1
|
Goh BC, Wu H, Rynkiewicz MJ, Schulten K, Seaton BA, McCormack FX. Elucidation of Lipid Binding Sites on Lung Surfactant Protein A Using X-ray Crystallography, Mutagenesis, and Molecular Dynamics Simulations. Biochemistry 2016; 55:3692-701. [PMID: 27324153 PMCID: PMC5663190 DOI: 10.1021/acs.biochem.6b00048] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Surfactant protein A (SP-A) is a collagenous C-type lectin (collectin) that is critical for pulmonary defense against inhaled microorganisms. Bifunctional avidity of SP-A for pathogen-associated molecular patterns (PAMPs) such as lipid A and for dipalmitoylphosphatidylcholine (DPPC), the major component of surfactant membranes lining the air-liquid interface of the lung, ensures that the protein is poised for first-line interactions with inhaled pathogens. To improve our understanding of the motifs that are required for interactions with microbes and surfactant structures, we explored the role of the tyrosine-rich binding surface on the carbohydrate recognition domain of SP-A in the interaction with DPPC and lipid A using crystallography, site-directed mutagenesis, and molecular dynamics simulations. Critical binding features for DPPC binding include a three-walled tyrosine cage that binds the choline headgroup through cation-π interactions and a positively charged cluster that binds the phosphoryl group. This basic cluster is also critical for binding of lipid A, a bacterial PAMP and target for SP-A. Molecular dynamics simulations further predict that SP-A binds lipid A more tightly than DPPC. These results suggest that the differential binding properties of SP-A favor transfer of the protein from surfactant DPPC to pathogen membranes containing appropriate lipid PAMPs to effect key host defense functions.
Collapse
Affiliation(s)
- Boon Chong Goh
- Beckman Institute and Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801
| | - Huixing Wu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The University of Cincinnati, Cincinnati, OH 45267
| | - Michael J. Rynkiewicz
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118
| | - Klaus Schulten
- Beckman Institute and Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801,To whom correspondence should be addressed: Dr. Francis X. McCormack, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, MSB 6165, 231 Albert Sabin Way, University of Cincinnati, OH 45267-0564; Telephone: 513-484-5697, Fax: 513-558-4858, , and Dr. Klaus Schulten, Beckman Institute, University of Illinois, 405 N. Mathews, Urbana IL 61801; Telephone: 217-244-1604, Fax: 217-244-6078,
| | - Barbara A. Seaton
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118
| | - Francis X. McCormack
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The University of Cincinnati, Cincinnati, OH 45267,To whom correspondence should be addressed: Dr. Francis X. McCormack, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, MSB 6165, 231 Albert Sabin Way, University of Cincinnati, OH 45267-0564; Telephone: 513-484-5697, Fax: 513-558-4858, , and Dr. Klaus Schulten, Beckman Institute, University of Illinois, 405 N. Mathews, Urbana IL 61801; Telephone: 217-244-1604, Fax: 217-244-6078,
| |
Collapse
|
2
|
|
3
|
Seaton BA, Crouch EC, McCormack FX, Head JF, Hartshorn KL, Mendelsohn R. Review: Structural determinants of pattern recognition by lung collectins. Innate Immun 2010; 16:143-50. [PMID: 20423923 DOI: 10.1177/1753425910368716] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Host defense roles for the lung collectins, surfactant protein A (SP-A) and surfactant protein D (SP-D), were first suspected in the 1980s when molecular characterization revealed their sequence homology to the acute phase reactant of serum, mannose-binding lectin. Surfactant protein A and SP-D have since been shown to play diverse and important roles in innate immunity and pulmonary homeostasis. Their location in surfactant ideally positions them to interact with air-space pathogens. Despite extensive structural similarity, the two proteins show many functional differences and considerable divergence in their interactions with microbial surface components, surfactant lipids, and other ligands. Recent crystallographic studies have provided many new insights relating to these observed differences. Although both proteins can participate in calcium-dependent interactions with sugars and other polyols, they display significant differences in the spatial orientation, charge, and hydrophobicity of their binding surfaces. Surfactant protein D appears particularly adapted to interactions with complex carbohydrates and anionic phospholipids, such as phosphatidylinositol. By contrast, SP-A shows features consistent with its preference for lipid ligands, including lipid A and the major surfactant lipid, dipalmitoylphosphatidylcholine. Current research suggests that structural biology approaches will help to elucidate the molecular basis of pulmonary collectin-ligand recognition and facilitate development of new therapeutics based upon SP-A and SP-D.
Collapse
Affiliation(s)
- Barbara A Seaton
- Department of Physiology and Biophysics, Boston University School of Medicine, Massachusetts, USA.
| | | | | | | | | | | |
Collapse
|
4
|
Shimizu T, Nishitani C, Mitsuzawa H, Ariki S, Takahashi M, Ohtani K, Wakamiya N, Kuroki Y. Mannose binding lectin and lung collectins interact with Toll-like receptor 4 and MD-2 by different mechanisms. Biochim Biophys Acta Gen Subj 2009; 1790:1705-10. [PMID: 19840833 DOI: 10.1016/j.bbagen.2009.10.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 10/12/2009] [Indexed: 02/08/2023]
Abstract
BACKGROUND We have previously shown that lung collectins, surfactant protein A (SP-A) and surfactant protein D, interact with Toll-like receptor (TLR) 2, TLR4, or MD-2. Bindings of lung collectins to TLR2 and TLR4/MD-2 result in the alterations of signaling through these receptors, suggesting the immunomodulatory functions of lung collectins. Mannose binding lectin (MBL) is another collectin molecule which has structural homology to SP-A. The interaction between MBL and TLRs has not yet been determined. METHODS We prepared recombinant MBL, and analyzed its bindings to recombinant soluble forms of TLR4 (sTLR4) and MD-2. RESULTS MBL bound to sTLR4 and MD-2. The interactions were Ca2+-dependent and inhibited by mannose or monoclonal antibody against the carbohydrate-recognition domain of MBL. Treatment of sTLR4 or MD-2 by peptide N-glycosidase F significantly decreased the binding of MBL. SP-A bound to deglycosylated sTLR4, and this property did not change in chimeric molecules of SP-A/MBL in which Glu195-Phe228 or Thr174-Gly194 of SP-A were replaced with the corresponding MBL sequences. GENERAL SIGNIFICANCE These results suggested that MBL binds to TLR4 and MD-2 through the carbohydrate-recognition domain, and that oligosaccharide moieties of TLR4 and MD-2 are important for recognition by MBL. Since our previous studies indicated that lung collectins bind to the peptide portions of TLRs, MBL and lung collectins interact with TLRs by different mechanisms. These direct interactions between MBL and TLR4 or MD-2 suggest that MBL may modulate cellular responses by altering signals through TLRs.
Collapse
Affiliation(s)
- Takeyuki Shimizu
- Department of Biochemistry, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-ku, Sapporo 060-8556, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Takahashi K, Ip WE, Michelow IC, Ezekowitz RAB. The mannose-binding lectin: a prototypic pattern recognition molecule. Curr Opin Immunol 2005; 18:16-23. [PMID: 16368230 PMCID: PMC7126801 DOI: 10.1016/j.coi.2005.11.014] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Accepted: 11/25/2005] [Indexed: 11/25/2022]
Abstract
The innate immune system is comprised of a sophisticated network of recognition and effector molecules that act together to protect the host in the first minutes or hours of exposure to an infectious challenge. The mannose-binding lectin (MBL) is an evolutionary conserved circulating host defense protein that acts as a broad-spectrum recognition molecule against a wide variety of infectious agents. Target binding triggers the MBL pathway of complement activation. MBL can be considered conceptually as an 'ante-antibody' because it has a role in mammals during the lag period that is required to develop an antibody response against infectious agents. Additionally, there are MBL-like homologues in animals that lack adaptive immunity that activate a primitive complement system, and under these circumstances these MBL-like molecules play an analogous role to antibodies in higher animals. These molecules might be considered to be functional antecedents of antibodies. Recent work also indicates that MBL recognizes altered self-antigens, and as such MBL has a role that extends beyond a traditional role in first line host defense as it appears to play a role as a modulator of inflammation.
Collapse
Affiliation(s)
- Kazue Takahashi
- Laboratory of Developmental Immunology, Massachusetts General Hospital, Harvard Department of Pediatrics, 55 Fruit Street, Boston, MA 02114, USA
| | | | | | | |
Collapse
|
6
|
McCormack FX. Functional mapping of surfactant protein A. PEDIATRIC PATHOLOGY & MOLECULAR MEDICINE 2001; 20:293-318. [PMID: 11486735 DOI: 10.1080/15513810109168823] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Surfactant protein A (SP-A) is a highly ordered, oligomeric glycoprotein that is secreted into the airspaces of the lung by alveolar type II cells and Clara cells of the pulmonary epithelium. Although research has shown that SP-A is both a calcium-dependent phospholipid-binding protein that affects surfactant structure and function and a lectin that opsonizes diverse microbial species, our understanding of the physiologically relevant roles of SP-A in the lung remains incomplete. My review focuses on the putative biological functions of SP-A that are supported by experiments in mammals and on the structural basis of SP-A function.
Collapse
Affiliation(s)
- F X McCormack
- Division of Pulmonary and Critical Case Medicine, Univ. of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0564, USA.
| |
Collapse
|
7
|
Abstract
Lung surfactant covers and stabilizes a large, delicate surface at the interface between the host and the environment. The surfactant system is placed at risk by a number of environmental challenges such as inflammation, infection, or oxidant stress, and perhaps not surprisingly, it demonstrates adaptive changes in metabolism in response to alterations in the alveolar microenvironment. Recent experiments have shown that certain components of the surfactant system are active participants in the regulation of the alveolar response to a wide variety of environmental challenges. These components are capable not only of maintaining a low interfacial surface tension but also of amplifying or dampening inflammatory responses. These observations suggest that regulatory molecules are capable of both sensing the environment of the alveolus and providing feedback to the cells regulating surfactant synthesis, secretion, alveolar conversion, and clearance. In this review we examine the evidence from in vitro systems and gene-targeted mice that two surfactant-associated collectins (SP-A and SP-D) may serve in these roles and help modify surfactant homeostasis as part of a coordinated host response to environmental challenges.
Collapse
Affiliation(s)
- S Hawgood
- Cardiovascular Research Institute and Department of Pediatrics, University of California San Francisco, San Francisco, California 94143-0734, USA.
| | | |
Collapse
|
8
|
Sano H, Chiba H, Iwaki D, Sohma H, Voelker DR, Kuroki Y. Surfactant proteins A and D bind CD14 by different mechanisms. J Biol Chem 2000; 275:22442-51. [PMID: 10801802 DOI: 10.1074/jbc.m001107200] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Surfactant proteins A (SP-A) and D (SP-D) are lung collectins that are constituents of the innate immune system of the lung. Recent evidence (Sano, H., Sohma, H., Muta, T., Nomura, S., Voelker, D. R., and Kuroki, Y. (1999) J. Immunol. 163, 387-395) demonstrates that SP-A modulates lipopolysaccharide (LPS)-induced cellular responses by direct interaction with CD14. In this report we examined the structural elements of the lung collectins involved in CD14 recognition and the consequences for CD14/LPS interaction. Rat SP-A and SP-D bound CD14 in a concentration-dependent manner. Mannose and EDTA inhibited SP-D binding to CD14 but did not decrease SP-A binding. The SP-A binding to CD14 was completely blocked by a monoclonal antibody that binds to the SP-A neck domain but only partially blocked by an antibody that binds to the SP-A lectin domain. SP-A but not SP-D bound to deglycosylated CD14. SP-D decreased CD14 binding to both smooth and rough LPS, whereas SP-A enhanced CD14 binding to rough LPS and inhibited binding to smooth LPS. SP-A also altered the migration profile of LPS on a sucrose density gradient in the presence of CD14. From these results, we conclude that 1) lung collectins bind CD14, 2) the SP-A neck domain and SP-D lectin domain participate in CD14 binding, 3) SP-A recognizes a peptide component and SP-D recognizes a carbohydrate moiety of CD14, and 4) lung collectins alter LPS/CD14 interactions.
Collapse
Affiliation(s)
- H Sano
- Department of Biochemistry, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
The two lung surfactant collectins, surfactant protein (SP)-A and SP-D, are involved in host defence against infectious and allergenic agents via enhancement of killing and clearance by macrophages and neutrophils. Recent gene-knockout, protein engineering and physiological studies have emphasised the roles that SP-A and SP-D play in acute inflammatory responses.
Collapse
Affiliation(s)
- P Eggleton
- MRC Immunochemistry Unit, Department of Biochemistry, University of Oxford, UK.
| | | |
Collapse
|
10
|
McCormack FX. Structure, processing and properties of surfactant protein A. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1408:109-31. [PMID: 9813267 DOI: 10.1016/s0925-4439(98)00062-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Surfactant protein A (SP-A) is a highly ordered, oligomeric glycoprotein that is secreted into the airspaces of the lung by the pulmonary epithelium. The in vitro activities of protein suggest diverse roles in pulmonary host defense and surfactant homeostasis, structure and surface activity. Functional mapping of SP-A using directed mutagenesis has identified domains which interact with surfactant phospholipids, alveolar type II cells and microbes. Recently developed genetically manipulated animal models are beginning to clarify the critical physiological roles for SP-A in the normal lung, and in the pathophysiology of pulmonary disease.
Collapse
Affiliation(s)
- F X McCormack
- Division of Pulmonary and Critical Care Medicine, University of Cincinnati College of Medicine, 231 Bethesda Ave., Cincinnati, OH 45267-0564, USA.
| |
Collapse
|
11
|
Abstract
Surfactant secretion is a critical regulated process in the metabolism of pulmonary surfactant. Presumably, because this process is vital to the survival of the organism, there are several independent pathways for stimulating secretion which work through different cell surface receptors and signaling mechanisms. In addition, there is apparent homeostatic regulation in that two components of surfactant, namely SP-A and dipalmitoylphosphatidylcholine, can inhibit secretion. Although secretion of surfactant has been studied for over two decades, there remains some important issues to be resolved. In vivo secretion can be stimulated by hyperventilation or even a single large breath. However, we do not know the biochemical mechanism for this physiologically important form of stimulation. In vitro, we know many of the proximal events in signaling, but we do not know how the lamellar bodies move within a cell or the docking mechanism at the plasma membrane. Many investigators have demonstrated that SP-A will inhibit secretion in vitro, but the mechanism is not known. Finally, there is a route of secretion of SP-A independent of lamellar bodies, but we do not know details of this pathway nor its regulation.
Collapse
Affiliation(s)
- R J Mason
- Department of Medicine, National Jewish Medical and Research Center, 1400 Jackson Street, Denver, CO 80206, USA.
| | | |
Collapse
|
12
|
Mason RJ, Greene K, Voelker DR. Surfactant protein A and surfactant protein D in health and disease. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:L1-13. [PMID: 9688929 DOI: 10.1152/ajplung.1998.275.1.l1] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Surfactant protein (SP) A and SP-D are collagenous glycoproteins with multiple functions in the lung. Both of these proteins are calcium-dependent lectins and are structurally similar to mannose-binding protein and bovine conglutinin. Both form polyvalent multimeric structures for interactions with pathogens, cells, or other molecules. SP-A is an integral part of the surfactant system, binds phospholipids avidly, and is found in lamellar bodies and tubular myelin. Initially, most research interest focused on its role in surfactant homeostasis. Recently, more attention has been placed on the role of SP-A as a host defense molecule and its interactions with pathogens and phagocytic cells. SP-D is much less involved with the surfactant system. SP-D appears to be primarily a host defense molecule that binds surfactant phospholipids poorly and is not found in lamellar inclusion bodies or tubular myelin. Both SP-A and SP-D bind a wide spectrum of pathogens including viruses, bacteria, fungi, and pneumocystis. In addition, both molecules have been measured in the systemic circulation by immunologic methods and may be useful biomarkers of disease. The current challenges are characterization of the three-dimensional crystal structure of SP-A and SP-D, molecular cloning of their receptors, and determination of their precise physiological functions in vivo.
Collapse
Affiliation(s)
- R J Mason
- Department of Medicine, National Jewish Medical and Research Center, Denver, Colorado 80206, USA
| | | | | |
Collapse
|
13
|
Sano H, Kuroki Y, Honma T, Ogasawara Y, Sohma H, Voelker DR, Akino T. Analysis of chimeric proteins identifies the regions in the carbohydrate recognition domains of rat lung collectins that are essential for interactions with phospholipids, glycolipids, and alveolar type II cells. J Biol Chem 1998; 273:4783-9. [PMID: 9468543 DOI: 10.1074/jbc.273.8.4783] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pulmonary surfactant proteins A (SP-A) and D (SP-D) are collectins in the C-type lectin superfamily. SP-A binds to dipalmitoylphosphatidylcholine and galactosylceramide, and it regulates the uptake and secretion of surfactant lipids by alveolar type II cells. In contrast, SP-D binds to phosphatidylinositol (PI) and glucosylceramide (GlcCer). We investigated the functional region in the carbohydrate recognition domain of rat SP-A and SP-D that is involved in binding lipids and interacting with alveolar type II cells by using chimeric proteins. Chimeras ad3, ad4, and ad5 were constructed with SP-A/SP-D splice junctions at Gly194/Glu321, Gln173/Thr300, and Met134/Cys261, respectively. All three chimeras lost SP-A-specific functions. Chimeras ad3, ad4, and ad5 bound to PI with increasing activity. In contrast, chimeras ad3 and ad4 did not bind to GlcCer, whereas ad5 avidly bound this lipid. From these results, we conclude that 1) the SP-A region of Glu195-Phe228 is required for lipid and type II cell interactions, 2) the SP-D region of Cys261-Phe355 is required for optimal lipid interactions, and 3) the structural requirement for the binding of SP-D to PI is different from that for GlcCer.
Collapse
Affiliation(s)
- H Sano
- Department of Biochemistry, Sapporo Medical University School of Medicine, Sapporo 060, Japan
| | | | | | | | | | | | | |
Collapse
|