1
|
Cunha A, Silva PMA, Sarmento B, Queirós O. Targeting Glucose Metabolism in Cancer Cells as an Approach to Overcoming Drug Resistance. Pharmaceutics 2023; 15:2610. [PMID: 38004589 PMCID: PMC10675572 DOI: 10.3390/pharmaceutics15112610] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/27/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
The "Warburg effect" consists of a metabolic shift in energy production from oxidative phosphorylation to glycolysis. The continuous activation of glycolysis in cancer cells causes rapid energy production and an increase in lactate, leading to the acidification of the tumour microenvironment, chemo- and radioresistance, as well as poor patient survival. Nevertheless, the mitochondrial metabolism can be also involved in aggressive cancer characteristics. The metabolic differences between cancer and normal tissues can be considered the Achilles heel of cancer, offering a strategy for new therapies. One of the main causes of treatment resistance consists of the increased expression of efflux pumps, and multidrug resistance (MDR) proteins, which are able to export chemotherapeutics out of the cell. Cells expressing MDR proteins require ATP to mediate the efflux of their drug substrates. Thus, inhibition of the main energy-producing pathways in cancer cells, not only induces cancer cell death per se, but also overcomes multidrug resistance. Given that most anticancer drugs do not have the ability to distinguish normal cells from cancer cells, a number of drug delivery systems have been developed. These nanodrug delivery systems provide flexible and effective methods to overcome MDR by facilitating cellular uptake, increasing drug accumulation, reducing drug efflux, improving targeted drug delivery, co-administering synergistic agents, and increasing the half-life of drugs in circulation.
Collapse
Affiliation(s)
- Andrea Cunha
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences—CESPU (IUCS—CESPU), 4585-116 Gandra, Portugal; (A.C.); (P.M.A.S.); (B.S.)
| | - Patrícia M. A. Silva
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences—CESPU (IUCS—CESPU), 4585-116 Gandra, Portugal; (A.C.); (P.M.A.S.); (B.S.)
- 1H—TOXRUN—One Health Toxicology Research Unit, University Institute of Health Sciences—CESPU (IUCS—CESPU), 3810-193 Gandra, Portugal
| | - Bruno Sarmento
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences—CESPU (IUCS—CESPU), 4585-116 Gandra, Portugal; (A.C.); (P.M.A.S.); (B.S.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Odília Queirós
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences—CESPU (IUCS—CESPU), 4585-116 Gandra, Portugal; (A.C.); (P.M.A.S.); (B.S.)
| |
Collapse
|
2
|
Pilon A, Avecilla F, Mohai M, Enyedy ÉA, Rácz B, Spengler G, Garcia MH, Valente A. First iron(II) organometallic compound acting as ABCB1 inhibitor. Eur J Med Chem 2023; 256:115466. [PMID: 37187089 DOI: 10.1016/j.ejmech.2023.115466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/17/2023]
Abstract
Five new iron (II) complexes bearing imidazole-based (Imi-R) ligands with the general formula [Fe(η5-C5H5)(CO)(PPh3)(Imi-R)][CF3SO3] were synthesized and fully characterized by several spectroscopic and analytical techniques. All compounds crystallize in centrosymmetric space groups in a typical "piano stool" distribution. Given the growing importance of finding alternatives to overcome different forms of multidrug resistance, all compounds were tested against cancer cell lines with different ABCB1 efflux pump expression, namely, the doxorubicin-sensitive (Colo205) and doxorubicin-resistant (Colo320) human colon adenocarcinoma cell lines. Compound 3 bearing 1-benzylimidazole was the most active in both cell lines with IC50 values of 1.26 ± 0.11 and 2.21 ± 0.26 μM, respectively, being also slightly selective against the cancer cells (vs. MRC5 normal human embryonic fibroblast cell lines). This compound, together with compound 2 bearing 1H-1,3-benzodiazole, were found to display very potent ABCB1 inhibitory effect. Compound 3 also showed the ability to induce cell apoptosis. Iron cellular accumulation studies by ICP-MS and ICP-OES methods revealed that the compounds' cytotoxicity is not related to the extent of iron accumulation. Yet, it is worth mentioning that, from the compounds tested, 3 was the only one where iron accumulation was greater in the resistant cell line than in the sensitive one, validating the possible role of ABCB1 inhibition in its mechanism of action.
Collapse
Affiliation(s)
- Adhan Pilon
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Fernando Avecilla
- Universidade da Coruña, Grupo NanoToxGen, Centro Interdisciplinar de Química y Biología (CICA), Departamento de Química, Facultade de Ciencias, Campus de A Coruña, 15071, A Coruña, Spain
| | - Miklós Mohai
- Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Magyar tudósok körútja 2, H-1117, Budapest, Hungary
| | - Éva A Enyedy
- MTA-SZTE Lendület Functional Metal Complexes Research Group, Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720, Szeged, Hungary
| | - Bálint Rácz
- Department of Medical Microbiology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis utca 6, H-6725, Szeged, Hungary
| | - Gabriella Spengler
- Department of Medical Microbiology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis utca 6, H-6725, Szeged, Hungary
| | - M Helena Garcia
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Andreia Valente
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
| |
Collapse
|
3
|
Wada M. Role of ABC Transporters in Cancer Development and Malignant Alteration. YAKUGAKU ZASSHI 2022; 142:1201-1225. [DOI: 10.1248/yakushi.22-00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
4
|
Lithium enhances post-stroke blood-brain barrier integrity, activates the MAPK/ERK1/2 pathway and alters immune cell migration in mice. Neuropharmacology 2020; 181:108357. [PMID: 33065166 DOI: 10.1016/j.neuropharm.2020.108357] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 12/21/2022]
Abstract
Lithium induces neuroprotection against cerebral ischemia, although the underlying mechanisms remain elusive. We have previously suggested a role for lithium in calcium regulation and (extra)cerebral vessel relaxation under non-ischemic conditions. Herein, we aimed to investigate whether or not lithium contributes to post-stroke stabilization of the blood-brain barrier (BBB) in mice. Using an oxygen-glucose-deprivation (OGD) model, we first analyzed the impact of lithium treatment on endothelial cells (EC) in vitro. Indeed, such treatment of EC exposed to OGD resulted in increased cell survival as well as in enhanced expression of tight junction proteins and P-glycoprotein. Additional in vivo studies demonstrated an increased stabilization of the BBB upon lithium treatment in stroke mice, as shown by a reduced Evans blue extravasation and an elevation of tight junction protein expression. Furthermore, stabilization of the BBB as a consequence of lithium treatment was associated with an inhibition of matrix metalloproteinase-9 activity, independent of calveolin-1 regulation. In line with this, flow cytometry analysis revealed that lithium treatment led to a decreased neutrophil invasion and an increased T cell extravasation from the blood compartment towards the brain parenchyma. We finally identified the pro-survival MAPK/ERK1/2 pathway as the key regulator of the impact of lithium on the BBB. In conclusion, we demonstrate for the first time that lithium is able to enhance post-stroke BBB integrity. Importantly, our work delivers novel insights into the exact mechanism of lithium-induced acute neuroprotection, providing critical information for future clinical trials involving lithium treatment in stroke patients.
Collapse
|
5
|
El-Readi MZ, Eid S, Abdelghany AA, Al-Amoudi HS, Efferth T, Wink M. Resveratrol mediated cancer cell apoptosis, and modulation of multidrug resistance proteins and metabolic enzymes. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 55:269-281. [PMID: 30668439 DOI: 10.1016/j.phymed.2018.06.046] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 06/11/2018] [Accepted: 06/19/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND The degree of intracellular drug accumulation by specific membrane transporters, i.e., MDR1, BCRP, and MRP, and the degree of detoxification by intracellular metabolic enzymes, i.e., CYP3A4 and GST, provide control for cancer chemotherapy through diminishing the propensity of cancer cells to undergo apoptosis which in turn modulates the unresolved and complex phenomenon of multidrug resistance (MDR) for the cancer cells. HYPOTHESIS/PURPOSE This study dwells into the interaction details involving ABC-transporters, CYP3A4, GST and cytotoxic effects of resveratrol on different cell lines. METHODS Resveratrol was evaluated for its ability modulating the expression and efflux functions of P-gp /MDR1, MRP1, and BCRP in the multidrug-resistant human colon carcinoma cell line, Caco-2, and CEM/ADR5000 cells through flow cytometry and RTPCR technique. RESULTS The resveratrol influenced P-gp and MRP1 efflux functions whereby it increased rhodamine 123 with calcein accumulation in concentration-dependent manner (1 - 500 µM) in the Caco-2 cell lines and inhibited the effluxes of both the substrates also as concentration-dependent phenomenon (10 - 100 µM) in the p-gp overexpressing CEM/ADR5000 cells through FACS (full form). The treatment of drug-resistant Caco-2, and CEM/ADR5000 cells with doxorubicin (DOX) along with 20 µM of resveratrol in the mixture. It increased the cell sensitivity DOX towards the DOX and enhanced the cytotoxicity. The resveratrol inhibited both CYP3A4 and GST enzymatic activity in a concentration-dependent way and induced apoptosis in the resistance cell lines because of increased levels of caspase-3, -8,-6/9 and incremental phosphatidyl serine (PS) exposure as detected by flow cytometry. The treatment of Caco-2 cells with resveratrol showed significantly lower p-gp, MRP1, BCRP, CYP3A4, GST, and hPXR mRNA levels in a 48 h observation. CONCLUSION The result confirmed resveratrol mediated inhibition of ABC-transporters' overall efflux functions, and its expression, and apoptosis as well as metabolic enzymes GST and CYP3A4 activity.
Collapse
Affiliation(s)
- Mahmoud Zaki El-Readi
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia; Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, 71524, Assiut, Egypt; Department of Pharmaceutical Biology, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany.
| | - SafaaYehia Eid
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia; Department of Pharmaceutical Biology, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Ahmed Ali Abdelghany
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, 71524, Assiut, Egypt
| | - Hiba Saeed Al-Amoudi
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Michael Wink
- Department of Pharmaceutical Biology, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| |
Collapse
|
6
|
Stavrovskaya AA, Rybalkina EY. Recent Advances in the Studies of Molecular Mechanisms Regulating Multidrug Resistance in Cancer Cells. BIOCHEMISTRY (MOSCOW) 2018; 83:779-786. [PMID: 30200862 DOI: 10.1134/s0006297918070015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Here we present new approaches to better understanding multidrug resistance (MDR) development in cancer cells, such as identification of components of a complex process of MDR evolution. Recent advances in the studies of MDR are discussed: 1) chemotherapy agents might be involved in the selection of cancer stem cells resulting in the elevated drug resistance and enhanced tumorigenicity; 2) cell-cell interactions have a great effect on the MDR emergence and evolution; 3) mechanotransduction is an important signaling mechanism in cell-cell interactions; 4) proteins of the ABC transporter family which are often involved in MDR might be transferred between cells via microvesicles (epigenetic MDR regulation); 5) proteins providing cell-to-cell transfer of functional P-glycoprotein (MDR1 protein) via microvesicles have been investigated; 6) P-glycoprotein may serve to regulate apoptosis, as well as transcription and translation of target genes/proteins. Although proving once again that MDR is a complex multi-faceted process, these data open new approaches to overcoming it.
Collapse
Affiliation(s)
- A A Stavrovskaya
- Blokhin Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115478, Russia.
| | - E Yu Rybalkina
- Blokhin Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115478, Russia
| |
Collapse
|
7
|
Kalalinia F, Karimi-Sani I. Anticancer Properties of Solamargine: A Systematic Review. Phytother Res 2017; 31:858-870. [DOI: 10.1002/ptr.5809] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/10/2017] [Accepted: 03/14/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Fatemeh Kalalinia
- Biotechnology Research Center; Mashhad University of Medical Sciences; Mashhad Iran
| | - Iman Karimi-Sani
- Department of Biotechnology; Ferdowsi University of Mashhad; Mashhad Iran
| |
Collapse
|
8
|
Li JY, Pan LQ, Miao JJ, Xu RY, Xu WJ. De novo assembly and characterization of the ovarian transcriptome reveal mechanisms of the final maturation stage in Chinese scallop Chlamys farreri. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2016; 20:118-124. [DOI: 10.1016/j.cbd.2016.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 08/10/2016] [Accepted: 08/11/2016] [Indexed: 12/14/2022]
|
9
|
Chen T, Wang C, Liu Q, Meng Q, Sun H, Huo X, Sun P, Peng J, Liu Z, Yang X, Liu K. Dasatinib reverses the multidrug resistance of breast cancer MCF-7 cells to doxorubicin by downregulating P-gp expression via inhibiting the activation of ERK signaling pathway. Cancer Biol Ther 2015; 16:106-14. [PMID: 25482933 DOI: 10.4161/15384047.2014.987062] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Multidrug resistance (MDR) is one of the major obstacles to the efficiency of cancer chemotherapy, which often results from the overexpression of drug efflux transporters such as P-glycoprotein (P-gp). In the present study, we determined the effect of dasatinib which was approved for imatinib resistant chronic myelogenous leukemia (CML) and (Ph(+)) acute lymphoblastic leukemia (ALL) treatment on P-gp-mediated MDR. Our results showed that dasatinib significantly increased the sensitivity of P-gp-overexpressing MCF-7/Adr cells to doxorubicin in MTT assays; thus lead to an enhanced cytotoxicity of doxorubicin in MCF-7/Adr cells. Additionally, dasatinib increased the intracellular accumulation, inhibited the efflux of doxorubicin in MCF-7/Adr cells, and significantly enhanced doxorubicin-induced apoptosis in MCF-7/Adr cells. Further studies showed that dasatinib altered the expression levels of mRNA, protein levels of P-gp, and the phosphorylation of signal-regulated kinase (ERK) both in time-dependent (before 24 h) and dose-dependent manners at concentrations that produced MDR reversals. In conclusion, dasatinib reverses P-gp-mediated MDR by downregulating P-gp expression, which may be partly attributed to the inhibition of ERK pathway. Dasatinib may play an important role in circumventing MDR when combined with other conventional antineoplastic drugs.
Collapse
Affiliation(s)
- Ting Chen
- a Department of Clinical Pharmacology; College of Pharmacy ; Dalian Medical University ; Dalian , China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Eid SY, El-Readi MZ, Fatani SH, Mohamed Nour Eldin EE, Wink M. Natural Products Modulate the Multifactorial Multidrug Resistance of Cancer. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/pp.2015.63017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Zu Y, Yang Z, Tang S, Han Y, Ma J. Effects of P-glycoprotein and its inhibitors on apoptosis in K562 cells. Molecules 2014; 19:13061-75. [PMID: 25157469 PMCID: PMC6270982 DOI: 10.3390/molecules190913061] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/12/2014] [Accepted: 08/18/2014] [Indexed: 12/31/2022] Open
Abstract
P-glycoprotein (P-gp) is a major factor in multidrug resistance (MDR) which is a serious obstacle in chemotherapy. P-gp has also been implicated in causing apoptosis of tumor cells, which was shown to be another important mechanism of MDR recently. To study the influence of P-gp in tumor cell apoptosis, K562/A cells (P-gp+) and K562/S cells (P-gp−) were subjected to doxorubicin (Dox), serum withdrawal, or independent co-incubation with multiple P-gp inhibitors, including valspodar (PSC833), verapamil (Ver) and H108 to induce apoptosis. Apoptosis was simultaneously detected by apoptotic rate, cell cycle by flow cytometry and cysteine aspartic acid-specific protease 3 (caspase 3) activity by immunoassay. Cytotoxicity and apoptosis induced by PSC833 were evaluated through an MTT method and apoptosis rate, and cell cycle combined with caspase 3 activity, respectively. The results show that K562/A cells are more resistant to apoptosis and cell cycle arrest than K562/S cells after treatment with Dox or serum deprivation. The apoptosis of K562/A cells increased after co-incubation with each of the inhibitors of P-gp. P-gp inhibitors also enhanced cell cycle arrest in K562/A cell. PSC833 most strikingly decreased viability and led to apoptosis and S phase arrest of cell cycle in K562/A cells. Our study demonstrates that P-gp inhibits the apoptosis of tumor cells in addition to participating in the efflux of intracellular chemotherapy drugs. The results of the caspase 3 activity assay also suggest that the role of P-gp in apoptosis avoidance is caspase-related.
Collapse
Affiliation(s)
- Yaqiong Zu
- Department of Health Statistics, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China.
| | - Zhiyong Yang
- HUYA Bioscience International LLC, 3 Haidian Avenue, Haidian District, Beijing 100080, China.
| | - Songshan Tang
- Department of Biochemistry and Molecular Biology, School of Basic Courses, Guangdong Pharmaceutical University, 280 Waihuandong Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| | - Ying Han
- Biotherapy Center of Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tiyuanbei, Huanhuxi Road, Hexi District, Tianjin 300060, China.
| | - Jun Ma
- Department of Health Statistics, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China.
| |
Collapse
|
12
|
Medel Flores O, Gómez García C, Sánchez Monroy V, Villalba Magadaleno JDA, Nader García E, Pérez Ishiwara DG. Entamoeba histolytica P-glycoprotein (EhPgp) inhibition, induce trophozoite acidification and enhance programmed cell death. Exp Parasitol 2013; 135:532-40. [DOI: 10.1016/j.exppara.2013.08.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 08/15/2013] [Accepted: 08/25/2013] [Indexed: 12/31/2022]
|
13
|
Exploiting nanotechnology to overcome tumor drug resistance: Challenges and opportunities. Adv Drug Deliv Rev 2013; 65:1731-47. [PMID: 24036273 DOI: 10.1016/j.addr.2013.09.001] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/15/2013] [Accepted: 09/03/2013] [Indexed: 02/06/2023]
Abstract
Tumor cells develop resistance to chemotherapeutic drugs through multiple mechanisms. Overexpression of efflux transporters is an important source of drug resistance. Efflux transporters such as P-glycoprotein reduce intracellular drug accumulation and compromise drug efficacy. Various nanoparticle-based approaches have been investigated to overcome efflux-mediated resistance. These include the use of formulation excipients that inhibit transporter activity and co-delivery of the anticancer drug with a specific inhibitor of transporter function or expression. However, the effectiveness of nanoparticles can be diminished by poor transport in the tumor tissue. Hence, adjunct therapies that improve the intratumoral distribution of nanoparticles may be vital to the successful application of nanotechnology to overcome tumor drug resistance. This review discusses the mechanisms of tumor drug resistance and highlights the opportunities and challenges in the use of nanoparticles to improve the efficacy of anticancer drugs against resistant tumors.
Collapse
|
14
|
Sun Z, Yang S, Ye S, Zhang Y, Xu W, Zhang B, Liu X, Mo F, Hua W. Aberrant CpG islands' hypermethylation of ABCB1 in mesenchymal stem cells of patients with steroid-associated osteonecrosis. J Rheumatol 2013; 40:1913-20. [PMID: 24037553 DOI: 10.3899/jrheum.130191] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Patients carrying an ABCB1 polymorphism have a higher risk of developing osteonecrosis of the femoral head (ONFH). We investigated whether aberrant dinucleotide CpG islands' hypermethylation of ABCB1 gene existed in mesenchymal stem cells (MSC) of patients with ONFH, which results in cell dysfunction. METHODS Bone marrow was collected from the proximal femur of patients with glucocorticoid (GC)-associated ONFH (n = 22) and patients with new femoral neck fractures (n = 25). MSC were isolated by density gradient centrifugation. We investigated cell viability, intracellular reactive oxygen species (ROS) level, mitochondrial membrane potential (MMP), the amount of P-glycoprotein (P-gp) and ABCB1 transcripts, and methylation at CpG islands of ABCB1 promoter from both the femoral neck fractures group and the GC-associated ONFH group treated with or without the DNA methyltransferase inhibitor, 5'-Aza-2-deoxycytidine (5'-Aza-dC). RESULTS We observed that MSC from GC-associated ONFH groups showed reduced proliferation ability, elevated ROS levels, and depressed MMP when compared with the other 2 groups. Low levels of P-gp and ABCB1 transcript, as well as ABCB1 gene hypermethylation, in patients with GC-associated ONFH were also noted. Treatment with 5'-Aza-dC rapidly restored ABCB1 expression. Analysis of general expression revealed that aberrant CpG islands' hypermethylation of ABCB1 caused sensitivity to GC and induced changes in the proliferation and oxidative stress of MSC under GC administration. CONCLUSION These data suggest that aberrant CpG islands' hypermethylation of ABCB1 gene may be responsible for individual differences in the development of GC-associated ONFH.
Collapse
Affiliation(s)
- Zhibo Sun
- From the Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
WANG CONG, GUO LIUBIN, MA JUNYUAN, LI YONGMEI, LIU HONGMIN. Establishment and characterization of a paclitaxel-resistant human esophageal carcinoma cell line. Int J Oncol 2013; 43:1607-17. [DOI: 10.3892/ijo.2013.2083] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 08/05/2013] [Indexed: 11/05/2022] Open
|
16
|
Gandhi A, Moorthy B, Ghose R. Drug disposition in pathophysiological conditions. Curr Drug Metab 2013; 13:1327-44. [PMID: 22746301 DOI: 10.2174/138920012803341302] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 04/04/2012] [Accepted: 04/19/2012] [Indexed: 12/19/2022]
Abstract
Expression and activity of several key drug metabolizing enzymes (DMEs) and transporters are altered in various pathophysiological conditions, leading to altered drug metabolism and disposition. This can have profound impact on the pharmacotherapy of widely used clinically relevant medications in terms of safety and efficacy by causing inter-individual variabilities in drug responses. This review article highlights altered drug disposition in inflammation and infectious diseases, and commonly encountered disorders such as cancer, obesity/diabetes, fatty liver diseases, cardiovascular diseases and rheumatoid arthritis. Many of the clinically relevant drugs have a narrow therapeutic index. Thus any changes in the disposition of these drugs may lead to reduced efficacy and increased toxicity. The implications of changes in DMEs and transporters on the pharmacokinetics/pharmacodynamics of clinically-relevant medications are also discussed. Inflammation-mediated release of pro-inflammatory cytokines and activation of toll-like receptors (TLRs) are known to play a major role in down-regulation of DMEs and transporters. Although the mechanism by which this occurs is unclear, several studies have shown that inflammation-associated cell-signaling pathway and its interaction with basal transcription factors and nuclear receptors in regulation of DMEs and transporters play a significant role in altered drug metabolism. Altered regulation of DMEs and transporters in a multitude of disease states will contribute towards future development of powerful in vitro and in vivo tools in predicting the drug response and opt for better drug design and development. The goal is to facilitate a better understanding of the mechanistic details underlying the regulation of DMEs and transporters in pathophysiological conditions.
Collapse
Affiliation(s)
- Adarsh Gandhi
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX 77030, USA
| | | | | |
Collapse
|
17
|
Polymeric delivery of siRNA for dual silencing of Mcl-1 and P-glycoprotein and apoptosis induction in drug-resistant breast cancer cells. Cancer Gene Ther 2013; 20:169-77. [DOI: 10.1038/cgt.2013.8] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Mori M, Kasa S, Isozaki Y, Kamori T, Yamaguchi S, Ueda S, Kuwano T, Eguchi M, Isayama K, Nishimura S, Tabata S, Yamauchi N, Hattori MA. Improvement of the cellular quality of cryopreserved bovine blastocysts accompanied by enhancement of the ATP-binding cassette sub-family B member 1 expression. Reprod Toxicol 2013; 35:17-24. [DOI: 10.1016/j.reprotox.2012.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/23/2012] [Accepted: 11/07/2012] [Indexed: 02/03/2023]
|
19
|
Moore J, McKnight AJ, Döhler B, Simmonds MJ, Courtney AE, Brand OJ, Briggs D, Ball S, Cockwell P, Patterson CC, Maxwell AP, Gough SCL, Opelz G, Borrows R. Donor ABCB1 variant associates with increased risk for kidney allograft failure. J Am Soc Nephrol 2012; 23:1891-9. [PMID: 23064017 DOI: 10.1681/asn.2012030260] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The impact of variation within genes responsible for the disposition and metabolism of calcineurin inhibitors (CNIs) on clinical outcomes in kidney transplantation is not well understood. Furthermore, the potential influence of donor, rather than recipient, genotypes on clinical endpoints is unknown. Here, we investigated the associations between donor and recipient gene variants with outcome among 4471 white, CNI-treated kidney transplant recipients. We tested for 52 single-nucleotide polymorphisms (SNPs) across five genes: CYP3A4, CYP3A5, ABCB1 (MDR1; encoding P-glycoprotein), NR1I2 (encoding the pregnane X receptor), and PPIA (encoding cyclophilin). In a discovery cohort of 811 patients from Birmingham, United Kingdom, kidney donor CC genotype at C3435T (rs1045642) within ABCB1, a variant known to alter protein expression, was associated with an increased risk for long-term graft failure compared with non-CC genotype (hazard ratio [HR], 1.69; 95% confidence interval [CI], 1.20-2.40; P=0.003). No other donor or recipient SNPs were associated with graft survival or mortality. We validated this association in 675 donors from Belfast, United Kingdom (HR, 1.68; 95% CI, 1.21-2.32; P=0.002), and in 2985 donors from the Collaborative Transplant Study (HR, 1.84; 95% CI, 1.08-3.13; P=0.006). In conclusion, these data suggest that an ABCB1 variant known to alter protein expression represents an attractive candidate for future study and risk stratification in kidney transplantation.
Collapse
Affiliation(s)
- Jason Moore
- Department of Nephrology and Kidney Transplantation, Queen Elizabeth Hospital, Birmingham, B15 2WB, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
PPAR Medicines and Human Disease: The ABCs of It All. PPAR Res 2012; 2012:504918. [PMID: 22919365 PMCID: PMC3423947 DOI: 10.1155/2012/504918] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 04/04/2012] [Accepted: 04/06/2012] [Indexed: 12/21/2022] Open
Abstract
ATP-dependent binding cassette (ABC) transporters are a family of transmembrane proteins that pump a variety of hydrophobic compounds across cellular and subcellular barriers and are implicated in human diseases such as cancer and atherosclerosis. Inhibition of ABC transporter activity showed promise in early preclinical studies; however, the outcomes in clinical trials with these agents have not been as encouraging. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that regulate genes involved in fat and glucose metabolism, and inflammation. Activation of PPAR signaling is also reported to regulate ABC gene expression. This suggests the potential of PPAR medicines as a novel means of controlling ABC transporter activity at the transcriptional level. This paper summarizes the advances made in understanding how PPAR medicines affect ABC transporters, and the potential implications for impacting on human diseases, in particular with respect to cancer and atherosclerosis.
Collapse
|
21
|
Wang XW, Wang XK, Zhang X, Liang YJ, Shi Z, Chen LM, Fu LW. FG020326 sensitized multidrug resistant cancer cells to docetaxel-mediated apoptosis via enhancement of caspases activation. Molecules 2012; 17:5442-58. [PMID: 22572929 PMCID: PMC6268253 DOI: 10.3390/molecules17055442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 04/21/2012] [Accepted: 04/28/2012] [Indexed: 11/25/2022] Open
Abstract
Apoptotic resistance is the main obstacle for treating cancer patients with chemotherapeutic drugs. Multidrug resistance (MDR) is often characterized by the expression of P-glycoprotein (P-gp), a 170-KD ATP-dependent drug efflux protein. Functional P-gp can confer resistance to activate caspase-8 and -3 dependent apoptosis induced by a range of different stimuli, including tumor necrosis and chemotherapeutic drugs such as docetaxel and vincristine. We demonstrated here that comparison of sensitive KB cells, P-gp positive (P-gp+ve) KBv200 cells were extremely resistant to apoptosis induced by docetaxel. FG020326, a pharmacological inhibitor of P-gp function, could enhance concentration-dependently the effect of docetaxel on cell apoptosis and sensitize caspase-8, -9 and -3 activation in P-gp overexpressing KBv200 cells, but not in KB cells. Therefore, the enhancement of caspase-8, -9 and -3 activation induced by docetaxel may be one of the key mechanisms of the reversal of P-gp mediated docetaxel resistance by FG020326.
Collapse
Affiliation(s)
- Xiu-Wen Wang
- State Key Laboratory of Oncology in Southern China, Cancer Center, Sun Yat-Sen University of Medical Sciences, Guangzhou 510060, China.
| | | | | | | | | | | | | |
Collapse
|
22
|
The Interface between BCR-ABL-Dependent and -Independent Resistance Signaling Pathways in Chronic Myeloid Leukemia. LEUKEMIA RESEARCH AND TREATMENT 2012; 2012:671702. [PMID: 23259070 PMCID: PMC3505928 DOI: 10.1155/2012/671702] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 02/10/2012] [Indexed: 12/15/2022]
Abstract
Chronic myeloid leukemia (CML) is a clonal hematopoietic disorder characterized by the presence of the Philadelphia chromosome which resulted from the reciprocal translocation between chromosomes 9 and 22. The pathogenesis of CML involves the constitutive activation of the BCR-ABL tyrosine kinase, which governs malignant disease by activating multiple signal transduction pathways. The BCR-ABL kinase inhibitor, imatinib, is the front-line treatment for CML, but the emergence of imatinib resistance and other tyrosine kinase inhibitors (TKIs) has called attention for additional resistance mechanisms and has led to the search for alternative drug treatments. In this paper, we discuss our current understanding of mechanisms, related or unrelated to BCR-ABL, which have been shown to account for chemoresistance and treatment failure. We focus on the potential role of the influx and efflux transporters, the inhibitor of apoptosis proteins, and transcription factor-mediated signals as feasible molecular targets to overcome the development of TKIs resistance in CML.
Collapse
|
23
|
Castro J, Ribó M, Puig T, Colomer R, Vilanova M, Benito A. A cytotoxic ribonuclease reduces the expression level of P-glycoprotein in multidrug-resistant cell lines. Invest New Drugs 2011; 30:880-8. [PMID: 21286781 DOI: 10.1007/s10637-011-9636-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 01/20/2011] [Indexed: 10/18/2022]
Abstract
We have previously described a cytotoxic human pancreatic-ribonuclease variant, named PE5, which is able to cleave nuclear RNA, inducing the apoptosis of cancer cells. We have investigated whether PE5 could specifically inhibit the accumulation of P-glycoprotein in multidrug-resistant cells, since P-glycoprotein overexpression is one of the most important mechanisms contributing to the multiple drug resistance phenotype. We show that PE5 is able to reduce the amount of P-glycoprotein in two different multidrug-resistant cell lines, NCI/H460-R and NCI/ADR-RES, while glutathione S-transferase-л is not affected. We also show that onconase, an amphibian ribonuclease that is undergoing phase II/III clinical trials as an antitumor drug, does not affect the expression of these proteins. The reduction of P-glycoprotein accumulation, which has been functionally confirmed by flow cytometry analysis, may be caused by the previously reported underphosphorylation of JNK induced by PE5. We also show that PE5 has synergistic cytotoxicity with doxorubicin on the NCI/ADR-RES multidrug-resistant cell line. In conclusion, PE5 is a cytotoxic ribonuclease that cleaves nuclear RNA and decreases the expression of P-glycoprotein, showing anticancer activity in multidrug-resistant cell lines.
Collapse
Affiliation(s)
- Jessica Castro
- Laboratori d'Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, Maria Aurèlia Campmany, 69, 17071, Girona, Spain
| | | | | | | | | | | |
Collapse
|
24
|
Patutina OA, Mironova NL, Popova NA, Kaledin VI, Nikolin VP, Vlassov VV, Zenkova MA. The siRNA targeted to mdr1b and mdr1a mRNAs in vivo sensitizes murine lymphosarcoma to chemotherapy. BMC Cancer 2010; 10:204. [PMID: 20470373 PMCID: PMC2886043 DOI: 10.1186/1471-2407-10-204] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 05/14/2010] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND One of the main obstacles for successful cancer polychemotherapy is multiple drug resistance phenotype (MDR) acquired by tumor cells. Currently, RNA interference represents a perspective strategy to overcome MDR via silencing the genes involved in development of this deleterious phenotype (genes of ABC transporters, antiapoptotic genes, etc.). METHODS In this study, we used the siRNAs targeted to mdr1b, mdr1a, and bcl-2 mRNAs to reverse the MDR of tumors and increase tumor sensitivity to chemotherapeutics. The therapy consisting in ex vivo or in vivo application of mdr1b/1a siRNA followed by cyclophosphamide administration was studied in the mice bearing RLS40 lymphosarcoma, displaying high resistance to a wide range of cytostatics. RESULTS Our data show that a single application of mdr1b/1a siRNA followed by treatment with conventionally used cytostatics results in more than threefold decrease in tumor size as compared with the control animals receiving only cytostatics. CONCLUSIONS In perspective, mdr1b/1a siRNA may become a well-reasoned adjuvant tool in the therapy of MDR malignancies.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/genetics
- Animals
- Antineoplastic Agents, Alkylating/pharmacology
- Cyclophosphamide/pharmacology
- Drug Resistance, Neoplasm/genetics
- Gene Expression Regulation, Neoplastic
- Genetic Therapy/methods
- Genotype
- Lymphoma, Non-Hodgkin/drug therapy
- Lymphoma, Non-Hodgkin/genetics
- Lymphoma, Non-Hodgkin/metabolism
- Lymphoma, Non-Hodgkin/pathology
- Lymphoma, Non-Hodgkin/therapy
- Male
- Mice
- Mice, Inbred CBA
- Phenotype
- RNA Interference
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- Time Factors
- Transfection
- Tumor Burden
- Tumor Cells, Cultured
- ATP-Binding Cassette Sub-Family B Member 4
Collapse
Affiliation(s)
- Olga A Patutina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Lavrentiev av. 8, Novosibirsk, 630090 Russia
| | - Nadezda L Mironova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Lavrentiev av. 8, Novosibirsk, 630090 Russia
| | - Nelly A Popova
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Lavrentiev av. 10, Novosibirsk, 630090 Russia
| | - Vasily I Kaledin
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Lavrentiev av. 10, Novosibirsk, 630090 Russia
| | - Valery P Nikolin
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Lavrentiev av. 10, Novosibirsk, 630090 Russia
| | - Valentin V Vlassov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Lavrentiev av. 8, Novosibirsk, 630090 Russia
| | - Marina A Zenkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Lavrentiev av. 8, Novosibirsk, 630090 Russia
| |
Collapse
|
25
|
Schumacher M, Hautzinger A, Rossmann A, Holzhauser S, Popovic D, Hertrampf A, Kuntz S, Boll M, Wenzel U. Chrysin blocks topotecan-induced apoptosis in Caco-2 cells in spite of inhibition of ABC-transporters. Biochem Pharmacol 2010; 80:471-9. [PMID: 20457140 DOI: 10.1016/j.bcp.2010.04.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 04/29/2010] [Accepted: 04/30/2010] [Indexed: 10/19/2022]
Abstract
ATP-driven efflux pumps such as phosphoglycoprotein-170 (P-gp), multidrug-resistance-associated protein-2 (MRP-2), or breast cancer resistance protein (BCRP) play a crucial role in limiting the efficacy of tumor pharmacotherapy. Selected flavonoids have been suggested to inhibit individual efflux-transporters and to act therefore as multidrug-resistance reversing agents. In the present study it is shown that the flavonoid chrysin acts as a potent inhibitor of P-gp, MRP-2, and BCRP in Caco-2 colon carcinoma cells. As a consequence, cells accumulated higher rates of the apoptosis-inducing chemotherapeutic topotecan in the presence of chrysin, even though under these conditions the expression of the transporters was markedly increased. Interestingly, in spite of the enhanced cellular drug accumulation the topotecan-induced apoptosis, assessed according to DNA-fragmentation, chromatin condensation, and by determination of sub-G1 peaks using fluorescence-assisted-cell sorting (FACS), was potently inhibited by chrysin. Suggested transport-independent apoptosis inhibiting activities of ATP-binding cassette (ABC)-transporters, such as the inhibition of caspases, were shown to be necessary for the inhibition of topotecan-induced apoptosis and were found to be associated with stabilization of beta-catenin especially in the cytosol. Inhibition of topotecan-induced intracellular acidification, however, was proven not to prevent caspase-activation and apoptosis. In conclusion, our studies show that chrysin in spite of raising the cellular concentrations of topotecan potently inhibits the apoptosis-inducing activities of the anti-tumor drug. Inhibition of caspase-activation was identified as the underlying mechanism and is suggested to be caused by transport-independent functions of ABC-transporters.
Collapse
Affiliation(s)
- Marco Schumacher
- Interdisciplinary Research Center, Justus-Liebig-University of Giessen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Fletcher JI, Haber M, Henderson MJ, Norris MD. ABC transporters in cancer: more than just drug efflux pumps. Nat Rev Cancer 2010; 10:147-56. [PMID: 20075923 DOI: 10.1038/nrc2789] [Citation(s) in RCA: 790] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Multidrug transporter proteins are best known for their contributions to chemoresistance through the efflux of anticancer drugs from cancer cells. However, a considerable body of evidence also points to their importance in cancer extending beyond drug transport to fundamental roles in tumour biology. Currently, much of the evidence for these additional roles is correlative and definitive studies are needed to confirm causality. We propose that delineating the precise roles of these transporters in tumorigenesis and treatment response will be important for the development of more effective targeted therapies.
Collapse
Affiliation(s)
- Jamie I Fletcher
- Children's Cancer Institute Australia for Medical Research, Lowry Cancer Research Centre, University of New South Wales, P.O. BOX 151, Randwick NSW 2031, Australia
| | | | | | | |
Collapse
|
27
|
Sivapackiam J, Gammon ST, Harpstrite SE, Sharma V. Targeted chemotherapy in drug-resistant tumors, noninvasive imaging of P-glycoprotein-mediated functional transport in cancer, and emerging role of Pgp in neurodegenerative diseases. Methods Mol Biol 2010; 596:141-81. [PMID: 19949924 DOI: 10.1007/978-1-60761-416-6_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Multidrug resistance (MDR) mediated by overexpression of P-glycoprotein (Pgp) is one of the best characterized transporter-mediated barriers to successful chemotherapy in cancer patients and is also a rapidly emerging target in the progression of neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Therefore, strategies capable of delivering chemotherapeutic agents into drug-resistant tumors and targeted radiopharmaceuticals acting as ultrasensitive molecular imaging probes for detecting functional Pgp expression in vivo could be expected to play a vital role in systemic biology as personalized medicine gains momentum in the twenty-first century. While targeted therapy could be expected to deliver optimal doses of chemotherapeutic drugs into the desired targets, the interrogation of Pgp-mediated transport activity in vivo via noninvasive imaging techniques (SPECT and PET) would be beneficial in stratification of patient populations likely to benefit from a given therapeutic treatment, thereby assisting management of drug resistance in cancer and treatment of neurodegenerative diseases. Both strategies could play a vital role in advancement of personalized treatments in cancer and neurodegenerative diseases. Via this tutorial, authors make an attempt in outlining these strategies and discuss their strengths and weaknesses.
Collapse
Affiliation(s)
- Jothilingam Sivapackiam
- Molecular Imaging Center, Mallinckrodt Institute of Radiology, Washington University Medical School, St. Louis, MO, USA
| | | | | | | |
Collapse
|
28
|
Abstract
OBJECTIVE To analyse the single-nucleotide polymorphisms (SNPs): ABCB1(1236C>T), ABCB1(2677G>T/A), ABCB1(3435C>T) and haplotypes in the ABCB1/MDR1 gene, which could contribute to genetic risk of colorectal cancer (CRC). Disease association between the ABCB1/MDR1 genotype, allele, haplotype frequencies and histological features, such as TNM classification, localization of primary carcinoma, grade of malignancy, histological type of tumour, lymphoid infiltration and vessel invasion were estimated. In this study, the potential role of SNPs of the ABCB1/MDR1 gene as a prognostic marker for CRC was analysed. MATERIALS AND METHODS Tumour specimens of 95 patients with CRC were studied. Using automated sequencing or PCR-RFLP method, DNA for three common SNPs of ABCB1/MDR1 was extracted and analysed. The results of genotyping and haplotype analysis with histopathological features, grading and clinical staging of neoplasms were correlated. RESULTS A statistically significant higher frequency of T(1236) allele in T1/T2 (89.7%), M0 groups (81.6%) and I/II clinical staging (82.7%) in comparison with T3/T4 (68.2%), M1 groups (47.4%) and III/IV clinical staging (65.1%) was detected. Furthermore, multivariate analysis according to Cox's proportional hazard model indicated that the T(1236) allele is a good, independent prognostic factor and the presence of this allele decreases the risk of death in comparison with a group without this allele (HR = 0.26; p = 0.0424). In addition, a statistically significant higher frequency of C(3435) allele and significant differences in the C(3435) allele distribution in N1/N2 group (91.7% and 62.5%, respectively) than N0 group (71.2% and 44.9%, respectively) was found. Each of the eight possible haplotypes was noted in M0 or I/II group and only seven in M1 or III/IV group. Haplotype T(1236)-G(2677)-C(3435) only in less advanced CRC subjects (9.6% in I/II and 9.2% in M0 group) was detected. In addition, significant differences in haplotype distributions between M0 or I/II and M1 or III/IV group were found (p = 0.01 and p = 0.05, respectively). CONCLUSIONS These results suggest association between T(1236) allele and T(1236)-G(2677)-C(3435) haplotype and less advanced CRC, so these genetic markers may play a role as potentially good prognostic factors. Differences in haplotype distributions and degree of clinical staging may suggest that some other potential SNPs, especially in regulatory region of ABCB1/MDR1 gene, may influence P-glycoprotein function and CRC progression.
Collapse
|
29
|
Colabufo NA, Berardi F, Cantore M, Contino M, Inglese C, Niso M, Perrone R. Perspectives of P-Glycoprotein Modulating Agents in Oncology and Neurodegenerative Diseases: Pharmaceutical, Biological, and Diagnostic Potentials. J Med Chem 2009; 53:1883-97. [DOI: 10.1021/jm900743c] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Nicola Antonio Colabufo
- Dipartimento Farmacochimico, Universitá degli Studi di Bari, Facoltá di Farmacia, Via Orabona 4, 70125, Bari, Italy
| | - Francesco Berardi
- Dipartimento Farmacochimico, Universitá degli Studi di Bari, Facoltá di Farmacia, Via Orabona 4, 70125, Bari, Italy
| | - Mariangela Cantore
- Dipartimento Farmacochimico, Universitá degli Studi di Bari, Facoltá di Farmacia, Via Orabona 4, 70125, Bari, Italy
| | - Marialessandra Contino
- Dipartimento Farmacochimico, Universitá degli Studi di Bari, Facoltá di Farmacia, Via Orabona 4, 70125, Bari, Italy
| | - Carmela Inglese
- Dipartimento Farmacochimico, Universitá degli Studi di Bari, Facoltá di Farmacia, Via Orabona 4, 70125, Bari, Italy
| | - Mauro Niso
- Dipartimento Farmacochimico, Universitá degli Studi di Bari, Facoltá di Farmacia, Via Orabona 4, 70125, Bari, Italy
| | - Roberto Perrone
- Dipartimento Farmacochimico, Universitá degli Studi di Bari, Facoltá di Farmacia, Via Orabona 4, 70125, Bari, Italy
| |
Collapse
|
30
|
Takara K, Hayashi R, Kokufu M, Yamamoto K, Kitada N, Ohnishi N, Yokoyama T. Effects of nonsteroidal anti-inflammatory drugs on the expression and function of P-Glycoprotein/MDR1 in Caco-2 cells. Drug Chem Toxicol 2009; 32:332-7. [DOI: 10.1080/01480540903130658] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Transport of lipids by ABC proteins: interactions and implications for cellular toxicity, viability and function. Chem Biol Interact 2009; 180:327-39. [PMID: 19426719 DOI: 10.1016/j.cbi.2009.04.012] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 04/15/2009] [Accepted: 04/24/2009] [Indexed: 12/16/2022]
Abstract
Members of the ATP-binding cassette (ABC) family of membrane-bound transporters are involved in multiple aspects of transport and redistribution of various lipids and their conjugates. Most ABC transporters localize to the plasma membrane; some are associated with liquid-ordered cholesterol-/sphingolipid-rich microdomains, and to a lesser extent the membranes of the Golgi and endoplasmic reticulum. Hence, ABC transporters are well placed to regulate plasma membrane lipid composition and the efflux and redistribution of structural phospholipids and sphingolipids during periods of cellular stress and recovery. ABC transporters can also modulate cellular sensitivity to extrinsic pro-apoptotic signals through regulation of sphingomyelin-ceramide biosynthesis and metabolism. The functionality of ABC transporters is, in turn, modulated by the lipid content of the microdomains in which they reside. Cholesterol, a major membrane microdomain component, is not only a substrate of several ABC transporters, but also regulates ABC activity through its effects on microdomain structure. Several important bioactive lipid mediators and toxic lipid metabolites are also effluxed by ABC transporters. In this review, the complex interactions between ABC transporters and their lipid/sterol substrates will be discussed and analyzed in the context of their relevance to cellular function, toxicity and apoptosis.
Collapse
|
32
|
Vaupel P. Physiological Mechanisms of Treatment Resistance. THE IMPACT OF TUMOR BIOLOGY ON CANCER TREATMENT AND MULTIDISCIPLINARY STRATEGIES 2009. [DOI: 10.1007/978-3-540-74386-6_15] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
33
|
Tian K, Wang Y, Huang Y, Sun B, Li Y, Xu H. Methylation of WTH3, a possible drug resistant gene, inhibits p53 regulated expression. BMC Cancer 2008; 8:327. [PMID: 18992151 PMCID: PMC2588621 DOI: 10.1186/1471-2407-8-327] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 11/07/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Previous results showed that over-expression of the WTH3 gene in MDR cells reduced MDR1 gene expression and converted their resistance to sensitivity to various anticancer drugs. In addition, the WTH3 gene promoter was hypermethylated in the MCF7/AdrR cell line and primary drug resistant breast cancer epithelial cells. WTH3 was also found to be directly targeted and up regulated by the p53 gene. Furthermore, over expression of the WTH3 gene promoted the apoptotic phenotype in various host cells. METHODS To further confirm WTH3's drug resistant related characteristics, we recently employed the small hairpin RNA (shRNA) strategy to knockdown its expression in HEK293 cells. In addition, since the WTH3 promoter's p53-binding site was located in a CpG island that was targeted by methylation, we were interested in testing the possible effect this epigenetic modification had on the p53 transcription factor relative to WTH3 expression. To do so, the in vitro methylation method was utilized to examine the p53 transgene's influence on either the methylated or non-methylated WTH3 promoter. RESULTS The results generated from the gene knockdown strategy showed that reduction of WTH3 expression increased MDR1 expression and elevated resistance to Doxorubicin as compared to the original control cells. Data produced from the methylation studies demonstrated that DNA methylation adversely affected the positive impact of p53 on WTH3 promoter activity. CONCLUSION Taken together, our studies provided further evidence that WTH3 played an important role in MDR development and revealed one of its transcription regulatory mechanisms, DNA methylation, which antagonized p53's positive impact on WTH3 expression.
Collapse
Affiliation(s)
- Kegui Tian
- Department of Biochemistry and Cell Biology, State University of New York at Stony Brook, NY 11794, USA.
| | | | | | | | | | | |
Collapse
|
34
|
MDR1 modulates apoptosis in CD34+ leukemic cells. Ann Hematol 2008; 87:1017-8. [DOI: 10.1007/s00277-008-0515-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 05/21/2008] [Indexed: 10/21/2022]
|
35
|
Abstract
Malignant melanoma shows high levels of intrinsic drug resistance associated with a highly invasive phenotype. In this study, we investigated the role of the drug transporter P-glycoprotein (Pgp) in the invasion potential of drug-sensitive (M14 WT, Pgp-negative) and drug-resistant (M14 ADR, Pgp-positive) human melanoma cells. Coimmunoprecipitation experiments assessed the association of Pgp with the adhesion molecule CD44 in multidrug resistant (MDR) melanoma cells, compared with parental ones. In MDR cells, the two proteins colocalized in the plasma membrane as visualized by confocal microscopy and immunoelectron microscopy on ultrathin cryosections. MDR melanoma cells displayed a more invasive phenotype compared with parental cells, as demonstrated by quantitative transwell chamber invasion assay. This was accomplished by a different migration strategy adopted by resistant cells ("chain collective") previously described in tumor cells with high metastatic capacity. The Pgp molecule, after stimulation with specific antibodies, appeared to cooperate with CD44, through the activation of ERK1/2 and p38 mitogen-activated protein kinase (MAPK) proteins. This activation led to an increase of metalloproteinase (MMP-2, MMP-3, and MMP-9) mRNAs, and proteolytic activities, which are associated with an increased invasive behavior. RNA interference experiments further demonstrated Pgp involvement in migration and invasion of resistant melanoma cells. A link was identified between MDR transporter Pgp, and MAPK signaling and invasion.
Collapse
|
36
|
Lazarowski A, Caltana L, Merelli A, Rubio MD, Ramos AJ, Brusco A. Neuronal mdr-1 gene expression after experimental focal hypoxia: A new obstacle for neuroprotection? J Neurol Sci 2007; 258:84-92. [PMID: 17459414 DOI: 10.1016/j.jns.2007.03.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 03/05/2007] [Accepted: 03/07/2007] [Indexed: 11/20/2022]
Abstract
Neuronal damage after stroke-associated brain hypoxia is a leading cause of long-term disability and death. The refractoriness to therapeutic strategies for neuroprotection after 3 h post brain ischemia is poorly understood. P-glycoprotein (P-gp), the multidrug resistance gene (MDR-1) product is normally expressed at blood-brain-barrier. P-gp neuronal expression has been demonstrated in refractory epilepsy and after brain ischemia. In this report we investigated the hypoxia-induced neuronal P-gp expression after local injection of CoCl(2) (1-200 mM) in the fronto-parietal cortex of male adult rats (Bregma -1.30 mm) by stereotaxic surgery. P-gp immunostaining of brain slides was analyzed using specific monoclonal antibodies and double immunolabeling was done with specific astrocytic and neuronal markers. Five days after injection of 1 mM CoCl(2), P-gp expression surrounding the lesion site was observed in neurons, astrocytic end-foot on capillary blood vessels and endothelial cells on blood vessels. Higher CoCl(2) doses (200 mM) resulted in additional P-gp immunostaining of the entire astrocytic and neuronal cytoplasm. Electron microscopy (EM) studies showed alterations in neurons as early as 6 h after the CoCl(2) injection. P-gp expression in hypoxic neurons and astrocytic end-foot could potentially impair of drugs access to the brain parenchyma thus suggesting the presence of two P-gp-based pumping systems (one in astrocytes and other in the hypoxic neurons) that are able to behave as a previously unnoticed obstacle for pharmacological strategies of neuroprotection.
Collapse
Affiliation(s)
- Alberto Lazarowski
- Instituto de Biología Celular y Neurociencias Prof. E. De Robertis, Facultad de Medicina, Universidad de Buenos Aires, Calle Paraguay 2155, 3er piso, (C1121ABG) Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
37
|
Yaar M, Eller MS, Panova I, Kubera J, Wee LH, Cowan KH, Gilchrest BA. Telomeric DNA induces apoptosis and senescence of human breast carcinoma cells. Breast Cancer Res 2007; 9:R13. [PMID: 17257427 PMCID: PMC1851376 DOI: 10.1186/bcr1646] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Revised: 11/22/2006] [Accepted: 01/26/2007] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Cancer is a leading cause of death in Americans. We have identified an inducible cancer avoidance mechanism in cells that reduces mutation rate, reduces and delays carcinogenesis after carcinogen exposure, and induces apoptosis and/or senescence of already transformed cells by simultaneously activating multiple overlapping and redundant DNA damage response pathways. METHODS The human breast carcinoma cell line MCF-7, the adriamycin-resistant MCF-7 (Adr/MCF-7) cell line, as well as normal human mammary epithelial (NME) cells were treated with DNA oligonucleotides homologous to the telomere 3' overhang (T-oligos). SCID mice received intravenous injections of MCF-7 cells followed by intravenous administration of T-oligos. RESULTS Acting through ataxia telangiectasia mutated (ATM) and its downstream effectors, T-oligos induced apoptosis and senescence of MCF-7 cells but not NME cells, in which these signaling pathways were induced to a far lesser extent. In MCF-7 cells, experimental telomere loop disruption caused identical responses, consistent with the hypothesis that T-oligos act by mimicking telomere overhang exposure. In vivo, T-oligos greatly prolonged survival of SCID mice following intravenous injection of human breast carcinoma cells. CONCLUSION By inducing DNA damage-like responses in MCF-7 cells, T-oligos provide insight into innate cancer avoidance mechanisms and may offer a novel approach to treatment of breast cancer and other malignancies.
Collapse
Affiliation(s)
- Mina Yaar
- Department of Dermatology, Boston University School of Medicine, Albany Street Boston, MA 02118-2394, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Albany Street, Boston, MA 02118-2394, USA
| | - Mark S Eller
- Department of Dermatology, Boston University School of Medicine, Albany Street Boston, MA 02118-2394, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Albany Street, Boston, MA 02118-2394, USA
| | - Izabela Panova
- Department of Dermatology, Boston University School of Medicine, Albany Street Boston, MA 02118-2394, USA
| | - John Kubera
- Department of Dermatology, Boston University School of Medicine, Albany Street Boston, MA 02118-2394, USA
| | - Lee Hng Wee
- Department of Dermatology, Boston University School of Medicine, Albany Street Boston, MA 02118-2394, USA
| | - Kenneth H Cowan
- Cancer Center, Boston University School of Medicine, Albany Street, Boston, MA 02118-2394, USA
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198-6805, USA
| | - Barbara A Gilchrest
- Department of Dermatology, Boston University School of Medicine, Albany Street Boston, MA 02118-2394, USA
- Cancer Center, Boston University School of Medicine, Albany Street, Boston, MA 02118-2394, USA
| |
Collapse
|
38
|
Abstract
Previous results showed that overexpression of the WTH3 gene in multidrug resistance (MDR) cells reduced MDR1 gene expression and converted their resistance to sensitivity to various anticancer drugs. The WTH3 gene promoter was found to be differentially regulated in paired MDR vs non-MDR MCF7 cells owing to epigenetic modifications and transcription factor modulations. To understand further the mechanisms that govern WTH3's differential expression, we uncovered a p53-binding site in its promoter, which indicated that WTH3 could be regulated by the p53 gene. This hypothesis was then tested by different strategies. The resulting data revealed that (1) the WTH3 promoter was upregulated by the p53 transgene in diverse host cells; (2) there was a correlation between WTH3 expression levels and p53 gene status in a cell line panel; (3) a WTH3 promoter region was directly targeted by the p53 protein in vitro and in vivo. In addition, overexpression of the WTH3 gene promoted the apoptotic phenotype in host cells. On the basis of these findings, we believe that the negative role played by the WTH3 gene in MDR development is through its proapoptotic potential that is regulated by multiple mechanisms at the transcription level, and one of these mechanisms is linked to the p53 gene.
Collapse
Affiliation(s)
- K Tian
- Department of Biochemistry and Cell Biology, State University of New York at Stony Brook, Stony Brook, NY, USA
| | - Y Wang
- Department of Biochemistry and Cell Biology, State University of New York at Stony Brook, Stony Brook, NY, USA
- Laboratory of Pathobiology, Jilin University, Changchun, The People's Republic of China
| | - H Xu
- Department of Biochemistry and Cell Biology, State University of New York at Stony Brook, Stony Brook, NY, USA
- E-mail:
| |
Collapse
|
39
|
Heffeter P, Jakupec M, Körner W, Chiba P, Pirker C, Dornetshuber R, Elbling L, Sutterlüty H, Micksche M, Keppler B, Berger W. Multidrug-resistant cancer cells are preferential targets of the new antineoplastic lanthanum compound KP772 (FFC24). Biochem Pharmacol 2007; 73:1873-86. [PMID: 17445775 PMCID: PMC3371634 DOI: 10.1016/j.bcp.2007.03.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Revised: 02/08/2007] [Accepted: 03/05/2007] [Indexed: 10/23/2022]
Abstract
Recently, we have introduced [tris(1,10-phenanthroline)lanthanum(III)] trithiocyanate (KP772, FFC24) as a new lanthanum compound which has promising anticancer properties in vivo and in vitro. Aim of this study was to investigate the impact of ABC transporter-mediated multidrug resistance (MDR) on the anticancer activity of KP772. Here, we demonstrate that all MDR cell models investigated, overexpressing ABCB1 (P-glycoprotein), ABCC1 (multidrug resistance protein 1), or ABCG2 (breast cancer resistance protein) either due to drug selection or gene transfection, were significantly hypersensitive against KP772. Using ABCB1-overexpressing KBC-1 cells as MDR model, KP772 hypersensitivity was demonstrated to be based on stronger apoptosis induction and/or cell cycle arrest at unaltered cellular drug accumulation. KP772 did neither stimulate ABCB1 ATPase activity nor alter rhodamine 123 accumulation arguing against a direct interaction with ABCB1. Accordingly, several drug resistance modulators did not sensitize but rather protect MDR cells against KP772-induced cytotoxicity. Moreover, long-term KP772 treatment of KBC-1 cells at subtoxic concentrations led within 20 passages to a complete loss of drug resistance based on blocked MDR1 gene expression. When exposing parental KB-3-1 cells to subtoxic, stepwise increasing KP772 concentrations, we observed, in contrast to several other metallo-drugs, no acquisition of KP772 resistance. Summarizing, our data demonstrate that KP772 is hyperactive in MDR cells and might have chemosensitizing properties by blocking ABCB1 expression. Together with the disability of tumor cells to acquire KP772 resistance, our data suggest that KP772 should be especially active against notoriously drug-resistant tumor types and as second line treatment after standard chemotherapy failure.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2
- ATP-Binding Cassette Transporters/metabolism
- Adenocarcinoma/drug therapy
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Apoptosis/drug effects
- Breast Neoplasms/drug therapy
- Carcinoma, Small Cell/drug therapy
- Cell Cycle/drug effects
- Cell Line, Tumor
- Dose-Response Relationship, Drug
- Drug Resistance, Multiple
- Drug Resistance, Neoplasm
- Formazans/metabolism
- HL-60 Cells
- Humans
- Lanthanum/chemistry
- Lanthanum/pharmacology
- Lanthanum/therapeutic use
- Lung Neoplasms/drug therapy
- Molecular Structure
- Neoplasm Proteins/metabolism
- Organic Anion Transporters/metabolism
- Organometallic Compounds/chemistry
- Organometallic Compounds/pharmacology
- Organometallic Compounds/therapeutic use
- Phenanthrolines/chemistry
- Phenanthrolines/pharmacology
- Phenanthrolines/therapeutic use
- Sensitivity and Specificity
- Tetrazolium Salts/metabolism
Collapse
Affiliation(s)
- P. Heffeter
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - M.A. Jakupec
- Institute of Inorganic Chemistry, University of Vienna, Austria
| | - W. Körner
- Institute for Geological Sciences, University of Vienna, Austria
| | - P. Chiba
- Institute of Medical Chemistry, Department of Physiology and Pathophysiology, Medical University of Vienna, Austria
| | - C. Pirker
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - R. Dornetshuber
- Department of Pharmacology and Toxicology, University of Vienna, Austria
| | - L. Elbling
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - H. Sutterlüty
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - M. Micksche
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - B.K. Keppler
- Institute of Inorganic Chemistry, University of Vienna, Austria
| | - W. Berger
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Borschkegasse 8a, 1090 Vienna, Austria
- Corresponding author. Tel.: +43 1 4277 65173; fax: +43 1 4277 65169. (W. Berger)
| |
Collapse
|
40
|
Piwnica-Worms D, Kesarwala AH, Pichler A, Prior JL, Sharma V. Single photon emission computed tomography and positron emission tomography imaging of multi-drug resistant P-glycoprotein--monitoring a transport activity important in cancer, blood-brain barrier function and Alzheimer's disease. Neuroimaging Clin N Am 2007; 16:575-89, viii. [PMID: 17148020 DOI: 10.1016/j.nic.2006.06.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Overexpression of multi-drug resistant P-glycoprotein (Pgp) remains an important barrier to successful chemotherapy in cancer patients and impacts the pharmacokinetics of many important drugs. Pgp is also expressed on the luminal surface of brain capillary endothelial cells wherein Pgp functionally comprises a major component of the blood-brain barrier by limiting central nervous system penetration of various therapeutic agents. In addition, Pgp in brain capillary endothelial cells removes amyloid-beta from the brain. Several single photon emission computed tomography and positron emission tomography radiopharmaceutical have been shown to be transported by Pgp, thereby enabling the noninvasive interrogation of Pgp-mediated transport activity in vivo. Therefore, molecular imaging of Pgp activity may enable noninvasive dynamic monitoring of multi-drug resistance in cancer, guide therapeutic choices in cancer chemotherapy, and identify transporter deficiencies of the blood-brain barrier in Alzheimer's disease.
Collapse
Affiliation(s)
- David Piwnica-Worms
- Washington University Medical School, 510 South Kingshighway Boulevard, Box 8225, St. Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
41
|
Fukuda H, He PJ, Yokota K, Soh T, Yamauchi N, Hattori MA. Progesterone-dependent and -independent expression of the multidrug resistance type I gene in porcine granulosa cells. Mol Cell Biochem 2006; 298:179-86. [PMID: 17131043 DOI: 10.1007/s11010-006-9364-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Accepted: 10/25/2006] [Indexed: 11/24/2022]
Abstract
A primary role of plasma membrane P-glycoprotein (P-gp), encoded by multidrug resistance type I (MDR1), is to protect against naturally occurring xenotoxics. Progesterone (P(4)) profoundly influences MDR1 expression in granulosa cells and luteal cells. Here, P(4) regulation of MDR1 expression was investigated in porcine granulosa cells using the P(4)-mediated promoter activity assay and a P4 receptor (PR) antagonist (RU-486). The promoter activity was measured chronologically for 48 h in cells transfected with the PR response element-containing pGL3. LH could stimulate the promoter activity through endogenous P4, with a maximum activity at 5 h. MDR1 mRNA level was highly maintained at 24-36 h. Conversely, exogenous P4 prolonged the promoter activity to further 10 h, and the high level of MDR1 mRNA was maintained even at 48 h. RU-486 completely inhibited the promoter activity, but the level of MDR1 mRNA rapidly increased in the presence of RU-486. The granulosa cells may become susceptible to RU-486 as a xenotoxic to rapidly express MDR1 for protection against it. These results indicate that MDR1 is expressed in porcine granulosa cells through P4-dependent and -independent regulations.
Collapse
Affiliation(s)
- Hiroaki Fukuda
- Department of Animal and Marine Bioresource Sciences, Faculty of Agriculture, Graduate School Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Sheps JA, Ling V. Preface: the concept and consequences of multidrug resistance. Pflugers Arch 2006; 453:545-53. [PMID: 16862376 DOI: 10.1007/s00424-006-0115-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Accepted: 06/07/2006] [Indexed: 11/26/2022]
Abstract
The problem of multidrug resistance (MDR) in human cancers led to the discovery 30 years ago of a single protein P-glycoprotein (P-gp), capable of mediating resistance to multiple structurally diverse drugs. P-gp became the archetypal eukaryotic ABC transporter gene, and studies of P-gp and related ABC transporters in both eukaryotes and bacteria have led to a basic mechanistic understanding of the molecular basis of MDR. Particular milestones along the way have been the identification of the homology between P-gp and bacterial transport proteins, the purification and functional reconstitution of P-gp into synthetic lipid systems, and the development of targeted therapies that attempt to overcome MDR by inhibiting P-gp. This preface places into this context some of the less well-explored themes developed in the MDR field, particularly various alternative models of P-gp action, evidence for parallel physiological roles for P-gp, and the unusual relationship between the substrate recognition capabilities of ABC transporters and their evolutionary history.
Collapse
|
43
|
Fukuda H, Arai M, Soh T, Yamauchi N, Hattori MA. Progesterone regulation of the expression and function of multidrug resistance type I in porcine granulosa cells. Reprod Toxicol 2006; 22:62-8. [PMID: 16337358 DOI: 10.1016/j.reprotox.2005.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Revised: 10/17/2005] [Accepted: 11/07/2005] [Indexed: 11/24/2022]
Abstract
P-glycoprotein (P-gp) coded with the multidrug resistance type I (MDR1) is expressed in various normal tissues including ovaries and may function as detoxification and steroid transport. The present study was performed to analyze the expression and function of MDR1 in granulosa cells stimulated with FSH, LH, estradiol-17beta (E) and progesterone (P). The granulosa cells isolated from porcine ovarian follicles were cultured for 24h in a serum-supplemented medium, and then cultured for 48h with the hormones in a serum-free culture medium. MDR1 was highly expressed in large follicles and induced in cultured granulosa cells stimulated with LH as revealed by RT-PCR. Highly expressed MDR1 resulted in the increased P-gp activity. However, FSH had no effect. P significantly increased the MDR1 expression and P-gp activity in the cells stimulated with LH, whereas E had no stimulatory effect. Aminoglutethimide suppressed the MDR1 expression and P-gp activity, but which were completely restored by P. These results indicate that P participates in MDR1 expression and P-gp function of granulosa cells.
Collapse
Affiliation(s)
- Hiroaki Fukuda
- Department of Animal and Marine Bioresource Sciences, Faculty of Agriculture, Graduate School Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | | | | | | | |
Collapse
|
44
|
Park SJ, Wu CH, Choi MR, Najafi F, Emami A, Safa AR. P-glycoprotein enhances TRAIL-triggered apoptosis in multidrug resistant cancer cells by interacting with the death receptor DR5. Biochem Pharmacol 2006; 72:293-307. [PMID: 16753135 DOI: 10.1016/j.bcp.2006.04.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Revised: 04/17/2006] [Accepted: 04/19/2006] [Indexed: 11/17/2022]
Abstract
The death-inducing cytokine TRAIL is a promising agent for anticancer therapy since it preferentially kills cancer versus normal cells; however, some cancer cells are TRAIL-resistant. We initially explored whether overexpression of the MDR1 gene product P-glycoprotein (P-gp), which causes multidrug resistance (MDR) in cancer cells, also contributes to TRAIL-resistance. Surprisingly, our results revealed that P-gp-overexpression enhances TRAIL-induced apoptosis not only in neoplastic cells transfected with the MDR1 gene but also in MDR variants selected with cytotoxic anticancer agents. Mechanistic analysis of TRAIL-induced apoptosis in the MDR1-transfected MCF-7 breast cancer cell line BC-19 revealed that TRAIL-triggered significantly more apoptosis in these cells compared with parental MCF-7 cells by binding to the TRAIL receptor DR5. DR5 but not DR4 engagement by TRAIL attenuated cellular ATP levels by robustly stimulating P-gp ATPase activity, and thus triggered P-gp-dependent apoptosis by depletion of the cellular ATP pool. In addition to hyperactive P-gp-mediated ATP hydrolysis, TRAIL-induced, P-gp-potentiated apoptosis was associated with activation of caspases-6, -7, -8, and -9; Bid cleavage; and mitochondrial depolarization. P-gp interacted with the TRAIL receptors DR4, DR5, and DcR1 in plasma membranes and enhanced TRAIL binding to DR5. Interestingly, the decreased level of the decoy TRAIL receptor, DcR1, in BC-19 cells further sensitized these cells to TRAIL. Therefore, both extrinsic and intrinsic apoptosis pathways are involved in this process. These findings for the first time reveal that TRAIL treatment preferentially causes apoptosis in P-gp-overexpressing MDR cells, and suggests significant clinical implications for the use of TRAIL in treating neoplasms that have failed chemotherapy.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Adenosine Triphosphate/metabolism
- Antibodies/pharmacology
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Apoptosis Regulatory Proteins/metabolism
- Apoptosis Regulatory Proteins/pharmacology
- Caspase 8
- Caspases/metabolism
- Cell Line, Tumor
- Cytochromes c/metabolism
- Dose-Response Relationship, Drug
- Doxorubicin/pharmacology
- Drug Resistance, Multiple/genetics
- Drug Resistance, Neoplasm/genetics
- Enzyme Activation/drug effects
- Humans
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/pharmacology
- Membrane Potentials/drug effects
- Mitochondrial Membranes/drug effects
- Mitochondrial Membranes/physiology
- Paclitaxel/pharmacology
- Protein Binding
- Receptors, TNF-Related Apoptosis-Inducing Ligand
- Receptors, Tumor Necrosis Factor/immunology
- Receptors, Tumor Necrosis Factor/metabolism
- TNF-Related Apoptosis-Inducing Ligand
- Transfection
- Tumor Necrosis Factor-alpha/metabolism
- Tumor Necrosis Factor-alpha/pharmacology
- Vinblastine/pharmacology
Collapse
Affiliation(s)
- Soo-Jung Park
- Department of Pharmacology and Toxicology, Indiana University Cancer Center, 1044 West Walnut R4-119, Indianapolis, 46202, USA
| | | | | | | | | | | |
Collapse
|
45
|
Tian K, Jurukovski V, Wang XP, Kaplan MH, Xu H. Epigenetic regulation of WTH3 in primary and cultured drug-resistant breast cancer cells. Cancer Res 2005; 65:10024-31. [PMID: 16267028 DOI: 10.1158/0008-5472.can-05-1944] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous studies showed that the WTH3 gene functioned as a negative regulator during multidrug resistance (MDR) development in vitro. To understand whether this gene is also involved in clinical drug resistance, hypermethylation at its promoter region observed in cultured MDR MCF7/AdrR cells was examined in primary drug-resistant breast cancer epithelial cells isolated from effusions of breast cancer patients. The results showed that this event also occurred in drug-resistant breast cancer epithelial cells and a newly induced drug-resistant cell line, MCF7/inR. Interestingly, we found that a CpG (CpG 23) that was close to the TATA-like box was constantly methylated in the WTH3 promoter of drug-resistant breast cancer epithelial and cultured MDR cells. Mutagenic study suggested that this CpG site had a functional effect on promoter activity. We also discovered that MCF7/AdrR cells treated with trichostatin A, a histone deacetylase inhibitor, exhibited higher WTH3, but lower MDR1, expression. A reverse correlation between WTH3 and MDR1 gene expression was also observed in MCF7/AdrR, and its non-MDR parental cell line, MCF7/WT. This result indicated that both DNA methylation and histone deacetylase could act in concert to inhibit WTH3 and consequently stimulate MDR1 expression. This hypothesis was supported by data obtained from introducing the WTH3 transgene into MDR cell lines, which reduced endogenous MDR1 expression. Therefore, our studies suggested that the behavior of WTH3 in primary drug-resistant breast cancer epithelial cells was similar to that in a model system where epigenetic regulation of the WTH3 gene was linked to the MDR phenotype.
Collapse
Affiliation(s)
- Kegui Tian
- Department of Biochemistry and Cell Biology, State University of New York at Stony Brook, Stony Brook, New York 11794-5215, USA
| | | | | | | | | |
Collapse
|
46
|
Tian K, Jurukovski V, Yuan L, Shan J, Xu H. WTH3, which encodes a small G protein, is differentially regulated in multidrug-resistant and sensitive MCF7 cells. Cancer Res 2005; 65:7421-8. [PMID: 16103095 DOI: 10.1158/0008-5472.can-05-0658] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The WTH3 gene's biological characteristics and relationship to multidrug resistance (MDR) were investigated further. Results showed that WTH3 was mainly located in the cytosol and capable of binding to GTP. In addition, WTH3's promoter function was significantly attenuated in MDR (MFC7/AdrR) relative to non-MDR (MCF7/WT) cells. Advanced analyses indicated that two mechanisms could be involved in WTH3's down-regulation: DNA methylation and trans-element modulations. It was found that the 5' end portion of a CpG island in WTH3's promoter was hypermethylated in MCF7/AdrR but not MCF7/WT cells, which could have a negative effect on the WTH3 promoter. This idea was supported by the observation that a 45-bp sequence (DMR45) in this differentially methylated region positively influenced promoter activity. We also discovered that different nuclear proteins in MCF7/AdrR and MCF7/WT cells bound to methylated or nonmethylated DMR45. Moreover, a sequence containing a unique repeat that was also a positive cis-element for the promoter was attached by different transcription factors depending on whether they were prepared from MCF7/AdrR or MCF7/WT cells. These molecular changes, apparently induced by drug treatment, resulted in WTH3's down regulation in MDR cells. Therefore, present studies support previous observations that WTH3, as a negative regulator, participates in MDR development in MCF7/AdrR cells.
Collapse
Affiliation(s)
- Kegui Tian
- Department of Biochemistry and Cell Biology, State University of New York at Stony Brook, Stony Brook, New York 11794-5215, USA
| | | | | | | | | |
Collapse
|
47
|
Minko T, Batrakova EV, Li S, Li Y, Pakunlu RI, Alakhov VY, Kabanov AV. Pluronic block copolymers alter apoptotic signal transduction of doxorubicin in drug-resistant cancer cells. J Control Release 2005; 105:269-78. [PMID: 15939500 PMCID: PMC2711210 DOI: 10.1016/j.jconrel.2005.03.019] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 03/08/2005] [Accepted: 03/09/2005] [Indexed: 11/21/2022]
Abstract
Pluronic block copolymer P85 (P85) sensitizes multidrug resistant (MDR) cancer cells resulting in the increase of cytotoxic activity of antineoplastic agents. This effect is attributed to the inhibition of the most clinically relevant drug efflux transporter, P-glycoprotein (Pgp), through the combined ATP depletion and inhibition of Pgp ATPase activity. The present study elucidates effects of an anticancer agent, doxorubicin (Dox), formulated with P85 on drug-induced apoptosis in MDR cancer cells. Early and late stages of apoptosis were detected by Annexin V and TUNEL methods, respectively. In parallel experiments, the expression of genes related to apoptosis, BCL2, BCLXL, BAX, P53, APAF1, Caspase 3, and Caspase 9, was determined by RT-PCR. The obtained data suggest that Dox/P85 formulation induces apoptosis in the resistant cancer cells more efficiently than free Dox. The treatment of the cells with Dox alone simultaneously activated a proapoptotic signal and an antiapoptotic cellular defense. Therefore, the apoptosis induction by Dox was substantially limited. In contrast, the treatment of the cells with Dox/P85 formulation significantly enhanced the proapoptotic activity of the drug and prevented the activation of the antiapoptotic cellular defense. This is likely to result in the stronger cytotoxic response of the resistant cells to the Dox/P85 formulation compared to the free drug.
Collapse
Affiliation(s)
- Tamara Minko
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Elena V. Batrakova
- Center for Drug Delivery and Nanomedicine and Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, Nebraska NE 68198-5830, USA
| | - Shu Li
- Center for Drug Delivery and Nanomedicine and Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, Nebraska NE 68198-5830, USA
| | - Yili Li
- Center for Drug Delivery and Nanomedicine and Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, Nebraska NE 68198-5830, USA
| | - Refika I. Pakunlu
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Valery Yu. Alakhov
- Supratek Pharma Inc., 215 Bvd. Bouchard, Suite 1315, Laval, Quebec, Canada H9S1A9
| | - Alexander V. Kabanov
- Center for Drug Delivery and Nanomedicine and Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, Nebraska NE 68198-5830, USA
- Corresponding author. Tel.: +1 402 559 9364; fax: +1 402 559 9365. E-mail address: (A.V. Kabanov)
| |
Collapse
|
48
|
Tang XQ, Bi H, Feng JQ, Cao JG. Effect of curcumin on multidrug resistance in resistant human gastric carcinoma cell line SGC7901/VCR. Acta Pharmacol Sin 2005; 26:1009-16. [PMID: 16038636 DOI: 10.1111/j.1745-7254.2005.00149.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AIM To investigate the reversal effects of curcumin on multidrug resistance (MDR) in a resistant human gastric carcinoma cell line. METHODS The cytotoxic effect of vincristine (VCR) was evaluated by MTT assay. The cell apoptosis induced by VCR was determined by propidium iodide (PI)-stained flow cytometry (FCM) and a morphological assay using acridine orange (AO)/ethidium bromide (EB) dual staining. P-glycoprotein (P-gp) function was demonstrated by the accumulation and efflux of rhodamine123 (Rh123) using FCM. The expression of P-gp and the activation of caspase-3 were measured by FCM using fluorescein isothiocyanate (FITC)-conjugated anti-P-gp and anti-cleaved caspase-3 antibodies, respectively. RESULTS Curcumin, at concentrations of 5 micromol/L, 10 micromol/L, or 20 micromol/L, had no cytotoxic effect on a parent human gastric carcinoma cell line (SGC7901) or its VCR-resistant variant cell line (SGC7901/VCR). The VCR-IC50 value of the SGC7901/VCR cells was 45 times more than that of the SGC7901cells and the SGC7901/VCR cells showed apoptotic resistance to VCR. SGC7901/VCR cells treated with 5 micromol/L, 10 micromol/L, or 20 micromol/L curcumin decreased the IC50 value of VCR and promoted VCR-mediated apoptosis in a dose-dependent manner. Curcumin (10 micromol/L) increased Rh123 accumulation and inhibited the efflux of Rh123 in SGC7901/VCR cells, but did not change the accumulation and efflux of Rh123 in SGC7901 cells. P-gp was overexpressed in SGC7901/VCR cells, whereas it was downregulated after a 24-h treatment with curcumin (10 micromol/L). Resistant cells treated with 1 mumol/L VCR alone showed 77% lower levels of caspase-3 activation relative to SGC7901 cells, but the activation of caspase-3 in the resistant cell line increased by 44% when cells were treated with VCR in combination with curcumin. CONCLUSION Curcumin can reverse the MDR of the human gastric carcinoma SGC7901/VCR cell line. This might be associated with decreased P-gp function and expression, and the promotion of caspase-3 activation in MDR cells.
Collapse
Affiliation(s)
- Xiao-qing Tang
- Department of Physiology, Nanhua University, Hengyang 421001, China
| | | | | | | |
Collapse
|
49
|
Joy MS, Nickeleit V, Hogan SL, Thompson BD, Finn WF. Calcineurin Inhibitor–Induced Nephrotoxicity and Renal Expression of P-glycoprotein. Pharmacotherapy 2005; 25:779-89. [PMID: 15927895 DOI: 10.1592/phco.2005.25.6.779] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
STUDY OBJECTIVE To evaluate immunohistochemistry staining patterns for P-glycoprotein (P-gp) and a marker of early apoptosis (active caspase-3) in renal biopsy specimens obtained from solid organ transplant recipients with nephrotoxicity and those from a control group. DESIGN Retrospective analysis of pathology specimens and medical records. SETTING Medical university. SUBJECTS Twenty-nine solid organ transplant recipients with nephrotoxicity and 32 control patients. MEASUREMENTS AND MAIN RESULTS Medical records were reviewed for patient demographics, clinical laboratory results, and prescribed drugs. Immunohistochemistry techniques using primary antibodies to P-gp and active caspase-3 were performed to evaluate staining patterns of these proteins in the kidney specimens. Differences in measures of interest between groups were compared with the Fisher exact test for categoric data and Wilcoxon rank sum test for continuous data. Logistic and linear modeling were used to evaluate difference in measures of P-gp and active caspase-3 between groups while controlling for confounders. Immunohistochemistry confirmed the presence of P-gp in the renal tubules (apical and basal membranes and cytoplasm). Intensity of P-gp staining (score range 0-4) was reduced in renal specimens of transplant recipients with nephrotoxicity compared with the control specimens (mean +/- SD intensity scores 3.2 +/- 0.7 vs 3.8 +/- 0.4, p=0.0002). Neither P-gp-inducing nor P-gp-inhibiting drugs predicted expression of P-gp in the renal specimens of either group. The extent of tubular staining (score range 1-4) for the apoptosis marker, active caspase-3, was less in the nephrotoxicity group than in the control group (mean +/- SD extent scores 1.7 +/- 0.6 vs 2.8 +/- 0.5, p=0.0003). CONCLUSION P-glycoprotein expression was less pronounced in renal biopsy specimens with calcineurin inhibitor-induced nephrotoxicity compared with the nonnephrotoxic control specimens. Reduced P-gp expression was evident even when the analysis controlled for factors such as renal function, age, sex, race, diabetes mellitus, level of proteinuria, or prescribed therapy with P-gp inducers or inhibitors. Interpretation of the results from active caspase-3 staining requires further study.
Collapse
Affiliation(s)
- Melanie S Joy
- Division of Nephrology and Hypertension, Carolina Kidney Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.
| | | | | | | | | |
Collapse
|
50
|
Pawlik A, Baskiewicz-Masiuk M, Machalinski B, Gawronska-Szklarz B. Involvement of P-gp in the process of apoptosis in peripheral blood mononuclear cells. Int Immunopharmacol 2005; 5:821-8. [PMID: 15778118 DOI: 10.1016/j.intimp.2004.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Revised: 10/12/2004] [Accepted: 12/20/2004] [Indexed: 12/01/2022]
Abstract
Multidrug resistance mediated by the drug-efflux protein P (P-gp) is one of mechanisms that cells use to escape death induced by drugs and other agents. The aim of the study was to evaluate the effect of P-gp inhibition on apoptosis of PHA-activated peripheral blood mononuclear cells (MNC) as well as apoptosis induced by methotrexate (MTX), dexamethasone (DEX), methylprednisolone (MP) and cortisone (COR). Apoptosis was quantified by flow cytometry using Annexin V/PI and terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL). P-gp expression was inhibited using verapamil (VER) and P-gp specific monoclonal antibodies (mAb). VER and mAb enhanced the apoptosis of PHA-activated MNC. Moreover these agents significantly increased the apoptosis induced by MTX, DEX, MP and COR. The results of this study suggest that P-gp is involved in the process of apoptosis in peripheral blood mononuclear cells.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/immunology
- ATP Binding Cassette Transporter, Subfamily B, Member 1/physiology
- Adult
- Antibodies, Monoclonal/pharmacology
- Apoptosis/drug effects
- Apoptosis/physiology
- Cortisone/pharmacology
- Dexamethasone/pharmacology
- Female
- Humans
- In Vitro Techniques
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/immunology
- Male
- Methotrexate/pharmacology
- Methylprednisolone/pharmacology
- Middle Aged
- Phytohemagglutinins/pharmacology
- Verapamil/pharmacology
Collapse
Affiliation(s)
- A Pawlik
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University, 70-111 Szczecin, al. Powstañców Wlkp. 72, Poland.
| | | | | | | |
Collapse
|