1
|
Lenton S, Chaaban H, Khaled M, van de Weert M, Strodel B, Foderà V. Insulin amyloid morphology is encoded in H-bonds and electrostatics interactions ruling protein phase separation. J Colloid Interface Sci 2025; 683:1175-1187. [PMID: 39778472 DOI: 10.1016/j.jcis.2024.12.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/29/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025]
Abstract
Ion-protein interactions regulate biological processes and are the basis of key strategies of modulating protein phase diagrams and stability in drug development. Here, we report the mechanisms by which H-bonds and electrostatic interactions in ion-protein systems determine phase separation and amyloid formation. Using microscopy, small-angle X-ray scattering, circular dichroism and atomistic molecular dynamics (MD) simulations, we found that anions specifically interacting with insulin induced phase separation by neutralising the protein charge and forming H-bond bridges between insulin molecules. The same interaction was responsible for an enhanced insulin conformational stability and resistance to oligomerisation. Under aggregation conditions, the anion-protein interaction translated into the activation of a coalescence process, leading to amyloid-like microparticles. This reaction is alternative to conformationally-driven pathways, giving rise to elongated amyloid-like fibrils and occurs in the absence of preferential ion-protein binding. Our findings depict a unifying scenario in which common interactions dictated both phase separation at low temperatures and the occurrence of pronounced heterogeneity in the amyloid morphology at high temperatures, similar to what has previously been reported for protein crystal growth.
Collapse
Affiliation(s)
- Samuel Lenton
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; Center for Biopharmaceuticals and Biobarriers in Drug Delivery, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Hussein Chaaban
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; Center for Biopharmaceuticals and Biobarriers in Drug Delivery, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Mohammed Khaled
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Marco van de Weert
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; Center for Biopharmaceuticals and Biobarriers in Drug Delivery, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Birgit Strodel
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany; Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Vito Foderà
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; Center for Biopharmaceuticals and Biobarriers in Drug Delivery, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
2
|
Wang S, Rienstra CM, Chen K. Higher Order Structure Differences Among Insulin Crystalline Drugs Revealed by 2D heteronuclear NMR. ChemMedChem 2024; 19:e202400340. [PMID: 39116305 DOI: 10.1002/cmdc.202400340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/10/2024]
Abstract
During therapeutic protein development, two-dimensional (2D) heteronuclear NMR spectra can be a powerful analytical method for measuring protein higher order structure (HOS) in solution since the spectra exhibit much higher resolution than homonuclear 1H spectra. However, 2D NMR capabilities for characterizing protein HOS in crystalline states remain to be assessed, given the low 13C natural abundance and intrinsically broader lines in solid-state NMR (SSNMR). Herein, high-resolution heteronuclear correlation (HETCOR) SSNMR was utilized to directly measure intact crystal drug products of insulin human, insulin analogs of insulin lispro and insulin aspart. The fingerprint regions in 2D 1H-13C HETCOR spectra were identified, which distinguished the insulin crystals in their primary structure, HOS heterogeneity and dynamics, as well as the manufacturing processes. The HOS heterogeneity in insulin analogs is consistent with their therapeutic effect of rapid action; while insulin human crystals showed more structural homogeneity, consistent with their slower pharmacokinetics (PK) peak time than insulin analogs. Therefore, heteronuclear NMR could be broadly applicable to study protein drug dosage forms from liquid to solid, yielding improved molecular level structure data for assessing drug HOS in biosimilar drug development.
Collapse
Affiliation(s)
- Songlin Wang
- National Magnetic Resonance Facility at Madison (NMRFAM), University of Wisconsin-Madison, Madison, WI-53706, United States
| | - Chad M Rienstra
- National Magnetic Resonance Facility at Madison (NMRFAM), University of Wisconsin-Madison, Madison, WI-53706, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI-53706, United States
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI-53706, United States
| | - Kang Chen
- Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD-20993, United States
| |
Collapse
|
3
|
Roush D, Iammarino M, Chmielowski R, Insaidoo F, McCoy MA, Ortigosa A, Rauscher M. Insulin purification-Innovation continuum via synthesis of fundamentals, technology, and modeling. Biotechnol Bioeng 2024; 121:2409-2422. [PMID: 37200159 DOI: 10.1002/bit.28427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/20/2023]
Abstract
Advancement in all disciplines (art, science, education, and engineering) requires a careful balance of disruption and advancement of classical techniques. Often technologies are created with a limited understanding of fundamental principles and are prematurely abandoned. Over time, knowledge improves, new opportunities are identified, and technology is reassessed in a different light leading to a renaissance. Recovery of biological products is currently experiencing such a renaissance. Crystallization is one example of an elegant and ancient technology that has been applied in many fields and was employed to purify insulins from naturally occurring sources. Crystallization can also be utilized to determine protein structures. However, a multitude of parameters can impact protein crystallization and the "hit rate" for identifying protein crystals is relatively low, so much so that the development of a crystallization process is often viewed as a combination of art and science even today. Supplying the worldwide requirement for insulin (and associated variants) requires significant advances in process intensification to support scale of production and to minimize the overall cost to enable broader access. Expanding beyond insulin, the increasing complexity and diversity of biologics agents challenge the current purification methodologies. To harness the full potential of biologics, there is a need to fully explore a broader range of purification technologies, including nonchromatographic approaches. This impetus requires one to challenge and revisit the classical techniques including crystallization, chromatography, and filtration from a different vantage point and with a new set of tools, including molecular modeling. Fortunately, computational biophysics tools now exist to provide insights into mechanisms of protein/ligand interactions and molecular assembly processes (including crystallization) that can be used to support de novo process development. For example, specific regions or motifs of insulins and ligands can be identified and used as targets to support crystallization or purification development. Although the modeling tools have been developed and validated for insulin systems, the same tools can be applied to more complex modalities and to other areas including formulation, where the issue of aggregation and concentration-dependent oligomerization could be mechanistically modeled. This paper will illustrate a case study juxtaposing historical approaches to insulin downstream processes to a recent production process highlighting the application and evolution of technologies. Insulin production from Escherichia coli via inclusion bodies is an elegant example since it incorporates virtually all the unit operations associated with protein production-recovery of cells, lysis, solubilization, refolding, purification, and crystallization. The case study will include an example of an innovative application of existing membrane technology to combine three-unit operations into one, significantly reducing solids handling and buffer consumption. Ironically, a new separations technology was developed over the course of the case study that could further simplify and intensify the downstream process, emphasizing and highlighting the ever-accelerating pace of innovation in downstream processing. Molecular biophysics modeling was also employed to enhance the mechanistic understanding of the crystallization and purification processes.
Collapse
Affiliation(s)
- David Roush
- Process R&D, Merck & Co., Inc, Rahway, New Jersey, USA
| | | | | | | | - Mark A McCoy
- Mass Spectrometry & Biophysics, Merck & Co., Inc, Kenilworth, New Jersey, USA
| | | | | |
Collapse
|
4
|
Csizi KS, Steiner M, Reiher M. Nanoscale chemical reaction exploration with a quantum magnifying glass. Nat Commun 2024; 15:5320. [PMID: 38909029 PMCID: PMC11193806 DOI: 10.1038/s41467-024-49594-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 06/04/2024] [Indexed: 06/24/2024] Open
Abstract
Nanoscopic systems exhibit diverse molecular substructures by which they facilitate specific functions. Theoretical models of them, which aim at describing, understanding, and predicting these capabilities, are difficult to build. Viable quantum-classical hybrid models come with specific challenges regarding atomistic structure construction and quantum region selection. Moreover, if their dynamics are mapped onto a state-to-state mechanism such as a chemical reaction network, its exhaustive exploration will be impossible due to the combinatorial explosion of the reaction space. Here, we introduce a "quantum magnifying glass" that allows one to interactively manipulate nanoscale structures at the quantum level. The quantum magnifying glass seamlessly combines autonomous model parametrization, ultra-fast quantum mechanical calculations, and automated reaction exploration. It represents an approach to investigate complex reaction sequences in a physically consistent manner with unprecedented effortlessness in real time. We demonstrate these features for reactions in bio-macromolecules and metal-organic frameworks, diverse systems that highlight general applicability.
Collapse
Affiliation(s)
- Katja-Sophia Csizi
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| | - Miguel Steiner
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
- ETH Zurich, NCCR Catalysis, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| | - Markus Reiher
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland.
- ETH Zurich, NCCR Catalysis, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland.
| |
Collapse
|
5
|
Csizi KS, Reiher M. Automated preparation of nanoscopic structures: Graph-based sequence analysis, mismatch detection, and pH-consistent protonation with uncertainty estimates. J Comput Chem 2024; 45:761-776. [PMID: 38124290 DOI: 10.1002/jcc.27276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
Structure and function in nanoscale atomistic assemblies are tightly coupled, and every atom with its specific position and even every electron will have a decisive effect on the electronic structure, and hence, on the molecular properties. Molecular simulations of nanoscopic atomistic structures therefore require accurately resolved three-dimensional input structures. If extracted from experiment, these structures often suffer from severe uncertainties, of which the lack of information on hydrogen atoms is a prominent example. Hence, experimental structures require careful review and curation, which is a time-consuming and error-prone process. Here, we present a fast and robust protocol for the automated structure analysis and pH-consistent protonation, in short, ASAP. For biomolecules as a target, the ASAP protocol integrates sequence analysis and error assessment of a given input structure. ASAP allows for pK a prediction from reference data through Gaussian process regression including uncertainty estimation and connects to system-focused atomistic modeling described in Brunken and Reiher (J. Chem. Theory Comput. 16, 2020, 1646). Although focused on biomolecules, ASAP can be extended to other nanoscopic objects, because most of its design elements rely on a general graph-based foundation guaranteeing transferability. The modular character of the underlying pipeline supports different degrees of automation, which allows for (i) efficient feedback loops for human-machine interaction with a low entrance barrier and for (ii) integration into autonomous procedures such as automated force field parametrizations. This facilitates fast switching of the pH-state through on-the-fly system-focused reparametrization during a molecular simulation at virtually no extra computational cost.
Collapse
Affiliation(s)
- Katja-Sophia Csizi
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Markus Reiher
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Ghade NS, Thappa DK, Lona J, Krishnan AR, Sonar SM. Comparative physicochemical and structural characterisation studies establish high biosimilarity between BGL-ASP and reference insulin aspart. Sci Rep 2024; 14:4224. [PMID: 38378730 PMCID: PMC10879530 DOI: 10.1038/s41598-024-54819-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/16/2024] [Indexed: 02/22/2024] Open
Abstract
Biosimilar insulin analogues are increasing market access for diabetic patients globally. Scientific establishment of biosimilarity is cornerstone of this key change in the medical landscape. BGL-ASP is a biosimilar insulin aspart developed by BioGenomics Limited, India. BioGenomics has considered a stepwise approach in generating the totality of evidence required to establish similarity with reference product. Insulin aspart is a recombinant rapid-acting human insulin analogue utilised in the treatment of type-1 and type-2 diabetes mellitus. The single amino acid substitution at position B28 where proline is replaced with aspartic acid results in a decreased propensity to form hexamers, thus increasing the absorption rate on subcutaneous administration compared to native insulin. In order to establish the safety and efficacy of BGL-ASP, the critical quality attributes (CQAs) of BGL-ASP are identified based on the impact created on biological activity, pharmacokinetic/pharmacodynamic (PK/PD), immunogenicity and safety. The CQAs of insulin aspart are related to product structure, purity and functionality and are characterised using a series of state-of-the-art orthogonal analytical tools. The primary protein sequence, the secondary, tertiary and quaternary structure are found to be highly similar for BGL-ASP and reference product. The product related impurities of insulin aspart and the assay content are determined using high performance liquid chromatography (HPLC) based analysis and is similar for BGL-ASP and reference insulin aspart sourced from United States of America (US), Europe Union (EU) and India. The safety, efficacy and immunogenicity of BGL-ASP is also found to be comparable with reference product and is confirmed through the clinical trials conducted as recommended by International Council for Harmonisation of Technical Requirements of Pharmaceuticals for Human Use (ICH) and European Medicines Agency (EMA) guidelines. The data encompassed in this study demonstrates that reference insulin aspart and BGL-ASP are highly similar in terms of structural, physicochemical, and biological properties, thus confirming its safety and efficacy for usage as potential alternative economical medicinal treatment for diabetes mellitus.
Collapse
Affiliation(s)
| | | | - Jeseena Lona
- BioGenomics Limited, Thane, Maharashtra, 400610, India
| | | | | |
Collapse
|
7
|
Rohilla K, Pandey MK. Computational Approach to Elucidating Insulin-Protamine Binding Interactions and Dynamics in Insulin NPH Formulations. ACS OMEGA 2024; 9:4857-4869. [PMID: 38313521 PMCID: PMC10831847 DOI: 10.1021/acsomega.3c08445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/28/2023] [Accepted: 12/28/2023] [Indexed: 02/06/2024]
Abstract
Insulin NPH is an intermediate-acting insulin. Its protracted action profile is due to the formation of microcrystalline suspensions when insulin is complexed with a basic peptide protamine, zinc ion, and phenolic ligands. Despite advancements in analytical techniques, the binding epitope and binding mode of the protamine in the insulin-protamine complex are still unknown. In this study, we used bioinformatics tools such as molecular docking and molecular dynamics (MD) simulations to compute the binding sites and energetics of the insulin-protamine complex. We have taken four naturally occurring protamine peptides that are independently docked with the insulin R6 hexamer and subjected them to 200 ns MD simulations to observe the dynamics of the complexes and estimate the binding energies. The arginine-rich protamine peptides were found to bind on the surface of the insulin hexamer through hydrogen bonding, hydrophobic, and electrostatic interactions well supported by the calculated negative binding energies. The overall structure of the insulin hexamer was retained upon binding, highlighting its dynamic stability in the complex. Furthermore, the residues at the termini of the protamine peptides in the complex were seen to be highly dynamic, which stabilize toward the end of the simulation.
Collapse
Affiliation(s)
- Ketan
Kumar Rohilla
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Manoj Kumar Pandey
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
8
|
Cook TW, Wilstermann AM, Mitchell JT, Arnold NE, Rajasekaran S, Bupp CP, Prokop JW. Understanding Insulin in the Age of Precision Medicine and Big Data: Under-Explored Nature of Genomics. Biomolecules 2023; 13:257. [PMID: 36830626 PMCID: PMC9953665 DOI: 10.3390/biom13020257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Insulin is amongst the human genome's most well-studied genes/proteins due to its connection to metabolic health. Within this article, we review literature and data to build a knowledge base of Insulin (INS) genetics that influence transcription, transcript processing, translation, hormone maturation, secretion, receptor binding, and metabolism while highlighting the future needs of insulin research. The INS gene region has 2076 unique variants from population genetics. Several variants are found near the transcriptional start site, enhancers, and following the INS transcripts that might influence the readthrough fusion transcript INS-IGF2. This INS-IGF2 transcript splice site was confirmed within hundreds of pancreatic RNAseq samples, lacks drift based on human genome sequencing, and has possible elevated expression due to viral regulation within the liver. Moreover, a rare, poorly characterized African population-enriched variant of INS-IGF2 results in a loss of the stop codon. INS transcript UTR variants rs689 and rs3842753, associated with type 1 diabetes, are found in many pancreatic RNAseq datasets with an elevation of the 3'UTR alternatively spliced INS transcript. Finally, by combining literature, evolutionary profiling, and structural biology, we map rare missense variants that influence preproinsulin translation, proinsulin processing, dimer/hexamer secretory storage, receptor activation, and C-peptide detection for quasi-insulin blood measurements.
Collapse
Affiliation(s)
- Taylor W. Cook
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | | | - Jackson T. Mitchell
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Nicholas E. Arnold
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Surender Rajasekaran
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
- Office of Research, Corewell Health, Grand Rapids, MI 49503, USA
| | - Caleb P. Bupp
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
- Division of Medical Genetics, Corewell Health, Grand Rapids, MI 49503, USA
| | - Jeremy W. Prokop
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
- Office of Research, Corewell Health, Grand Rapids, MI 49503, USA
| |
Collapse
|
9
|
Qafary M, Rashno F, Khajeh K, Khaledi M, Moosavi-Movahedi AA. Insulin fibrillation: Strategies for inhibition. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 175:49-62. [DOI: 10.1016/j.pbiomolbio.2022.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 08/17/2022] [Accepted: 09/08/2022] [Indexed: 04/07/2023]
|
10
|
Karmakar S, Ghosh T, Sankhla A, Bhattacharjee S, Katiyar V. Insulin biomolecular condensate formed in ionic microenvironment modulates the structural properties of pristine and magnetic cellulosic nanomaterials. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Gorai B, Vashisth H. Progress in Simulation Studies of Insulin Structure and Function. Front Endocrinol (Lausanne) 2022; 13:908724. [PMID: 35795141 PMCID: PMC9252437 DOI: 10.3389/fendo.2022.908724] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/28/2022] [Indexed: 01/02/2023] Open
Abstract
Insulin is a peptide hormone known for chiefly regulating glucose level in blood among several other metabolic processes. Insulin remains the most effective drug for treating diabetes mellitus. Insulin is synthesized in the pancreatic β-cells where it exists in a compact hexameric architecture although its biologically active form is monomeric. Insulin exhibits a sequence of conformational variations during the transition from the hexamer state to its biologically-active monomer state. The structural transitions and the mechanism of action of insulin have been investigated using several experimental and computational methods. This review primarily highlights the contributions of molecular dynamics (MD) simulations in elucidating the atomic-level details of conformational dynamics in insulin, where the structure of the hormone has been probed as a monomer, dimer, and hexamer. The effect of solvent, pH, temperature, and pressure have been probed at the microscopic scale. Given the focus of this review on the structure of the hormone, simulation studies involving interactions between the hormone and its receptor are only briefly highlighted, and studies on other related peptides (e.g., insulin-like growth factors) are not discussed. However, the review highlights conformational dynamics underlying the activities of reported insulin analogs and mimetics. The future prospects for computational methods in developing promising synthetic insulin analogs are also briefly highlighted.
Collapse
Affiliation(s)
| | - Harish Vashisth
- Department of Chemical Engineering, University of New Hampshire, Durham, NH, United States
| |
Collapse
|
12
|
Arya S, Gourley AJ, Penedo JC, Blindauer CA, Stewart AJ. Fatty acids may influence insulin dynamics through modulation of albumin-Zn 2+ interactions. Bioessays 2021; 43:e2100172. [PMID: 34725844 DOI: 10.1002/bies.202100172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 01/02/2023]
Abstract
Insulin is stored within the pancreas in an inactive Zn2+ -bound hexameric form prior to release. Similarly, clinical insulins contain Zn2+ and form multimeric complexes. Upon release from the pancreas or upon injection, insulin only becomes active once Zn2+ disengages from the complex. In plasma and other extracellular fluids, the majority of Zn2+ is bound to human serum albumin (HSA), which plays a vital role in controlling insulin pharmacodynamics by enabling removal of Zn2+ . The Zn2+ -binding properties of HSA are attenuated by non-esterified fatty acids (NEFAs) also transported by HSA. Elevated NEFA concentrations are associated with obesity and type 2 diabetes. Here we present the hypothesis that higher NEFA levels in obese and/or diabetic individuals may contribute to insulin resistance and affect therapeutic insulin dose-response profiles, through modulation of HSA/Zn2+ dynamics. We envisage this novel concept to have important implications for personalized treatments and management of diabetes-related conditions in the future.
Collapse
Affiliation(s)
- Swati Arya
- School of Medicine, University of St. Andrews, St. Andrews, Fife, UK
| | - Adam J Gourley
- School of Medicine, University of St. Andrews, St. Andrews, Fife, UK
| | - J Carlos Penedo
- Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews, Fife, UK
| | | | - Alan J Stewart
- School of Medicine, University of St. Andrews, St. Andrews, Fife, UK
| |
Collapse
|
13
|
Ramzy A, Kieffer TJ. Altered islet prohormone processing: A cause or consequence of diabetes? Physiol Rev 2021; 102:155-208. [PMID: 34280055 DOI: 10.1152/physrev.00008.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Peptide hormones are first produced as larger precursor prohormones that require endoproteolytic cleavage to liberate the mature hormones. A structurally conserved but functionally distinct family of nine prohormone convertase enzymes (PCs) are responsible for cleavage of protein precursors of which PC1/3 and PC2 are known to be exclusive to neuroendocrine cells and responsible for prohormone cleavage. Differential expression of PCs within tissues define prohormone processing; whereas glucagon is the major product liberated from proglucagon via PC2 in pancreatic α-cells, proglucagon is preferentially processed by PC1/3 in intestinal L cells to produce glucagon-like peptides 1 and 2 (GLP-1, GLP-2). Beyond our understanding of processing of islet prohormones in healthy islets, there is convincing evidence that proinsulin, proIAPP, and proglucagon processing is altered during prediabetes and diabetes. There is predictive value of elevated circulating proinsulin or proinsulin : C-peptide ratio for progression to type 2 diabetes and elevated proinsulin or proinsulin : C-peptide is predictive for development of type 1 diabetes in at risk groups. After onset of diabetes, patients have elevated circulating proinsulin and proIAPP and proinsulin may be an autoantigen in type 1 diabetes. Further, preclinical studies reveal that α-cells have altered proglucagon processing during diabetes leading to increased GLP-1 production. We conclude that despite strong associative data, current evidence is inconclusive on the potential causal role of impaired prohormone processing in diabetes, and suggest that future work should focus on resolving the question of whether altered prohormone processing is a causal driver or merely a consequence of diabetes pathology.
Collapse
Affiliation(s)
- Adam Ramzy
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Timothy J Kieffer
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
14
|
NMR Spectroscopy for Protein Higher Order Structure Similarity Assessment in Formulated Drug Products. Molecules 2021; 26:molecules26144251. [PMID: 34299526 PMCID: PMC8307401 DOI: 10.3390/molecules26144251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 11/21/2022] Open
Abstract
Peptide and protein drug molecules fold into higher order structures (HOS) in formulation and these folded structures are often critical for drug efficacy and safety. Generic or biosimilar drug products (DPs) need to show similar HOS to the reference product. The solution NMR spectroscopy is a non-invasive, chemically and structurally specific analytical method that is ideal for characterizing protein therapeutics in formulation. However, only limited NMR studies have been performed directly on marketed DPs and questions remain on how to quantitively define similarity. Here, NMR spectra were collected on marketed peptide and protein DPs, including calcitonin-salmon, liraglutide, teriparatide, exenatide, insulin glargine and rituximab. The 1D 1H spectral pattern readily revealed protein HOS heterogeneity, exchange and oligomerization in the different formulations. Principal component analysis (PCA) applied to two rituximab DPs showed consistent results with the previously demonstrated similarity metrics of Mahalanobis distance (DM) of 3.3. The 2D 1H-13C HSQC spectral comparison of insulin glargine DPs provided similarity metrics for chemical shift difference (Δδ) and methyl peak profile, i.e., 4 ppb for 1H, 15 ppb for 13C and 98% peaks with equivalent peak height. Finally, 2D 1H-15N sofast HMQC was demonstrated as a sensitive method for comparison of small protein HOS. The application of NMR procedures and chemometric analysis on therapeutic proteins offer quantitative similarity assessments of DPs with practically achievable similarity metrics.
Collapse
|
15
|
Fan J, Ma D, Zhu H, Jiang P, Su H. Gene structure, SNP screening and growth correlation analysis of the preproinsulin gene in grass carp (Ctenopharyngodon idellus). J Genet 2021. [DOI: 10.1007/s12041-021-01289-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Akbarian M, Yousefi R, Farjadian F, Uversky VN. Insulin fibrillation: toward strategies for attenuating the process. Chem Commun (Camb) 2020; 56:11354-11373. [DOI: 10.1039/d0cc05171c] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The environmental factors affecting the rate of insulin fibrillation. The factors are representative.
Collapse
Affiliation(s)
- Mohsen Akbarian
- Pharmaceutical Sciences Research Center
- Shiraz University of Medical Sciences
- Shiraz
- Iran
| | - Reza Yousefi
- Protein Chemistry Laboratory
- Department of Biology
- College of Sciences
- Shiraz University
- Shiraz
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center
- Shiraz University of Medical Sciences
- Shiraz
- Iran
| | - Vladimir N. Uversky
- Department of Molecular Medicine and Health Byrd Alzheimer's Institute
- Morsani College of Medicine
- University of South Florida
- Tampa
- USA
| |
Collapse
|
17
|
Sukhanova A, Poly S, Bozrova S, Lambert É, Ewald M, Karaulov A, Molinari M, Nabiev I. Nanoparticles With a Specific Size and Surface Charge Promote Disruption of the Secondary Structure and Amyloid-Like Fibrillation of Human Insulin Under Physiological Conditions. Front Chem 2019; 7:480. [PMID: 31417892 PMCID: PMC6683663 DOI: 10.3389/fchem.2019.00480] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 06/24/2019] [Indexed: 01/08/2023] Open
Abstract
Nanoparticles attract much interest as fluorescent labels for diagnostic and therapeutic tools, although their applications are often hindered by size- and shape-dependent cytotoxicity. This cytotoxicity is related not only to the leak of toxic metals from nanoparticles into a biological solution, but also to molecular cytotoxicity effects determined by the formation of a protein corona, appearance of an altered protein conformation leading to exposure of cryptic epitopes and cooperative effects involved in the interaction of proteins and peptides with nanoparticles. In the last case, nanoparticles may serve, depending on their nature, as centers of self-association or fibrillation of proteins and peptides, provoking amyloid-like proteinopathies, or as inhibitors of self-association of proteins, or they can self-assemble on biopolymers as on templates. In this study, human insulin protein was used to analyze nanoparticle-induced proteinopathy in physiological conditions. It is known that human insulin may form amyloid fibers, but only under extreme experimental conditions (very low pH and high temperatures). Here, we have shown that the quantum dots (QDs) may induce amyloid-like fibrillation of human insulin under physiological conditions through a complex process strongly dependent on the size and surface charge of QDs. The insulin molecular structure and fibril morphology have been shown to be modified at different stages of its fibrillation, which has been proved by comparative analysis of the data obtained using circular dichroism, dynamic light scattering, amyloid-specific thioflavin T (ThT) assay, transmission electron microscopy, and high-speed atomic force microscopy. We have found important roles of the QD size and surface charge in the destabilization of the insulin structure and the subsequent fibrillation. Remodeling of the insulin secondary structure accompanied by remarkable increase in the rate of formation of amyloid-like fibrils under physiologically normal conditions was observed when the protein was incubated with QDs of exact specific diameter coated with slightly negative specific polyethylene glycol (PEG) derivatives. Strongly negatively or slightly positively charged PEG-modified QDs of the same specific diameter or QDs of bigger or smaller diameters had no effect on insulin fibrillation. The observed effects pave the way to the control of amyloidosis proteinopathy by varying the nanoparticle size and surface charge.
Collapse
Affiliation(s)
- Alyona Sukhanova
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, UFR de Pharmacie, Université de Reims Champagne-Ardenne, Reims, France.,Laboratory of Nano-Bioengineering, Moscow Engineering Physics Institute, National Research Nuclear University MEPhI, Moscow, Russia
| | - Simon Poly
- Department of Membrane Biophysics, Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Svetlana Bozrova
- Laboratory of Nano-Bioengineering, Moscow Engineering Physics Institute, National Research Nuclear University MEPhI, Moscow, Russia
| | - Éléonore Lambert
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, UFR de Pharmacie, Université de Reims Champagne-Ardenne, Reims, France
| | - Maxime Ewald
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, UFR de Pharmacie, Université de Reims Champagne-Ardenne, Reims, France
| | - Alexander Karaulov
- Department of Clinical Immunology and Allergology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Michael Molinari
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, UFR de Pharmacie, Université de Reims Champagne-Ardenne, Reims, France
| | - Igor Nabiev
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, UFR de Pharmacie, Université de Reims Champagne-Ardenne, Reims, France.,Laboratory of Nano-Bioengineering, Moscow Engineering Physics Institute, National Research Nuclear University MEPhI, Moscow, Russia
| |
Collapse
|
18
|
Submicron polymeric particles accelerate insulin fibrillation by surface adsorption. Biointerphases 2019; 14:021001. [DOI: 10.1116/1.5083821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
19
|
Wang JH, Shao XX, Hu MJ, Liu YL, Xu ZG, Guo ZY. Functionality of an absolutely conserved glycine residue in the chimeric relaxin family peptide R3/I5. Amino Acids 2019; 51:619-626. [PMID: 30604098 DOI: 10.1007/s00726-018-02694-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/22/2018] [Indexed: 10/27/2022]
Abstract
The insulin superfamily is a group of homologous proteins that are further divided into the insulin family and relaxin family according to their distinct receptors. All insulin superfamily members contain three absolutely conserved disulfide linkages and a nonchiral Gly residue immediately following the first B-chain cysteine. The functionality of this conserved Gly residue in the insulin family has been studied by replacing it with natural L-amino acids or the corresponding unnatural D-amino acids. However, such analysis has not been conducted on relaxin family members. In the present study, we conducted chiral mutagenesis on the conserved B11Gly of the chimeric relaxin family peptide R3/I5, which is an efficient agonist for receptor RXFP3 and RXFP4. Similar to the effects on insulin family foldability, L-Ala or L-Ser substitution completely abolished the in vitro refolding of a recombinant R3/I5 precursor; whereas, D-Ala or D-Ser substitution had no detrimental effect on refolding of a semi-synthetic R3/I5 precursor, suggesting that the conserved Gly residue controls the foldability of relaxin family members. In contrast to the effect on insulin family activity, D-Ala or D-Ser replacement had no detrimental effect on the binding and activation potencies of the mature R3/I5 towards both RXFP3 and RXFP4, suggesting that the conserved Gly residue is irrelevant to the relaxin family's activity. The present study revealed functionality of the conserved B-chain Gly residue for a relaxin family peptide for the first time, providing an overview of its contribution to foldability and activity of the insulin superfamily.
Collapse
Affiliation(s)
- Jia-Hui Wang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiao-Xia Shao
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Meng-Jun Hu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ya-Li Liu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zeng-Guang Xu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhan-Yun Guo
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| |
Collapse
|
20
|
Akbarian M, Ghasemi Y, Uversky VN, Yousefi R. Chemical modifications of insulin: Finding a compromise between stability and pharmaceutical performance. Int J Pharm 2018; 547:450-468. [DOI: 10.1016/j.ijpharm.2018.06.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 02/07/2023]
|
21
|
Rege NK, Wickramasinghe NP, Tustan AN, Phillips NFB, Yee VC, Ismail-Beigi F, Weiss MA. Structure-based stabilization of insulin as a therapeutic protein assembly via enhanced aromatic-aromatic interactions. J Biol Chem 2018; 293:10895-10910. [PMID: 29880646 PMCID: PMC6052209 DOI: 10.1074/jbc.ra118.003650] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/30/2018] [Indexed: 12/18/2022] Open
Abstract
Key contributions to protein structure and stability are provided by weakly polar interactions, which arise from asymmetric electronic distributions within amino acids and peptide bonds. Of particular interest are aromatic side chains whose directional π-systems commonly stabilize protein interiors and interfaces. Here, we consider aromatic-aromatic interactions within a model protein assembly: the dimer interface of insulin. Semi-classical simulations of aromatic-aromatic interactions at this interface suggested that substitution of residue TyrB26 by Trp would preserve native structure while enhancing dimerization (and hence hexamer stability). The crystal structure of a [TrpB26]insulin analog (determined as a T3Rf3 zinc hexamer at a resolution of 2.25 Å) was observed to be essentially identical to that of WT insulin. Remarkably and yet in general accordance with theoretical expectations, spectroscopic studies demonstrated a 150-fold increase in the in vitro lifetime of the variant hexamer, a critical pharmacokinetic parameter influencing design of long-acting formulations. Functional studies in diabetic rats indeed revealed prolonged action following subcutaneous injection. The potency of the TrpB26-modified analog was equal to or greater than an unmodified control. Thus, exploiting a general quantum-chemical feature of protein structure and stability, our results exemplify a mechanism-based approach to the optimization of a therapeutic protein assembly.
Collapse
Affiliation(s)
| | | | - Alisar N Tustan
- Medicine, Case Western Reserve University, Cleveland, Ohio 44106 and
| | | | | | | | - Michael A Weiss
- From the Departments of Biochemistry and
- the Department of Biochemistry, Indiana University School of Medicine, Indianapolis, Indiana 46202
| |
Collapse
|
22
|
Sitkowski J, Bocian W, Bednarek E, Urbańczyk M, Koźmiński W, Borowicz P, Płucienniczak G, Łukasiewicz N, Sokołowska I, Kozerski L. Insight into human insulin aggregation revisited using NMR derived translational diffusion parameters. JOURNAL OF BIOMOLECULAR NMR 2018; 71:101-114. [PMID: 29948440 DOI: 10.1007/s10858-018-0197-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 06/07/2018] [Indexed: 06/08/2023]
Abstract
The NMR derived translational diffusion coefficients were performed on unlabeled and uniformly labeled 13C,15N human insulin in water, both in neat, with zinc ions only, and in pharmaceutical formulation, containing only m-cresol as phenolic ligand, glycerol and zinc ions. The results show the dominant role of the pH parameter and the concentration on aggregation. The diffusion coefficient Dav was used for monitoring the overall average state of oligomeric ensemble in solution. The analysis of the experimental data of diffusion measurements, using the direct exponential curve resolution algorithm (DECRA) allows suggesting the two main components of the oligomeric ensemble. The 3D HSQC-iDOSY, (diffusion ordered HSQC) experiments performed on 13C, 15N-fully labeled insulin at the two pH values, 4 and 7.5, allow for the first time a more detailed experimental observation of individual components in the ensemble. The discussion involves earlier static and dynamic laser light scattering experiments and recent NMR derived translational diffusion results. The results bring new informations concerning the preparation of pharmaceutical formulation and in particular a role of Zn2+ ions. They also will enable better understanding and unifying the results of studies on insulin misfolding effects performed in solution by diverse physicochemical methods at different pH and concentration.
Collapse
Affiliation(s)
- Jerzy Sitkowski
- National Medicines Institute, Chełmska 30, 00-725, Warsaw, Poland
| | - Wojciech Bocian
- National Medicines Institute, Chełmska 30, 00-725, Warsaw, Poland
| | | | - Mateusz Urbańczyk
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Wiktor Koźmiński
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Piotr Borowicz
- Institute of Biotechnology and Antibiotics, Starościńska 5, 02-516, Warsaw, Poland
| | | | - Natalia Łukasiewicz
- Institute of Biotechnology and Antibiotics, Starościńska 5, 02-516, Warsaw, Poland
| | - Iwona Sokołowska
- Institute of Biotechnology and Antibiotics, Starościńska 5, 02-516, Warsaw, Poland
| | - Lech Kozerski
- National Medicines Institute, Chełmska 30, 00-725, Warsaw, Poland.
| |
Collapse
|
23
|
Yunn NO, Kim J, Kim Y, Leibiger I, Berggren PO, Ryu SH. Mechanistic understanding of insulin receptor modulation: Implications for the development of anti-diabetic drugs. Pharmacol Ther 2018; 185:86-98. [DOI: 10.1016/j.pharmthera.2017.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Chen K, Park J, Li F, Patil SM, Keire DA. Chemometric Methods to Quantify 1D and 2D NMR Spectral Differences Among Similar Protein Therapeutics. AAPS PharmSciTech 2018; 19:1011-1019. [PMID: 29110294 DOI: 10.1208/s12249-017-0911-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/18/2017] [Indexed: 11/30/2022] Open
Abstract
NMR spectroscopy is an emerging analytical tool for measuring complex drug product qualities, e.g., protein higher order structure (HOS) or heparin chemical composition. Most drug NMR spectra have been visually analyzed; however, NMR spectra are inherently quantitative and multivariate and thus suitable for chemometric analysis. Therefore, quantitative measurements derived from chemometric comparisons between spectra could be a key step in establishing acceptance criteria for a new generic drug or a new batch after manufacture change. To measure the capability of chemometric methods to differentiate comparator NMR spectra, we calculated inter-spectra difference metrics on 1D/2D spectra of two insulin drugs, Humulin R® and Novolin R®, from different manufacturers. Both insulin drugs have an identical drug substance but differ in formulation. Chemometric methods (i.e., principal component analysis (PCA), 3-way Tucker3 or graph invariant (GI)) were performed to calculate Mahalanobis distance (D M) between the two brands (inter-brand) and distance ratio (D R) among the different lots (intra-brand). The PCA on 1D inter-brand spectral comparison yielded a D M value of 213. In comparing 2D spectra, the Tucker3 analysis yielded the highest differentiability value (D M = 305) in the comparisons made followed by PCA (D M = 255) then the GI method (D M = 40). In conclusion, drug quality comparisons among different lots might benefit from PCA on 1D spectra for rapidly comparing many samples, while higher resolution but more time-consuming 2D-NMR-data-based comparisons using Tucker3 analysis or PCA provide a greater level of assurance for drug structural similarity evaluation between drug brands.
Collapse
|
25
|
Mukherjee M, Jana J, Chatterjee S. A Small Molecule Impedes Insulin Fibrillation: Another New Role of Phenothiazine Derivatives. ChemistryOpen 2018; 7:68-79. [PMID: 29318099 PMCID: PMC5754551 DOI: 10.1002/open.201700131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/24/2017] [Indexed: 11/16/2022] Open
Abstract
Protein misfolding is interrelated to several diseases, including neurodegenerative diseases and type II diabetes. Misfolded/unfolded proteins produce soluble oligomers that accumulate into "amyloid plaques". Inhibition of amyloid-plaque formation by those misfolded/unfolded proteins will lead to the invention of new therapeutic approaches for amyloid-related diseases. Herein, methylene blue (MB), a well-defined drug against multiple diseases and disorders, is used to impede insulin fibrillation. In this study, we perform an array of in vitro experiments to monitor the effects of MB on the fibrillation of bovine insulin. Our results confirm that MB distresses the kinetics of insulin fibrillation by interacting with insulin in its monomeric form. A thioflavin T assay indicates that insulin fibrillation is interrupted upon the addition of MB. The same results are confirmed by circular dichroism, dynamic light scattering (DLS), and size-exclusion chromatography (SEC). According to the DLS data, the insulin fibrils are 800 nm in diameter, and the addition of MB reduces the size of the fibrils, which remain 23 nm in size, and this indicates that no fibrillation of insulin occurs in the presence of MB. This data is also supported by SEC. Saturation transfer difference NMR spectroscopy and molecular dynamics simulations demonstrate the interactions between insulin and MB at the atomic level.
Collapse
Affiliation(s)
- Meghomukta Mukherjee
- Department of BiophysicsBose Institute, P 1/12 CIT, Scheme VII MKankurgachiKolkata700054India
| | - Jagannath Jana
- Department of BiophysicsBose Institute, P 1/12 CIT, Scheme VII MKankurgachiKolkata700054India
| | - Subhrangsu Chatterjee
- Department of BiophysicsBose Institute, P 1/12 CIT, Scheme VII MKankurgachiKolkata700054India
| |
Collapse
|
26
|
Patil SM, Keire DA, Chen K. Comparison of NMR and Dynamic Light Scattering for Measuring Diffusion Coefficients of Formulated Insulin: Implications for Particle Size Distribution Measurements in Drug Products. AAPS J 2017; 19:1760-1766. [PMID: 28791599 PMCID: PMC6058974 DOI: 10.1208/s12248-017-0127-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/20/2017] [Indexed: 11/30/2022] Open
Abstract
Particle size distribution, a measurable physicochemical quantity, is a critical quality attribute of drug products that needs to be controlled in drug manufacturing. The non-invasive methods of dynamic light scattering (DLS) and Diffusion Ordered SpectroscopY (DOSY) NMR can be used to measure diffusion coefficient and derive the corresponding hydrodynamic radius. However, little is known about their use and sensitivity as analytical tools for particle size measurement of formulated protein therapeutics. Here, DLS and DOSY-NMR methods are shown to be orthogonal and yield identical diffusion coefficient results for a homogenous monomeric protein standard, ribonuclease A. However, different diffusion coefficients were observed for five insulin drug products measured using the two methods. DOSY-NMR yielded an averaged diffusion coefficient among fast exchanging insulin oligomers, ranging between dimer and hexamer in size. By contrast, DLS showed several distinct species, including dimer, hexamer, dodecamer and other aggregates. The heterogeneity or polydisperse nature of insulin oligomers in formulation caused DOSY-NMR and DLS results to differ from each other. DLS measurements provided more quality attributes and higher sensitivity to larger aggregates than DOSY-NMR. Nevertheless, each method was sensitive to a different range of particle sizes and complemented each other. The application of both methods increases the assurance of complex drug quality in this similarity comparison.
Collapse
Affiliation(s)
- Sharadrao M Patil
- Division of Pharmaceutical Analysis, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - David A Keire
- Division of Pharmaceutical Analysis, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, St. Louis, Missouri, USA
| | - Kang Chen
- Division of Pharmaceutical Analysis, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, 20993, USA.
| |
Collapse
|
27
|
Mawhinney MT, Williams TL, Hart JL, Taheri ML, Urbanc B. Elucidation of insulin assembly at acidic and neutral pH: Characterization of low molecular weight oligomers. Proteins 2017; 85:2096-2110. [PMID: 28796342 DOI: 10.1002/prot.25365] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/18/2017] [Accepted: 07/26/2017] [Indexed: 12/13/2022]
Abstract
Deficiency in insulin secretion and function that characterize type 2 diabetes often requires administration of extraneous insulin, leading to injection-site amyloidosis. Insulin aggregation at neutral pH is not well understood. Although oligomer formation is believed to play an important role, insulin oligomers have not been fully characterized yet. Here, we elucidate similarities and differences between in vitro insulin aggregation at acidic and neutral pH for a range of insulin concentrations (2.5-100 μM) by using kinetic thioflavin T fluorescence, circular dichroism, atomic force and electron microscopy imaging. Importantly, we characterize the size distribution of insulin oligomers at different assembly stages by the application of covalent cross-linking and gel electrophoresis. Our results show that at the earliest assembly stage, oligomers comprise up to 40% and 70% of soluble insulin at acidic and neutral pH, respectively. While the highest oligomer order increases with insulin concentration at acidic pH, the opposite tendency is observed at neutral pH, where oligomers up to heptamers are formed in 10 μM insulin. These findings suggest that oligomers may be on- and off-pathway assemblies for insulin at acidic and neutral pH, respectively. Agitation, which is required to induce insulin aggregation at neutral pH, is shown to increase fibril formation rate and fibrillar mass both by an order of magnitude. Insulin incubated under agitated conditions at neutral pH rapidly aggregates into large micrometer-sized aggregates, which may be of physiological relevance and provides insight into injection-site amyloidosis and toxic pulmonary aggregates induced by administration of extraneous insulin.
Collapse
Affiliation(s)
| | - Thomas L Williams
- Department of Physics, Drexel University, Philadelphia, PA, USA.,Clarivate Analytics, 1500 Spring Garden Street, Philadelphia, PA, USA
| | - James L Hart
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, USA
| | - Mitra L Taheri
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, USA
| | - Brigita Urbanc
- Department of Physics, Drexel University, Philadelphia, PA, USA.,Faculty of Mathematics and Physics, Jadranska ulica 19, Ljubljana, 1000, Slovenia
| |
Collapse
|
28
|
Rapid-Acting and Human Insulins: Hexamer Dissociation Kinetics upon Dilution of the Pharmaceutical Formulation. Pharm Res 2017; 34:2270-2286. [PMID: 28762200 PMCID: PMC5643355 DOI: 10.1007/s11095-017-2233-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/18/2017] [Indexed: 11/22/2022]
Abstract
Purpose Comparison of the dissociation kinetics of rapid-acting insulins lispro, aspart, glulisine and human insulin under physiologically relevant conditions. Methods Dissociation kinetics after dilution were monitored directly in terms of the average molecular mass using combined static and dynamic light scattering. Changes in tertiary structure were detected by near-UV circular dichroism. Results Glulisine forms compact hexamers in formulation even in the absence of Zn2+. Upon severe dilution, these rapidly dissociate into monomers in less than 10 s. In contrast, in formulations of lispro and aspart, the presence of Zn2+ and phenolic compounds is essential for formation of compact R6 hexamers. These slowly dissociate in times ranging from seconds to one hour depending on the concentration of phenolic additives. The disadvantage of the long dissociation times of lispro and aspart can be diminished by a rapid depletion of the concentration of phenolic additives independent of the insulin dilution. This is especially important in conditions similar to those after subcutaneous injection, where only minor dilution of the insulins occurs. Conclusion Knowledge of the diverging dissociation mechanisms of lispro and aspart compared to glulisine will be helpful for optimizing formulation conditions of rapid-acting insulins. Electronic supplementary material The online version of this article (doi:10.1007/s11095-017-2233-0) contains supplementary material, which is available to authorized users.
Collapse
|
29
|
Palivec V, Viola CM, Kozak M, Ganderton TR, Křížková K, Turkenburg JP, Haluŝková P, Žáková L, Jiráĉek J, Jungwirth P, Brzozowski AM. Computational and structural evidence for neurotransmitter-mediated modulation of the oligomeric states of human insulin in storage granules. J Biol Chem 2017; 292:8342-8355. [PMID: 28348075 PMCID: PMC5437240 DOI: 10.1074/jbc.m117.775924] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/23/2017] [Indexed: 11/23/2022] Open
Abstract
Human insulin is a pivotal protein hormone controlling metabolism, growth, and aging and whose malfunctioning underlies diabetes, some cancers, and neurodegeneration. Despite its central position in human physiology, the in vivo oligomeric state and conformation of insulin in its storage granules in the pancreas are not known. In contrast, many in vitro structures of hexamers of this hormone are available and fall into three conformational states: T6, T3Rf3, and R6 As there is strong evidence for accumulation of neurotransmitters, such as serotonin and dopamine, in insulin storage granules in pancreatic β-cells, we probed by molecular dynamics (MD) and protein crystallography (PC) if these endogenous ligands affect and stabilize insulin oligomers. Parallel studies independently converged on the observation that serotonin binds well within the insulin hexamer (site I), stabilizing it in the T3R3 conformation. Both methods indicated serotonin binding on the hexamer surface (site III) as well. MD, but not PC, indicated that dopamine was also a good site III ligand. Some of the PC studies also included arginine, which may be abundant in insulin granules upon processing of pro-insulin, and stable T3R3 hexamers loaded with both serotonin and arginine were obtained. The MD and PC results were supported further by in solution spectroscopic studies with R-state-specific chromophore. Our results indicate that the T3R3 oligomer is a plausible insulin pancreatic storage form, resulting from its complex interplay with neurotransmitters, and pro-insulin processing products. These findings may have implications for clinical insulin formulations.
Collapse
Affiliation(s)
- Vladimír Palivec
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám 2, 166 10 Prague 6, Czech Republic
| | - Cristina M Viola
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Mateusz Kozak
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Timothy R Ganderton
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Květoslava Křížková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám 2, 166 10 Prague 6, Czech Republic
| | - Johan P Turkenburg
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Petra Haluŝková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám 2, 166 10 Prague 6, Czech Republic
| | - Lenka Žáková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám 2, 166 10 Prague 6, Czech Republic
| | - Jiří Jiráĉek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám 2, 166 10 Prague 6, Czech Republic.
| | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám 2, 166 10 Prague 6, Czech Republic.
| | - Andrzej M Brzozowski
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom.
| |
Collapse
|
30
|
Structure and pharmaceutical formulation development of a new long-acting recombinant human insulin analog studied by NMR and MS. J Pharm Biomed Anal 2017; 135:126-132. [DOI: 10.1016/j.jpba.2016.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/29/2016] [Accepted: 12/02/2016] [Indexed: 11/20/2022]
|
31
|
El Hage K, Pandyarajan V, Phillips NB, Smith BJ, Menting JG, Whittaker J, Lawrence MC, Meuwly M, Weiss MA. Extending Halogen-based Medicinal Chemistry to Proteins: IODO-INSULIN AS A CASE STUDY. J Biol Chem 2016; 291:27023-27041. [PMID: 27875310 PMCID: PMC5207135 DOI: 10.1074/jbc.m116.761015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/31/2016] [Indexed: 12/13/2022] Open
Abstract
Insulin, a protein critical for metabolic homeostasis, provides a classical model for protein design with application to human health. Recent efforts to improve its pharmaceutical formulation demonstrated that iodination of a conserved tyrosine (TyrB26) enhances key properties of a rapid-acting clinical analog. Moreover, the broad utility of halogens in medicinal chemistry has motivated the use of hybrid quantum- and molecular-mechanical methods to study proteins. Here, we (i) undertook quantitative atomistic simulations of 3-[iodo-TyrB26]insulin to predict its structural features, and (ii) tested these predictions by X-ray crystallography. Using an electrostatic model of the modified aromatic ring based on quantum chemistry, the calculations suggested that the analog, as a dimer and hexamer, exhibits subtle differences in aromatic-aromatic interactions at the dimer interface. Aromatic rings (TyrB16, PheB24, PheB25, 3-I-TyrB26, and their symmetry-related mates) at this interface adjust to enable packing of the hydrophobic iodine atoms within the core of each monomer. Strikingly, these features were observed in the crystal structure of a 3-[iodo-TyrB26]insulin analog (determined as an R6 zinc hexamer). Given that residues B24-B30 detach from the core on receptor binding, the environment of 3-I-TyrB26 in a receptor complex must differ from that in the free hormone. Based on the recent structure of a "micro-receptor" complex, we predict that 3-I-TyrB26 engages the receptor via directional halogen bonding and halogen-directed hydrogen bonding as follows: favorable electrostatic interactions exploiting, respectively, the halogen's electron-deficient σ-hole and electronegative equatorial band. Inspired by quantum chemistry and molecular dynamics, such "halogen engineering" promises to extend principles of medicinal chemistry to proteins.
Collapse
Affiliation(s)
- Krystel El Hage
- From the Department of Chemistry, University of Basel, Klingelbergstrasse 80 CH-4056 Basel, Switzerland
| | | | | | - Brian J Smith
- the La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - John G Menting
- the The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia, and
| | | | - Michael C Lawrence
- the The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia, and
- the Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Markus Meuwly
- From the Department of Chemistry, University of Basel, Klingelbergstrasse 80 CH-4056 Basel, Switzerland,
| | - Michael A Weiss
- the Departments of Biochemistry,
- Medicine, and
- Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
32
|
Mohanty J, Shinde MN, Barooah N, Bhasikuttan AC. Reversible Insulin Hexamer Assembly Promoted by Ethyl Violet: pH-Controlled Uptake and Release. J Phys Chem Lett 2016; 7:3978-3983. [PMID: 27661257 DOI: 10.1021/acs.jpclett.6b01745] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Therapeutically improved long-acting insulin preparations require in-depth understanding of the hexamer assembly, structural selectivity, and its stability in solution. This Letter demonstrates, for the first time, an efficient method for the hexamerization of human insulin by a structure-specific triphenylmethane (TPM) dye, Ethyl Violet (EV), particularly, in the absence of Zn2+. Upon detailed spectroscopic evaluation and comparison with other TPM homologues, we establish that the diethylamino phenyl arms of EV are specific and effective in clipping the three dimer helices in a hexameric assembly. We establish that at physiological pH 7.4 and in the presence of the EV, insulin exists predominantly in its hexameric form, a condition appropriate for storage and preparation of long-acting insulin formulations. On the other hand, the disassembly of the hexamer into the monomeric form is accomplished at pH 5, highlighting its potential as a delivery vehicle for such custom-modified dyes/drugs.
Collapse
Affiliation(s)
- Jyotirmayee Mohanty
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre , Mumbai 400 085, India
- Homi Bhabha National Institute , Training School Complex, Anushaktinagar, Mumbai 400 094, India
| | - Meenakshi N Shinde
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre , Mumbai 400 085, India
- Student, BARC-SPPU PhD Program, Department of Chemistry, Savitribai Phule Pune University , Pune 411 007, India
| | - Nilotpal Barooah
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre , Mumbai 400 085, India
| | - Achikanath C Bhasikuttan
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre , Mumbai 400 085, India
- Homi Bhabha National Institute , Training School Complex, Anushaktinagar, Mumbai 400 094, India
| |
Collapse
|
33
|
Simon DT, Gabrielsson EO, Tybrandt K, Berggren M. Organic Bioelectronics: Bridging the Signaling Gap between Biology and Technology. Chem Rev 2016; 116:13009-13041. [PMID: 27367172 DOI: 10.1021/acs.chemrev.6b00146] [Citation(s) in RCA: 238] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The electronics surrounding us in our daily lives rely almost exclusively on electrons as the dominant charge carrier. In stark contrast, biological systems rarely use electrons but rather use ions and molecules of varying size. Due to the unique combination of both electronic and ionic/molecular conductivity in conducting and semiconducting organic polymers and small molecules, these materials have emerged in recent decades as excellent tools for translating signals between these two realms and, therefore, providing a means to effectively interface biology with conventional electronics-thus, the field of organic bioelectronics. Today, organic bioelectronics defines a generic platform with unprecedented biological recording and regulation tools and is maturing toward applications ranging from life sciences to the clinic. In this Review, we introduce the field, from its early breakthroughs to its current results and future challenges.
Collapse
Affiliation(s)
- Daniel T Simon
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University , 60174 Norrköping, Sweden
| | - Erik O Gabrielsson
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University , 60174 Norrköping, Sweden
| | - Klas Tybrandt
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University , 60174 Norrköping, Sweden.,Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich , 8092 Zürich, Switzerland
| | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University , 60174 Norrköping, Sweden
| |
Collapse
|
34
|
Roy M, Roy S, Singh KS, Kalita J, Singh SS. Synthesis, characterisation and anti-diabetic activities of triorganotin(IV) azo-carboxylates derived from amino benzoic acids and resorcinol: Crystal structure and topological study of a 48 membered macrocyclic-tetrameric trimethyltin(IV) complex. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2015.10.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
35
|
Nedumpully-Govindan P, Yang Y, Andorfer R, Cao W, Ding F. Promotion or Inhibition of Islet Amyloid Polypeptide Aggregation by Zinc Coordination Depends on Its Relative Concentration. Biochemistry 2015; 54:7335-44. [DOI: 10.1021/acs.biochem.5b00891] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Ye Yang
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Rachel Andorfer
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| | - Weiguo Cao
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
36
|
Dutta C, Yang M, Long F, Shahbazian-Yassar R, Tiwari A. Preformed Seeds Modulate Native Insulin Aggregation Kinetics. J Phys Chem B 2015; 119:15089-99. [DOI: 10.1021/acs.jpcb.5b07221] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Colina Dutta
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Mu Yang
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Fei Long
- Department
of Mechanical Engineering, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Reza Shahbazian-Yassar
- Department
of Mechanical Engineering, Michigan Technological University, Houghton, Michigan 49931, United States
- Department
of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Ashutosh Tiwari
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
37
|
Li Z, Zhang Y, Lu D, Liu Z. Uniform mPEG- b-PMETAC enables pH-responsive delivery of insulin. J Appl Polym Sci 2015. [DOI: 10.1002/app.42596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zongjun Li
- Key Lab for Industrial Biocatalysis; Ministry of Education; Department of Chemical Engineering; Tsinghua University; Beijing 100084 China
| | - Yifei Zhang
- Key Lab for Industrial Biocatalysis; Ministry of Education; Department of Chemical Engineering; Tsinghua University; Beijing 100084 China
| | - Diannan Lu
- Key Lab for Industrial Biocatalysis; Ministry of Education; Department of Chemical Engineering; Tsinghua University; Beijing 100084 China
| | - Zheng Liu
- Key Lab for Industrial Biocatalysis; Ministry of Education; Department of Chemical Engineering; Tsinghua University; Beijing 100084 China
| |
Collapse
|
38
|
Taraban MB, Truong HC, Feng Y, Jouravleva EV, Anisimov MA, Yu YB. Water Proton NMR for In Situ Detection of Insulin Aggregates. J Pharm Sci 2015; 104:4132-4141. [PMID: 26344698 DOI: 10.1002/jps.24633] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/14/2015] [Accepted: 08/17/2015] [Indexed: 12/24/2022]
Abstract
The need for quality control during the manufacturing and distribution of biopharmaceuticals is becoming increasingly necessary. At present, detecting drug degradation through the monitoring of active factor aggregation is accomplished through "invasive" techniques, such as size-exclusion chromatography (SEC), analytical ultracentrifugation (AUC), and so on. Unfortunately, these analytical methods require sampling the drug by opening the drug container that renders the remaining drug unusable regardless of the outcome of the test. Visual inspection, the current non-invasive quality control method is qualitative and can only detect visible particulates. Thus, it will miss sub-visible protein aggregates. In this paper, human insulin preparations were used to demonstrate that the transverse relaxation rate of water protons R2 ((1) H2 O) can serve as a sensitive and reliable indicator to detect and quantify both visible and sub-visible protein aggregates. R2 ((1) H2 O) is measured using a wide-bore low-field bench-top NMR instrument with permanent magnets. Such analysis could be carried out without opening the drug container, thus saving a drug for further use. The results suggest a novel, economical, non-destructive in situ analytical technique that allows for on-the-site quantification of protein aggregation in biopharmaceutical products.
Collapse
Affiliation(s)
- Marc B Taraban
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201
| | - Huy C Truong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201
| | - Yue Feng
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201
| | - Elena V Jouravleva
- Light Scattering Center, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742
| | - Mikhail A Anisimov
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742
| | - Yihua Bruce Yu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201.
| |
Collapse
|
39
|
Watanabe S, Watarai H. Acceleration of Insulin Amyloid Fibrillation at Liquid–Liquid Interfaces. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2015. [DOI: 10.1246/bcsj.20150058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Shiori Watanabe
- Department of Chemistry, Graduate School of Science, Osaka University
| | | |
Collapse
|
40
|
Vashisth H. Theoretical and computational studies of peptides and receptors of the insulin family. MEMBRANES 2015; 5:48-83. [PMID: 25680077 PMCID: PMC4384091 DOI: 10.3390/membranes5010048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 01/28/2015] [Indexed: 01/05/2023]
Abstract
Synergistic interactions among peptides and receptors of the insulin family are required for glucose homeostasis, normal cellular growth and development, proliferation, differentiation and other metabolic processes. The peptides of the insulin family are disulfide-linked single or dual-chain proteins, while receptors are ligand-activated transmembrane glycoproteins of the receptor tyrosine kinase (RTK) superfamily. Binding of ligands to the extracellular domains of receptors is known to initiate signaling via activation of intracellular kinase domains. While the structure of insulin has been known since 1969, recent decades have seen remarkable progress on the structural biology of apo and liganded receptor fragments. Here, we review how this useful structural information (on ligands and receptors) has enabled large-scale atomically-resolved simulations to elucidate the conformational dynamics of these biomolecules. Particularly, applications of molecular dynamics (MD) and Monte Carlo (MC) simulation methods are discussed in various contexts, including studies of isolated ligands, apo-receptors, ligand/receptor complexes and intracellular kinase domains. The review concludes with a brief overview and future outlook for modeling and computational studies in this family of proteins.
Collapse
Affiliation(s)
- Harish Vashisth
- Department of Chemical Engineering, University of New Hampshire, 33 Academic Way, Durham, NH 03824, USA.
| |
Collapse
|
41
|
Boga Raja UK, Injeti S, Culver T, McCabe JW, Angel LA. Probing the stability of insulin oligomers using electrospray ionization ion mobility mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2015; 21:759-774. [PMID: 26764306 DOI: 10.1255/ejms.1396] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The peptide hormone insulin is central to regulating carbohydrate and fat metabolism in the body by controlling blood sugar levels. Insulin's most active form is the monomer and the extent of insulin oligomerization is related to insulin's activity of controlling blood sugar levels. Electrospray ionization (ESI) of human insulin produced a series of oligomers from the monomer to the undecamer identified using quadrupole ion mobility time-of-flight mass spectrometry. Previous research suggested that only the monomer, dimer and hexamer are native forms of insulin in solution and the range of oligomers observed in the gas-phase are ESI artifacts. Here the properties of three distinct oligomer bands I, II and III, where both the charge state and number of insulin units of the oligomer increase incrementally, were investigated. When Zn(ii) was added to the insulin sample the same oligomers were observed but with 0-6 Zn(ii) ions bound to each of the oligomers. The oligomers of bands I, II and III were characterized by comparing their drift times, collision cross- sections, relative intensities, collision-induced dissociation (CID) patterns and relative breakdown energies. Insulin oligomers of band I dissociated primarily by releasing either the 2+ or 3+ monomer accompanied by an oligomer that conserved the mass, charge and Zn(ii) of the precursor. Insulin oligomers of bands II and III dissociated primarily by releasing the 2+ monomer accompanied by an oligomer which conserved the mass, charge and Zn(ii) of the precursor. Comparison of CID patterns and breakdown energies showed all the oligomers in band II required higher collision energies to dissociate than the oligomers in band I, and the oligomers of band III required higher energies to dissociate than oligomers of band II. These results show that the amount of excess charge on the oligomer in respect to the number of insulin monomers in the oligomer affects their stability.
Collapse
Affiliation(s)
- Uday Kumar Boga Raja
- Chemistry Department, Texas A&M University - Commerce, P.O. Box 3011, Commerce, TX 75429, USA.
| | - Srilakshmi Injeti
- Chemistry Department, Texas A&M University - Commerce, P.O. Box 3011, Commerce, TX 75429, USA.
| | - Tiffany Culver
- Chemistry Department, Texas A&M University - Commerce, P.O. Box 3011, Commerce, TX 75429, USA.
| | - Jacob W McCabe
- Chemistry Department, Texas A&M University - Commerce, P.O. Box 3011, Commerce, TX 75429, USA.
| | - Laurence A Angel
- Chemistry Department, Texas A&M University - Commerce, P.O. Box 3011, Commerce, TX 75429, USA.
| |
Collapse
|
42
|
Gladytz A, Lugovoy E, Charvat A, Häupl T, Siefermann KR, Abel B. Intermediates caught in the act: tracing insulin amyloid fibril formation in time by combined optical spectroscopy, light scattering, mass spectrometry and microscopy. Phys Chem Chem Phys 2015; 17:918-27. [DOI: 10.1039/c4cp03072a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Insulin under acidic conditions. PDB-Databank structure visualized with VMD.
Collapse
Affiliation(s)
- A. Gladytz
- Leibniz-Institute of Surface Modification (IOM)
- 04318 Leipzig
- Germany
| | - E. Lugovoy
- Leibniz-Institute of Surface Modification (IOM)
- 04318 Leipzig
- Germany
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie
- Universität Leipzig
| | - A. Charvat
- Leibniz-Institute of Surface Modification (IOM)
- 04318 Leipzig
- Germany
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie
- Universität Leipzig
| | - T. Häupl
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie
- Universität Leipzig
- 04103 Leipzig
- Germany
| | - K. R. Siefermann
- Leibniz-Institute of Surface Modification (IOM)
- 04318 Leipzig
- Germany
| | - B. Abel
- Leibniz-Institute of Surface Modification (IOM)
- 04318 Leipzig
- Germany
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie
- Universität Leipzig
| |
Collapse
|
43
|
Insaidoo FK, Rauscher MA, Smithline SJ, Kaarsholm NC, Feuston BP, Ortigosa AD, Linden TO, Roush DJ. Targeted purification development enabled by computational biophysical modeling. Biotechnol Prog 2014; 31:154-64. [DOI: 10.1002/btpr.2023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 12/02/2014] [Indexed: 01/12/2023]
Affiliation(s)
| | | | | | - Niels C. Kaarsholm
- Merck Research Laboratories, Merck & Co., Inc; Whitehouse Station NJ 08889
| | - Bradley P. Feuston
- Merck Research Laboratories, Merck & Co., Inc; Whitehouse Station NJ 08889
| | | | - Thomas O. Linden
- Merck Research Laboratories, Merck & Co., Inc; Whitehouse Station NJ 08889
| | - David J. Roush
- Merck Research Laboratories, Merck & Co., Inc; Whitehouse Station NJ 08889
| |
Collapse
|
44
|
Mo R, Jiang T, Di J, Tai W, Gu Z. Emerging micro- and nanotechnology based synthetic approaches for insulin delivery. Chem Soc Rev 2014; 43:3595-629. [PMID: 24626293 DOI: 10.1039/c3cs60436e] [Citation(s) in RCA: 276] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Insulin is essential for type 1 and advanced type 2 diabetics to maintain blood glucose levels and prolong lives. The traditional administration requires frequent subcutaneous insulin injections that are associated with poor patient compliance, including pain, local tissue necrosis, infection, and nerve damage. Taking advantage of emerging micro- and nanotechnologies, numerous alternative strategies integrated with chemical approaches for insulin delivery have been investigated. This review outlines recent developments in the controlled delivery of insulin, including oral, nasal, pulmonary, transdermal, subcutaneous and closed-loop insulin delivery. Perspectives from new materials, formulations and devices at the micro- or nano-scales are specifically surveyed. Advantages and limitations of current delivery methods, as well as future opportunities and challenges are also discussed.
Collapse
Affiliation(s)
- Ran Mo
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA.
| | | | | | | | | |
Collapse
|
45
|
Zastrow M, Pecoraro VL. Designing hydrolytic zinc metalloenzymes. Biochemistry 2014; 53:957-78. [PMID: 24506795 PMCID: PMC3985962 DOI: 10.1021/bi4016617] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 01/23/2014] [Indexed: 12/15/2022]
Abstract
Zinc is an essential element required for the function of more than 300 enzymes spanning all classes. Despite years of dedicated study, questions regarding the connections between primary and secondary metal ligands and protein structure and function remain unanswered, despite numerous mechanistic, structural, biochemical, and synthetic model studies. Protein design is a powerful strategy for reproducing native metal sites that may be applied to answering some of these questions and subsequently generating novel zinc enzymes. From examination of the earliest design studies introducing simple Zn(II)-binding sites into de novo and natural protein scaffolds to current studies involving the preparation of efficient hydrolytic zinc sites, it is increasingly likely that protein design will achieve reaction rates previously thought possible only for native enzymes. This Current Topic will review the design and redesign of Zn(II)-binding sites in de novo-designed proteins and native protein scaffolds toward the preparation of catalytic hydrolytic sites. After discussing the preparation of Zn(II)-binding sites in various scaffolds, we will describe relevant examples for reengineering existing zinc sites to generate new or altered catalytic activities. Then, we will describe our work on the preparation of a de novo-designed hydrolytic zinc site in detail and present comparisons to related designed zinc sites. Collectively, these studies demonstrate the significant progress being made toward building zinc metalloenzymes from the bottom up.
Collapse
Affiliation(s)
| | - Vincent L. Pecoraro
- Department of Chemistry, University
of Michigan, Ann Arbor, Michigan 48109, United
States
| |
Collapse
|
46
|
Nygaard SB, Larsen A, Knuhtsen A, Rungby J, Smidt K. Effects of zinc supplementation and zinc chelation on in vitro β-cell function in INS-1E cells. BMC Res Notes 2014; 7:84. [PMID: 24502363 PMCID: PMC3923740 DOI: 10.1186/1756-0500-7-84] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 02/04/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Zinc is essential for the activities of pancreatic β-cells, especially insulin storage and secretion. Insulin secretion leads to co-release of zinc which contributes to the paracrine communication in the pancreatic islets. Zinc-transporting proteins (zinc-regulated transporter, iron-regulated transporter-like proteins [ZIPs] and zinc transporters [ZnTs]) and metal-buffering proteins (metallothioneins, MTs) tightly regulate intracellular zinc homeostasis. The present study investigated how modulation of cellular zinc availability affects β-cell function using INS-1E cells. RESULTS Using INS-1E cells, we found that zinc supplementation and zinc chelation had significant effects on insulin content and insulin secretion. Supplemental zinc within the physiological concentration range induced insulin secretion. Insulin content was reduced by zinc chelation with N,N,N',N-tektrakis(2-pyridylmethyl)-ethylenediamine. The changes in intracellular insulin content following exposure to various concentrations of zinc were reflected by changes in the expression patterns of MT-1A, ZnT-8, ZnT-5, and ZnT-3. Furthermore, high zinc concentrations induced cell necrosis while zinc chelation induced apoptosis. Finally, cell proliferation was sensitive to changes in zinc the concentration. CONCLUSION These results indicate that the β-cell-like function and survival of INS-1E cells are dependent on the surrounding zinc concentrations. Our results suggest that regulation of zinc homeostasis could represent a pharmacological target.
Collapse
Affiliation(s)
- Sanne Bjørn Nygaard
- Department of Biomedicine, Centre of Pharmacology and Pharmacotherapy, Health, Aarhus University, Wilhelm Meyers Allé 4, Bld 1240, Aarhus, 8000, Denmark.
| | | | | | | | | |
Collapse
|
47
|
Mysling S, Salbo R, Ploug M, Jørgensen TJD. Electrochemical Reduction of Disulfide-Containing Proteins for Hydrogen/Deuterium Exchange Monitored by Mass Spectrometry. Anal Chem 2013; 86:340-5. [DOI: 10.1021/ac403269a] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Simon Mysling
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M DK-5230, Denmark
| | - Rune Salbo
- Protein
Technology, Novo Nordisk A/S, Novo Nordisk Park, Måløv DK-2760, Denmark
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet and Biotech Research
and Innovation Centre (BRIC), Copenhagen
Biocenter, Ole Maaløes Vej 5, Copenhagen N, DK-2200 Denmark
| | - Thomas J. D. Jørgensen
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M DK-5230, Denmark
| |
Collapse
|
48
|
Marek SR, Peppas NA. Insulin Release Dynamics from Poly(diethylaminoethyl methacrylate) Hydrogel Systems. AIChE J 2013; 59:3578-3585. [PMID: 24634515 DOI: 10.1002/aic.14108] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Novel glucose-sensitive systems for the release of insulin from poly(diethylaminoethyl methacrylate) (PDEAEM) micro-particles and nanoparticles decorated with glucose oxidase and catalase enzymes have been developed. The effect of polymer composition and loading conditions on the insulin loading efficiency and release was studied. The optimal conditions for loading insulin into PDEAEM microparticles were found to be at a loading pH of 5.6, particle to insulin mass ratio of 7:1, a concentration of 1.0 mg/mL insulin, and a collapsing pH of approximately 9.5. Microparticles exhibited a responsive (pH) or intelligent (glucose) release of insulin from a stimulus. Microparticles that had a nominal crosslinking ratio of 10% released a third of the insulin payload after a single stimulus, compared to nearly 70% for microparticles with a 3% crosslinking ratio. PDEAEM micro particles of 150 µm diameter showed promise as components of a system of automated, intelligent delivery method for insulin to type I diabetics.
Collapse
Affiliation(s)
- Steve R. Marek
- Dept. of Chemical Engineering; The University of Texas at Austin; Austin TX 78712
| | - Nicholas A. Peppas
- Dept. of Chemical Engineering; The University of Texas at Austin; Austin TX 78712
- Dept. of Biomedical Engineering; The University of Texas at Austin; Austin TX 78712
| |
Collapse
|
49
|
Banerjee V, Kar RK, Datta A, Parthasarathi K, Chatterjee S, Das KP, Bhunia A. Use of a small peptide fragment as an inhibitor of insulin fibrillation process: a study by high and low resolution spectroscopy. PLoS One 2013; 8:e72318. [PMID: 24009675 PMCID: PMC3756998 DOI: 10.1371/journal.pone.0072318] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/10/2013] [Indexed: 01/13/2023] Open
Abstract
A non-toxic, nine residue peptide, NIVNVSLVK is shown to interfere with insulin fibrillation by various biophysical methods. Insulin undergoes conformational changes under certain stress conditions leading to amyloid fibrils. Fibrillation of insulin poses a problem in its long-term storage, reducing its efficacy in treating type II diabetes. The dissociation of insulin oligomer to monomer is the key step for the onset of fibrillation. The time course of insulin fibrillation at 62°C using Thioflavin T fluorescence shows an increase in the lag time from 120 min without peptide to 236 min with peptide. Transmission electron micrographs show branched insulin fibrils in its absence and less inter-fibril association in its presence. Upon incubation at 62°C and pH 2.6, insulin lost some α-helical structure as seen by Fourier transformed infra-red spectroscopy (FT-IR), but if the peptide is added, secondary structure is almost fully maintained for 3 h, though lost partially at 4 h. FT-IR spectroscopy also shows that insulin forms the cross beta structure indicative of fibrils beyond 2 h, but in the presence of the peptide, α-helix retention is seen till 4 h. Both size exclusion chromatography and dynamic light scattering show that insulin primarily exists as trimer, whose conversion to a monomer is resisted by the peptide. Saturation transfer difference nuclear magnetic resonance confirms that the hydrophobic residues in the peptide are in close contact with an insulin hydrophobic groove. Molecular dynamics simulations in conjunction with principal component analyses reveal how the peptide interrupts insulin fibrillation. In vitro hemolytic activity of the peptide showed insignificant cytotoxicity against HT1080 cells. The insulin aggregation is probed due to the inter play of two key residues, Phe(B24) and Tyr(B26) monitored from molecular dynamics simulations studies. Further new peptide based leads may be developed from this nine residue peptide.
Collapse
Affiliation(s)
| | - Rajiv K. Kar
- Biomolecular NMR and Drug Design Laboratory, Department of Biophysics, Bose Institute, Kolkata, India
| | - Aritreyee Datta
- Biomolecular NMR and Drug Design Laboratory, Department of Biophysics, Bose Institute, Kolkata, India
| | | | - Subhrangsu Chatterjee
- Biomolecular NMR and Drug Design Laboratory, Department of Biophysics, Bose Institute, Kolkata, India
| | - Kali P. Das
- Department of Chemistry, Bose Institute, Kolkata, India
| | - Anirban Bhunia
- Biomolecular NMR and Drug Design Laboratory, Department of Biophysics, Bose Institute, Kolkata, India
| |
Collapse
|
50
|
Wu W, Zhou S. Responsive materials for self-regulated insulin delivery. Macromol Biosci 2013; 13:1464-77. [PMID: 23839986 DOI: 10.1002/mabi.201300120] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 03/11/2013] [Indexed: 01/17/2023]
Abstract
With diabetes mellitus becoming an important public health concern, insulin-delivery systems are attracting increasing interest from both scientific and technological researchers. This feature article covers the present state-of-the-art glucose-responsive insulin-delivery system (denoted as GRIDS), based on responsive polymer materials, a promising system for self-regulated insulin delivery. Three types of GRIDS are discussed, based on different fundamental mechanisms of glucose-recognition, with: a) glucose enzyme, b) glucose binding protein, and c) synthetic boronic acid as the glucose-sensitive component. At the end, a personal perspective on the major issues yet to be worked out in future research is provided.
Collapse
Affiliation(s)
- Weitai Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | | |
Collapse
|