1
|
Luesch H, Ellis EK, Chen QY, Ratnayake R. Progress in the discovery and development of anticancer agents from marine cyanobacteria. Nat Prod Rep 2024. [PMID: 39620500 PMCID: PMC11610234 DOI: 10.1039/d4np00019f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Indexed: 12/11/2024]
Abstract
Covering 2010-April 2024There have been tremendous new discoveries and developments since 2010 in anticancer research based on marine cyanobacteria. Marine cyanobacteria are prolific sources of anticancer natural products, including the tubulin agents dolastatins 10 and 15 which were originally isolated from a mollusk that feeds on cyanobacteria. Decades of research have culminated in the approval of six antibody-drug conjugates (ADCs) and many ongoing clinical trials. Antibody conjugation has been enabling for several natural products, particularly cyanobacterial cytotoxins. Targeting tubulin dynamics has been a major strategy, leading to the discovery of the gatorbulin scaffold, acting on a new pharmacological site. Cyanobacterial compounds with different mechanisms of action (MOA), targeting novel or validated targets in a range of organelles, also show promise as anticancer agents. Important advances include the development of compounds with novel MOA, including apratoxin and coibamide A analogues, modulating cotranslational translocation at the level of Sec61 in the endoplasmic reticulum, largazole and santacruzamate A targeting class I histone deacetylases, and proteasome inhibitors based on carmaphycins, resembling the approved drug carfilzomib. The pipeline extends with SERCA inhibitors, mitochondrial cytotoxins and membrane-targeting agents, which have not yet advanced clinically since the biology is less understood and selectivity concerns remain to be addressed. In addition, efforts have also focused on the identification of chemosensitizing and antimetastatic agents. The review covers the state of current knowledge of marine cyanobacteria as anticancer agents with a focus on the mechanism, target identification and potential for drug development. We highlight the importance of solving the supply problem through chemical synthesis as well as illuminating the biological activity and in-depth mechanistic studies to increase the value of cyanobacterial natural products to catalyze their development.
Collapse
Affiliation(s)
- Hendrik Luesch
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, USA.
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Emma K Ellis
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, USA.
| | - Qi-Yin Chen
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, USA.
| | - Ranjala Ratnayake
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, USA.
| |
Collapse
|
2
|
Xi M, Zhu J, Zhang F, Shen H, Chen J, Xiao Z, Huangfu Y, Wu C, Sun H, Xia G. Antibody-drug conjugates for targeted cancer therapy: Recent advances in potential payloads. Eur J Med Chem 2024; 276:116709. [PMID: 39068862 DOI: 10.1016/j.ejmech.2024.116709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Antibody-drug conjugates (ADCs) represent a promising cancer therapy modality which specifically delivers highly toxic payloads to cancer cells through antigen-specific monoclonal antibodies (mAbs). To date, 15 ADCs have been approved and more than 100 ADC candidates have advanced to clinical trials for the treatment of various cancers. Among these ADCs, microtubule-targeting and DNA-damaging agents are at the forefront of payload development. However, several challenges including toxicity and drug resistance limit the potential of this modality. To tackle these issues, multiple innovative payloads such as immunomodulators and proteolysis targeting chimeras (PROTACs) are incorporated into ADCs to enable multimodal cancer therapy. In this review, we describe the mechanism of ADCs, highlight the importance of ADC payloads and summarize recent progresses of conventional and unconventional ADC payloads, trying to provide an insight into payload diversification as a key step in future ADC development.
Collapse
Affiliation(s)
- Meiyang Xi
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Jingjing Zhu
- NovoCodex Biopharmaceuticals Co. Ltd., Shaoxing, 312090, China
| | - Fengxia Zhang
- NovoCodex Biopharmaceuticals Co. Ltd., Shaoxing, 312090, China
| | - Hualiang Shen
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Jianhui Chen
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Ziyan Xiao
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Yanping Huangfu
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Chunlei Wu
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Haopeng Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China.
| | - Gang Xia
- NovoCodex Biopharmaceuticals Co. Ltd., Shaoxing, 312090, China
| |
Collapse
|
3
|
Li C, Shi K, Zhao S, Liu J, Zhai Q, Hou X, Xu J, Wang X, Liu J, Wu X, Fan W. Natural-source payloads used in the conjugated drugs architecture for cancer therapy: Recent advances and future directions. Pharmacol Res 2024; 207:107341. [PMID: 39134188 DOI: 10.1016/j.phrs.2024.107341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024]
Abstract
Drug conjugates are obtained from tumor-located vectors connected to cytotoxic agents via linkers, which are designed to deliver hyper-toxic payloads directly to targeted cancer cells. These drug conjugates include antibody-drug conjugates (ADCs), peptide-drug conjugates (PDCs), small molecule-drug conjugates (SMDCs), nucleic acid aptamer-drug conjugates (ApDCs), and virus-like drug conjugate (VDCs), which show great therapeutic value in the clinic. Drug conjugates consist of a targeting carrier, a linker, and a payload. Payloads are key therapy components. Cytotoxic molecules and their derivatives derived from natural products are commonly used in the payload portion of conjugates. The ideal payload should have sufficient toxicity, stability, coupling sites, and the ability to be released under specific conditions to kill tumor cells. Microtubule protein inhibitors, DNA damage agents, and RNA inhibitors are common cytotoxic molecules. Among these conjugates, cytotoxic molecules of natural origin are summarized based on their mechanism of action, conformational relationships, and the discovery of new derivatives. This paper also mentions some cytotoxic molecules that have the potential to be payloads. It also summarizes the latest technologies and novel conjugates developed in recent years to overcome the shortcomings of ADCs, PDCs, SMDCs, ApDCs, and VDCs. In addition, this paper summarizes the clinical trials conducted on conjugates of these cytotoxic molecules over the last five years. It provides a reference for designing and developing safer and more efficient conjugates.
Collapse
Affiliation(s)
- Cuiping Li
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Kourong Shi
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Siyuan Zhao
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Juan Liu
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Qiaoli Zhai
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Xiaoli Hou
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Jie Xu
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Xinyu Wang
- Shanghai Wei Er Lab, Shanghai 201707, China.
| | - Jiahui Liu
- Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China.
| | - Xin Wu
- Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China; Shanghai Wei Er Lab, Shanghai 201707, China.
| | - Wei Fan
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| |
Collapse
|
4
|
Nugumanova G, Ponomarev ED, Askarova S, Fasler-Kan E, Barteneva NS. Freshwater Cyanobacterial Toxins, Cyanopeptides and Neurodegenerative Diseases. Toxins (Basel) 2023; 15:toxins15030233. [PMID: 36977124 PMCID: PMC10057253 DOI: 10.3390/toxins15030233] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/13/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Cyanobacteria produce a wide range of structurally diverse cyanotoxins and bioactive cyanopeptides in freshwater, marine, and terrestrial ecosystems. The health significance of these metabolites, which include genotoxic- and neurotoxic agents, is confirmed by continued associations between the occurrence of animal and human acute toxic events and, in the long term, by associations between cyanobacteria and neurodegenerative diseases. Major mechanisms related to the neurotoxicity of cyanobacteria compounds include (1) blocking of key proteins and channels; (2) inhibition of essential enzymes in mammalian cells such as protein phosphatases and phosphoprotein phosphatases as well as new molecular targets such as toll-like receptors 4 and 8. One of the widely discussed implicated mechanisms includes a misincorporation of cyanobacterial non-proteogenic amino acids. Recent research provides evidence that non-proteinogenic amino acid BMAA produced by cyanobacteria have multiple effects on translation process and bypasses the proof-reading ability of the aminoacyl-tRNA-synthetase. Aberrant proteins generated by non-canonical translation may be a factor in neuronal death and neurodegeneration. We hypothesize that the production of cyanopeptides and non-canonical amino acids is a more general mechanism, leading to mistranslation, affecting protein homeostasis, and targeting mitochondria in eukaryotic cells. It can be evolutionarily ancient and initially developed to control phytoplankton communities during algal blooms. Outcompeting gut symbiotic microorganisms may lead to dysbiosis, increased gut permeability, a shift in blood-brain-barrier functionality, and eventually, mitochondrial dysfunction in high-energy demanding neurons. A better understanding of the interaction between cyanopeptides metabolism and the nervous system will be crucial to target or to prevent neurodegenerative diseases.
Collapse
Affiliation(s)
- Galina Nugumanova
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Eugene D Ponomarev
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Sholpan Askarova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Elizaveta Fasler-Kan
- Department of Pediatric Surgery, Children's Hospital, Inselspital Bern, University of Bern, 3010 Bern, Switzerland
| | - Natasha S Barteneva
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
- The Environment & Resource Efficiency Cluster (EREC), Nazarbayev University, Astana 010000, Kazakhstan
| |
Collapse
|
5
|
Ahari H, Nowruzi B, Anvar AA, Porzani SJ. The Toxicity Testing of Cyanobacterial Toxins In Vivo and In Vitro by Mouse Bioassay: A Review. Mini Rev Med Chem 2021; 22:1131-1151. [PMID: 34720080 DOI: 10.2174/1389557521666211101162030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 07/26/2021] [Accepted: 08/21/2021] [Indexed: 11/22/2022]
Abstract
Different biological methods based on bioactivity are available to detect cyanotoxins, including neurotoxicity, immunological interactions, hepatotoxicity, cytotoxicity, and enzymatic activity. The mouse bioassay is the first test employed in laboratory cultures, cell extracts, and water bloom materials to detect toxins. It is also used as a traditional method to estimate the LD50. Concerning the ease of access and low cost, it is the most common method for this purpose. In this method, a sample is injected intraperitoneally into adult mice, and accordingly, they are assayed and monitored for about 24 hours for toxic symptoms. The toxin can be detected using this method from minutes to a few hours; its type, e.g., hepatotoxin, neurotoxin, etc., can also be determined. However, this method is nonspecific, fails to detect low amounts, and cannot distinguish between homologues. Although the mouse bioassay is gradually replaced with new chemical and immunological methods, it is still the main technique to detect the bioactivity and efficacy of cyanotoxins using LD50 determined based on the survival time of animals exposed to the toxin. In addition, some countries oppose animal use in toxicity studies. However, high cost, ethical considerations, low-sensitivity, non-specificity, and prolonged processes persuade researchers to employ chemical and functional analysis techniques. The qualitative and quantitative analyses, as well as high specificity and sensitivity, are among the advantages of cytotoxicity tests to investigate cyanotoxins. The present study aimed at reviewing the results obtained from in-vitro and in-vivo investigations of the mouse bioassay to detect cyanotoxins, including microcystins, cylindrospermopsin, saxitoxins, etc.
Collapse
Affiliation(s)
- Hamed Ahari
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran. Iran
| | - Bahareh Nowruzi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran. Iran
| | - Amir Ali Anvar
- Department of Food Hygiene, Science and Research Branch, Islamic Azad University, Tehran. Iran
| | - Samaneh Jafari Porzani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran. Iran
| |
Collapse
|
6
|
Algal Toxic Compounds and Their Aeroterrestrial, Airborne and other Extremophilic Producers with Attention to Soil and Plant Contamination: A Review. Toxins (Basel) 2021; 13:toxins13050322. [PMID: 33946968 PMCID: PMC8145420 DOI: 10.3390/toxins13050322] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022] Open
Abstract
The review summarizes the available knowledge on toxins and their producers from rather disparate algal assemblages of aeroterrestrial, airborne and other versatile extreme environments (hot springs, deserts, ice, snow, caves, etc.) and on phycotoxins as contaminants of emergent concern in soil and plants. There is a growing body of evidence that algal toxins and their producers occur in all general types of extreme habitats, and cyanobacteria/cyanoprokaryotes dominate in most of them. Altogether, 55 toxigenic algal genera (47 cyanoprokaryotes) were enlisted, and our analysis showed that besides the “standard” toxins, routinely known from different waterbodies (microcystins, nodularins, anatoxins, saxitoxins, cylindrospermopsins, BMAA, etc.), they can produce some specific toxic compounds. Whether the toxic biomolecules are related with the harsh conditions on which algae have to thrive and what is their functional role may be answered by future studies. Therefore, we outline the gaps in knowledge and provide ideas for further research, considering, from one side, the health risk from phycotoxins on the background of the global warming and eutrophication and, from the other side, the current surge of interest which phycotoxins provoke due to their potential as novel compounds in medicine, pharmacy, cosmetics, bioremediation, agriculture and all aspects of biotechnological implications in human life.
Collapse
|
7
|
Zhang JN, Xia YX, Zhang HJ. Natural Cyclopeptides as Anticancer Agents in the Last 20 Years. Int J Mol Sci 2021; 22:3973. [PMID: 33921480 PMCID: PMC8068844 DOI: 10.3390/ijms22083973] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/24/2022] Open
Abstract
Cyclopeptides or cyclic peptides are polypeptides formed by ring closing of terminal amino acids. A large number of natural cyclopeptides have been reported to be highly effective against different cancer cells, some of which are renowned for their clinical uses. Compared to linear peptides, cyclopeptides have absolute advantages of structural rigidity, biochemical stability, binding affinity as well as membrane permeability, which contribute greatly to their anticancer potency. Therefore, the discovery and development of natural cyclopeptides as anticancer agents remains attractive to academic researchers and pharmaceutical companies. Herein, we provide an overview of anticancer cyclopeptides that were discovered in the past 20 years. The present review mainly focuses on the anticancer efficacies, mechanisms of action and chemical structures of cyclopeptides with natural origins. Additionally, studies of the structure-activity relationship, total synthetic strategies as well as bioactivities of natural cyclopeptides are also included in this article. In conclusion, due to their characteristic structural features, natural cyclopeptides have great potential to be developed as anticancer agents. Indeed, they can also serve as excellent scaffolds for the synthesis of novel derivatives for combating cancerous pathologies.
Collapse
Affiliation(s)
| | | | - Hong-Jie Zhang
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China; (J.-N.Z.); (Y.-X.X.)
| |
Collapse
|
8
|
Kedves O, Shahab D, Champramary S, Chen L, Indic B, Bóka B, Nagy VD, Vágvölgyi C, Kredics L, Sipos G. Epidemiology, Biotic Interactions and Biological Control of Armillarioids in the Northern Hemisphere. Pathogens 2021; 10:pathogens10010076. [PMID: 33467216 PMCID: PMC7830283 DOI: 10.3390/pathogens10010076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/11/2022] Open
Abstract
Armillarioids, including the genera Armillaria, Desarmillaria and Guyanagaster, represent white-rot specific fungal saprotrophs with soilborne pathogenic potentials on woody hosts. They propagate in the soil by root-like rhizomorphs, connecting between susceptible root sections of their hosts, and often forming extended colonies in native forests. Pathogenic abilities of Armillaria and Desarmillaria genets can readily manifest in compromised hosts, or hosts with full vigour can be invaded by virulent mycelia when exposed to a larger number of newly formed genets. Armillaria root rot-related symptoms are indicators of ecological imbalances in native forests and plantations at the rhizosphere levels, often related to abiotic environmental threats, and most likely unfavourable changes in the microbiome compositions in the interactive zone of the roots. The less-studied biotic impacts that contribute to armillarioid host infection include fungi and insects, as well as forest conditions. On the other hand, negative biotic impactors, like bacterial communities, antagonistic fungi, nematodes and plant-derived substances may find applications in the environment-friendly, biological control of armillarioid root diseases, which can be used instead of, or in combination with the classical, but frequently problematic silvicultural and chemical control measures.
Collapse
Affiliation(s)
- Orsolya Kedves
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (O.K.); (D.S.); (S.C.); (L.C.); (B.B.); (V.D.N.); (C.V.)
| | - Danish Shahab
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (O.K.); (D.S.); (S.C.); (L.C.); (B.B.); (V.D.N.); (C.V.)
| | - Simang Champramary
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (O.K.); (D.S.); (S.C.); (L.C.); (B.B.); (V.D.N.); (C.V.)
- Functional Genomics and Bioinformatics Group, Research Center for Forestry and Wood Industry, University of Sopron, Bajcsy-Zsilinszky str. 4., H-9400 Sopron, Hungary;
| | - Liqiong Chen
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (O.K.); (D.S.); (S.C.); (L.C.); (B.B.); (V.D.N.); (C.V.)
| | - Boris Indic
- Functional Genomics and Bioinformatics Group, Research Center for Forestry and Wood Industry, University of Sopron, Bajcsy-Zsilinszky str. 4., H-9400 Sopron, Hungary;
| | - Bettina Bóka
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (O.K.); (D.S.); (S.C.); (L.C.); (B.B.); (V.D.N.); (C.V.)
| | - Viktor Dávid Nagy
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (O.K.); (D.S.); (S.C.); (L.C.); (B.B.); (V.D.N.); (C.V.)
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (O.K.); (D.S.); (S.C.); (L.C.); (B.B.); (V.D.N.); (C.V.)
| | - László Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (O.K.); (D.S.); (S.C.); (L.C.); (B.B.); (V.D.N.); (C.V.)
- Correspondence: (L.K.); (G.S.); Tel.: +36-62-544516 (L.K.); +36-99-518769 (G.S.)
| | - György Sipos
- Functional Genomics and Bioinformatics Group, Research Center for Forestry and Wood Industry, University of Sopron, Bajcsy-Zsilinszky str. 4., H-9400 Sopron, Hungary;
- Correspondence: (L.K.); (G.S.); Tel.: +36-62-544516 (L.K.); +36-99-518769 (G.S.)
| |
Collapse
|
9
|
Cirillo M, Giacomini D. Molecular Delivery of Cytotoxic Agents via Integrin Activation. Cancers (Basel) 2021; 13:299. [PMID: 33467465 PMCID: PMC7830197 DOI: 10.3390/cancers13020299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/16/2022] Open
Abstract
Integrins are cell adhesion receptors overexpressed in tumor cells. A direct inhibition of integrins was investigated, but the best inhibitors performed poorly in clinical trials. A gained attention towards these receptors arouse because they could be target for a selective transport of cytotoxic agents. Several active-targeting systems have been developed to use integrins as a selective cell entrance for some antitumor agents. The aim of this review paper is to report on the most recent results on covalent conjugates between integrin ligands and antitumor drugs. Cytotoxic drugs thus conjugated through specific linker to integrin ligands, mainly RGD peptides, demonstrated that the covalent conjugates were more selective against tumor cells and hopefully with fewer side effects than the free drugs.
Collapse
Affiliation(s)
| | - Daria Giacomini
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum University of Bologna, Via Selmi 2, 40126 Bologna, Italy;
| |
Collapse
|
10
|
Polyzois A, Kirilovsky D, Dufat TH, Michel S. Effects of Modification of Light Parameters on the Production of Cryptophycin, Cyanotoxin with Potent Anticancer Activity, in Nostoc sp. Toxins (Basel) 2020; 12:toxins12120809. [PMID: 33371249 PMCID: PMC7766261 DOI: 10.3390/toxins12120809] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/03/2023] Open
Abstract
Cryptophycin-1 is a cyanotoxin produced by filamentous cyanobacteria. It has been evaluated as an anticancer agent with great potential. However, its synthesis provides insufficient yield for industrial use. An alternative solution for metabolite efficient production is to stress cyanobacteria by modifying the environmental conditions of the culture (Nostoc sp. ATCC 53789). Here, we examined the effects of light photoperiod, wavelength, and intensity. In light photoperiod, photoperiods 24:0 and 16:8 (light:dark) were tested while in wavelength, orange-red light was compared with blue. Medium, high, and very high light intensity experiments were performed to test the effect of light stress. For a 10-day period, growth was measured, metabolite concentration was calculated through HPLC, and the related curves were drawn. The differentiation of light wavelength had a major effect on the culture, as orange-red filter contributed to noticeable increase in both growth and doubled the cyanotoxin concentration in comparison to blue light. Remarkably, constant light provides higher cryptophycin yield, but slightly lower growth rate. Lastly, the microorganism prefers medium light intensities for both growth and metabolite expression. The combination of these optimal conditions would contribute to the further exploitation of cryptophycin.
Collapse
Affiliation(s)
- Alexandros Polyzois
- Produits Naturels, Analyse et Synthèse, Université de Paris, UMR CNRS 8038 CITCOM, Faculté de Pharmacie de Paris, 75006 Paris, France;
- Correspondence: (A.P.); (S.M.); Tel.: +33-153739803 (S.M.)
| | - Diana Kirilovsky
- Institute for Integrative Biology of the Cell (12BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France;
| | - Thi-hanh Dufat
- Produits Naturels, Analyse et Synthèse, Université de Paris, UMR CNRS 8038 CITCOM, Faculté de Pharmacie de Paris, 75006 Paris, France;
| | - Sylvie Michel
- Produits Naturels, Analyse et Synthèse, Université de Paris, UMR CNRS 8038 CITCOM, Faculté de Pharmacie de Paris, 75006 Paris, France;
- Correspondence: (A.P.); (S.M.); Tel.: +33-153739803 (S.M.)
| |
Collapse
|
11
|
Tiwari AK, Tiwari BS. Cyanotherapeutics: an emerging field for future drug discovery. APPLIED PHYCOLOGY 2020; 1:44-57. [DOI: 10.1080/26388081.2020.1744480] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 03/08/2020] [Indexed: 10/11/2024]
Affiliation(s)
- Anand Krishna Tiwari
- Genetics & Developmental Biology Laboratory, Department of Biological Sciences & Biotechnology, Institute of Advanced Research/IIAR, Gandhinagar, India
| | - Budhi Sagar Tiwari
- Plant Cell & Molecular Biology Laboratory Department of Biological Sciences & Biotechnology, Institute of Advanced Research/IIAR, Gandhinagar, India
| |
Collapse
|
12
|
Abstract
Continual increases in the human population and growing concerns related to the energy crisis, food security, disease outbreaks, global warming, and other environmental issues require a sustainable solution from nature. One of the promising resources is cyanobacteria, also known as blue-green algae. They require simple ingredients to grow and possess a relatively simple genome. Cyanobacteria are known to produce a wide variety of bioactive compounds. In addition, cyanobacteria’s remarkable growth rate enables its potential use in a wide range of applications in the fields of bioenergy, biotechnology, natural products, medicine, agriculture, and the environment. In this review, we have summarized the potential applications of cyanobacteria in different areas of science and development, especially related to their use in producing biofuels and other valuable co-products. We have also discussed the challenges that hinder such development at an industrial level and ways to overcome such obstacles.
Collapse
|
13
|
Patočka J, Strunecká A. The Most Important Microtubule Natural Inhibitors. ACTA MEDICA (HRADEC KRÁLOVÉ) 2019. [DOI: 10.14712/18059694.2019.137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Natural microtubule inhibitors represent chemically very variegated family of structures with strong effect on cytoskeletal functions and the use of them is one of the most frequent therapeutic strategies for carcinoma treatment. The survey of the most important natural microtubule inhibitors is summarized in this paper.
Collapse
|
14
|
Borbély A, Figueras E, Martins A, Esposito S, Auciello G, Monteagudo E, Di Marco A, Summa V, Cordella P, Perego R, Kemker I, Frese M, Gallinari P, Steinkühler C, Sewald N. Synthesis and Biological Evaluation of RGD⁻Cryptophycin Conjugates for Targeted Drug Delivery. Pharmaceutics 2019; 11:E151. [PMID: 30939768 PMCID: PMC6523311 DOI: 10.3390/pharmaceutics11040151] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 01/08/2023] Open
Abstract
Cryptophycins are potent tubulin polymerization inhibitors with picomolar antiproliferative potency in vitro and activity against multidrug-resistant (MDR) cancer cells. Because of neurotoxic side effects and limited efficacy in vivo, cryptophycin-52 failed as a clinical candidate in cancer treatment. However, this class of compounds has emerged as attractive payloads for tumor-targeting applications. In this study, cryptophycin was conjugated to the cyclopeptide c(RGDfK), targeting integrin αvβ₃, across the protease-cleavable Val-Cit linker and two different self-immolative spacers. Plasma metabolic stability studies in vitro showed that our selected payload displays an improved stability compared to the parent compound, while the stability of the conjugates is strongly influenced by the self-immolative moiety. Cathepsin B cleavage assays revealed that modifications in the linker lead to different drug release profiles. Antiproliferative effects of Arg-Gly-Asp (RGD)⁻cryptophycin conjugates were evaluated on M21 and M21-L human melanoma cell lines. The low nanomolar in vitro activity of the novel conjugates was associated with inferior selectivity for cell lines with different integrin αvβ₃ expression levels. To elucidate the drug delivery process, cryptophycin was replaced by an infrared dye and the obtained conjugates were studied by confocal microscopy.
Collapse
Affiliation(s)
- Adina Borbély
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, DE-33615 Bielefeld, Germany.
| | - Eduard Figueras
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, DE-33615 Bielefeld, Germany.
| | - Ana Martins
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, DE-33615 Bielefeld, Germany.
- Exiris s.r.l., Via di Castel Romano 100, IT-00128 Rome, Italy.
| | - Simone Esposito
- IRBM S.p.A, Via Pontina km. 30,600, IT-00071 Pomezia (Rome), Italy.
| | - Giulio Auciello
- IRBM S.p.A, Via Pontina km. 30,600, IT-00071 Pomezia (Rome), Italy.
| | - Edith Monteagudo
- IRBM S.p.A, Via Pontina km. 30,600, IT-00071 Pomezia (Rome), Italy.
| | | | - Vincenzo Summa
- IRBM S.p.A, Via Pontina km. 30,600, IT-00071 Pomezia (Rome), Italy.
| | - Paola Cordella
- Italfarmaco S.p.A., Via dei Lavoratori, 54, IT-20092 Cinisello Balsamo (Milano), Italy.
| | - Raffaella Perego
- Italfarmaco S.p.A., Via dei Lavoratori, 54, IT-20092 Cinisello Balsamo (Milano), Italy.
| | - Isabell Kemker
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, DE-33615 Bielefeld, Germany.
| | - Marcel Frese
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, DE-33615 Bielefeld, Germany.
| | - Paola Gallinari
- Exiris s.r.l., Via di Castel Romano 100, IT-00128 Rome, Italy.
| | - Christian Steinkühler
- Exiris s.r.l., Via di Castel Romano 100, IT-00128 Rome, Italy.
- Italfarmaco S.p.A., Via dei Lavoratori, 54, IT-20092 Cinisello Balsamo (Milano), Italy.
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, DE-33615 Bielefeld, Germany.
| |
Collapse
|
15
|
Jagannathan R. Characterization of Drug-like Chemical Space for Cytotoxic Marine Metabolites Using Multivariate Methods. ACS OMEGA 2019; 4:5402-5411. [PMID: 31179404 PMCID: PMC6550442 DOI: 10.1021/acsomega.8b01764] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/29/2018] [Indexed: 05/19/2023]
Abstract
In the last few decades, marine metabolites have been exploited to find commercially viable products in several areas. In this article, molecular descriptors [log P, mass, total polar surface area (TPSA), H-bond donor, H-bond acceptor, and the number of rotatable bonds] for the marine-derived cytotoxic metabolites were calculated and compared with marketed anticancer drugs to understand their position in the drug-like space. Marine-based cytotoxic metabolites are divided into highly toxic (HT) and moderately toxic (MT) classes. The marketed anticancer drugs complied well with Lipinski's rule of five for all molecular descriptors. The majority of HT and MT metabolites complied solely with H-bond donors and a number of rotatable bonds with the Lipinski cutoff values. Hierarchical cluster analysis (HCA) and principal component analysis (PCA) were also performed using 73 molecular descriptors on an ensemble of highly cytotoxic or moderately cytotoxic marine metabolites and the marketed reference drugs. The HCA results showed that 12% of marine metabolites clustered with the marketed anticancer drugs and many of them had structural scaffold homology. The PCA results revealed the presence of a clear distinction between the cytotoxic marine metabolites and the marketed anticancer drugs. Results indicate that mass, TPSA, and log P are the vital parameters and the careful optimization of these parameters for marine cytotoxic metabolites may generate more meaningful anticancer candidates in the future.
Collapse
|
16
|
Costa JAV, Freitas BCB, Cruz CG, Silveira J, Morais MG. Potential of microalgae as biopesticides to contribute to sustainable agriculture and environmental development. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2019; 54:366-375. [PMID: 30729858 DOI: 10.1080/03601234.2019.1571366] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The loss of yields from agricultural production due to the presence of pests has been treated over the years with synthetic pesticides, but the use of these substances negatively affects the environment and presents health risks for consumers and animals. The development of agroecological systems using biopesticides represents a safe alternative that contributes to the reduction of agrochemical use and sustainable agriculture. Microalgae are able to biosynthesize a number of metabolites with potential biopesticidal action and can be considered potential biological agents for the control of harmful organisms to soils and plants. The present work aims to provide a critical perspective on the consequences of using synthetic pesticides, offering as an alternative the biopesticides obtained from microalgal biomass, which can be used together with the implementation of environmentally friendly agricultural systems.
Collapse
Affiliation(s)
- Jorge Alberto Vieira Costa
- a College of Chemistry and Food Engineering, Laboratory of Biochemical Engineering , Federal University of Rio Grande , Rio Grande , Rio Grande do Sul , Brazil
| | - Bárbara Catarina Bastos Freitas
- a College of Chemistry and Food Engineering, Laboratory of Biochemical Engineering , Federal University of Rio Grande , Rio Grande , Rio Grande do Sul , Brazil
| | - Camila Gonzales Cruz
- a College of Chemistry and Food Engineering, Laboratory of Biochemical Engineering , Federal University of Rio Grande , Rio Grande , Rio Grande do Sul , Brazil
| | - Jéssica Silveira
- a College of Chemistry and Food Engineering, Laboratory of Biochemical Engineering , Federal University of Rio Grande , Rio Grande , Rio Grande do Sul , Brazil
| | - Michele Greque Morais
- b College of Chemistry and Food Engineering, Laboratory of Microbiology and Biochemistry , Federal University of Rio Grande , Rio Grande , Rio Grande do Sul , Brazil
| |
Collapse
|
17
|
Wieczorek M, Tcherkezian J, Bernier C, Prota AE, Chaaban S, Rolland Y, Godbout C, Hancock MA, Arezzo JC, Ocal O, Rocha C, Olieric N, Hall A, Ding H, Bramoullé A, Annis MG, Zogopoulos G, Harran PG, Wilkie TM, Brekken RA, Siegel PM, Steinmetz MO, Shore GC, Brouhard GJ, Roulston A. The synthetic diazonamide DZ-2384 has distinct effects on microtubule curvature and dynamics without neurotoxicity. Sci Transl Med 2017; 8:365ra159. [PMID: 27856798 DOI: 10.1126/scitranslmed.aag1093] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/28/2016] [Indexed: 01/02/2023]
Abstract
Microtubule-targeting agents (MTAs) are widely used anticancer agents, but toxicities such as neuropathy limit their clinical use. MTAs bind to and alter the stability of microtubules, causing cell death in mitosis. We describe DZ-2384, a preclinical compound that exhibits potent antitumor activity in models of multiple cancer types. It has an unusually high safety margin and lacks neurotoxicity in rats at effective plasma concentrations. DZ-2384 binds the vinca domain of tubulin in a distinct way, imparting structurally and functionally different effects on microtubule dynamics compared to other vinca-binding compounds. X-ray crystallography and electron microscopy studies demonstrate that DZ-2384 causes straightening of curved protofilaments, an effect proposed to favor polymerization of tubulin. Both DZ-2384 and the vinca alkaloid vinorelbine inhibit microtubule growth rate; however, DZ-2384 increases the rescue frequency and preserves the microtubule network in nonmitotic cells and in primary neurons. This differential modulation of tubulin results in a potent MTA therapeutic with enhanced safety.
Collapse
Affiliation(s)
- Michal Wieczorek
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
| | - Joseph Tcherkezian
- Laboratory for Therapeutic Development, Rosalind and Morris Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Cynthia Bernier
- Laboratory for Therapeutic Development, Rosalind and Morris Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Andrea E Prota
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Sami Chaaban
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
| | - Yannève Rolland
- Laboratory for Therapeutic Development, Rosalind and Morris Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Claude Godbout
- Laboratory for Therapeutic Development, Rosalind and Morris Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Mark A Hancock
- McGill SPR-MS Facility, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Joseph C Arezzo
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10561, USA
| | - Ozhan Ocal
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cecilia Rocha
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
| | - Natacha Olieric
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Anita Hall
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3A 1A3, Canada.,Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Hui Ding
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Alexandre Bramoullé
- Laboratory for Therapeutic Development, Rosalind and Morris Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Matthew G Annis
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - George Zogopoulos
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3A 1A3, Canada.,Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Patrick G Harran
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Thomas M Wilkie
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rolf A Brekken
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Peter M Siegel
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Gordon C Shore
- Laboratory for Therapeutic Development, Rosalind and Morris Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Gary J Brouhard
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada.
| | - Anne Roulston
- Laboratory for Therapeutic Development, Rosalind and Morris Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada.
| |
Collapse
|
18
|
Weiss C, Figueras E, Borbely AN, Sewald N. Cryptophycins: cytotoxic cyclodepsipeptides with potential for tumor targeting. J Pept Sci 2017; 23:514-531. [PMID: 28661555 DOI: 10.1002/psc.3015] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/02/2017] [Accepted: 05/05/2017] [Indexed: 02/06/2023]
Abstract
Cryptophycins are a class of 16-membered highly cytotoxic macrocyclic depsipeptides isolated from cyanobacteria. The biological activity is based on their ability to interact with tubulin. They interfere with microtubule dynamics and prevent microtubules from forming correct mitotic spindles, which causes cell-cycle arrest and apoptosis. Their strong antiproliferative activities with 100-fold to 1000-fold potency compared with those of paclitaxel and vinblastine have been observed. Cryptophycins are highly promising drug candidates, as their biological activity is not negatively affected by P-glycoprotein, a drug efflux system commonly found in multidrug-resistant cancer cell lines and solid tumors. Cryptophycin-52 had been investigated in phase II clinical trials but failed because of its high neurotoxicity. Recently, cryptophycin conjugates with peptides and antibodies have been developed for targeted delivery in tumor therapy. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Christine Weiss
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, PO Box 100131, 33501, Bielefeld, Germany
| | - Eduard Figueras
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, PO Box 100131, 33501, Bielefeld, Germany
| | - Adina N Borbely
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, PO Box 100131, 33501, Bielefeld, Germany
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, PO Box 100131, 33501, Bielefeld, Germany
| |
Collapse
|
19
|
Allred TK, Manoni F, Harran PG. Exploring the Boundaries of “Practical”: De Novo Syntheses of Complex Natural Product-Based Drug Candidates. Chem Rev 2017; 117:11994-12051. [DOI: 10.1021/acs.chemrev.7b00126] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tyler K. Allred
- Department of Chemistry and
Biochemistry, University of California−Los Angeles, 607 Charles
E. Young Drive East, Los Angeles, California 90095-1569, United States
| | - Francesco Manoni
- Department of Chemistry and
Biochemistry, University of California−Los Angeles, 607 Charles
E. Young Drive East, Los Angeles, California 90095-1569, United States
| | - Patrick G. Harran
- Department of Chemistry and
Biochemistry, University of California−Los Angeles, 607 Charles
E. Young Drive East, Los Angeles, California 90095-1569, United States
| |
Collapse
|
20
|
Nahrwold M, Weiß C, Bogner T, Mertink F, Conradi J, Sammet B, Palmisano R, Royo Gracia S, Preuße T, Sewald N. Conjugates of modified cryptophycins and RGD-peptides enter target cells by endocytosis. J Med Chem 2013; 56:1853-64. [PMID: 23387527 DOI: 10.1021/jm301346z] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tumor targeting anticancer drug conjugates that contain a tumor recognition motif (homing device) are of high current relevance. Cryptophycins, naturally occurring cytotoxic cyclo-depsipeptides, have been modified by total synthesis to provide analogues suitable for conjugation to peptide-based homing devices. An array of functionalized β(2)-amino acids was synthesized and incorporated into cryptophycins. All analogues proved to be highly active in the cytotoxicity assay using the human cervix carcinoma cell line KB-3-1 and its multidrug-resistant subclone KB-V1. Conformational analysis of cryptophycin-52 and two synthetic analogues was performed by NMR and MD methods to obtain information on the influence of the unit C configuration on the overall conformation. An azide-functionalized cryptophycin was connected by CuAAC to an alkyne-containing fluorescently labeled cyclic RGD-peptide as the homing device for internalization studies. Confocal fluorescence microscopy proved integrin-mediated internalization by endocytosis and final lysosomal localization of the cryptophycin prodrug.
Collapse
Affiliation(s)
- Markus Nahrwold
- Department of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Weiss C, Sammet B, Sewald N. Recent approaches for the synthesis of modified cryptophycins. Nat Prod Rep 2013; 30:924-40. [DOI: 10.1039/c3np70022d] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Nobili S, Landini I, Mazzei T, Mini E. Overcoming tumor multidrug resistance using drugs able to evade P-glycoprotein or to exploit its expression. Med Res Rev 2011; 32:1220-62. [PMID: 21374643 DOI: 10.1002/med.20239] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Multidrug resistance (MDR) is a major obstacle to the effective treatment of cancer. Cellular overproduction of P-glycoprotein (P-gp), which acts as an efflux pump for various anticancer drugs (e.g. anthracyclines, Vinca alkaloids, taxanes, epipodophyllotoxins, and some of the newer antitumor drugs) is one of the more relevant mechanisms underlying MDR. P-gp belongs to the superfamily of ATP-binding cassette transporters and is encoded by the ABCB1 gene. Its overexpression in cancer cells has become a therapeutic target for circumventing MDR. As an alternative to the classical pharmacological strategy of the coadministration of pump inhibitors and cytotoxic substrates of P-gp and to other approaches applied in experimental tumor models (e.g. P-gp-targeting antibodies, ABCB1 gene silencing strategies, and transcriptional modulators) and in the clinical setting (e.g. incapsulation of P-gp substrate anticancer drugs into liposomes or nanoparticles), a more intriguing strategy for circumventing MDR is represented by the development of new anticancer drugs which are not substrates of P-gp (e.g. epothilones, second- and third-generation taxanes and other microtubule modulators, topoisomerase inhibitors). Some of these drugs have already been tested in clinical trials and, in most of cases, show relevant activity in patients previously treated with anticancer agents which are substrates of P-gp. Of these drugs, ixabepilone, an epothilone, was approved in the United States for the treatment of breast cancer patients pretreated with an anthracycline and a taxane. Another innovative approach is the use of molecules whose activity takes advantage of the overexpression of P-gp. The possibility of overcoming MDR using the latter two approaches is reviewed herein.
Collapse
Affiliation(s)
- Stefania Nobili
- Department of Preclinical and Clinical Pharmacology, University of Florence Florence, Italy, Viale Pieraccini, 6-50139, Firenze, Italy.
| | | | | | | |
Collapse
|
23
|
Abstract
Drug discovery from marine natural products has enjoyed a renaissance in the past few years. Ziconotide (Prialt; Elan Pharmaceuticals), a peptide originally discovered in a tropical cone snail, was the first marine-derived compound to be approved in the United States in December 2004 for the treatment of pain. Then, in October 2007, trabectedin (Yondelis; PharmaMar) became the first marine anticancer drug to be approved in the European Union. Here, we review the history of drug discovery from marine natural products, and by describing selected examples, we examine the factors that contribute to new discoveries and the difficulties associated with translating marine-derived compounds into clinical trials. Providing an outlook into the future, we also examine the advances that may further expand the promise of drugs from the sea.
Collapse
|
24
|
Ding Y, Seufert WH, Beck ZQ, Sherman DH. Analysis of the cryptophycin P450 epoxidase reveals substrate tolerance and cooperativity. J Am Chem Soc 2008; 130:5492-8. [PMID: 18366166 DOI: 10.1021/ja710520q] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cryptophycins are potent anticancer agents isolated from Nostoc sp. ATCC 53789 and Nostoc sp. GSV 224. The most potent natural cryptophycin analogues retain a beta-epoxide at the C2'-C3' position of the molecule. A P450 epoxidase encoded by c rpE recently identified from the cryptophycin gene cluster was shown to install this key functional group into cryptophycin-4 (Cr-4) to produce cryptophycin-2 (Cr-2) in a regio- and stereospecific manner. Here we report a detailed characterization of the CrpE epoxidase using an engineered maltose binding protein (MBP)-CrpE fusion. The substrate tolerance of the CrpE polypeptide was investigated with a series of structurally related cryptophycin analogues generated by chemoenzymatic synthesis. The enzyme specifically installed a beta-epoxide between C2' and C3' of cyclic cryptophycin analogues. The kcat/Km values of the enzyme were determined to provide further insights into the P450 epoxidase catalytic efficiency affected by substrate structural variation. Finally, binding analysis revealed cooperativity of MBP-CrpE toward natural and unnatural desepoxy cryptophycin substrates.
Collapse
Affiliation(s)
- Yousong Ding
- Life Sciences Institute and Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
25
|
Abstract
An unusual class of nanoscopic, ring-shaped, single-walled biopolymers arises when alphabeta-tubulin is mixed with certain small peptides obtained from various marine organisms and cyanobacteria. The single-ring structures, whose mean molecular weight depends on the specific peptide added to the reaction mixture, usually have sharp mass distributions corresponding, e.g., to rings containing eight tubulin dimers (when the added peptide is cryptophycin) and 14 dimers (e.g., with dolastatin). Although the ring-forming peptides have been shown to possess antimitotic properties when tested with cultured eukaryotic cells (and thus have generated considerable interest as possible agents to be used in the treatment of cancer), it is not our intention to extensively discuss the potential pharmacological properties of the peptides. Rather, we will review the polymeric structures that form and illustrate how certain physical techniques can be used to characterize their properties and interactions. The nanoscopic size and particular geometry of the individual rings make them appropriate targets for scattering and hydrodynamic techniques that provide details about their structure in solution, but it is necessary to relate measured data to postulated structures by nontrivial, albeit straight-forward, mathematical, and computational means. We will discuss how this is done when one uses such methods as small angle neutron scattering, dynamic light scattering, fluorescence correlation spectroscopy, and sedimentation velocity measurements. Moreover, we show that, by using several techniques, one can eliminate degeneracy to provide better discrimination between model structures.
Collapse
Affiliation(s)
- Hacène Boukari
- Laboratory of Integrative and Medical Biophysics, NICHD, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
26
|
Abstract
A recent publication reveals the biosynthetic building blocks, genetic code, and broad substrate tolerance of the enzymes of the cryptophycin biosynthetic pathway. This work lays the foundation for the production of poorly accessible yet very promising members of this family of anticancer compounds from lichen cyanobacterial symbionts. Chemoenzymatic production or precursor-directed biosynthesis might bring candidates from this family of natural products back to clinical trials.
Collapse
Affiliation(s)
- Jürgen Rohr
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 725 Rose Street, Lexington, Kentucky 40536-0082, USA.
| |
Collapse
|
27
|
Gibson SE, Lecci C. Aminosäurehaltige Makrocyclen – anwendungsnahe Systeme oder nur Syntheseziele? Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200503428] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
28
|
Gibson SE, Lecci C. Amino Acid Derived Macrocycles—An Area Driven by Synthesis or Application? Angew Chem Int Ed Engl 2006; 45:1364-77. [PMID: 16444788 DOI: 10.1002/anie.200503428] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The synthesis, structure, and physical properties of macrocycles have fascinated chemists for many years. Their inherent properties make them useful in areas as diverse as ion transport across membranes, development of new antibiotics, and catalysis. In this Review, the authors examine the chemistry of macrocycles containing non-peptidic amino acid derived molecules; the analysis is discussed in terms of function, rather than structure or synthesis. It is revealed that the diverse and imaginative structures created by synthetic chemists are not being fully exploited in application-driven endeavors.
Collapse
Affiliation(s)
- Susan E Gibson
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AY, UK.
| | | |
Collapse
|
29
|
Jordan MA, Kamath K, Manna T, Okouneva T, Miller HP, Davis C, Littlefield BA, Wilson L. The primary antimitotic mechanism of action of the synthetic halichondrin E7389 is suppression of microtubule growth. Mol Cancer Ther 2005; 4:1086-95. [PMID: 16020666 DOI: 10.1158/1535-7163.mct-04-0345] [Citation(s) in RCA: 341] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
E7389, which is in phase I and II clinical trials, is a synthetic macrocyclic ketone analogue of the marine sponge natural product halichondrin B. Whereas its mechanism of action has not been fully elucidated, its main target seems to be tubulin and/or the microtubules responsible for the construction and proper function of the mitotic spindle. Like most microtubule-targeted antitumor drugs, it inhibits tumor cell proliferation in association with G(2)-M arrest. It binds to tubulin and inhibits microtubule polymerization. We examined the mechanism of action of E7389 with purified microtubules and in living cells and found that, unlike antimitotic drugs including vinblastine and paclitaxel that suppress both the shortening and growth phases of microtubule dynamic instability, E7389 seems to work by an end-poisoning mechanism that results predominantly in inhibition of microtubule growth, but not shortening, in association with sequestration of tubulin into aggregates. In living MCF7 cells at the concentration that half-maximally blocked cell proliferation and mitosis (1 nmol/L), E7389 did not affect the shortening events of microtubule dynamic instability nor the catastrophe or rescue frequencies, but it significantly suppressed the rate and extent of microtubule growth. Vinblastine, but not E7389, inhibited the dilution-induced microtubule disassembly rate. The results suggest that, at its lowest effective concentrations, E7389 may suppress mitosis by directly binding to microtubule ends as unliganded E7389 or by competition of E7389-induced tubulin aggregates with unliganded soluble tubulin for addition to growing microtubule ends. The result is formation of abnormal mitotic spindles that cannot pass the metaphase/anaphase checkpoint.
Collapse
Affiliation(s)
- Mary Ann Jordan
- Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, 93106-9610, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Liang J, Moore RE, Moher ED, Munroe JE, Al-awar RS, Hay DA, Varie DL, Zhang TY, Aikins JA, Martinelli MJ, Shih C, Ray JE, Gibson LL, Vasudevan V, Polin L, White K, Kushner J, Simpson C, Pugh S, Corbett TH. Cryptophycins-309, 249 and other cryptophycin analogs: preclinical efficacy studies with mouse and human tumors. Invest New Drugs 2005; 23:213-24. [PMID: 15868377 DOI: 10.1007/s10637-005-6729-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Cryptophycins-1 and 52 (epoxides) were discovered to have in-vitro and in-vivo antitumor activity in the early 1990s. The chlorohydrins of these, Cryptophycins-8 and 55 (also discovered in the early 1990s) were markedly more active, but could not be formulated as stable solutions. With no method to adequately stabilize the chlorohydrins at the time, Cryptophycin-52 (LY 355073) entered clinical trials, producing only marginal antitumor activity. Since that time, glycinate esters of the hydroxyl group of the chlorohydrins have been synthesized and found to provide stability. Three of the most active were compared herein. Cryptophycin-309 (C-309) is a glycinate ester of the chlorohydrin Cryptophycin-296. The glycinate derivative provided both chemical stability and improved aqueous solubility. After the examination of 81 different Cryptophycin analogs in tumor bearing animals, C-309 has emerged as superior to all others. The following %T/C and Log Kill (LK) values were obtained from a single course of IV treatment (Q2d x 5) against early staged SC transplantable tumors of mouse and human origin: Mam 17/Adr [a pgp (+) MDR tumor]: 0%T/C, 3.2 LK; Mam 16/C/Adr [a pgp (-) MDR tumor]: 0%T/C, 3.3 LK; Mam 16/C: 0%T/C, 3.8 LK; Colon 26: 0%T/C, 2.2 LK; Colon 51: 0%T/C, 2.4 LK; Pancreatic Ductal Adenocarcinoma 02 (Panc 02): 0%T/C, 2.4 LK; Human Colon HCT15 [a pgp (+) MDR tumor]: 0%T/C, 3.3 LK; Human Colon HCT116: 0%T/C, 4.1 LK. One additional analog, Cryptophycin-249 (C-249, the glycinate of Cryptophycin-8), also emerged with efficacy rivaling or superior to C-309. However, there was sufficient material for only a single C-249 trial in which a 4.0 LK was obtained against the multidrug resistant breast adenocarcinoma Mam-16/C/Adr. C-309 and C-249 are being considered as second-generation clinical candidates.
Collapse
Affiliation(s)
- Jian Liang
- Department of Molecular Biosciences & Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
|
33
|
Al-awar RS, Corbett TH, Ray JE, Polin L, Kennedy JH, Wagner MM, Williams DC. Biological evaluation of cryptophycin 52 fragment A analogues: Effect of the multidrug resistance ATP binding cassette transporters on antitumor activity. Mol Cancer Ther 2004. [DOI: 10.1158/1535-7163.1061.3.9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Cryptophycin 52 (LY355703) is a potent antiproliferative analogue of the marine natural product cryptophycin 1. It has been shown to have a broad range of antitumor activity against human tumor xenografts and murine tumors including tumors resistant to Taxol and Adriamycin. Its mechanism of action involves arresting cells in the G2-M phase of the cell cycle by binding to microtubules and suppressing their dynamics. This 16-membered depsipeptide can be divided into four major subunits or fragments (A–D). We reported previously on our synthetic efforts around fragment A and discovered that this region of the molecule was amenable to a structure-activity relationship study that resulted in highly active antiproliferative agents when evaluated in the CEM leukemia cell line. The synthetic analogues were designed to help improve the efficacy and aqueous solubility of the parent compound; therefore, many in this series contained ionizable functional groups such as an amino group, a hydroxy group, or a carboxylic acid. Although several of these analogues showed improvements in potency over cryptophycin 52 in drug-sensitive tumor xenograft models, many lost their activity against Adriamycin-resistant tumor lines. It was discovered on additional in vitro evaluation that these analogues became good substrates of the multidrug resistance transporter P-glycoprotein.
Collapse
Affiliation(s)
- Rima S. Al-awar
- 1Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana and
| | - Thomas H. Corbett
- 2Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - James E. Ray
- 1Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana and
| | - Lisa Polin
- 2Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Joseph H. Kennedy
- 1Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana and
| | - Margaret M. Wagner
- 1Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana and
| | - Daniel C. Williams
- 1Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana and
| |
Collapse
|
34
|
Biondi N, Piccardi R, Margheri MC, Rodolfi L, Smith GD, Tredici MR. Evaluation of Nostoc strain ATCC 53789 as a potential source of natural pesticides. Appl Environ Microbiol 2004; 70:3313-20. [PMID: 15184126 PMCID: PMC427721 DOI: 10.1128/aem.70.6.3313-3320.2004] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cyanobacterium Nostoc strain ATCC 53789, a known cryptophycin producer, was tested for its potential as a source of natural pesticides. The antibacterial, antifungal, insecticidal, nematocidal, and cytotoxic activities of methanolic extracts of the cyanobacterium were evaluated. Among the target organisms, nine fungi (Armillaria sp., Fusarium oxysporum f. sp. melonis, Penicillium expansum, Phytophthora cambivora, P. cinnamomi, Rhizoctonia solani, Rosellinia, sp., Sclerotinia sclerotiorum, and Verticillium albo-atrum) were growth inhibited and one insect (Helicoverpa armigera) was killed by the extract, as well as the two model organisms for nematocidal (Caenorhabditis elegans) and cytotoxic (Artemia salina) activity. No antibacterial activity was detected. The antifungal activity against S. sclerotiorum was further studied with both extracts and biomass of the cyanobacterium in a system involving tomato as a host plant. Finally, the herbicidal activity of Nostoc strain ATCC 53789 was evaluated against a grass mixture. To fully exploit the potential of this cyanobacterium in agriculture as a source of pesticides, suitable application methods to overcome its toxicity toward plants and nontarget organisms must be developed.
Collapse
Affiliation(s)
- Natascia Biondi
- Dipartimento di Biotecnologie Agrarie, Università degli Studi di Firenze, Florence, Italy
| | | | | | | | | | | |
Collapse
|
35
|
Buck SB, Huff JK, Himes RH, Georg GI. Total Synthesis and Anti-Tubulin Activity of Epi-C3 Analogues of Cryptophycin-24. J Med Chem 2004; 47:3697-9. [PMID: 15214797 DOI: 10.1021/jm030555f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Epi-C3-cryptophycin-24, epi-C3-m-chlorobenzyl-cryptophycin-24, and the corresponding styrenes were synthesized and tested in vitro against the MCF-7 and multidrug-resistant MCF-7/ADR breast cancer cell lines and in an in vitro tubulin assembly assay. The results demonstrate that the S configuration at the C3 stereocenter is not required to induce potent cytotoxicity and the m-Cl substituent present on the C10 side chain did not induce any large change in activity.
Collapse
Affiliation(s)
- Suzanne B Buck
- Department of Medicinal Chemistry, University of Kansas, 1251 Wescoe Drive, Lawrence, KS 66045-7582, USA
| | | | | | | |
Collapse
|
36
|
Ghosh AK, Bischoff A. Asymmetric Syntheses of Potent Antitumor Macrolides Cryptophycin B and Arenastatin A. European J Org Chem 2004; 2004:2131-2141. [PMID: 30443158 PMCID: PMC6233905 DOI: 10.1002/ejoc.200300814] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2003] [Indexed: 11/07/2022]
Abstract
Efficient and highly stereoselective syntheses of cryptophycin B and arenastatin A, potent cytotoxic agents, are described. An ester-derived titanium enolate mediated syn-aldol reaction was employed to generate the stereocenters C-5 and C-6. The route is convergent and provides a convenient access to the synthesis of structural variants of cryptophycins as well as members of its family.
Collapse
Affiliation(s)
- Arun K Ghosh
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL 60607, USA
| | - A Bischoff
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL 60607, USA
| |
Collapse
|
37
|
Buck SB, Huff JK, Himes RH, Georg GI. Total Synthesis and Antitubulin Activity of C10 Analogues of Cryptophycin-24. J Med Chem 2003; 47:696-702. [PMID: 14736249 DOI: 10.1021/jm030278c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The unsubstituted, 3'-Cl, 4'-C1, and 3',4'-diCl C10 analogues of cryptophycin-24 were prepared via total synthesis and tested in vitro for cytotoxicity against MCF-7 and multi-drug-resistant MCF-7/ADR breast cancer cell lines and in a tubulin assembly assay. The ED(50) values ranged from 7.2 to 15.8 microM in the tubulin assay and from 0.05 to 3.4 nM in the cell assays. The presence of a 3'-C1 and/or 4'-C1 substituent on the C10 phenyl ring increased cytotoxicity in the MCF-7 cell line compared to the unsubstituted phenyl ring. The most potent compound in this series possessed a 3'-C1 substituent on the C10 phenyl ring. The 3'-C1 analogue had ED(50) values of 50 and 580 pM in the MCF-7 and MCF-7/ADR cell lines, respectively. Its activity was very similar to the parent compound cryptophycin-24. Substitution of the 4'-MeO group in cryptophycin-24 with a 4'-C1 moiety did not significantly affect cytotoxicity against MCF-7 and MCF-7/ADR cells compared to the parent compound. These results demonstrated that the 4'-MeO group in cryptophycin-24 is not essential and can be replaced with 3'-C1 or 4'-C1 substituents.
Collapse
Affiliation(s)
- Suzanne B Buck
- Department of Medicinal Chemistry and Department of Molecular Biosciences, University of Kansas, 1251 Wescoe Drive, Lawrence, Kansas 66045-7582, USA
| | | | | | | |
Collapse
|
38
|
Vidya R, Eggen M, Nair SK, Georg GI, Himes RH. Synthesis of Cryptophycins via an N-Acyl-β-lactam Macrolactonization. J Org Chem 2003; 68:9687-93. [PMID: 14656095 DOI: 10.1021/jo0302197] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient and concise approach to the synthesis of the macrolide core of the cryptophycins has been developed. A novel macrolactonization utilizing a reactive acyl-beta-lactam intermediate incorporates the beta-amino acid moiety within the 16-membered macrolide core. This modular approach, involving a cyanide-initiated acyl-beta-lactam ring opening followed by cyclization, was successfully applied to the total synthesis of cryptophycin-24. The strategy was also used in an efficient synthesis of the 6,6-dimethyl-substituted dechlorocryptophycin-52. In this case, the cyanide-initiated ring opening of the bis-substituted 2-azetidinone followed by macrolactonization was achieved through a catalytic process.
Collapse
Affiliation(s)
- Ramdas Vidya
- Department of Medicinal Chemistry and Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | | | | | | | | |
Collapse
|
39
|
|
40
|
Raghavan S, Tony KA. Sulfinyl moiety as an internal nucleophile. 1. Efficient stereoselective synthesis of fragment a of cryptophycin 3. J Org Chem 2003; 68:5002-5. [PMID: 12790623 DOI: 10.1021/jo026802p] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel, efficient, and stereoselective synthesis of fragment A of cryptophycin 3 is disclosed. The key step involves the regio- and stereoselective transformation of an unsaturated ester to a bromohydrin via anchimeric assistance by the sulfinyl group.
Collapse
Affiliation(s)
- Sadagopan Raghavan
- Organic Division I, Indian Institute of Chemical Technology, Hyderabad 500 007, India.
| | | |
Collapse
|
41
|
Cruz-Monserrate Z, Vervoort HC, Bai R, Newman DJ, Howell SB, Los G, Mullaney JT, Williams MD, Pettit GR, Fenical W, Hamel E. Diazonamide A and a synthetic structural analog: disruptive effects on mitosis and cellular microtubules and analysis of their interactions with tubulin. Mol Pharmacol 2003; 63:1273-80. [PMID: 12761336 DOI: 10.1124/mol.63.6.1273] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The marine ascidian Diazona angulata was the source organism for the complex cytotoxic peptide diazonamide A. The molecular structure of this peptide was recently revised after synthesis of a biologically active analog of diazonamide A in which a single nitrogen atom was replaced by an oxygen atom. Diazonamide A causes cells to arrest in mitosis, and, after exposure to the drug, treated cells lose both interphase and spindle microtubules. Both diazonamide A and the oxygen analog are potent inhibitors of microtubule assembly, equivalent in activity to dolastatin 10 and therefore far more potent than dolastatin 15. This inhibition of microtubule assembly is accompanied by potent inhibition of tubulin-dependent GTP hydrolysis, also comparable with the effects observed with dolastatin 10. However, the remaining biochemical properties of diazonamide A and its analog differ markedly from those of dolastatin 10 and closely resemble the properties of dolastatin 15. Neither diazonamide A nor the analog inhibited the binding of [3H]vinblastine, [3H]dolastatin 10, or [8-14C]GTP to tubulin. Nor were they able to stabilize the colchicine binding activity of tubulin. These observations indicate either that diazonamide A and the analog have a unique binding site on tubulin differing from the vinca alkaloid and dolastatin 10 binding sites, or that diazonamide A and the analog bind weakly to unpolymerized tubulin but strongly to microtubule ends. If the latter is correct, diazonamide A and its oxygen analog should have uniquely potent inhibitory effects on the dynamic properties of microtubules.
Collapse
|
42
|
Vidya R, Eggen M, Georg GI, Himes RH. Cryptophycin affinity labels: synthesis and biological activity of a benzophenone analogue of cryptophycin-24. Bioorg Med Chem Lett 2003; 13:757-60. [PMID: 12639575 DOI: 10.1016/s0960-894x(02)01023-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
An efficient synthesis of a C16 side chain benzophenone analogue of cryptophycin-24 using a crotylboration reaction and Heck coupling as key steps is described. In an in vitro tubulin assembly assay, the benzophenone analogue of the beta isomer (IC(50)=7.4 microM) is twice as active as cryptophycin-24 (IC(50)=15 microM).
Collapse
Affiliation(s)
- Ramdas Vidya
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | | | | | | |
Collapse
|
43
|
Abstract
Tubulin is the target for an ever increasing number of structurally unusual peptides and depsipeptides isolated from a wide range of organisms. Since tubulin is the subunit protein of microtubules, the compounds are usually potently toxic to mammalian cells. Without exception, these (depsi)peptides disrupt cellular microtubules and prevent spindle formation. This causes cells to accumulate at the G2/M phase of the cell cycle through inhibition of mitosis. In biochemical assays, the compounds inhibit microtubule assembly from tubulin and suppress microtubule dynamics at low concentrations. Most of the (depsi)peptides inhibit the binding of Catharanthus alkaloids to tubulin in a noncompetitive manner, GTP hydrolysis by tubulin, and nucleotide turnover at the exchangeable GTP site on beta-tubulin. In general, the (depsi)peptides induce the formation of tubulin oligomers of aberrant morphology. In all cases tubulin rings appear to be formed, but these rings differ in diameter, depending on the (depsi)peptide present during their formation.
Collapse
Affiliation(s)
- Ernest Hamel
- Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute at Frederick, National Institutes of Health, MD 21702, USA.
| |
Collapse
|
44
|
Sessa C, Weigang-Köhler K, Pagani O, Greim G, Mora O, De Pas T, Burgess M, Weimer I, Johnson R. Phase I and pharmacological studies of the cryptophycin analogue LY355703 administered on a single intermittent or weekly schedule. Eur J Cancer 2002; 38:2388-96. [PMID: 12460783 DOI: 10.1016/s0959-8049(02)00489-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
LY355703 is a synthetic derivative of the marine cryptophycins, cytotoxic agents which induce mitotic arrest by binding at the microtubule vinca binding domain. Promising preclinical features of LY355703 were the 40-400 greater potency than paclitaxel or vinca alkaloids, the broad spectrum of antitumor activity in xenografts and the antitumour activity in multidrug resistant (MDR)-expressing murine tumours. Aims of this study were to define the maximum tolerated dose (MTD) and the dose recommended for Phase II, the pattern of toxicity, the pharmacokinetic profile and to document hints of antitumour activity of LY355703 given as 2-h infusion on day 1 every 3 weeks (Study 1) or, later on, on days 1, 8 and 15 every 4 weeks (Study 2). The latter weekly regimen was selected because of the acute dose-related toxicity reported in Study 1. The dose was escalated using a modified Continual Reassessment Method. Pharmacokinetic studies were performed on day 1 of cycle 1 in both studies; LY355703 plasma concentrations were assessed by liquid chromatography with tandem mass spectrometry. A total of 35 adult patients with solid tumours entered Study 1; the dose was escalated from 0.1 to 1.92 mg/m(2); at this dose 2 of 5 patients presented grade 3 neuropathy and myalgias; 1.48 mg/m(2) was then recommended for Phase II study. A total of 8 patients were treated in Study 2 at 1 mg/m(2); cumulative long-lasting neuroconstipation and neurosensory toxicity precluded the completion of the cycle in 9 out of 15 cycles; the clinical development of the weekly regimen was then discontinued. Other toxicities included cardiac dysrhythmia and mild alopecia. Pharmacokinetics of LY355703 appeared to be linear over the dose range studied. The administration of LY355703 on a 3-week schedule is associated with an acute dose-dependent peripheral neuropathy and myalgia of high interpatient variability for which possible risk factors and pharmacokinetic correlates could not be identified.
Collapse
Affiliation(s)
- C Sessa
- Oncology Institute of Southern Switzerland, 6500 Bellinzona, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Subramanian B, Nakeff A, Media JE, Wiegand RA, Valeriote FA. Inhibition of macromolecular synthesis by cryptophycin-52. Anticancer Drugs 2002; 13:1061-8. [PMID: 12439340 DOI: 10.1097/00001813-200211000-00010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cryptophycin (CP)-52, a synthetic analog of CP-1, possesses potent and selective antiproliferative activity against human solid tumors both and. Based on an algorithm developed in this laboratory using HCT-116 human colon adenocarcinoma cells, CP-52 exhibited a time- and concentration-dependent antiproliferative effect in the clonogenic assay. Inhibition of both DNA and RNA synthesis was observed in the absence of any effect on protein synthesis following a 24-h exposure to CP-52, at a time when proliferating cells were arrested in the G2/M phase of the cell cycle. In summary, we interpret these data to indicate that the selective inhibition of DNA synthesis may be a major causative factor responsible for the antiproliferative activity of CP-52 and subsequent G2/M arrest.
Collapse
Affiliation(s)
- Balanehru Subramanian
- Drug Discovery and Development Program, Josephine Ford Cancer Center, Henry Ford Health System, Detroit, MI 48202-3450, USA.
| | | | | | | | | |
Collapse
|
46
|
Abstract
Microtubules are cytoskeletal polymers essential for the survival of all eukaryotes. These proteins are the proposed cellular targets of many anticancerous, antifungal and antihelminthic drugs. Sufficient differences exist between the microtubules of kinetoplastid parasites like Leishmania and humans to explore the selective targeting of these proteins for therapeutic purposes. This review describes the basic structure of microtubules and its dynamics in general, with specific insights into leishmanial microtubules, the salient features of microtubule-drug interactions including the specificity of certain drugs for parasitic microtubules. Chemotherapy against leishmanial parasites is failing because of the emergence of drug resistant strains. The possible mechanisms of resistance to antimicrotubule agents along with insights into the role of microtubules in mediating drug resistance in Leishmania are discussed.
Collapse
Affiliation(s)
- K G Jayanarayan
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Punjab, India
| | | |
Collapse
|
47
|
Martinelli MJ, Vaidyanathan R, Khau VV, Staszak MA. Reaction of cryptophycin 52 with thiols. Tetrahedron Lett 2002. [DOI: 10.1016/s0040-4039(02)00553-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
48
|
Abstract
The cryptophycins are a unique family of 16-membered macrolide antimitotic agents isolated from the cyanobacteria Nostoc sp. Their molecular target is tubulin protein wherein they are the most potent known stabilizers of microtubule dynamics and depolymerize microtubules at higher concentrations. They also deactivate the Bcl2 protein and produce apoptotic response much more quickly and at considerably lower concentrations than clinically utilized compounds. The presence of several amide and ester linkages within the cryptophycin core provides access to very convergent total synthetic approaches. Likewise, the modularity of the structure renders their synthesis amenable to structure-activity studies in several regions of the molecule. The in vivo hydrolytic instability of the C5 ester was a key obstacle to the successful identification of a clinical candidate. This problem was ameliorated by increased substitution at C6 as in the presence of gem-dimethyl substitution in the clinical candidate, cryptophycin-52.
Collapse
Affiliation(s)
- MariJean Eggen
- Pharmacia Corporation, 7000 Portage Road, Kalamazoo, Michigan 49001, USA
| | | |
Collapse
|
49
|
Smith AB, Cho YS, Zawacki LE, Hirschmann R, Pettit GR. First generation design, synthesis, and evaluation of azepine-based cryptophycin analogues. Org Lett 2001; 3:4063-6. [PMID: 11735585 DOI: 10.1021/ol016799g] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
[structure: see text] Azepine-based cryptophycin mimics (+)-4 and (+)-5 have been designed and synthesized. Biological evaluation revealed modest in vitro activity against several human tumor cell lines, thereby supporting the utility of novel scaffolds for the design and synthesis of cryptophycin analogues.
Collapse
Affiliation(s)
- A B Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
50
|
|