1
|
Roy S, Srinivasan VR, Arunagiri S, Mishra N, Bhatia A, Shejale KP, Prajapati KP, Kar K, Anand BG. Molecular insights into the phase transition of lysozyme into amyloid nanostructures: Implications of therapeutic strategies in diverse pathological conditions. Adv Colloid Interface Sci 2024; 331:103205. [PMID: 38875805 DOI: 10.1016/j.cis.2024.103205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 06/16/2024]
Abstract
Lysozyme, a well-known bacteriolytic enzyme, exhibits a fascinating yet complex behavior when it comes to protein aggregation. Under certain conditions, this enzyme undergoes flexible transformation, transitioning from partially unfolded intermediate units of native conformers into complex cross-β-rich nano fibrillar amyloid architectures. Formation of such lysozyme amyloids has been implicated in a multitude of pathological and medical severities, like hepatic dysfunction, hepatomegaly, splenic rupture as well as spleen dysfunction, nephropathy, sicca syndrome, renal dysfunction, renal amyloidosis, and systemic amyloidosis. In this comprehensive review, we have attempted to provide in-depth insights into the aggregating behavior of lysozyme across a spectrum of variables, including concentrations, temperatures, pH levels, and mutations. Our objective is to elucidate the underlying mechanisms that govern lysozyme's aggregation process and to unravel the complex interplay between its structural attributes. Moreover, this work has critically examined the latest advancements in the field, focusing specifically on novel strategies and systems, that have been implemented to delay or inhibit the lysozyme amyloidogenesis. Apart from this, we have tried to explore and advance our fundamental understanding of the complex processes involved in lysozyme aggregation. This will help the research community to lay a robust foundation for screening, designing, and formulating targeted anti-amyloid therapeutics offering improved treatment modalities and interventions not only for lysozyme-linked amyloidopathy but for a wide range of amyloid-related disorders.
Collapse
Affiliation(s)
- Sindhujit Roy
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Venkat Ramanan Srinivasan
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Subash Arunagiri
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Nishant Mishra
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Anubhuti Bhatia
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Kiran P Shejale
- Dept. of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, South Korea
| | - Kailash Prasad Prajapati
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Karunakar Kar
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India..
| | - Bibin Gnanadhason Anand
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India..
| |
Collapse
|
2
|
Taketomi H, Hosono N, Uemura T. Selective Removal of Denatured Proteins Using MOF Nanopores. J Am Chem Soc 2024. [PMID: 38842912 DOI: 10.1021/jacs.4c03886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Here we present, for the first time, the selective adsorption of denatured proteins using a metal-organic framework (MOF), demonstrating promising potential for protein purification. Typical proteins, such as lysozyme and carbonic anhydrase B, enter the pores of MIL-101 through their narrow apertures when they are denatured to an unfolded state. Selective adsorption is achieved by finely tuning two key features: the sizes of the aperture and cage of the MOF nanopores, which are responsible for sorting unfolded polypeptide chains and inhibiting the translocation of the native form into the pores, respectively. By leveraging this selective adsorption, we successfully purified a mixture of native and denatured proteins by adding MOF to the mixture, achieving a native purity of over 99%.
Collapse
Affiliation(s)
- Hirotaka Taketomi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656 Tokyo, Japan
| | - Nobuhiko Hosono
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656 Tokyo, Japan
| | - Takashi Uemura
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656 Tokyo, Japan
| |
Collapse
|
3
|
Fatima U, Deenadayalu N, Venkatesu P. An eminent approach towards next generation solvents for sustainable packaging and stability of enzymes: a comprehensive study of ionic liquid and deep eutectic solvent mixtures. Phys Chem Chem Phys 2024; 26:14766-14776. [PMID: 38716816 DOI: 10.1039/d4cp00931b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Hybrid ionic fluids (HIFs) are newly emerging and fascinating sustainable solvent media, which are attracting a great deal of scientific interest in protecting the native structure of proteins. For a few decades, there has been a demand to consider ionic liquids (ILs) and deep eutectic solvents (DESs) as biocompatible solvent media for enzymes; however, in some cases, these solvent media also show limitations. Therefore, this work focuses on synthesising novel HIFs to intensify the properties of existing ILs and DESs by mixing them. Herein, HIFs have been synthesised by the amalgamation of a deep eutectic solvent (DES) and an ionic liquid (IL) with a common cation or anion. Later on, the stability and activity of hen's egg white lysozyme (Lyz) in the presence of biocompatible solvent media and HIFs were studied by various techniques such as UV-vis, steady-state fluorescence, circular dichroism (CD), Fourier transform infrared spectroscopy (FT-IR) and dynamic light scattering (DLS) measurements. This work emphasises the effect of a DES (synthesised using 1 : 2 choline chloride and malonic acid) [Maline], ILs (1-butyl-3-methylimidazolium chloride [BMIM]Cl or choline acetate [Chn][Ac]) and their corresponding HIFs on the structure and functionality of Lyz. Moreover, we also studied the secondary structure, thermal stability, enzymatic activity and thermodynamic profile of Lyz at pH = 7 in the presence of varying concentrations (0.1 to 0.5 M) of [BMIM]Cl and [Chn][Ac] ILs, Maline as a DES, and Maline [BMIM]Cl (HIF1) and Maline [Chn][Ac] (HIF2). Spectroscopic results elucidate that ILs affect the activity and structural stability of Lyz. In contrast, the stability and activity are inhibited by DES and are enhanced by HIFs at all the studied concentrations. Overall, the experimental results studied explicitly elucidate that the structure and stability of Lyz are maintained in the presence of HIF1 while these properties are intensified in HIF2. This study shows various applications in biocompatible green solvents, particularly in the stability and functionality of proteins, due to their unique combination where the properties counteract the negative effect of either DESs or ILs in HIFs.
Collapse
Affiliation(s)
- Urooj Fatima
- Department of Chemistry, University of Delhi, Delhi-110 007, India.
| | - Nirmala Deenadayalu
- Department of Chemistry, Durban University of Technology, Durban - 4000, South Africa.
| | | |
Collapse
|
4
|
Solution behavior of native and denatured beta lactoglobulin in presence of pyridinium based ionic liquids: A biophysical perspective of folding and refolding pattern of the protein. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Halder S, Aggrawal R, Saha SK. Concentration-dependent β-cyclodextrin-promoted refolding of gold nanoparticles-conjugated bovine serum albumin complexed with gemini surfactants with different spacer groups. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Aggrawal R, Halder S, Dyagala S, Saha SK. Refolding of denatured gold nanoparticles-conjugated bovine serum albumin through formation of catanions between gemini surfactant and sodium dodecyl sulphate. RSC Adv 2022; 12:16014-16028. [PMID: 35733677 PMCID: PMC9136644 DOI: 10.1039/d2ra02618j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/20/2022] [Indexed: 11/21/2022] Open
Abstract
The present work elucidates binding interactions of sodium dodecyl sulphate (SDS) with the conjugated gold nanoparticles (AuNPs)-bovine serum albumin (BSA), unfolded by each of two gemini surfactants, 1,4-bis(dodecyl-N,N-dimethylammonium bromide)-butane (12-4-12,2Br-) or 1,8-bis(dodecyl-N,N-dimethylammonium bromide)-octane (12-8-12,2Br-). Initially, at a low concentration of SDS there is a relaxation of bioconjugates from their compressed form due to the formation of catanions between SDS and gemini surfactants. On moving towards higher concentrations of SDS, these relaxed unfolded bioconjugates renature by removal of residual bound gemini surfactants. Mixed assemblies of SDS and gemini surfactants formed during refolding of bioconjugates are characterized by DLS and FESEM measurements. A step-by-step process of refolding observed for these denatured protein bioconjugates is exactly the inverse of their unfolding phenomenon. Parameters concerning nanometal surface energy transfer (NSET) and Förster's resonance energy transfer (FRET) phenomenon were employed to develop a binding isotherm. Moreover, there remains an inverse relationship between α-helix and β-turns of bioconjugates during the refolding process. Significantly, in the presence of 12-8-12,2Br-, SDS induces more refolding as compared to that for 12-4-12,2Br-. Bioconjugation shows an effect on the secondary structures of refolded BSA, which has been explored in detail through various studies such as Fourier transform infrared spectroscopy, fluorescence, and circular dichroism (CD). Therefore, this approach vividly describes the refolding of denatured bioconjugates, exploring structural information regarding various catanions formed during the process that would help in understanding distance-dependent optical biomolecular detection methodologies and physicochemical properties.
Collapse
Affiliation(s)
- Rishika Aggrawal
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani Hyderabad Campus Hyderabad Telangana 500078 India +91-40-66303643
| | - Sayantan Halder
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani Hyderabad Campus Hyderabad Telangana 500078 India +91-40-66303643
| | - Shalini Dyagala
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani Hyderabad Campus Hyderabad Telangana 500078 India +91-40-66303643
| | - Subit K Saha
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani Hyderabad Campus Hyderabad Telangana 500078 India +91-40-66303643
| |
Collapse
|
7
|
Engineered Nanoparticle-Protein Interactions Influence Protein Structural Integrity and Biological Significance. NANOMATERIALS 2022; 12:nano12071214. [PMID: 35407332 PMCID: PMC9002493 DOI: 10.3390/nano12071214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 02/01/2023]
Abstract
Engineered nanoparticles (ENPs) are artificially synthesized particles with unique physicochemical properties. ENPs are being extensively used in several consumer items, elevating the probability of ENP exposure to biological systems. ENPs interact with various biomolecules like lipids, proteins, nucleic acids, where proteins are most susceptible. The ENP-protein interactions are mostly studied for corona formation and its effect on the bio-reactivity of ENPs, however, an in-depth understanding of subsequent interactive effects on proteins, such as alterations in their structure, conformation, free energy, and folding is still required. The present review focuses on ENP-protein interactions and the subsequent effects on protein structure and function followed by the therapeutic potential of ENPs for protein misfolding diseases.
Collapse
|
8
|
Parray MUD, AlOmar SY, Alkhuriji A, Wani FA, Parray ZA, Patel R. Refolding of guanidinium hydrochloride denatured bovine serum albumin using pyridinium based ionic liquids as artificial chaperons. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Kameta N, Ding W. Stacking of nanorings to generate nanotubes for acceleration of protein refolding. NANOSCALE 2021; 13:1629-1638. [PMID: 33331384 DOI: 10.1039/d0nr07660k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Self-assembly and photoisomerization of azobenzene-based amphiphilic molecules produced nanorings with an inner diameter of 25 nm and lengths of <40 nm. The nanorings, which consisted of a single bilayer membrane of the amphiphiles, retained their morphology in the presence of a stacking inhibitor; whereas in the absence of the inhibitor, the nanorings stacked into short nanotubes (<500 nm). When subjected to mild heat treatment, these nanotubes joined end-to-end to form nanotubes with lengths of several tens of micrometers. The nanorings and the short and long nanotubes were able to encapsulate proteins and thereby suppress aggregation induced by thermal denaturation. In addition, the nanotubes accelerated refolding of denatured proteins by encapsulating them and then releasing them into the bulk solution; refolding occurred simultaneously with release. In contrast, the nanorings did not accelerate protein refolding. Refolding efficiency increased with increasing nanotube length, indicating that the re-aggregation of the proteins was strictly inhibited by lowering the concentration of the proteins in the bulk solution as the result of the slow release from the longer nanotubes. The migration of the proteins through the long, narrow nanochannels during the release process will also contribute to refolding.
Collapse
Affiliation(s)
- N Kameta
- Nanomaterials Research Institute, Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | | |
Collapse
|
10
|
Halder S, Aggrawal R, Aswal VK, Ray D, Saha SK. Study of refolding of a denatured protein and microenvironment probed through FRET to a twisted intramolecular charge transfer fluorescent biosensor molecule. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114532] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
11
|
Artificial chaperones: From materials designs to applications. Biomaterials 2020; 254:120150. [DOI: 10.1016/j.biomaterials.2020.120150] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/16/2022]
|
12
|
Caballero AB, Gamez P. Nanochaperone-Based Strategies to Control Protein Aggregation Linked to Conformational Diseases. Angew Chem Int Ed Engl 2020; 60:41-52. [PMID: 32706460 DOI: 10.1002/anie.202007924] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Indexed: 12/14/2022]
Abstract
The generation of highly organized amyloid fibrils is associated with a wide range of conformational pathologies, including primarily neurodegenerative diseases. Such disorders are characterized by misfolded proteins that lose their normal physiological roles and acquire toxicity. Recent findings suggest that proteostasis network impairment may be one of the causes leading to the accumulation and spread of amyloids. These observations are certainly contributing to a new focus in anti-amyloid drug design, whose efforts are so far being centered on single-target approaches aimed at inhibiting amyloid aggregation. Chaperones, known to maintain proteostasis, hence represent interesting targets for the development of novel therapeutics owing to their potential protective role against protein misfolding diseases. In this minireview, research on nanoparticles that can either emulate or help molecular chaperones in recognizing and/or correcting protein misfolding is discussed. The nascent concept of "nanochaperone" may indeed set future directions towards the development of cost-effective, disease-modifying drugs to treat several currently fatal disorders.
Collapse
Affiliation(s)
- Ana B Caballero
- nanoBIC, Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Martí i Franquès, 1-11, 08028, Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028, Barcelona, Spain
| | - Patrick Gamez
- nanoBIC, Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Martí i Franquès, 1-11, 08028, Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028, Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
13
|
Caballero AB, Gamez P. Nanochaperone‐Based Strategies to Control Protein Aggregation Linked to Conformational Diseases. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ana B. Caballero
- nanoBIC Departament de Química Inorgànica i Orgànica Universitat de Barcelona Martí i Franquès, 1–11 08028 Barcelona Spain
- Institute of Nanoscience and Nanotechnology (IN2UB) Universitat de Barcelona 08028 Barcelona Spain
| | - Patrick Gamez
- nanoBIC Departament de Química Inorgànica i Orgànica Universitat de Barcelona Martí i Franquès, 1–11 08028 Barcelona Spain
- Institute of Nanoscience and Nanotechnology (IN2UB) Universitat de Barcelona 08028 Barcelona Spain
- Catalan Institution for Research and Advanced Studies (ICREA) Passeig Lluís Companys 23 08010 Barcelona Spain
| |
Collapse
|
14
|
Nishimura T, Akiyoshi K. Artificial Molecular Chaperone Systems for Proteins, Nucleic Acids, and Synthetic Molecules. Bioconjug Chem 2020; 31:1259-1267. [DOI: 10.1021/acs.bioconjchem.0c00133] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tomoki Nishimura
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
15
|
Kumari S, Halder S, Aggrawal R, Aswal VK, Sundar G, Saha SK. Refolding of protein unfolded by gemini surfactants using β-cyclodextrin and sodium dodecyl sulfate in aqueous medium: Study on role of spacer chain of surfactants. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
16
|
Ishtikhar M, Siddiqui Z, Husain FM, Khan RA, Hassan I. Comparative refolding of guanidinium hydrochloride denatured bovine serum albumin assisted by cationic and anionic surfactants via artificial chaperone protocol: Biophysical insight. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 225:117510. [PMID: 31520999 DOI: 10.1016/j.saa.2019.117510] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/28/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
In the present study, we report the cooperative refolding/renaturation behaviour of guanidinium hydrochloride (GdnHCl) denatured bovine serum albumin (BSA) in the presence of cationic surfactant cetyltrimethylammonium bromide (CTAB), anionic surfactant sodium dodecyl sulphate (SDS) and their catanionic mixture in the solution of 60 mM sodium phosphate buffer of physiological pH 7.4, using artificial chaperone-assisted two-step method. Here, we have employed biophysical techniques to characterize the refolding mechanism of denatured BSA after 200 times of dilution in the presence of cationic, anionic surfactants and their catanionic mixture, separately. We have found that minimum refolding of diluted BSA in the presence of 1:1 rational mixture of CTAB and SDS (CTAB/SDS = 50/50), it may be due to the micelles formation which is responsible for the unordered microstructure aggregate formation. Other mixtures (CTAB/SDS = 20/80 and 80/20) slightly played an effective role during refolding process in the presence of methyl-β-cyclodextrin. On other hand, CTAB and SDS are more effective and reflect a good renaturation tendency of denatured BSA solution separately and in existence of methyl-β-cyclodextrin as compare to their mixture compositions. But overall, CTAB has the better renaturation tendency as compare to SDS in the existence of methyl-β-cyclodextrin. These results ascribed the presence of charge head group and length of hydrophobic tail of CTAB surfactant that plays an important task during electrostatic and hydrophobic interactions at pH 7.4 at which BSA carries negative charge on their surface. These biophysical parameters suggest that, CTAB surfactant assisted artificial chaperone protocol may be utilized in the protein renaturation/refolding studies, which may address the associated problems of biotechnological industries for the development of efficient and inexpensive folding aides, which may also be used to produced genetically engineered cells related diseases, resulting from protein misfolding/aggregation.
Collapse
Affiliation(s)
- Mohd Ishtikhar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Zeba Siddiqui
- Department of Biosciences, Integral University, Lucknow 226026, India
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, 2460, Riyadh 11451, Saudi Arabia
| | - Rais Ahmad Khan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Iftekhar Hassan
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
17
|
Takalloo Z, Niknaddaf F, Shahangian SS, Heydari A, Hosseinkhani S, H Sajedi R. Modulation of the competition between renaturation and aggregation of lysozyme by additive mixtures. Biotechnol Appl Biochem 2019; 67:330-342. [PMID: 31758724 DOI: 10.1002/bab.1864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/15/2019] [Indexed: 11/10/2022]
Abstract
The effects of 17 kinds of additive mixtures have been studied on refolding and aggregation of a model protein, lysozyme. Most of the prepared mixtures were efficient in inhibiting aggregation of the protein, and, surprisingly, four novel additive mixtures, i.e., lactic acid: l-arginine, lactic acid: l-glutamine, choline chloride: lactic acid, and imidazolium salt: β-cyclodextrin as well as choline chloride: urea exhibited a more remarkable efficacy in suppressing aggregation. Among these, lactic acid: l-arginine was identified as the most efficient additive, and lactic acid: l-glutamine and choline chloride: lactic acid were inefficient to recover the enzyme activity. In contrast, choline chloride: ethylene glycol: imidazole, choline chloride: glycerol: imidazole, imidazole: betaine: ethylene glycol were found to be less effective mixtures in preventing enzyme aggregation. Totally, it was demonstrated that the protective effects of the mixtures were improved as their concentrations increased. The improvement was more remarkable for imidazolium salt: β-cyclodextrin and choline chloride: urea, where the denatured lysozyme was reactivated and recovered up to 85% of its initial activity by enhancing their concentrations from 1 to 5% (V/V). It is suggested that such solution additives may be further employed as artificial chaperones to assist protein folding and stability.
Collapse
Affiliation(s)
- Zeinab Takalloo
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Forouzan Niknaddaf
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - S Shirin Shahangian
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Gilan, Iran
| | - Akbar Heydari
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Reza H Sajedi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
18
|
Rasmussen HØ, Enghild JJ, Otzen DE, Pedersen JS. Unfolding and partial refolding of a cellulase from the SDS-denatured state: From β-sheet to α-helix and back. Biochim Biophys Acta Gen Subj 2019; 1864:129434. [PMID: 31525408 DOI: 10.1016/j.bbagen.2019.129434] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 10/26/2022]
Abstract
Globular proteins are typically unfolded by SDS to form protein-decorated micelle-like structures. Several proteins have been shown subsequently to refold by addition of the nonionic surfactant octaethylene glycol monododecyl ether (C12E8). Thus SDS converts β-lactoglobulin, which has mainly β-sheet secondary structure, into a state rich in α-helicality, while addition of C12E8 leads to refolding and recovery of the original β-sheet structure. Here we extend these studies to the large β-sheet-rich cellulase Cel7b from Humicola insolens whose enzymatic activity provides a very sensitive refolding parameter. The enzymes widespread usage in the detergent industry makes it an obvious model system for protein-surfactant interactions. SDS-unfolding and subsequent refolding using C12E8 were investigated at pH 4.2 using near- and far-UV circular dichroism (CD), small-angle X-ray scattering (SAXS), isothermal titration calorimetry (ITC), size-exclusion chromatography (SEC) and activity measurements. The Cel7b:SDS complex can be described as a random configuration of 3-4 connected core-shell structures in which the protein is converted to a mainly α-helical secondary structure. Addition of C12E8 recovers almost all the secondary structure, part of the tertiary structure, about 50% of the activity and dissociates part of the protein population completely from detergent micelles. The lack of complete refolding may be due to charge neutralisation of Cel7b by SDS, kinetically trapping the enzyme into aggregated structures. In support of this, aggregates did not form when C12E8 was first mixed with Cel7b followed by addition of SDS. Formation of such aggregates may be a general phenomenon hampering quantitative refolding from the SDS-denatured state.
Collapse
Affiliation(s)
- Helena Ø Rasmussen
- iNANO, Aarhus University, Gustav Wieds Vej 14, DK - 8000 Aarhus C, Denmark; Department of Chemistry, Aarhus University, Langelandsgade 140, DK - 8000 Aarhus C, Denmark
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK - 8000 Aarhus C, Denmark
| | - Daniel E Otzen
- iNANO, Aarhus University, Gustav Wieds Vej 14, DK - 8000 Aarhus C, Denmark; Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK - 8000 Aarhus C, Denmark.
| | - Jan Skov Pedersen
- iNANO, Aarhus University, Gustav Wieds Vej 14, DK - 8000 Aarhus C, Denmark; Department of Chemistry, Aarhus University, Langelandsgade 140, DK - 8000 Aarhus C, Denmark.
| |
Collapse
|
19
|
Khan JM, Malik A, Rehman T, AlAjmi MF, Alamery SF, Alghamdi OHA, Khan RH, Odeibat HAM, Fatima S. Alpha-cyclodextrin turns SDS-induced amyloid fibril into native-like structure. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
Artificial chaperones based on thermoresponsive polymers recognize the unfolded state of the protein. Int J Biol Macromol 2018; 121:536-545. [PMID: 30312700 DOI: 10.1016/j.ijbiomac.2018.10.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/08/2018] [Indexed: 11/23/2022]
Abstract
Stabilization of the enzymes under stress conditions is of special interest for modern biochemistry, bioengineering, as well as for formulation and target delivery of protein-based drugs. Aiming to achieve an efficient stabilization at elevated temperature with no influence on the enzyme under normal conditions, we studied chaperone-like activity of thermoresponsive polymers based on poly(dimethylaminoethyl methacrylate) (PDMAEMA) toward two different proteins, glyceraldehyde-3-phosphate dehydrogenase and chicken egg lysozyme. The polymers has been shown to do not interact with the folded protein at room temperature but form a complex upon heating to either protein unfolding or polymer phase transition temperature. A PDMAEMA-PEO block copolymer with a dodecyl end-group (d-PDMAEMA-PEO) as well as PDMAEMA-PEO without the dodecyl groups protected the denatured protein against aggregation in contrast to PDMAEMA homopolymer. No effect of the polymers on the enzymatic activity of the client protein was observed at room temperature. The polymers also partially protected the enzyme against inactivation at high temperature. The results provide a platform for creation of artificial chaperones with unfolded protein recognition which is a major feature of natural chaperones.
Collapse
|
21
|
Inhibition of lysozyme fibrillogenesis by hydroxytyrosol and dopamine: An Atomic Force Microscopy study. Int J Biol Macromol 2018; 111:1100-1105. [PMID: 29360548 DOI: 10.1016/j.ijbiomac.2018.01.112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/15/2018] [Accepted: 01/17/2018] [Indexed: 01/01/2023]
Abstract
Protein aggregation underlies many human diseases characterized by the deposition of normally soluble proteins in both fibrillar and amorphous aggregates. Here, Atomic Force Microscopy (AFM) has been applied to investigate the ability to inhibit hen egg white lysozyme (HEWL) fibrillogenesis by hydroxytyrosol (HT), one of the main phenolic components of olive oil. In this framework, HEWL is a useful and well-studied model protein whose amyloid-like fibril formation can be induced under experimental conditions where HT is more stable. HEWL fibrils, obtained at pH 1.6 and at 65 °C, exhibited a height of about 3 nm and a fibril length on average of about 3 μm. The presence of HT reduced the HEWL fibril number and length with respect to the control sample. Interestingly, also dopamine, a compound with a chemical structure similar to HT, decreased both the fibril number and the fibril length. AFM experimental data were supported by Thioflavin T assay and Fourier transform infrared spectroscopy. Our results show that HT is an effective inhibitor of HEWL aggregation, thus suggesting possible future applications of this natural compound for potential prevention or treatment of amyloid diseases, or as a lead molecular structure for the design of improved modulators.
Collapse
|
22
|
Parambath J, Valsala G, Menon K, Sugathan S. In vitro Chaperone Activity Assay Using α-Amylase as Target Protein. Bio Protoc 2018. [DOI: 10.21769/bioprotoc.2878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
23
|
Gull N, Khan JM, Rukhsana, Khan RH. Spectroscopic studies on the gemini surfactant mediated refolding of human serum albumin. Int J Biol Macromol 2017; 102:331-335. [DOI: 10.1016/j.ijbiomac.2017.03.134] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 11/26/2022]
|
24
|
Kaspersen JD, Søndergaard A, Madsen DJ, Otzen DE, Pedersen JS. Refolding of SDS-Unfolded Proteins by Nonionic Surfactants. Biophys J 2017; 112:1609-1620. [PMID: 28445752 PMCID: PMC5406375 DOI: 10.1016/j.bpj.2017.03.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/03/2017] [Accepted: 03/07/2017] [Indexed: 11/30/2022] Open
Abstract
The strong and usually denaturing interaction between anionic surfactants (AS) and proteins/enzymes has both benefits and drawbacks: for example, it is put to good use in electrophoretic mass determinations but limits enzyme efficiency in detergent formulations. Therefore, studies of the interactions between proteins and AS as well as nonionic surfactants (NIS) are of both basic and applied relevance. The AS sodium dodecyl sulfate (SDS) denatures and unfolds globular proteins under most conditions. In contrast, NIS such as octaethylene glycol monododecyl ether (C12E8) and dodecyl maltoside (DDM) protect bovine serum albumin (BSA) from unfolding in SDS. Membrane proteins denatured in SDS can also be refolded by addition of NIS. Here, we investigate whether globular proteins unfolded by SDS can be refolded upon addition of C12E8 and DDM. Four proteins, BSA, α-lactalbumin (αLA), lysozyme, and β-lactoglobulin (βLG), were studied by small-angle x-ray scattering and both near- and far-UV circular dichroism. All proteins and their complexes with SDS were attempted to be refolded by the addition of C12E8, while DDM was additionally added to SDS-denatured αLA and βLG. Except for αLA, the proteins did not interact with NIS alone. For all proteins, the addition of NIS to the protein-SDS samples resulted in extraction of the SDS from the protein-SDS complexes and refolding of βLG, BSA, and lysozyme, while αLA changed to its NIS-bound state instead of the native state. We conclude that NIS competes with globular proteins for association with SDS, making it possible to release and refold SDS-denatured proteins by adding sufficient amounts of NIS, unless the protein also interacts with NIS alone.
Collapse
Affiliation(s)
| | | | - Daniel Jhaf Madsen
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, Denmark
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, Denmark.
| | - Jan Skov Pedersen
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, Denmark; Department of Chemistry, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
25
|
Kameta N, Matsuzawa T, Yaoi K, Fukuda J, Masuda M. Glycolipid-based nanostructures with thermal-phase transition behavior functioning as solubilizers and refolding accelerators for protein aggregates. SOFT MATTER 2017; 13:3084-3090. [PMID: 28361133 DOI: 10.1039/c7sm00310b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The self-assembly of synthetic glycolipids produced nanostructures such as vesicles and nanotubes consisting of bilayer membranes, which underwent a gel-to-liquid crystalline thermal phase transition. Vesicles formed at temperatures above the thermal phase transition temperatures (Tg-l) could solubilize aggregates of denatured proteins by trapping them in the fluid bilayer membranes. Cooling to temperatures below Tg-l caused a morphological transformation into nanotubes that accompanied the thermal phase transition from the fluid to the solid state. This phenomenon allowed the trapped proteins to be quickly released into the bulk solution and simultaneously facilitated the refolding of the proteins. The refolding efficiency strongly depended on the electrostatic attraction between the bilayer membranes of the nanostructures and the proteins. Because of the long shape (>400 nm) of the nanotubes, simple membrane filtration through a pore size of 200 nm led to complete separation and recovery of the refolded proteins (3-9 nm sizes).
Collapse
Affiliation(s)
- N Kameta
- Research Institute for Sustainable Chemistry, Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | | | | | | | | |
Collapse
|
26
|
Chin J, Mustafi D, Poellmann MJ, Lee RC. Amphiphilic copolymers reduce aggregation of unfolded lysozyme more effectively than polyethylene glycol. Phys Biol 2017; 14:016003. [PMID: 28061483 DOI: 10.1088/1478-3975/aa5788] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Certain amphiphilic block copolymers are known to prevent aggregation of unfolded proteins. To better understand the mechanism of this effect, the optical properties of heat-denatured and dithiothreitol reduced lysozyme were evaluated with respect to controls using UV-Vis spectroscopy, transmission electron microscopy (TEM) and circular dichroism (CD) measurements. Then, the effects of adding Polyethylene Glycol (8000 Da), the triblock surfactant Poloxamer 188 (P188), and the tetrablock copolymer Tetronic 1107 (T1107) to the lysozyme solution were compared. Overall, T1107 was found to be more effective than P188 in inhibiting aggregation, while PEG exhibited no efficacy. TEM imaging of heat-denatured and reduced lysozymes revealed spherical aggregates with on average 250-450 nm diameter. Using CD, more soluble lysozyme was recovered with T1107 than P188 with β-sheet secondary structure. The greater effectiveness of the larger T1107 in preventing aggregation of unfolded lysozyme than the smaller P188 and PEG points to steric hindrance at play; signifying the importance of size match between the hydrophobic region of denatured protein and that of amphiphilic copolymers. Thus, our results corroborate that certain multi-block copolymers are effective in preventing heat-induced aggregation of reduced lysozymes and future studies warrant more detailed focus on specific applications of these copolymers.
Collapse
Affiliation(s)
- Jaemin Chin
- Departments of Surgery, The University of Chicago, Chicago, IL 60637, United States of America
| | | | | | | |
Collapse
|
27
|
Sánchez-Hernández L, Montealegre C, Kiessig S, Moritz B, Neusüß C. In-capillary approach to eliminate SDS interferences in antibody analysis by capillary electrophoresis coupled to mass spectrometry. Electrophoresis 2017; 38:1044-1052. [DOI: 10.1002/elps.201600464] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/14/2016] [Accepted: 12/14/2016] [Indexed: 01/14/2023]
|
28
|
Gull N, Ishtikhar M, Alam MS, Sabah Andrabi SN, Khan RH. Spectroscopic studies on the comparative refolding of guanidinium hydrochloride denatured hen egg-white lysozyme and Rhizopus niveus lipase assisted by cationic single-chain/gemini surfactants via artificial chaperone protocol. RSC Adv 2017. [DOI: 10.1039/c6ra21528a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Referred to as second generation surfactants, the gemini surfactants have shown promise in various potential areas of surfactant application.
Collapse
Affiliation(s)
- Nuzhat Gull
- Department of Chemistry
- Govt. Degree College for Women
- Srinagar-190001
- India
| | - Mohd Ishtikhar
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai
- India
- Interdisciplinary Biotechnology Unit
| | | | | | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit
- Aligarh Muslim University
- Aligarh-202002
- India
| |
Collapse
|
29
|
Kameta N, Akiyama H, Masuda M, Shimizu T. Effect of Photoinduced Size Changes on Protein Refolding and Transport Abilities of Soft Nanotubes. Chemistry 2016; 22:7198-205. [PMID: 27121150 DOI: 10.1002/chem.201504613] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Indexed: 02/04/2023]
Abstract
Self-assembly of azobenzene-modified amphiphiles (Glyn Azo, n=1-3) in water at room temperature in the presence of a protein produced nanotubes with the protein encapsulated in the channels. The Gly2 Azo nanotubes (7 nm internal diameter [i.d.]) promoted refolding of some encapsulated proteins, whereas the Gly3 Azo nanotubes (13 nm i.d.) promoted protein aggregation. Although the 20 nm i.d. channels of the Gly1 Azo nanotubes were too large to influence the encapsulated proteins, narrowing of the i.d. to 1 nm by trans-to-cis photoisomerization of the azobenzene units of the Gly1 Azo monomers packed in the solid bilayer membranes led to a squeezing out of the proteins into the bulk solution and simultaneously enhanced their refolding ratios. In contrast, photoinduced transformation of the Gly2 Azo nanotubes to short nanorings (<40 nm) with a large i.d. (28 nm) provided no further refolding assistance. We thus demonstrate that pertubation by the solid bilayer membrane wall of the nanotubes is important to accelerate refolding of the denatured proteins during their transport in the narrow nanotube channels.
Collapse
Affiliation(s)
- Naohiro Kameta
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan.
| | - Haruhisa Akiyama
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Mitsutoshi Masuda
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Toshimi Shimizu
- AIST Fellow, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| |
Collapse
|
30
|
Yang Z, Brouillette CG. A Guide to Differential Scanning Calorimetry of Membrane and Soluble Proteins in Detergents. Methods Enzymol 2016; 567:319-58. [DOI: 10.1016/bs.mie.2015.08.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
31
|
Jaenecke F, Friedrich-Epler B, Parthier C, Stubbs MT. Membrane composition influences the activity of in vitro refolded human vitamin K epoxide reductase. Biochemistry 2015; 54:6454-61. [PMID: 26435421 DOI: 10.1021/acs.biochem.5b00716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human vitamin K epoxide reductase (hVKOR) is an integral membrane protein responsible for the maintenance of reduced vitamin K pools, a prerequisite for the action of γ-glutamyl carboxylase and hence for hemostasis. Here we describe the recombinant expression of hVKOR as an insoluble fusion protein in Escherichia coli, followed by purification and chemical cleavage under denaturing conditions. In vitro renaturation and reconstitution of purified solubilized hVKOR in phospholipids could be established to yield active protein. Crucially, the renatured enzyme is inhibited by the powerful coumarin anticoagulant warfarin, and we demonstrate that enzyme activity depends on lipid composition. The completely synthetic system for protein production allows a rational investigation of the multiple variables in membrane protein folding and paves the way for the provision of pure, active membrane protein for structural studies.
Collapse
Affiliation(s)
- Frank Jaenecke
- Institut für Biochemie und Biotechnologie, Martin-Luther Universität Halle-Wittenberg , Kurt-Mothes Strasse 3, D-06120 Halle/Saale, Germany.,ZIK HALOmem , Kurt-Mothes Strasse 3, D-06120 Halle/Saale, Germany
| | - Beatrice Friedrich-Epler
- Institut für Biochemie und Biotechnologie, Martin-Luther Universität Halle-Wittenberg , Kurt-Mothes Strasse 3, D-06120 Halle/Saale, Germany
| | - Christoph Parthier
- Institut für Biochemie und Biotechnologie, Martin-Luther Universität Halle-Wittenberg , Kurt-Mothes Strasse 3, D-06120 Halle/Saale, Germany
| | - Milton T Stubbs
- Institut für Biochemie und Biotechnologie, Martin-Luther Universität Halle-Wittenberg , Kurt-Mothes Strasse 3, D-06120 Halle/Saale, Germany.,ZIK HALOmem , Kurt-Mothes Strasse 3, D-06120 Halle/Saale, Germany
| |
Collapse
|
32
|
Wang J, Yin T, Huang F, Song Y, An Y, Zhang Z, Shi L. Artificial chaperones based on mixed shell polymeric micelles: insight into the mechanism of the interaction of the chaperone with substrate proteins using Förster resonance energy transfer. ACS APPLIED MATERIALS & INTERFACES 2015; 7:10238-10249. [PMID: 25939050 DOI: 10.1021/acsami.5b00684] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Controlled and reversible interactions between polymeric nanoparticles and proteins have gained more and more attention with the hope to address many biological issues such as prevention of protein denaturation, interference of the fibrillation of disease relative proteins, removing of toxic biomolecules as well as targeting delivery of proteins, etc. In such cases, proper analytic techniques are needed to reveal the underlying mechanism of the particle-protein interactions. In the current work, Förster Resonance Energy Transfer (FRET) was used to investigate the interaction of our tailor designed artificial chaperone based on mixed shell polymeric micelles (MSPMs) with their substrate proteins. We designed a new kind of MSPMs with fluorescent acceptors precisely placed at the desired locations as well as hydrophobic domains which can adsorb unfolded proteins with a propensity to aggregate. Interactions of such model micelles with a donor-labeled protein-FITC-lysozyme, was monitored by FRET. The fabrication strategy of MSPMs makes it possible to control the accurate location of the acceptor, which is critical to reveal some unexpected insights of the micelle-protein interactions upon heating and cooling. Preadsorption of native proteins onto the hydrophobic domains of the MSPMs is a key step to prevent thermo-denaturation by diminishing interprotein aggregations. Reversible protein adsorption during heating and releasing during cooling have been confirmed. Conclusions from the FRET effect are in line with the measurement of residual enzymatic activity.
Collapse
Affiliation(s)
- Jianzu Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Tao Yin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Fan Huang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Yiqing Song
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Yingli An
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Zhenkun Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| |
Collapse
|
33
|
Gull N, Khan JM, Ishtikhar M, Qadeer A, Khan RA, Gul M, Khan RH. Secondary structural changes in guanidinium hydrochloride denatured mammalian serum albumins and protective effect of small amounts of cationic gemini surfactant pentanediyl-α,ω-bis(cetyldimethylammonium bromide) and methyl-β-cyclodextrin: A spectroscopic study. J Colloid Interface Sci 2015; 439:170-6. [DOI: 10.1016/j.jcis.2014.10.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/08/2014] [Accepted: 10/10/2014] [Indexed: 10/24/2022]
|
34
|
Yoshimoto M, Kozono R, Tsubomura N. Liposomes as chaperone mimics with controllable affinity toward heat-denatured formate dehydrogenase from Candida boidinii. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:762-770. [PMID: 25513889 DOI: 10.1021/la504126b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Chaperone machinery in living systems can catch denatured enzymes and induce their reactivation. Chaperone mimics are beneficial for applying enzymatic reactions in vitro. In this work, the affinity between liposomes and thermally denatured enzymes was controlled to stabilize the enzyme activity. The model enzyme is formate dehydrogenase from Candida boidinii (CbFDH) which is a homodimer and negatively charged in the phosphate buffer solution (pH 7.2) used. The activity of free CbFDH readily decreased at 58 °C following the first-order kinetics with the half-life t1/2 of 27 min. The turbidity measurements showed that the denatured enzyme molecules formed aggregates. The liposomes composed of zwitterionic phosphatidylcholines (PCs) stabilized the CbFDH activity at 58 °C, as revealed with six different PCs. The PC liposomes were indicated to bind to the aggregate-prone enzyme molecules, allowing reactivation at 25 °C. The cofactor β-reduced nicotinamide adenine dinucleotide (NADH) also stabilized the enzyme activity. The affinity between liposomes and denatured CbFDH could be modulated by incorporating cationic 1,2-dioleoyloxy-3-trimethylammonium propane chloride (DOTAP) in PC membranes. The t1/2 values significantly increased in the presence of liposomes ([lipid] = 1.5 mM) composed of PC and DOTAP at the mole fraction f(D) of 0.1. On the other hand, the DOTAP-rich liposomes (f(D) ≥ 0.7) showed strong affinity toward denatured CbFDH, accelerating its deactivation. The liposomes with low charge density function as chaperone mimics that can efficiently catch the denatured enzymes without interfering with their intramolecular interaction for reactivation.
Collapse
Affiliation(s)
- Makoto Yoshimoto
- Department of Applied Molecular Bioscience, Yamaguchi University , 2-16-1 Tokiwadai, Ube 755-8611, Japan
| | | | | |
Collapse
|
35
|
Zamudio-Prieto O, Benítez-Cardoza C, Arroyo R, Ortega-López J. Conformational changes induced by detergents during the refolding of chemically denatured cysteine protease ppEhCP-B9 from Entamoeba histolytica. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1299-306. [DOI: 10.1016/j.bbapap.2014.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 04/11/2014] [Accepted: 04/12/2014] [Indexed: 11/28/2022]
|
36
|
Muraoka T, Sadhukhan N, Ui M, Kawasaki S, Hazemi E, Adachi K, Kinbara K. Thermal-aggregation suppression of proteins by a structured PEG analogue: Importance of denaturation temperature for effective aggregation suppression. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2014.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Bian L, Ji X. Distribution, transition and thermodynamic stability of protein conformations in the denaturant-induced unfolding of proteins. PLoS One 2014; 9:e91129. [PMID: 24603868 PMCID: PMC3948385 DOI: 10.1371/journal.pone.0091129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 02/09/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Extensive and intensive studies on the unfolding of proteins require appropriate theoretical model and parameter to clearly illustrate the feature and characteristic of the unfolding system. Over the past several decades, four approaches have been proposed to describe the interaction between proteins and denaturants, but some ambiguity and deviations usually occur in the explanation of the experimental data. METHODOLOGY/PRINCIPAL FINDINGS In this work, a theoretical model was presented to show the dependency of the residual activity ratio of the proteins on the molar denaturant concentration. Through the characteristic unfolding parameters ki and Δmi in this model, the distribution, transition and thermodynamic stability of protein conformations during the unfolding process can be quantitatively described. This model was tested with the two-state unfolding of bovine heart cytochrome c and the three-state unfolding of hen egg white lysozyme induced by both guanidine hydrochloride and urea, the four-state unfolding of bovine carbonic anhydrase b induced by guanidine hydrochloride and the unfolding of some other proteins induced by denaturants. The results illustrated that this model could be used accurately to reveal the distribution and transition of protein conformations in the presence of different concentrations of denaturants and to evaluate the unfolding tendency and thermodynamic stability of different conformations. In most denaturant-induced unfolding of proteins, the unfolding became increasingly hard in next transition step and the proteins became more unstable as they attained next successive stable conformation. CONCLUSIONS/SIGNIFICANCE This work presents a useful method for people to study the unfolding of proteins and may be used to describe the unfolding and refolding of other biopolymers induced by denaturants, inducers, etc.
Collapse
Affiliation(s)
- Liujiao Bian
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
- * E-mail:
| | - Xu Ji
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| |
Collapse
|
38
|
Li Y, Wang J, Yang J, Wan C, Wang X, Sun H. Recombinant expression, purification and characterization of antimicrobial peptide ORBK in Escherichia coli. Protein Expr Purif 2014; 95:182-7. [DOI: 10.1016/j.pep.2013.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 12/18/2013] [Accepted: 12/23/2013] [Indexed: 10/25/2022]
|
39
|
Witte K, Kaiser A, Schmidt P, Splith V, Thomas L, Berndt S, Huster D, Beck-Sickinger AG. Oxidative in vitro folding of a cysteine deficient variant of the G protein-coupled neuropeptide Y receptor type 2 improves stability at high concentration. Biol Chem 2014; 394:1045-56. [PMID: 23732681 DOI: 10.1515/hsz-2013-0120] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 05/31/2013] [Indexed: 01/28/2023]
Abstract
In vitro folding of G protein-coupled receptors into a detergent environment represents a promising strategy for obtaining sufficient amounts of functional receptor molecules for structural studies. Typically, these preparations exhibit a poor long-term stability especially at the required high protein concentration. Here, we report a protocol for the stabilization of the Escherichia coli-expressed and subsequently folded neuropeptide Y receptor type 2. We identified the free cysteines in the receptor as one major reason for intermolecular protein aggregation. Therefore, six out of the eight cysteine residues were mutated to alanine or serine without any significant loss of functionality of the receptor as demonstrated in cell culture models. Furthermore, the disulfide bond between the remaining two cysteines was irreversibly formed by applying oxidative in vitro folding. Applying this strategy, the stability of the functionally folded Y2 receptor could be increased to 20 days at a concentration of 15 μm in a micelle environment consisting of 1,2-diheptanoyl-sn-glycero-3-phosphocholine and n-dodecyl-ß-D-maltoside.
Collapse
Affiliation(s)
- Kristina Witte
- Institute for Medical Physics and Biophysics, Medical Department, Universität Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Zhao Y, Sakai F, Su L, Liu Y, Wei K, Chen G, Jiang M. Progressive macromolecular self-assembly: from biomimetic chemistry to bio-inspired materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:5215-5256. [PMID: 24022921 DOI: 10.1002/adma.201302215] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/08/2013] [Indexed: 06/02/2023]
Abstract
Macromolecular self-assembly (MSA) has been an active and fruitful research field since the 1980s, especially in this new century, which is promoted by the remarkable developments in controlled radical polymerization in polymer chemistry, etc. and driven by the demands in bio-related investigations and applications. In this review, we try to summarize the trends and recent progress in MSA in relation to biomimetic chemistry and bio-inspired materials. Our paper covers representative achievements in the fabrication of artificial building blocks for life, cell-inspired biomimetic materials, and macromolecular assemblies mimicking the functions of natural materials and their applications. It is true that the current status of the deliberately designed and obtained nano-objects based on MSA including a variety of micelles, multicompartment vesicles, and some hybrid and complex nano-objects is at their very first stage to mimic nature, but significant and encouraging progress has been made in achieving a certain similarity in morphologies or properties to that of natural ones. Such achievements also demonstrate that MSA has played an important and irreplaceable role in the grand and long-standing research of biomimetic and bio-inspired materials, the future success of which depends on mutual and persistent efforts in polymer science, material science, supramolecular chemistry, and biology.
Collapse
Affiliation(s)
- Yu Zhao
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
41
|
Han GJ, Dong XY, Sun Y. Purification effect of artificial chaperone in the refolding of recombinant ribonuclease A from inclusion bodies. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2013.04.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
42
|
González-Pérez A, Ruso JM. A Versatile Approach towards the Compaction, Decompaction, and Immobilization of DNA at Interfaces by Using Cyclodextrins. Chemphyschem 2013; 14:2544-53. [DOI: 10.1002/cphc.201300234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Indexed: 12/19/2022]
|
43
|
Yamaguchi S, Yamamoto E, Mannen T, Nagamune T, Nagamune T. Protein refolding using chemical refolding additives. Biotechnol J 2012; 8:17-31. [DOI: 10.1002/biot.201200025] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 07/13/2012] [Accepted: 07/26/2012] [Indexed: 12/14/2022]
|
44
|
Zhang L, Zhang Q, Wang C. Refolding of detergent-denatured lysozyme using β-cyclodextrin-assisted ion exchange chromatography. Biomed Chromatogr 2012; 27:365-70. [DOI: 10.1002/bmc.2800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 07/12/2012] [Accepted: 07/12/2012] [Indexed: 11/10/2022]
Affiliation(s)
- Li Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Material Science; Northwest University; Xi'an; 710069; China
| | - Qinming Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Material Science; Northwest University; Xi'an; 710069; China
| | - Chaozhan Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Material Science; Northwest University; Xi'an; 710069; China
| |
Collapse
|
45
|
Oxidative refolding of lysozyme assisted by DsbA, DsbC and the GroEL apical domain immobilized in cellulose. BIOTECHNOL BIOPROC E 2012. [DOI: 10.1007/s12257-011-0663-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
46
|
Guo J, Yang XQ, Gu W, Yuan DB, Wang JM, Wu NN. Inhibition of glycinin thermal aggregation by an artificial chaperone sodium dodecyl sulphate. Int J Food Sci Technol 2012. [DOI: 10.1111/j.1365-2621.2011.02891.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Gull N, Mir MA, Khan JM, Khan RH, Rather GM, Dar AA. Refolding of bovine serum albumin via artificial chaperone protocol using gemini surfactants. J Colloid Interface Sci 2011; 364:157-62. [DOI: 10.1016/j.jcis.2011.08.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 08/02/2011] [Accepted: 08/03/2011] [Indexed: 10/17/2022]
|
48
|
Patel AS, Lees WJ. Oxidative folding of lysozyme with aromatic dithiols, and aliphatic and aromatic monothiols. Bioorg Med Chem 2011; 20:1020-8. [PMID: 22197395 DOI: 10.1016/j.bmc.2011.11.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 11/16/2011] [Accepted: 11/19/2011] [Indexed: 11/28/2022]
Abstract
In vitro protein folding of disulfide containing proteins is aided by the addition of a redox buffer, which is composed of a small molecule disulfide and/or a small molecule thiol. In this study, we examined redox buffers containing asymmetric dithiols 1-5, which possess an aromatic and aliphatic thiol, and symmetric dithiols 6 and 7, which possess two aromatic thiols, for their ability to fold reduced lysozyme at pH 7.0 and 8.0. Most in vivo protein folding catalysts are dithiols. When compared to glutathione and glutathione disulfide, the standard redox buffer, dithiols 1-5 improved the protein folding rates but not the yields. However, dithiols 6 and 7, and the corresponding monothiol 8 increased the folding rates 8-17 times and improved the yields 15-42% at 1mg/mL lysozyme. Moreover, aromatic dithiol 6 increased the in vitro folding yield as compared to the corresponding aromatic monothiol 8. Therefore, aromatic dithiols should be useful for protein folding, especially at high protein concentrations.
Collapse
Affiliation(s)
- Amar S Patel
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | | |
Collapse
|
49
|
Serno T, Geidobler R, Winter G. Protein stabilization by cyclodextrins in the liquid and dried state. Adv Drug Deliv Rev 2011; 63:1086-106. [PMID: 21907254 DOI: 10.1016/j.addr.2011.08.003] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 08/16/2011] [Accepted: 08/23/2011] [Indexed: 02/07/2023]
Abstract
Aggregation is arguably the biggest challenge for the development of stable formulations and robust manufacturing processes of therapeutic proteins. In search of novel excipients inhibiting protein aggregation, cyclodextrins and their derivatives have been under examination for use in parenteral protein products since more than 20 years and significant research work has been accomplished highlighting the great potential of cyclodextrins as stabilizers of therapeutic proteins. Oftentimes, the potential of cyclodextrins to inhibit protein aggregation has been attributed to their capability to incorporate hydrophobic residues on aggregation-prone proteins or on their partially unfolded intermediates into the hydrophobic cavity. In addition, also other mechanisms besides or even instead of complex formation play a role in the stabilization mechanism, e.g. non-ionic surfactant-like effects. In this review a comprehensive overview of the available research work on the beneficial use of cyclodextrins and their derivatives in protein formulations, liquid as well as dried, is provided. The mechanisms of stabilization against different kinds of stress conditions, such as thermal or surface-induced, are discussed in detail.
Collapse
|
50
|
Luo M, Guan YX, Yao SJ. On-column refolding of denatured lysozyme by the conjoint chromatography composed of SEC and immobilized recombinant DsbA. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:2971-7. [DOI: 10.1016/j.jchromb.2011.08.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 08/24/2011] [Accepted: 08/26/2011] [Indexed: 10/17/2022]
|