chains of at least 16 C atoms. The acyl-binding pocket adopts a different orientation (relative to the FAD) to other structurally characterized ACADs. This difference may be correlated with the apparent ability of MbtN to catalyse the formation of an unusual cis double bond in the mycobactin acyl chain.
Collapse
Affiliation(s)
- Ai-Fen Chai
- Laboratory of Structural Biology, School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Esther M M Bulloch
- Laboratory of Structural Biology, School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Genevieve L Evans
- Laboratory of Structural Biology, School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - J Shaun Lott
- Laboratory of Structural Biology, School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Edward N Baker
- Laboratory of Structural Biology, School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jodie M Johnston
- Laboratory of Structural Biology, School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
12
|
Koster KL, Sturm M, Herebian D, Smits SHJ, Spiekerkoetter U. Functional studies of 18 heterologously expressed medium-chain acyl-CoA dehydrogenase (MCAD) variants. J Inherit Metab Dis 2014; 37:917-28. [PMID: 24966162 DOI: 10.1007/s10545-014-9732-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 05/22/2014] [Accepted: 06/02/2014] [Indexed: 12/30/2022]
Abstract
Medium-chain acyl-coenzyme-A dehydrogenase (MCAD) catalyzes the first step of mitochondrial beta-oxidation for medium-chain acyl-CoAs. Mutations in the ACADM gene cause MCAD deficiency presenting with life-threatening symptoms during catabolism. Since fatty-acid-oxidation disorders are part of newborn screening (NBS), many novel mutations with unknown clinical relevance have been identified in asymptomatic newborns. Eighteen of these mutations were separately cloned into the human ACADM gene, heterologously overexpressed in Escherichia coli and functionally characterized by using different substrates, molecular chaperones, and measured at different temperatures. In addition, they were mapped to the three-dimensional MCAD structure, and cross-link experiments were performed. This study identified variants that only moderately affect the MCAD protein in vitro, such as Y42H, E18K, and R6H, in contrast to the remaining 15 mutants. These three mutants display residual octanoyl-CoA oxidation activities in the range of 22 % to 47 %, are as temperature sensitive as the wild type, and reach 100 % activity with molecular chaperone co-overexpression. Projection into the three-dimensional protein structure gave some indication as to possible reasons for decreased enzyme activities. Additionally, six of the eight novel mutations, functionally characterized for the first time, showed severely reduced residual activities < 5 % despite high expression levels. These studies are of relevance because they classify novel mutants in vitro on the basis of their corresponding functional effects. This basic knowledge should be taken into consideration for individual management after NBS.
Collapse
Affiliation(s)
- Kira-Lee Koster
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Moorenstr.5, 40225, Duesseldorf, Germany
| | | | | | | | | |
Collapse
|
13
|
Moncoq K, Regad L, Mann S, Méjean A, Ploux O. Structure of the prolyl-acyl carrier protein oxidase involved in the biosynthesis of the cyanotoxin anatoxin-a. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:2340-52. [DOI: 10.1107/s0907444913021859] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 08/05/2013] [Indexed: 11/11/2022]
Abstract
Anatoxin-a and homoanatoxin-a are two potent cyanobacterial neurotoxins biosynthesized from L-proline by a short pathway involving polyketide synthases. Proline is first loaded onto AnaD, an acyl carrier protein, and prolyl-AnaD is then oxidized to 1-pyrroline-5-carboxyl-AnaD by a flavoprotein, AnaB. Three polyketide synthases then transform this imine into anatoxin-a or homoanatoxin-a. AnaB was crystallized in its holo form and its three-dimensional structure was determined by X-ray diffraction at 2.8 Å resolution. AnaB is a homotetramer and its fold is very similar to that of the acyl-CoA dehydrogenases (ACADs). The active-site base of AnaB, Glu244, superimposed very well with that of human isovaleryl-CoA dehydrogenase, confirming previous site-directed mutagenesis experiments and mechanistic proposals. The substrate-binding site of AnaB is small and is likely to be fitted for the pyrrolidine ring of proline. However, in contrast to ACADs, which use an electron-transport protein, AnaB uses molecular oxygen as the electron acceptor, as in acyl-CoA oxidases. Calculation of the solvent-accessible surface area around the FAD in AnaB and in several homologues showed that it is significantly larger in AnaB than in its homologues. A protonated histidine near the FAD in AnaB is likely to participate in oxygen activation. Furthermore, an array of water molecules detected in the AnaB structure suggests a possible path for molecular oxygen towards FAD. This is consistent with AnaB being an oxidase rather than a dehydrogenase. The structure of AnaB is the first to be described for a prolyl-ACP oxidase and it will contribute to defining the structural basis responsible for oxygen reactivity in flavoenzymes.
Collapse
|
14
|
Medium-chain acyl-CoA deficiency: outlines from newborn screening, in silico predictions, and molecular studies. ScientificWorldJournal 2013; 2013:625824. [PMID: 24294134 PMCID: PMC3833120 DOI: 10.1155/2013/625824] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 09/12/2013] [Indexed: 12/30/2022] Open
Abstract
Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is a disorder of fatty acid oxidation characterized by hypoglycemic crisis under fasting or during stress conditions, leading to lethargy, seizures, brain damage, or even death. Biochemical acylcarnitines data obtained through newborn screening by liquid chromatography-tandem mass spectrometry (LC-MS/MS) were confirmed by molecular analysis of the medium-chain acyl-CoA dehydrogenase (ACADM) gene. Out of 324.000 newborns screened, we identified 14 MCADD patients, in whom, by molecular analysis, we found a new nonsense c.823G>T (p.Gly275∗) and two new missense mutations: c.253G>C (p.Gly85Arg) and c.356T>A (p.Val119Asp). Bioinformatics predictions based on both phylogenetic conservation and functional/structural software were used to characterize the new identified variants. Our findings confirm the rising incidence of MCADD whose existence is increasingly recognized due to the efficacy of an expanded newborn screening panel by LC-MS/MS making possible early specific therapies that can prevent possible crises in at-risk infants. We noticed that the “common” p.Lys329Glu mutation only accounted for 32% of the defective alleles, while, in clinically diagnosed patients, this mutation accounted for 90% of defective alleles. Unclassified variants (UVs or VUSs) are especially critical when considering screening programs. The functional and pathogenic characterization of genetic variants presented here is required to predict their medical consequences in newborns.
Collapse
|
15
|
Shrinking the FadE proteome of Mycobacterium tuberculosis: insights into cholesterol metabolism through identification of an α2β2 heterotetrameric acyl coenzyme A dehydrogenase family. J Bacteriol 2013; 195:4331-41. [PMID: 23836861 DOI: 10.1128/jb.00502-13] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The ability of the pathogen Mycobacterium tuberculosis to metabolize steroids like cholesterol and the roles that these compounds play in the virulence and pathogenesis of this organism are increasingly evident. Here, we demonstrate through experiments and bioinformatic analysis the existence of an architecturally distinct subfamily of acyl coenzyme A (acyl-CoA) dehydrogenase (ACAD) enzymes that are α2β2 heterotetramers with two active sites. These enzymes are encoded by two adjacent ACAD (fadE) genes that are regulated by cholesterol. FadE26-FadE27 catalyzes the dehydrogenation of 3β-hydroxy-chol-5-en-24-oyl-CoA, an analog of the 5-carbon side chain cholesterol degradation intermediate. Genes encoding the α2β2 heterotetrameric ACAD structures are present in multiple regions of the M. tuberculosis genome, and subsets of these genes are regulated by four different transcriptional repressors or activators: KstR1 (also known as KstR), KstR2, Mce3R, and SigE. Homologous ACAD gene pairs are found in other Actinobacteria, as well as Proteobacteria. Their structures and genomic locations suggest that the α2β2 heterotetrameric structural motif has evolved to enable catalysis of dehydrogenation of steroid- or polycyclic-CoA substrates and that they function in four subpathways of cholesterol metabolism.
Collapse
|
16
|
Alves E, Henriques BJ, Rodrigues JV, Prudêncio P, Rocha H, Vilarinho L, Martinho RG, Gomes CM. Mutations at the flavin binding site of ETF:QO yield a MADD-like severe phenotype in Drosophila. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1284-92. [PMID: 22580358 DOI: 10.1016/j.bbadis.2012.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 05/03/2012] [Accepted: 05/04/2012] [Indexed: 11/30/2022]
Abstract
Following a screening on EMS-induced Drosophila mutants defective for formation and morphogenesis of epithelial cells, we have identified three lethal mutants defective for the production of embryonic cuticle. The mutants are allelic to the CG12140 gene, the fly homologue of electron transfer flavoprotein:ubiquinone oxidoreductase (ETF:QO). In humans, inherited defects in this inner membrane protein account for multiple acyl-CoA dehydrogenase deficiency (MADD), a metabolic disease of β-oxidation, with a broad range of clinical phenotypes, varying from embryonic lethal to mild forms. The three mutant alleles carried distinct missense mutations in ETF:QO (G65E, A68V and S104F) and maternal mutant embryos for ETF:QO showed lethal morphogenetic defects and a significant induction of apoptosis following germ-band elongation. This phenotype is accompanied by an embryonic accumulation of short- and medium-chain acylcarnitines (C4, C8 and C12) as well as long-chain acylcarnitines (C14 and C16:1), whose elevation is also found in severe MADD forms in humans under intense metabolic decompensation. In agreement the ETF:QO activity in the mutant embryos is markedly decreased in relation to wild type activity. Amino acid sequence analysis and structural mapping into a molecular model of ETF:QO show that all mutations map at FAD interacting residues, two of which at the nucleotide-binding Rossmann fold. This structural domain is composed by a β-strand connected by a short loop to an α-helix, and its perturbation results in impaired cofactor association via structural destabilisation and consequently enzymatic inactivation. This work thus pinpoints the molecular origins of a severe MADD-like phenotype in the fruit fly and establishes the proof of concept concerning the suitability of this organism as a potential model organism for MADD.
Collapse
Affiliation(s)
- Ema Alves
- Instituto Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Lasserre JP, Sylvius L, Joubert-Caron R, Caron M, Hardouin J. Organellar Protein Complexes of Caco-2 Human Cells Analyzed by Two-Dimensional Blue Native/SDS-PAGE and Mass Spectrometry. J Proteome Res 2010; 9:5093-107. [DOI: 10.1021/pr100381m] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jean-Paul Lasserre
- Laboratoire de Biochimie des Protéines et Protéomique, Université Paris 13, UMR CNRS 7033, 74 rue Marcel Cachin F-93017 Bobigny cedex, France, Institut de Biochimie et Génétique Cellulaires, Université Bordeaux 2, UMR CNRS 5095, 1 rue Camille Saint-Saëns F-33077 Bordeaux Cedex, France, and Laboratoire Polymères, Biopolymères, Surfaces, Equipe BRICS, Université de Rouen, UMR CNRS 6270, Boulevard Maurice de Broglie F-76821 Mont-Saint-Aignan cedex, France
| | - Loïk Sylvius
- Laboratoire de Biochimie des Protéines et Protéomique, Université Paris 13, UMR CNRS 7033, 74 rue Marcel Cachin F-93017 Bobigny cedex, France, Institut de Biochimie et Génétique Cellulaires, Université Bordeaux 2, UMR CNRS 5095, 1 rue Camille Saint-Saëns F-33077 Bordeaux Cedex, France, and Laboratoire Polymères, Biopolymères, Surfaces, Equipe BRICS, Université de Rouen, UMR CNRS 6270, Boulevard Maurice de Broglie F-76821 Mont-Saint-Aignan cedex, France
| | - Raymonde Joubert-Caron
- Laboratoire de Biochimie des Protéines et Protéomique, Université Paris 13, UMR CNRS 7033, 74 rue Marcel Cachin F-93017 Bobigny cedex, France, Institut de Biochimie et Génétique Cellulaires, Université Bordeaux 2, UMR CNRS 5095, 1 rue Camille Saint-Saëns F-33077 Bordeaux Cedex, France, and Laboratoire Polymères, Biopolymères, Surfaces, Equipe BRICS, Université de Rouen, UMR CNRS 6270, Boulevard Maurice de Broglie F-76821 Mont-Saint-Aignan cedex, France
| | - Michel Caron
- Laboratoire de Biochimie des Protéines et Protéomique, Université Paris 13, UMR CNRS 7033, 74 rue Marcel Cachin F-93017 Bobigny cedex, France, Institut de Biochimie et Génétique Cellulaires, Université Bordeaux 2, UMR CNRS 5095, 1 rue Camille Saint-Saëns F-33077 Bordeaux Cedex, France, and Laboratoire Polymères, Biopolymères, Surfaces, Equipe BRICS, Université de Rouen, UMR CNRS 6270, Boulevard Maurice de Broglie F-76821 Mont-Saint-Aignan cedex, France
| | - Julie Hardouin
- Laboratoire de Biochimie des Protéines et Protéomique, Université Paris 13, UMR CNRS 7033, 74 rue Marcel Cachin F-93017 Bobigny cedex, France, Institut de Biochimie et Génétique Cellulaires, Université Bordeaux 2, UMR CNRS 5095, 1 rue Camille Saint-Saëns F-33077 Bordeaux Cedex, France, and Laboratoire Polymères, Biopolymères, Surfaces, Equipe BRICS, Université de Rouen, UMR CNRS 6270, Boulevard Maurice de Broglie F-76821 Mont-Saint-Aignan cedex, France
| |
Collapse
|
18
|
Li Z, Zhai Y, Fang J, Zhou Q, Geng Y, Sun F. Purification, crystallization and preliminary crystallographic analysis of very-long-chain acyl-CoA dehydrogenase from Caenorhabditis elegans. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:426-30. [PMID: 20383014 PMCID: PMC2852336 DOI: 10.1107/s1744309110005002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 02/08/2010] [Indexed: 11/10/2022]
Abstract
Acyl-CoA dehydrogenase [acyl-CoA:(acceptor) 2,3-oxidoreductase; EC 1.3.99.3] catalyzes the first reaction step in mitochondrial fatty-acid beta-oxidation. Here, the very-long-chain acyl-CoA dehydrogenase from Caenorhabditis elegans (cVLCAD) has been cloned and overexpressed in Escherichia coli strain BL21 (DE3). Interestingly, unlike other very-long-chain acyl-CoA dehydrogenases, cVLCAD was found to form a tetramer by size-exclusion chromatography coupled with in-line static light-scattering, refractive-index and ultraviolet measurements. Purified cVLCAD (12 mg ml(-1)) was successfully crystallized by the hanging-drop vapour-diffusion method under conditions containing 100 mM Tris-HCl pH 8.0, 150 mM sodium chloride, 200 mM magnesium formate and 13% PEG 3350. The crystal has a tetragonal form and a complete diffraction data set was collected and processed to 1.8 A resolution. The crystal belonged to space group C2, with unit-cell parameters a = 138.6, b = 116.7, c = 115.3 A, alpha = gamma = 90.0, beta = 124.0 degrees . A self-rotation function indicated the existence of one noncrystallographic twofold axis. A preliminary molecular-replacement solution further confirmed the presence of two molecules in one asymmetric unit, which yields a Matthews coefficient V(M) of 2.76 A(3) Da(-1) and a solvent content of 55%.
Collapse
Affiliation(s)
- Zhijie Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education), College of Life Sciences, Nankai University, Tianjin 300071, People’s Republic of China
| | - Yujia Zhai
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Junnan Fang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Qiangjun Zhou
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Yunqi Geng
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education), College of Life Sciences, Nankai University, Tianjin 300071, People’s Republic of China
| | - Fei Sun
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| |
Collapse
|
19
|
Swigonová Z, Mohsen AW, Vockley J. Acyl-CoA dehydrogenases: Dynamic history of protein family evolution. J Mol Evol 2009; 69:176-93. [PMID: 19639238 DOI: 10.1007/s00239-009-9263-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 05/08/2009] [Accepted: 07/03/2009] [Indexed: 10/20/2022]
Abstract
The acyl-CoA dehydrogenases (ACADs) are enzymes that catalyze the alpha,beta-dehydrogenation of acyl-CoA esters in fatty acid and amino acid catabolism. Eleven ACADs are now recognized in the sequenced human genome, and several homologs have been reported from bacteria, fungi, plants, and nematodes. We performed a systematic comparative genomic study, integrating homology searches with methods of phylogenetic reconstruction, to investigate the evolutionary history of this family. Sequence analyses indicate origin of the family in the common ancestor of Archaea, Bacteria, and Eukaryota, illustrating its essential role in the metabolism of early life. At least three ACADs were already present at that time: ancestral glutaryl-CoA dehydrogenase (GCD), isovaleryl-CoA dehydrogenase (IVD), and ACAD10/11. Two gene duplications were unique to the eukaryotic domain: one resulted in the VLCAD and ACAD9 paralogs and another in the ACAD10 and ACAD11 paralogs. The overall patchy distribution of specific ACADs across the tree of life is the result of dynamic evolution that includes numerous rounds of gene duplication and secondary losses, interdomain lateral gene transfer events, alteration of cellular localization, and evolution of novel proteins by domain acquisition. Our finding that eukaryotic ACAD species are more closely related to bacterial ACADs is consistent with endosymbiotic origin of ACADs in eukaryotes and further supported by the localization of all nine previously studied ACADs in mitochondria.
Collapse
Affiliation(s)
- Zuzana Swigonová
- Department of Pediatrics, University of Pittsburgh, Children's Hospital of Pittsburgh, PA 15213, USA.
| | | | | |
Collapse
|
20
|
Nishina Y, Sato K, Tamaoki H, Setoyama C, Miura R, Shiga K. FT-IR spectroscopic studies on the molecular mechanism for substrate specificity/activation of medium-chain acyl-CoA dehydrogenase. J Biochem 2009; 146:351-7. [PMID: 19470521 DOI: 10.1093/jb/mvp077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The interactions of acyl-CoA with medium-chain acyl-CoA dehydrogenases (MCADs) reconstituted with artificial FADs-i.e. 8-CN-, 7,8-Cl(2)-, 8-Cl-, 8-OCH(3)- and 8-NH(2)-FAD-were investigated by UV-visible absorption and FT-IR measurements. Although 8-NH(2)-FAD-MCAD did not oxidize acyl-CoA the wavelength of the absorption maximum of the flavin was altered by acyl-CoAs binding. Thus, 8-NH(2)-FAD-MCAD is one of the attractive materials for investigation of enzyme-substrate (ES) interaction in ES complex (the complex of oxidized MCAD with acyl-CoA). FT-IR difference spectra between non-labelled and [1-(13)C]-labelled acyl-CoA free in solution and bound to oxidized 8-NH(2)-FAD-MCAD were obtained. The broad 1668-cm(-1) band of free octanoyl-CoA assigned to the C(1) = O stretching vibration appeared as a sharp signal at 1626 cm(-1) in the case of the complex. The downward shift indicates a large polarization of C(1) = O, and the sharpness suggests that the orientation of the C(1) = O in the active-site cavity is fairly limited. The hydrogen-bond enthalpy change responsible for the polarization on the transfer of the substrate from aqueous solution to the active site of MCAD was estimated to be approximately 15 kcal/mol. The 1626-cm(-1) band is noticeably weakened in the case of acyl-CoA with acyl chains longer than C12 which are poor substrates for MCAD, suggesting that C(1) = O is likely to exist in multiple orientations in the active-site cavity, whence the band becomes obscured. A band identical to that of bound C8-CoA was observed in the case of C4-CoA which is a poor substrate, indicating the strong hydrogen bond at C(1) = O.
Collapse
Affiliation(s)
- Yasuzo Nishina
- Department of Physiology, School of Health Sciences, Kumamoto University, Kuhonji, Kumamoto 862-0976, Japan.
| | | | | | | | | | | |
Collapse
|
21
|
McAndrew RP, Wang Y, Mohsen AW, He M, Vockley J, Kim JJP. Structural basis for substrate fatty acyl chain specificity: crystal structure of human very-long-chain acyl-CoA dehydrogenase. J Biol Chem 2008; 283:9435-43. [PMID: 18227065 PMCID: PMC2431035 DOI: 10.1074/jbc.m709135200] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 01/07/2008] [Indexed: 11/06/2022] Open
Abstract
Very-long-chain acyl-CoA dehydrogenase (VLCAD) is a member of the family of acyl-CoA dehydrogenases (ACADs). Unlike the other ACADs, which are soluble homotetramers, VLCAD is a homodimer associated with the mitochondrial membrane. VLCAD also possesses an additional 180 residues in the C terminus that are not present in the other ACADs. We have determined the crystal structure of VLCAD complexed with myristoyl-CoA, obtained by co-crystallization, to 1.91-A resolution. The overall fold of the N-terminal approximately 400 residues of VLCAD is similar to that of the soluble ACADs including medium-chain acyl-CoA dehydrogenase (MCAD). The novel C-terminal domain forms an alpha-helical bundle that is positioned perpendicular to the two N-terminal helical domains. The fatty acyl moiety of the bound substrate/product is deeply imbedded inside the protein; however, the adenosine pyrophosphate portion of the C14-CoA ligand is disordered because of partial hydrolysis of the thioester bond and high mobility of the CoA moiety. The location of Glu-422 with respect to the C2-C3 of the bound ligand and FAD confirms Glu-422 to be the catalytic base. In MCAD, Gln-95 and Glu-99 form the base of the substrate binding cavity. In VLCAD, these residues are glycines (Gly-175 and Gly-178), allowing the binding channel to extend for an additional 12A and permitting substrate acyl chain lengths as long as 24 carbons to bind. VLCAD deficiency is among the more common defects of mitochondrial beta-oxidation and, if left undiagnosed, can be fatal. This structure allows us to gain insight into how a variant VLCAD genotype results in a clinical phenotype.
Collapse
Affiliation(s)
- Ryan P McAndrew
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | | | | | | | |
Collapse
|
22
|
Arent S, Pye VE, Henriksen A. Structure and function of plant acyl-CoA oxidases. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:292-301. [PMID: 18272379 DOI: 10.1016/j.plaphy.2007.12.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Indexed: 05/08/2023]
Abstract
Acyl-CoA oxidases (in peroxisomes) and acyl-CoA dehydrogenases (in mitochondria) catalyse the first step in fatty acid beta-oxidation, the pathway responsible for lipid catabolism and plant hormone biosynthesis. The interplay and differences between peroxisomal and mitochondrial beta-oxidation processes are highlighted by the variation in the enzymes involved. Structure and sequence comparisons are made with a focus on the enzyme's mechanistic means to control electron transfer paths, reactivity towards molecular oxygen, and spatial and architectural requirements for substrate discrimination.
Collapse
Affiliation(s)
- Susan Arent
- Biostructure Group, Carlsberg Laboratory, Gamle Carlsberg Vej 10, DK-2500 Valby, Denmark
| | | | | |
Collapse
|
23
|
Toogood HS, Leys D, Scrutton NS. Dynamics driving function − new insights from electron transferring flavoproteins and partner complexes. FEBS J 2007; 274:5481-504. [DOI: 10.1111/j.1742-4658.2007.06107.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Froemming MK, Sames D. Fluoromorphic substrates for fatty acid metabolism: highly sensitive probes for mammalian medium-chain acyl-CoA dehydrogenase. Angew Chem Int Ed Engl 2007; 45:637-42. [PMID: 16365837 DOI: 10.1002/anie.200502675] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Mary K Froemming
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027, USA
| | | |
Collapse
|
25
|
Mackenzie J, Pedersen L, Arent S, Henriksen A. Controlling Electron Transfer in Acyl-CoA Oxidases and Dehydrogenases. J Biol Chem 2006; 281:31012-20. [PMID: 16887802 DOI: 10.1074/jbc.m603405200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plants produce a unique peroxisomal short chain-specific acyl-CoA oxidase (ACX4) for beta-oxidation of lipids. The short chain-specific oxidase has little resemblance to other peroxisomal acyl-CoA oxidases but has an approximately 30% sequence identity to mitochondrial acyl-CoA dehydrogenases. Two biochemical features have been linked to structural properties by comparing the structures of short chain-specific Arabidopsis thaliana ACX4 with and without a substrate analogue bound in the active site to known acyl-CoA oxidases and dehydrogenase structures: (i) a solvent-accessible acyl binding pocket is not required for oxygen reactivity, and (ii) the oligomeric state plays a role in substrate pocket architecture but is not linked to oxygen reactivity. The structures indicate that the acyl-CoA oxidases may encapsulate the electrons for transfer to molecular oxygen by blocking the dehydrogenase substrate interaction site with structural extensions. A small binding pocket observed adjoining the flavin adenine dinucleotide N5 and C4a atoms could increase the number of productive encounters between flavin adenine dinucleotide and O2.
Collapse
Affiliation(s)
- Jenny Mackenzie
- Biostructure Group, Carlsberg Laboratory, Gamle Carlsberg Vej 10, DK-2500 Valby, Denmark
| | | | | | | |
Collapse
|
26
|
Bhattacharyya S, Ma S, Stankovich MT, Truhlar DG, Gao J. Potential of mean force calculation for the proton and hydride transfer reactions catalyzed by medium-chain acyl-CoA dehydrogenase: effect of mutations on enzyme catalysis. Biochemistry 2006; 44:16549-62. [PMID: 16342946 PMCID: PMC2527473 DOI: 10.1021/bi051630m] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Potential of mean force calculations have been performed on the wild-type medium-chain acyl-CoA dehydrogenase (MCAD) and two of its mutant forms. Initial simulation and analysis of the active site of the enzyme reveal that an arginine residue (Arg256), conserved in the substrate-binding domain of this group of enzymes, exists in two alternate conformations, only one of which makes the enzyme active. This active conformation was used in subsequent computations of the enzymatic reactions. It is known that the catalytic alpha,beta-dehydrogenation of fatty acyl-CoAs consists of two C-H bond dissociation processes: a proton abstraction and a hydride transfer. Energy profiles of the two reaction steps in the wild-type MCAD demonstrate that the reaction proceeds by a stepwise mechanism with a transient species. The activation barriers of the two steps differ by only approximately 2 kcal/mol, indicating that both may contribute to the rate-limiting process. Thus this may be a stepwise dissociation mechanism whose relative barriers can be tuned by suitable alterations of the substrate and/or enzyme. Analysis of the structures along the reaction path reveals that Arg256 plays a key role in maintaining the reaction center hydrogen-bonding network involving the thioester carbonyl group, which stabilizes transition states as well as the intervening transient species. Mutation of this arginine residue to glutamine increases the activation barrier of the hydride transfer reaction by approximately 5 kcal/mol, and the present simulations predict a substantial loss of catalytic activity for this mutant. Structural analysis of this mutant reveals that the orientation of the thioester moiety of the substrate has been changed significantly as compared to that in the wild-type enzyme. In contrast, simulation of the active site of the Thr168Ala mutant shows no significant change in the relative orientation of the substrate and the cofactor in the active site; as a result, this mutation has very little effect on the overall reaction barrier, and this is consistent with the experimental data. This study demonstrates that significant insights into the catalytic mechanism can be obtained from simulation studies, and the results can be used to design novel mechanistic probes for the enzyme.
Collapse
Affiliation(s)
| | | | - Marian T. Stankovich
- To whom correspondence should be addressed. MTS.: Phone: (612) 624 1019, FAX: (612) 626 7541, e-mail: . DGT: Phone: (612) 624 7555, FAX: (612) 626 9390, e-mail: . JG: Phone: (612) 625 0769, FAX: (612) 626 7541, e-mail:
| | - Donald G. Truhlar
- To whom correspondence should be addressed. MTS.: Phone: (612) 624 1019, FAX: (612) 626 7541, e-mail: . DGT: Phone: (612) 624 7555, FAX: (612) 626 9390, e-mail: . JG: Phone: (612) 625 0769, FAX: (612) 626 7541, e-mail:
| | - Jiali Gao
- To whom correspondence should be addressed. MTS.: Phone: (612) 624 1019, FAX: (612) 626 7541, e-mail: . DGT: Phone: (612) 624 7555, FAX: (612) 626 9390, e-mail: . JG: Phone: (612) 625 0769, FAX: (612) 626 7541, e-mail:
| |
Collapse
|
27
|
Goetzman ES, He M, Nguyen TV, Vockley J. Functional analysis of acyl-CoA dehydrogenase catalytic residue mutants using surface plasmon resonance and circular dichroism. Mol Genet Metab 2006; 87:233-42. [PMID: 16376132 DOI: 10.1016/j.ymgme.2005.09.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 09/28/2005] [Accepted: 09/30/2005] [Indexed: 11/21/2022]
Abstract
The acyl-CoA dehydrogenases (ACDs) are a family of flavoenzymes involved in the metabolism of fatty acids and branched-chain amino acids. The ACDs share a similar structure and a common dehydrogenation mechanism in which a catalytic glutamate extracts a proton from an acyl-CoA substrate. The resulting charge-transfer complex subsequently passes electrons to electron-transferring flavoprotein (ETF). We previously generated catalytic residue mutants of human short-chain acyl-CoA dehydrogenase (SCAD) and isovaleryl-CoA dehydrogenase (IVD) that were difficult to characterize by traditional methods. In the present study, we developed a novel surface plasmon resonance-based assay to measure substrate binding to these mutants. Replacement of the catalytic glutamate in either SCAD or IVD with glycine resulted in a several-fold reduction in affinity for substrate. Circular dichroism studies substantiated our earlier findings that both SCAD E368G and IVD E254G are unable to form a charge-transfer complex with substrate/product. The CD spectra of IVD E254G also indicated a perturbation of the flavin environment, a finding supported by molecular modeling that predicted a shift in the conformation of a conserved tryptophan that lies in close proximity to the flavin. Lastly, competitive inhibition studies using the ETF fluorescence reduction assay suggested that SCAD E368G and IVD E254G do not effectively compete with the wild-type enzymes for the physiological electron acceptor ETF.
Collapse
Affiliation(s)
- Eric S Goetzman
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | |
Collapse
|
28
|
Froemming MK, Sames D. Fluoromorphic Substrates for Fatty Acid Metabolism: Highly Sensitive Probes for Mammalian Medium-Chain Acyl-CoA Dehydrogenase. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200502675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Toogood HS, van Thiel A, Scrutton NS, Leys D. Stabilization of Non-productive Conformations Underpins Rapid Electron Transfer to Electron-transferring Flavoprotein. J Biol Chem 2005; 280:30361-6. [PMID: 15975918 DOI: 10.1074/jbc.m505562200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Crystal structures of protein complexes with electron-transferring flavoprotein (ETF) have revealed a dual protein-protein interface with one region serving as anchor while the ETF FAD domain samples available space within the complex. We show that mutation of the conserved Glu-165beta in human ETF leads to drastically modulated rates of interprotein electron transfer with both medium chain acyl-CoA dehydrogenase and dimethylglycine dehydrogenase. The crystal structure of free E165betaA ETF is essentially identical to that of wild-type ETF, but the crystal structure of the E165betaA ETF.medium chain acyl-CoA dehydrogenase complex reveals clear electron density for the FAD domain in a position optimal for fast interprotein electron transfer. Based on our observations, we present a dynamic multistate model for conformational sampling that for the wild-type ETF. medium chain acyl-CoA dehydrogenase complex involves random motion between three distinct positions for the ETF FAD domain. ETF Glu-165beta plays a key role in stabilizing positions incompatible with fast interprotein electron transfer, thus ensuring high rates of complex dissociation.
Collapse
Affiliation(s)
- Helen S Toogood
- Department of Biochemistry, University of Leicester, Henry Wellcome Building, Lancaster Road, LE1 7RH, Leicester United Kingdom
| | | | | | | |
Collapse
|
30
|
Ensenauer R, He M, Willard JM, Goetzman ES, Corydon TJ, Vandahl BB, Mohsen AW, Isaya G, Vockley J. Human acyl-CoA dehydrogenase-9 plays a novel role in the mitochondrial beta-oxidation of unsaturated fatty acids. J Biol Chem 2005; 280:32309-16. [PMID: 16020546 DOI: 10.1074/jbc.m504460200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Unsaturated fatty acids play an important role in the prevention of human diseases such as diabetes, obesity, cancer, and neurodegeneration. However, their oxidation in vivo by acyl-CoA dehydrogenases (ACADs) that catalyze the first step of each cycle of mitochondrial fatty acid beta-oxidation is not entirely understood. Recently, a novel ACAD (ACAD-9) of unknown function that is highly homologous to human very-long-chain acyl-CoA dehydrogenase was identified by large-scale random sequencing. To characterize its enzymatic role, we have expressed ACAD-9 in Escherichia coli, purified it, and determined its pattern of substrate utilization. The N terminus of the mature form of the enzyme was identified by in vitro mitochondrial import studies of precursor protein. A 37-amino acid leader peptide was cleaved sequentially by two mitochondrial peptidases to yield a predicted molecular mass of 65 kDa for the mature subunit. Submitochondrial fractionation studies found native ACAD-9 to be associated with the mitochondrial membrane. Gel filtration analysis indicated that, like very-long-chain acyl-CoA dehydrogenase, ACAD-9 is a dimer, in contrast to the other known ACADs, which are tetramers. Purified mature ACAD-9 had maximal activity with long-chain unsaturated acyl-CoAs as substrates (C16:1-, C18:1-, C18:2-, C22:6-CoA). These results suggest a previously unrecognized role for ACAD-9 in the mitochondrial beta-oxidation of long-chain unsaturated fatty acids. Because of the substrate specificity and abundance of ACAD-9 in brain, we speculate that it may play a role in the turnover of lipid membrane unsaturated fatty acids that are essential for membrane integrity and structure.
Collapse
MESH Headings
- Acyl-CoA Dehydrogenase, Long-Chain/metabolism
- Acyl-CoA Dehydrogenase, Long-Chain/physiology
- Amino Acid Sequence
- Animals
- Brain/metabolism
- Cell Membrane/metabolism
- Chromatography, Gel
- Chromatography, High Pressure Liquid
- Cloning, Molecular
- Escherichia coli/metabolism
- Fatty Acids/metabolism
- Humans
- Kinetics
- Lipid Metabolism
- Lipids/chemistry
- Mitochondria/metabolism
- Models, Molecular
- Molecular Sequence Data
- Muscles/metabolism
- Mutagenesis
- Oxygen/metabolism
- Peptides/chemistry
- Polymerase Chain Reaction
- Protein Conformation
- Protein Structure, Tertiary
- Recombinant Proteins/chemistry
- Sequence Analysis, DNA
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Substrate Specificity
- Transcription, Genetic
Collapse
Affiliation(s)
- Regina Ensenauer
- Department of Medical Genetics, Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Garcia-Viloca M, Poulsen TD, Truhlar DG, Gao J. Sensitivity of molecular dynamics simulations to the choice of the X-ray structure used to model an enzymatic reaction. Protein Sci 2005; 13:2341-54. [PMID: 15322278 PMCID: PMC2280009 DOI: 10.1110/ps.03504104] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A subject of great practical importance that has not received much attention is the question of the sensitivity of molecular dynamics simulations to the initial X-ray structure used to set up the calculation. We have found two cases in which seemingly similar structures lead to quite different results, and in this article we present a detailed analysis of these cases. The first case is acyl-CoA dehydrogenase, and the chief difference of the two structures is attributed to a slight shift in a backbone carbonyl that causes a key residue (the proton-abstracting base) to be in a bad conformation for reaction. The second case is xylose isomerase, and the chief difference of the two structures appears to be the ligand sphere of a Mg2+ metal cofactor that plays an active role in catalysis.
Collapse
Affiliation(s)
- Mireia Garcia-Viloca
- Department of Chemistry and Supercomputer Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
32
|
Fitzpatrick PF, Orville AM, Nagpal A, Valley MP. Nitroalkane oxidase, a carbanion-forming flavoprotein homologous to acyl-CoA dehydrogenase. Arch Biochem Biophys 2005; 433:157-65. [PMID: 15581574 DOI: 10.1016/j.abb.2004.08.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Revised: 08/20/2004] [Indexed: 11/21/2022]
Abstract
While several flavoproteins will oxidize nitroalkanes in addition to their physiological substrates, nitroalkane oxidase (NAO) is the only one which does not require the anionic nitroalkane. This, in addition to the induction of NAO by nitroethane seen in Fusarium oxysporum, suggests that oxidation of a nitroaliphatic species is the physiological role of the enzyme. Mechanistic studies of the reaction with nitroethane as substrate have established many of the details of the enzymatic reaction. The enzyme is unique in being the only flavoprotein to date for which a carbanion is definitively established as an intermediate in catalysis. Recent structural analyses show that NAO is homologous to the acyl-CoA dehydrogenase and acyl-CoA oxidase families of enzymes. In NAO, the glutamate which acts as the active site base in the latter enzymes is replaced by an aspartate.
Collapse
Affiliation(s)
- Paul F Fitzpatrick
- Department of Biochemistry and Biophysics, Texas A and M University, College Station, TX 77843-2128, USA.
| | | | | | | |
Collapse
|
33
|
Pedersen L, Henriksen A. Acyl-CoA Oxidase 1 from Arabidopsis thaliana. Structure of a Key Enzyme in Plant Lipid Metabolism. J Mol Biol 2005; 345:487-500. [PMID: 15581893 DOI: 10.1016/j.jmb.2004.10.062] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2004] [Revised: 10/18/2004] [Accepted: 10/21/2004] [Indexed: 11/18/2022]
Abstract
The peroxisomal acyl-CoA oxidase family plays an essential role in lipid metabolism by catalyzing the conversion of acyl-CoA into trans-2-enoyl-CoA during fatty acid beta-oxidation. Here, we report the X-ray structure of the FAD-containing Arabidopsis thaliana acyl-CoA oxidase 1 (ACX1), the first three-dimensional structure of a plant acyl-CoA oxidase. Like other acyl-CoA oxidases, the enzyme is a dimer and it has a fold resembling that of mammalian acyl-CoA oxidase. A comparative analysis including mammalian acyl-CoA oxidase and the related tetrameric mitochondrial acyl-CoA dehydrogenases reveals a substrate-binding architecture that explains the observed preference for long-chained, mono-unsaturated substrates in ACX1. Two anions are found at the ACX1 dimer interface and for the first time the presence of a disulfide bridge in a peroxisomal protein has been observed. The functional differences between the peroxisomal acyl-CoA oxidases and the mitochondrial acyl-CoA dehydrogenases are attributed to structural differences in the FAD environments.
Collapse
Affiliation(s)
- Lise Pedersen
- Carlsberg Laboratory, Gamle Carlsberg Vej 10, DK-2500 Valby, Denmark
| | | |
Collapse
|
34
|
Nagpal A, Valley MP, Fitzpatrick PF, Orville AM. Crystallization and preliminary analysis of active nitroalkane oxidase in three crystal forms. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2004; 60:1456-60. [PMID: 15272176 PMCID: PMC1680162 DOI: 10.1107/s0907444904013289] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Accepted: 06/02/2004] [Indexed: 11/10/2022]
Abstract
Nitroalkane oxidase (NAO), a flavoprotein cloned and purified from Fusarium oxysporum, catalyzes the oxidation of neutral nitroalkanes to the corresponding aldehydes or ketones, with the production of H2O2 and nitrite. In this paper, the crystallization and preliminary X-ray data analysis of three crystal forms of active nitroalkane oxidase are described. The first crystal form belongs to a trigonal space group (either P3(1)21 or P3(2)21, with unit-cell parameters a = b = 103.8, c = 487.0 A) and diffracts to at least 1.6 A resolution. Several data sets were collected using 2theta and kappa geometry in order to obtain a complete data set to 2.07 A resolution. Solvent-content and Matthews coefficient analysis suggests that crystal form 1 contains two homotetramers per asymmetric unit. Crystal form 2 (P2(1)2(1)2(1); a = 147.3, b = 153.5, c = 169.5 A) and crystal form 3 (P3(1) or P3(2); a = b = 108.9, c = 342.5 A) are obtained from slightly different conditions and also contain two homotetramers per asymmetric unit, but have different solvent contents. A three-wavelength MAD data set was collected from selenomethionine-enriched NAO (SeMet-NAO) in crystal form 3 and will be used for phasing.
Collapse
Affiliation(s)
- Akanksha Nagpal
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta 30332-0400, USA
| | | | | | | |
Collapse
|
35
|
Toogood HS, van Thiel A, Basran J, Sutcliffe MJ, Scrutton NS, Leys D. Extensive Domain Motion and Electron Transfer in the Human Electron Transferring Flavoprotein·Medium Chain Acyl-CoA Dehydrogenase Complex. J Biol Chem 2004; 279:32904-12. [PMID: 15159392 DOI: 10.1074/jbc.m404884200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The crystal structure of the human electron transferring flavoprotein (ETF).medium chain acyl-CoA dehydrogenase (MCAD) complex reveals a dual mode of protein-protein interaction, imparting both specificity and promiscuity in the interaction of ETF with a range of structurally distinct primary dehydrogenases. ETF partitions the functions of partner binding and electron transfer between (i) the recognition loop, which acts as a static anchor at the ETF.MCAD interface, and (ii) the highly mobile redox active FAD domain. Together, these enable the FAD domain of ETF to sample a range of conformations, some compatible with fast interprotein electron transfer. Disorders in amino acid or fatty acid catabolism can be attributed to mutations at the protein-protein interface. Crucially, complex formation triggers mobility of the FAD domain, an induced disorder that contrasts with general models of protein-protein interaction by induced fit mechanisms. The subsequent interfacial motion in the MCAD.ETF complex is the basis for the interaction of ETF with structurally diverse protein partners. Solution studies using ETF and MCAD with mutations at the protein-protein interface support this dynamic model and indicate ionic interactions between MCAD Glu(212) and ETF Arg alpha(249) are likely to transiently stabilize productive conformations of the FAD domain leading to enhanced electron transfer rates between both partners.
Collapse
Affiliation(s)
- Helen S Toogood
- Department of Biochemistry, University of Leicester, Leicester LE1 7RH, United Kingdom
| | | | | | | | | | | |
Collapse
|
36
|
Kim JJP, Miura R. Acyl-CoA dehydrogenases and acyl-CoA oxidases. Structural basis for mechanistic similarities and differences. EUROPEAN JOURNAL OF BIOCHEMISTRY 2004; 271:483-93. [PMID: 14728675 DOI: 10.1046/j.1432-1033.2003.03948.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Acyl-CoA dehydrogenases and acyl-CoA oxidases are two closely related FAD-containing enzyme families that are present in mitochondria and peroxisomes, respectively. They catalyze the dehydrogenation of acyl-CoA thioesters to the corresponding trans-2-enoyl-CoA. This review examines the structure of medium chain acyl-CoA dehydrogenase, as a representative of the dehydrogenase family, with respect to the catalytic mechanism and its broad chain length specificity. Comparing the structures of four other acyl-CoA dehydrogenases provides further insights into the structural basis for the substrate specificity of each of these enzymes. In addition, the structure of peroxisomal acyl-CoA oxidase II from rat liver is compared to that of medium chain acyl-CoA dehydrogenase, and the structural basis for their different oxidative half reactions is discussed.
Collapse
Affiliation(s)
- Jung-Ja P Kim
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | |
Collapse
|
37
|
Watanabe K, Khosla C, Stroud RM, Tsai SC. Crystal structure of an Acyl-ACP dehydrogenase from the FK520 polyketide biosynthetic pathway: insights into extender unit biosynthesis. J Mol Biol 2003; 334:435-44. [PMID: 14623185 DOI: 10.1016/j.jmb.2003.10.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polyketide synthases (PKSs) synthesize the polyketide cores of pharmacologically important natural products such as the immunosuppressants FK520 and FK506. Understanding polyketide biosynthesis at atomic resolution could present new opportunities for chemo-enzymatic synthesis of complex molecules. The crystal structure of FkbI, an enzyme involved in the biosynthesis of the methoxymalonyl extender unit of FK520, was solved to 2.1A with an R(crys) of 24.4%. FkbI has a similar fold to acyl-CoA dehydrogenases. Notwithstanding this similarity, the surface and substrate-binding site of FkbI reveal key differences from other acyl-CoA dehydrogenases, suggesting that FkbI may recognize an acyl-ACP substrate rather than an acyl-CoA substrate. This structural observation coincided the genetic experiment done by Carroll et al. J. Am. Chem. Soc., 124 (2002) 4176. Although an in vitro assay for FkbI remains elusive, the structural basis for the substrate specificity of FkbI is analyzed by a combination of sequence comparison, docking simulations and structural analysis. A biochemical mechanism for the role of FkbI in the biosynthesis of methoxymalonyl-ACP is proposed.
Collapse
Affiliation(s)
- Kenji Watanabe
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305-5025, USA
| | | | | | | |
Collapse
|
38
|
He M, Burghardt TP, Vockley J. A novel approach to the characterization of substrate specificity in short/branched chain Acyl-CoA dehydrogenase. J Biol Chem 2003; 278:37974-86. [PMID: 12855692 DOI: 10.1074/jbc.m306882200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rat and human short/branched chain acyl-CoA dehydrogenases exhibit key differences in substrate specificity despite an overall amino acid identity of 85% between them. Rat short/branched chain acyl-CoA dehydrogenases (SBCAD) are more active toward substrates with longer carbon side chains than human SBCAD, whereas the human enzyme utilizes substrates with longer primary carbon chains. The mechanism underlying this difference in substrate specificity was investigated with a novel surface plasmon resonance assay combined with absorbance and circular dichroism spectroscopy, and kinetics analysis of wild type SBCADs and mutants with altered amino acid residues in the substrate binding pocket. Results show that a relatively few amino acid residues are critical for determining the difference in substrate specificity seen between the human and rat enzymes and that alteration of these residues influences different portions of the enzyme mechanism. Molecular modeling of the SBCAD structure suggests that position 104 at the bottom of the substrate binding pocket is important in determining the length of the primary carbon chain that can be accommodated. Conformational changes caused by alteration of residues at positions 105 and 177 directly affect the rate of electron transfer in the dehydrogenation reactions, and are likely transmitted from the bottom of the substrate binding pocket to beta-sheet 3. Differences between the rat and human enzyme at positions 383, 222, and 220 alter substrate specificity without affecting substrate binding. Modeling predicts that these residues combine to determine the distance between the flavin ring of FAD and the catalytic base, without changing the opening of the substrate binding pocket.
Collapse
Affiliation(s)
- Miao He
- Department of Medical Genetics, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
39
|
Spiekerkoetter U, Sun B, Zytkovicz T, Wanders R, Strauss AW, Wendel U. MS/MS-based newborn and family screening detects asymptomatic patients with very-long-chain acyl-CoA dehydrogenase deficiency. J Pediatr 2003; 143:335-42. [PMID: 14517516 DOI: 10.1067/s0022-3476(03)00292-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVES To determine whether asymptomatic persons with biochemical evidence of very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency identified through expanded newborn screening with tandem mass spectometry have confirmed disease. STUDY DESIGN We characterized 8 asymptomatic VLCAD-deficient individuals by enzyme and/or mutational analysis and compared them with clinically diagnosed, symptomatic patients with regard to mutations, enzyme activity, phenotype, and age of disease onset. RESULTS VLCAD molecular analyses in 6 unrelated patients revealed the previously reported V243A mutation, associated with hepatic or myopathic phenotypes, on 7/12 alleles. All other mutations were also missense mutations. Residual VLCAD activities of 6% to 11% of normal were consistent with milder phenotypes. In these identified individuals treated prospectively with dietary modification as preventive measures, clinical symptoms did not develop during follow-up. CONCLUSIONS MS/MS-based newborn screening correctly identifies VLCAD-deficient individuals. Based on mutational and enzymatic findings, these infants probably are at risk of future disease. Because life-threatening metabolic derangement can occur even in otherwise mild phenotypes, we advocate universal newborn screening programs for VLCAD deficiency to detect affected patients and prevent development of metabolic crises. Longer-term follow-up is essential to define outcomes, the definite risk of future disease, and appropriate treatment recommendations.
Collapse
Affiliation(s)
- Ute Spiekerkoetter
- Vanderbilt University School of Medicine, Department of Pediatrics, Nashville, Tennessee, 37232, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Hanley PJ, Gopalan KV, Lareau RA, Srivastava DK, von Martin Meltzer, Daut J. Beta-oxidation of 5-hydroxydecanoate, a putative blocker of mitochondrial ATP-sensitive potassium channels. J Physiol 2003; 547:387-93. [PMID: 12562916 PMCID: PMC2342646 DOI: 10.1113/jphysiol.2002.037044] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
5-Hydroxydecanoate (5-HD) inhibits ischaemic and pharmacological preconditioning of the heart. Since 5-HD is thought to inhibit specifically the putative mitochondrial ATP-sensitive K+ (KATP) channel, this channel has been inferred to be a mediator of preconditioning. However, it has recently been shown that 5-HD is a substrate for acyl-CoA synthetase, the mitochondrial enzyme which 'activates' fatty acids. Here, we tested whether activated 5-HD, 5-hydroxydecanoyl-CoA (5-HD-CoA), is a substrate for medium-chain acyl-CoA dehydrogenase (MCAD), the committed step of the mitochondrial beta-oxidation pathway. Using a molecular model, we predicted that the hydroxyl group on the acyl tail of 5-HD-CoA would not sterically hinder the active site of MCAD. Indeed, we found that 5-HD-CoA was a substrate for purified human liver MCAD with a Km of 12.8 +/- 0.6 microM and a kcat of 14.1 s-1. For comparison, with decanoyl-CoA (Km approximately 3 microM) as substrate, kcat was 6.4 s-1. 5-HD-CoA was also a substrate for purified pig kidney MCAD. We next tested whether the reaction product, 5-hydroxydecenoyl-CoA (5-HD-enoyl-CoA), was a substrate for enoyl-CoA hydratase, the second enzyme of the beta-oxidation pathway. Similar to decenoyl-CoA, purified 5-HD-enoyl-CoA was also a substrate for the hydratase reaction. In conclusion, we have shown that 5-HD is metabolised at least as far as the third enzyme of the beta-oxidation pathway. Our results open the possibility that beta-oxidation of 5-HD or metabolic intermediates of 5-HD may be responsible for the inhibitory effects of 5-HD on preconditioning of the heart.
Collapse
Affiliation(s)
| | - K V Gopalan
- Department of Biochemistry and Molecular Biology, North Dakota State UniversityFargo, ND 58105, USA
| | - Rachel A Lareau
- Department of Biochemistry and Molecular Biology, North Dakota State UniversityFargo, ND 58105, USA
| | - D K Srivastava
- Department of Biochemistry and Molecular Biology, North Dakota State UniversityFargo, ND 58105, USA
| | - von Martin Meltzer
- Fachbereich Chemie, Universität MarburgHans-Meerwein-Strasse, 35032 Marburg, Germany
| | | |
Collapse
|
41
|
Battaile KP, Molin-Case J, Paschke R, Wang M, Bennett D, Vockley J, Kim JJP. Crystal structure of rat short chain acyl-CoA dehydrogenase complexed with acetoacetyl-CoA: comparison with other acyl-CoA dehydrogenases. J Biol Chem 2002; 277:12200-7. [PMID: 11812788 DOI: 10.1074/jbc.m111296200] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The acyl-CoA dehydrogenases are a family of flavin adenine dinucleotide-containing enzymes that catalyze the first step in the beta-oxidation of fatty acids and catabolism of some amino acids. They exhibit high sequence identity and yet are quite specific in their substrate binding. Short chain acyl-CoA dehydrogenase has maximal activity toward butyryl-CoA and negligible activity toward substrates longer than octanoyl-CoA. The crystal structure of rat short chain acyl-CoA dehydrogenase complexed with the inhibitor acetoacetyl-CoA has been determined at 2.25 A resolution. Short chain acyl-CoA dehydrogenase is a homotetramer with a subunit mass of 43 kDa and crystallizes in the space group P321 with a = 143.61 A and c = 77.46 A. There are two monomers in the asymmetric unit. The overall structure of short chain acyl-CoA dehydrogenase is very similar to those of medium chain acyl-CoA dehydrogenase, isovaleryl-CoA dehydrogenase, and bacterial short chain acyl-CoA dehydrogenase with a three-domain structure composed of N- and C-terminal alpha-helical domains separated by a beta-sheet domain. Comparison to other acyl-CoA dehydrogenases has provided additional insight into the basis of substrate specificity and the nature of the oxidase activity in this enzyme family. Ten reported pathogenic human mutations and two polymorphisms have been mapped onto the structure of short chain acyl-CoA dehydrogenase. None of the mutations directly affect the binding cavity or intersubunit interactions.
Collapse
Affiliation(s)
- Kevin P Battaile
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Chohan KK, Jones M, Grossmann JG, Frerman FE, Scrutton NS, Sutcliffe MJ. Protein dynamics enhance electronic coupling in electron transfer complexes. J Biol Chem 2001; 276:34142-7. [PMID: 11429403 DOI: 10.1074/jbc.m101341200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Electron-transferring flavoproteins (ETFs) from human and Paracoccus denitrificans have been analyzed by small angle x-ray scattering, showing that neither molecule exists in a rigid conformation in solution. Both ETFs sample a range of conformations corresponding to a large rotation of domain II with respect to domains I and III. A model of the human ETF.medium chain acyl-CoA dehydrogenase complex, consistent with x-ray scattering data, indicates that optimal electron transfer requires domain II of ETF to rotate by approximately 30 to 50 degrees toward domain I relative to its position in the x-ray structure. Domain motion establishes a new "robust engineering principle" for electron transfer complexes, tolerating multiple configurations of the complex while retaining efficient electron transfer.
Collapse
Affiliation(s)
- K K Chohan
- Department of Chemistry, University of Leicester, Leicester LE1 7RH, United Kingdom
| | | | | | | | | | | |
Collapse
|
43
|
Peterson KM, Gopalan KV, Nandy A, Srivastava DK. Influence of Glu-376 --> Gln mutation on enthalpy and heat capacity changes for the binding of slightly altered ligands to medium chain acyl-CoA dehydrogenase. Protein Sci 2001; 10:1822-34. [PMID: 11514673 PMCID: PMC2252429 DOI: 10.1110/ps.51401] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2000] [Revised: 05/04/2001] [Accepted: 06/07/2001] [Indexed: 10/17/2022]
Abstract
We showed that the alpha-CH(2) --> NH substitution in octanoyl-CoA alters the ground and transition state energies for the binding of the CoA ligands to medium-chain acyl-CoA dehydrogenase (MCAD), and such an effect is caused by a small electrostatic difference between the ligands. To ascertain the extent that the electrostatic contribution of the ligand structure and/or the enzyme site environment modulates the thermodynamics of the enzyme-ligand interaction, we undertook comparative microcalorimetric studies for the binding of 2-azaoctanoyl-CoA (alpha-CH(2) --> NH substituted octanoyl-CoA) and octenoyl-CoA to the wild-type and Glu-376 --> Gln mutant enzymes. The experimental data revealed that both enthalpy (DeltaH degrees ) and heat capacity changes (DeltaC(p) degrees ) for the binding of 2-azaoctanoyl-CoA (DeltaH degrees (298) = -21.7 +/- 0.8 kcal/mole, DeltaC(p) degrees = -0.627 +/- 0.04 kcal/mole/K) to the wild-type MCAD were more negative than those obtained for the binding of octenoyl-CoA (DeltaH degrees (298) = -17.2 +/- 1.6 kcal/mole, DeltaC(p) degrees = -0.526 +/- 0.03 kcal/mole/K). Of these, the decrease in the magnitude of DeltaC(p) degrees for the binding of 2-azaoctanoyl-CoA (vis-à-vis octenoyl-CoA) to the enzyme was unexpected, because the former ligand could be envisaged to be more polar than the latter. To our further surprise, the ligand-dependent discrimination in the above parameters was completely abolished on Glu-376 --> Gln mutation of the enzyme. Both DeltaH degrees and DeltaC(p) degrees values for the binding of 2-azaoctanoyl-CoA (DeltaH degrees (298) = -13.3 +/- 0.6 kcal/mole, DeltaC(p) degrees = -0.511 +/- 0.03 kcal/mole/K) to the E376Q mutant enzyme were found to be correspondingly identical to those obtained for the binding of octenoyl-CoA (DeltaH degrees (298) = -13.2 +/- 0.6 kcal/mole, DeltaC(p) degrees = -0.520 +/- 0.02 kcal/mole/K). However, in neither case could the experimentally determined DeltaC(p) degrees values be predicted on the basis of the changes in the water accessible surface areas of the enzyme and ligand species. Arguments are presented that the origin of the above thermodynamic differences lies in solvent reorganization and water-mediated electrostatic interaction between ligands and enzyme site groups, and such interactions are intrinsic to the molecular basis of the enzyme-ligand complementarity.
Collapse
Affiliation(s)
- K M Peterson
- Department of Biochemistry and Molecular Biology, North Dakota State University, Fargo, North Dakota 58105, USA
| | | | | | | |
Collapse
|
44
|
Gregersen N, Andresen BS, Corydon MJ, Corydon TJ, Olsen RK, Bolund L, Bross P. Mutation analysis in mitochondrial fatty acid oxidation defects: Exemplified by acyl-CoA dehydrogenase deficiencies, with special focus on genotype-phenotype relationship. Hum Mutat 2001; 18:169-89. [PMID: 11524729 DOI: 10.1002/humu.1174] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Mutation analysis of metabolic disorders, such as the fatty acid oxidation defects, offers an additional, and often superior, tool for specific diagnosis compared to traditional enzymatic assays. With the advancement of the structural part of the Human Genome Project and the creation of mutation databases, procedures for convenient and reliable genetic analyses are being developed. The most straightforward application of mutation analysis is to specific diagnoses in suspected patients, particularly in the context of family studies and for prenatal/preimplantation analysis. In addition, from these practical uses emerges the possibility to study genotype-phenotype relationships and investigate the molecular pathogenesis resulting from specific mutations or groups of mutations. In the present review we summarize current knowledge regarding genotype-phenotype relationships in three disorders of mitochondrial fatty acid oxidation: very-long chain acyl-CoA dehydrogenase (VLCAD, also ACADVL), medium-chain acyl-CoA dehydrogenase (MCAD, also ACADM), and short-chain acyl-CoA dehydrogenase (SCAD, also ACADS) deficiencies. On the basis of this knowledge we discuss current understanding of the structural implications of mutation type, as well as the modulating effect of the mitochondrial protein quality control systems, composed of molecular chaperones and intracellular proteases. We propose that the unraveling of the genetic and cellular determinants of the modulating effects of protein quality control systems may help to assess the balance between genetic and environmental factors in the clinical expression of a given mutation. The realization that the effect of the monogene, such as disease-causing mutations in the VLCAD, MCAD, and SCAD genes, may be modified by variations in other genes presages the need for profile analyses of additional genetic variations. The rapid development of mutation detection systems, such as the chip technologies, makes such profile analyses feasible. However, it remains to be seen to what extent mutation analysis will be used for diagnosis of fatty acid oxidation defects and other metabolic disorders.
Collapse
Affiliation(s)
- N Gregersen
- Research Unit for Molecular Medicine, Aarhus University Hospital and Faculty of Health Sciences, Aarhus, Denmark
| | | | | | | | | | | | | |
Collapse
|
45
|
Peterson KM, Srivastava DK. Energetic consequences of accommodating a bulkier ligand at the active site of medium chain acyl-CoA dehydrogenase by creating a complementary enzyme site cavity. Biochemistry 2000; 39:12678-87. [PMID: 11027148 DOI: 10.1021/bi001317e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The substitution of the C=O by the C=S group in 2-azaoctanoyl-CoA increases the volume of the ligand by 11 A(3), and the excision of a methylene group from Glu-376, via Glu-376 --> Asp (E376D) mutation in medium chain acyl-CoA dehydrogenase (MCAD), creates a complementary cavity of 18 A(3) dimension, just opposite to the ligand's carbonyl group. We investigated whether the newly created cavity would facilitate accommodation of the bulkier (C=O --> C=S substituted) ligand within the active site of the enzyme. To ascertain this, we determined the binding affinity and kinetics of association and dissociation of 2-azaoctanoyl-CoA and the C=O --> C=S substituted ligand, 2-azadithiooctanoyl-CoA, involving the wild-type and Glu-376 --> Asp mutant enzymes. The experimental data revealed that the binding of 2-azadithiooctanoyl-CoA to the wild-type enzyme was energetically unfavorable as compared to 2-azaoctanoyl-CoA. However, such an energetic constraint was alleviated for the binding of the former ligand to the E376D mutant enzyme site. A detailed account of the free energy and enthalpic profiles for the binding of 2-azaoctanoyl-CoA and 2-azadithiooctanoyl-CoA to the wild-type and Glu-376 --> Asp mutant enzymes throws light on the flexibility of the enzyme site cavity in stabilizing the ground and transition states of the enzyme-ligand complexes.
Collapse
Affiliation(s)
- K M Peterson
- Department of Biochemistry and Molecular Biology, North Dakota State University, Fargo, North Dakota 58105, USA
| | | |
Collapse
|
46
|
Dwyer TM, Rao KS, Goodman SI, Frerman FE. Proton abstraction reaction, steady-state kinetics, and oxidation-reduction potential of human glutaryl-CoA dehydrogenase. Biochemistry 2000; 39:11488-99. [PMID: 10985795 DOI: 10.1021/bi000700g] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glutaryl-CoA dehydrogenase catalyzes the oxidation of glutaryl-CoA to crotonyl-CoA and CO(2) in the mitochondrial degradation of lysine, hydroxylysine, and tryptophan. We have characterized the human enzyme that was expressed in Escherichia coli. Anaerobic reduction of the enzyme with sodium dithionite or substrate yields no detectable semiquinone; however, like other acyl-CoA dehydrogenases, the human enzyme stabilizes an anionic semiquinone upon reduction of the complex between the enzyme and 2,3-enoyl-CoA product. The flavin potential of the free enzyme determined by the xanthine-xanthine oxidase method is -0.132 V at pH 7.0, slightly more negative than that of related flavoprotein dehydrogenases. A single equivalent of substrate reduces 26% of the dehydrogenase flavin, suggesting that the redox equilibrium on the enzyme between substrate and product and oxidized and reduced flavin is not as favorable as that observed with other acyl-CoA dehydrogenases. This equilibrium is, however, similar to that observed in isovaleryl-CoA dehydrogenase. Comparison of steady-state kinetic constants of glutaryl-CoA dehydrogenase with glutaryl-CoA and the alternative substrates, pentanoyl-CoA and hexanoyl-CoA, suggests that the gamma-carboxyl group of glutaryl-CoA stabilizes the enzyme-substrate complex by at least 5.7 kJ/mol, perhaps by interaction with Arg94 or Ser98. Glu370 is positioned to function as the catalytic base, and previous studies indicate that the conjugate acid of Glu370 also protonates the transient crotonyl-CoA anion following decarboxylation [Gomes, B., Fendrich, G. , and Abeles, R. H. (1981) Biochemistry 20, 3154-3160]. Glu370Asp and Glu370Gln mutants of glutaryl-CoA dehydrogenase exhibit 7% and 0. 04% residual activity, respectively, with human electron-transfer flavoprotein; these mutations do not grossly affect the flavin redox potentials of the mutant enzymes. The reduced catalytic activities of these mutants can be attributed to reduced extent and rate of substrate deprotonation based on experiments with the nonoxidizable substrate analogue, 3-thiaglutaryl-CoA, and kinetic experiments. Determination of these fundamental properties of the human enzyme will serve as the basis for future studies of the decarboxylation reaction which is unique among the acyl-CoA dehydrogenases.
Collapse
Affiliation(s)
- T M Dwyer
- Departments of Pediatrics and Pharmaceutical Sciences, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | |
Collapse
|
47
|
van Den Heuvel RH, Fraaije MW, Ferrer M, Mattevi A, van Berkel WJ. Inversion of stereospecificity of vanillyl-alcohol oxidase. Proc Natl Acad Sci U S A 2000; 97:9455-60. [PMID: 10920192 PMCID: PMC16885 DOI: 10.1073/pnas.160175897] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vanillyl-alcohol oxidase (VAO) is the prototype of a newly recognized family of structurally related oxidoreductases sharing a conserved FAD-binding domain. The active site of VAO is formed by a cavity where the enzyme is able to catalyze many reactions with phenolic substrates. Among these reactions is the stereospecific hydroxylation of 4-ethylphenol-forming (R)-1-(4'-hydroxyphenyl)ethanol. During this conversion, Asp-170 is probably critical for the hydration of the initially formed p-quinone methide intermediate. By site-directed mutagenesis, the putative active site base has been relocated to the opposite face of the active site cavity. In this way, a change in stereospecificity has been achieved. Like native VAO, the single mutants T457E, D170A, and D170S preferentially converted 4-ethylphenol to the (R)-enantiomer of 1-(4'-hydroxyphenyl)ethanol. The double mutants D170A/T457E and D170S/T457E exhibited an inverted stereospecificity with 4-ethylphenol. Particularly, D170S/T457E was strongly (S)-selective, with an enantiomeric excess of 80%. The crystal structure of D170S/T457E, in complex with trifluoromethylphenol, showed a highly conserved mode of ligand binding and revealed that the distinctive catalytic properties of this mutant are not caused by major structural changes.
Collapse
Affiliation(s)
- R H van Den Heuvel
- Department of Biomolecular Sciences, Laboratory of Biochemistry, Wageningen University, The Netherlands
| | | | | | | | | |
Collapse
|
48
|
Rudik I, Bell A, Tonge PJ, Thorpe C. 4-Hydroxycinnamoyl-CoA: an ionizable probe of the active site of the medium chain acyl-CoA dehydrogenase. Biochemistry 2000; 39:92-101. [PMID: 10625483 DOI: 10.1021/bi9915364] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
4-OH-Cinnamoyl-CoA has been synthesized as a probe of the active site in the medium chain acyl-CoA dehydrogenase. The protonated form of the free ligand (lambda(max) = 336 nm) yields the corresponding phenolate (lambda(max) = 388 nm) with a pK of 8.9. 4-OH-Cinnamoyl-CoA binds tightly (K(d) = 47 nM, pH 6) to the pig kidney dehydrogenase with a prominent new band at 388 nm, suggesting ionization of the bound ligand. However, this spectrum reflects polarization, not deprotonation, of the neutral form of the ligand. Thus, the 388 nm band is abolished as the pH is raised (not lowered), and analogous spectral and pH behavior is observed with the nonionizable analogue 4-methoxycinnamoyl-CoA. Studies with wild type, E99G, and E376Q mutants of the human medium chain acyl-CoA dehydrogenase showed that these two active site carboxylates strongly suppress ionization of the 4-OH ligand. Binding to the double mutant E99G/E376Q gives an intense new band as the pH is raised (pK = 7.8), with an absorbance maximum at 498 nm resembling the natural 4-OH-cinnamoyl-thioester chromophore of the photoactive yellow protein. Raman difference spectroscopy in water and D(2)O, using the free ligand and wild-type and double-mutant enzyme.ligand complexes, confirms that the 4-OH group of the thioester is ionized only when bound to the double mutant. These data demonstrate the strong electrostatic coupling between ligand and enzyme, and the critical role Glu376 plays in modulating thioester polarization in the medium chain acyl-CoA dehydrogenase.
Collapse
Affiliation(s)
- I Rudik
- Department of Chemistry, University of Delaware, Newark 19716, USA
| | | | | | | |
Collapse
|
49
|
Nowak-Thompson B, Chaney N, Wing JS, Gould SJ, Loper JE. Characterization of the pyoluteorin biosynthetic gene cluster of Pseudomonas fluorescens Pf-5. J Bacteriol 1999; 181:2166-74. [PMID: 10094695 PMCID: PMC93630 DOI: 10.1128/jb.181.7.2166-2174.1999] [Citation(s) in RCA: 171] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/1998] [Accepted: 01/19/1999] [Indexed: 11/20/2022] Open
Abstract
Ten genes (plt) required for the biosynthesis of pyoluteorin, an antifungal compound composed of a bichlorinated pyrrole linked to a resorcinol moiety, were identified within a 24-kb genomic region of Pseudomonas fluorescens Pf-5. The deduced amino acid sequences of eight plt genes were similar to the amino acid sequences of genes with known biosynthetic functions, including type I polyketide synthases (pltB, pltC), an acyl coenzyme A (acyl-CoA) dehydrogenase (pltE), an acyl-CoA synthetase (pltF), a thioesterase (pltG), and three halogenases (pltA, pltD, and pltM). Insertions of the transposon Tn5 or Tn3-nice or a kanamycin resistance gene in each of these genes abolished pyoluteorin production by Pf-5. The presumed functions of the eight plt products are consistent with biochemical transformations involved in pyoluteorin biosynthesis from proline and acetate precursors. Isotope labeling studies demonstrated that proline is the primary precursor to the dichloropyrrole moiety of pyoluteorin. The deduced amino acid sequence of the product of another plt gene, pltR, is similar to those of members of the LysR family of transcriptional activators. pltR and pltM are transcribed divergently from the pltLABCDEFG gene cluster, and a sequence with the characteristics of a LysR binding site was identified within the 486-bp intergenic region separating pltRM from pltLABCDEFG. Transcription of the pyoluteorin biosynthesis genes pltB, pltE, and pltF, assessed with transcriptional fusions to an ice nucleation reporter gene, was significantly greater in Pf-5 than in a pltR mutant of Pf-5. Therefore, PltR is proposed to be a transcriptional activator of linked pyoluteorin biosynthesis genes.
Collapse
Affiliation(s)
- B Nowak-Thompson
- Agricultural Research Service, U.S. Department of Agriculture, Corvallis, Oregon 97330, USA
| | | | | | | | | |
Collapse
|
50
|
Peterson KL, Peterson KM, Srivastava DK. Thermodynamics of ligand binding and catalysis in human liver medium-chain acyl-CoA dehydrogenase: comparative studies involving normal and 3'-dephosphorylated C8-CoAs and wild-type and Asn191 --> Ala (N191A) mutant enzymes. Biochemistry 1998; 37:12659-71. [PMID: 9730839 DOI: 10.1021/bi980949m] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Following our demonstration that the terminal 3'-phosphate group of acyl-CoA substrates (which is confined to the exterior of the protein structure, and is fully exposed to the outside solvent environment) exhibits a functional role in the recombinant human liver medium-chain acyl-CoA dehydrogenase (MCAD)-catalyzed reaction [Peterson, K. L., and Srivastava, D. K. (1997) Biochem. J. 325, 751-760], we became interested in delineating its thermodynamic contribution in stabilizing the "ground" and "transition" state structures during enzyme catalysis. Since the 3'-phosphate group of the coenzyme A thiolester has the potential to form a hydrogen bond with the side chain group of Asn-191, these studies were performed utilizing both normal and 3'-dephosphorylated forms of octanoyl-CoA and octenoyl-CoA (cumulatively referred to as C8-CoA) as the physiological substrate and product of the enzyme, respectively, as well as utilizing wild-type and Asn191 --> Ala (N191A) site-specific mutant enzymes. The experimental data revealed that the enthalpic contribution of the 3'-phosphate group was similar in both ground and transition states, and was primarily derived from the London-van der Waals interactions (between the 3'-phosphate group of C8-CoA and the surrounding protein moiety), rather than from the potential hydrogen bonding. The temperature dependence of DeltaH degrees for the binding of octenoyl-CoA and 3'-dephosphooctenoyl-CoA revealed that the deletion of the 3'-phosphate group from octenoyl-CoA increased the magnitude of the heat capacity changes (DeltaCp degrees) from -0.53 to -0.59 kcal mol-1 K-1. Although the latter effect could be attributed to an increase in the relative hydrophobicity of the ligand, the experimentally observed DeltaCp degrees's (for either of the ligands) could not be predicted on the basis of the changes in the solvent-accessible surface areas of the enzyme and ligand species. These coupled with the fact that the DeltaCp degrees for the binding of octenoyl-CoA to pig kidney MCAD (which is believed to be structurally identical to human liver MCAD) is only -0.37 kcal mol-1 K-1 [Srivastava, D. K., Wang, S., and Peterson, K. L. (1997) Biochemistry 36, 6359-6366] prompt us to question the reliability of predicting the DeltaCp degrees values of the enzyme-ligand complexes from their X-ray crystallographic data. Arguments are presented that certain intrinisic limitations of the crystallographic data preclude kinetic and thermodynamic predictions about the enzyme-ligand complexes and enzyme catalysis.
Collapse
Affiliation(s)
- K L Peterson
- Biochemistry Department, North Dakota State University, Fargo 58105, USA
| | | | | |
Collapse
|