1
|
Greiss F, Lardon N, Schütz L, Barak Y, Daube SS, Weinhold E, Noireaux V, Bar-Ziv R. A genetic circuit on a single DNA molecule as an autonomous dissipative nanodevice. Nat Commun 2024; 15:883. [PMID: 38287055 PMCID: PMC10825189 DOI: 10.1038/s41467-024-45186-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/16/2024] [Indexed: 01/31/2024] Open
Abstract
Realizing genetic circuits on single DNA molecules as self-encoded dissipative nanodevices is a major step toward miniaturization of autonomous biological systems. A circuit operating on a single DNA implies that genetically encoded proteins localize during coupled transcription-translation to DNA, but a single-molecule measurement demonstrating this has remained a challenge. Here, we use a genetically encoded fluorescent reporter system with improved temporal resolution and observe the synthesis of individual proteins tethered to a DNA molecule by transient complexes of RNA polymerase, messenger RNA, and ribosome. Against expectations in dilute cell-free conditions where equilibrium considerations favor dispersion, these nascent proteins linger long enough to regulate cascaded reactions on the same DNA. We rationally design a pulsatile genetic circuit by encoding an activator and repressor in feedback on the same DNA molecule. Driven by the local synthesis of only several proteins per hour and gene, the circuit dynamics exhibit enhanced variability between individual DNA molecules, and fluctuations with a broad power spectrum. Our results demonstrate that co-expressional localization, as a nonequilibrium process, facilitates single-DNA genetic circuits as dissipative nanodevices, with implications for nanobiotechnology applications and artificial cell design.
Collapse
Affiliation(s)
- Ferdinand Greiss
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| | - Nicolas Lardon
- Department of Chemical Biology, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
| | - Leonie Schütz
- Institute of Organic Chemistry, RWTH Aachen University, 52056, Aachen, Germany
| | - Yoav Barak
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Shirley S Daube
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Elmar Weinhold
- Institute of Organic Chemistry, RWTH Aachen University, 52056, Aachen, Germany
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Roy Bar-Ziv
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
2
|
Ruhela A, Skouridou V, Masip L. Capture, detection and purification of dsDNA amplicons using a DNA binding protein on magnetic beads. Anal Biochem 2022; 658:114923. [PMID: 36162450 DOI: 10.1016/j.ab.2022.114923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/15/2022] [Accepted: 09/18/2022] [Indexed: 11/28/2022]
Abstract
Magnetic separation has been widely exploited for capture and detection of nucleic acids, including amplicons. Streptavidin-magnetic beads (SA-MB) are typically employed for this purpose, as well as in biosensing applications. However, remaining biotinylated primer in the amplification reaction can compete with labeled amplicon for binding to the beads. Also, the harsh conditions needed for elution of bound amplicons restrict their use for purification purposes. Herein we show that a sequence-specific DNA binding protein immobilized on magnetic beads can serve as an alternative to SA-MB for these applications. This is enabled by the high binding affinity of scCro DNA binding protein for its specific sequence and its ability to bind dsDNA but not ssDNA. This specific sequence is easily incorporated in the amplicon during amplification with an extended primer. The scCro-MB exhibited higher amplicon binding capacity and detection sensitivity compared to SA-MB when both synthetic and genomic DNA were used as templates for PCR. This resulted not only from increased protein load on the beads but also from minimized interference of excess labeled primer remaining in the unpurified amplification reactions. Finally, a proof-of-concept was provided for the use of the scCro-MB for PCR amplicon purification under mild elution conditions using salt.
Collapse
Affiliation(s)
- Ankur Ruhela
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, 26 Països Catalans, 43007, Tarragona, Spain
| | - Vasso Skouridou
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, 26 Països Catalans, 43007, Tarragona, Spain
| | - Lluis Masip
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, 26 Països Catalans, 43007, Tarragona, Spain.
| |
Collapse
|
3
|
Iijima M, Yamada Y, Nakano H, Nakayama T, Kuroda S. Bio-nanocapsules for oriented immobilization of DNA aptamers on aptasensors. Analyst 2022; 147:489-495. [PMID: 35023508 DOI: 10.1039/d1an02278d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The oriented immobilization of sensing molecules (e.g., IgGs, receptors, lectins, and DNA aptamers) on sensor chips is particularly important for maximizing the potential of the sensing molecules, thereby enhancing the sensitivity and target-binding capacity of biosensors. We previously developed ∼30 nm bio-nanocapsules (ZZ-BNCs) consisting of the hepatitis B virus envelope L protein fused with the tandem form of protein A-derived IgG Fc-binding Z domain (ZZ-L protein). ZZ-BNC acts successfully as a scaffold, enhancing both the sensitivity and binding capacity of IgG, a Fc-fused receptor, and Fc-fused lectin to antigens, cytokines, and sugar chains through an oriented immobilization on a biosensor surface. To expand the versatility of ZZ-BNC, we modified ZZ-BNC by replacing the ZZ domain with a DNA-binding single-chain lambda Cro (scCro) domain, thereby developing scCro-BNC. The scCro-BNC was synthesized in yeast cells and homogeneously purified as ∼30 nm sized nanoparticles. In a quartz crystal microbalance, an scCro-BNC-coated sensor chip immobilized with thrombin-binding DNA aptamers showed an ∼5.5-fold higher thrombin-binding capacity and ∼6000-fold higher detection sensitivity than a sensor chip directly coated with DNA aptamers. In addition, the number of bound thrombin molecules per molecule of DNA aptamer increased by ∼7.8-fold with an scCro-BNC coating, consistent with the theoretical thrombin-binding capacity. Collectively, scCro-BNC was shown to perform as an ideal scaffold for maximizing the potential of the DNA aptamer by immobilizing it in an oriented manner. Facilitating a highly sensitive detection of various target molecules, these BNC-based scaffolds are expected to improve a wide range of biosensors while minimizing the number of sensing molecules required.
Collapse
Affiliation(s)
- Masumi Iijima
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan.,Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Setagaya, Tokyo 156-8502, Japan
| | - Yuki Yamada
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hideo Nakano
- Department of Applied Biosciences, Graduate School of Bioagricultural Science, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Tsutomu Nakayama
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Setagaya, Tokyo 156-8502, Japan
| | - Shun'ichi Kuroda
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
4
|
McSweeney MA, Styczynski MP. Effective Use of Linear DNA in Cell-Free Expression Systems. Front Bioeng Biotechnol 2021; 9:715328. [PMID: 34354989 PMCID: PMC8329657 DOI: 10.3389/fbioe.2021.715328] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/06/2021] [Indexed: 12/27/2022] Open
Abstract
Cell-free expression systems (CFEs) are cutting-edge research tools used in the investigation of biological phenomena and the engineering of novel biotechnologies. While CFEs have many benefits over in vivo protein synthesis, one particularly significant advantage is that CFEs allow for gene expression from both plasmid DNA and linear expression templates (LETs). This is an important and impactful advantage because functional LETs can be efficiently synthesized in vitro in a few hours without transformation and cloning, thus expediting genetic circuit prototyping and allowing expression of toxic genes that would be difficult to clone through standard approaches. However, native nucleases present in the crude bacterial lysate (the basis for the most affordable form of CFEs) quickly degrade LETs and limit expression yield. Motivated by the significant benefits of using LETs in lieu of plasmid templates, numerous methods to enhance their stability in lysate-based CFEs have been developed. This review describes approaches to LET stabilization used in CFEs, summarizes the advancements that have come from using LETs with these methods, and identifies future applications and development goals that are likely to be impactful to the field. Collectively, continued improvement of LET-based expression and other linear DNA tools in CFEs will help drive scientific discovery and enable a wide range of applications, from diagnostics to synthetic biology research tools.
Collapse
Affiliation(s)
- Megan A McSweeney
- Georgia Institute of Technology, School of Chemical & Biomolecular Engineering, Atlanta, GA, United States
| | - Mark P Styczynski
- Georgia Institute of Technology, School of Chemical & Biomolecular Engineering, Atlanta, GA, United States
| |
Collapse
|
5
|
Aktas GB, Ribera A, Skouridou V, Masip L. DNA immobilization and detection using DNA binding proteins. Anal Bioanal Chem 2021; 413:1929-1939. [PMID: 33501551 DOI: 10.1007/s00216-021-03162-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/29/2020] [Accepted: 01/06/2021] [Indexed: 10/22/2022]
Abstract
The immobilization of sensing bioreceptors is a critical feature affecting the final performance of a biosensor. For DNA detection, the (strept)avidin-biotin affinity interaction is often used for the immobilization of biotin-labeled oligonucleotides or PCR amplicons. Herein, DNA binding proteins are proposed as alternative universal anchors for both DNA immobilization and detection, based on the strong and specific affinity interaction between certain DNA binding proteins and their respective dsDNA binding sites. These binding sites can be incorporated in the target DNA molecule during synthesis and by PCR, eliminating the need for post-synthesis chemical modification and resulting in lower costs. When scCro DNA binding protein was immobilized on microplates and nitrocellulose membrane, both ssDNA and dsDNA targets were successfully detected. The detection limits achieved were similar to those obtained with the streptavidin-biotin system. However, the scCro system resulted in higher signals while using less amount of protein. The adsorption properties of scCro were superior to streptavidin's, making scCro a viable alternative as an anchor biomolecule for the development of DNA assays and biosensors. Finally, a nucleic acid lateral flow assay based solely on two different DNA binding proteins, scCro and dHP, was developed for the detection of a PCR amplicon. Overall, the proposed system appears to be very promising and with potential use for multiplex detection using various DNA binding proteins with different sequence specificities. Further work is required to better understand the adsorption properties of these biomolecules on nitrocellulose, optimize the assays comprehensively, and achieve improved sensitivities.
Collapse
Affiliation(s)
- Gülsen Betül Aktas
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, 26 Països Catalans, 43007, Tarragona, Spain
| | - Arnau Ribera
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, 26 Països Catalans, 43007, Tarragona, Spain
| | - Vasso Skouridou
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, 26 Països Catalans, 43007, Tarragona, Spain
| | - Lluis Masip
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, 26 Països Catalans, 43007, Tarragona, Spain.
| |
Collapse
|
6
|
Zhu B, Gan R, Cabezas MD, Kojima T, Nicol R, Jewett MC, Nakano H. Increasing cell-free gene expression yields from linear templates in Escherichia coli and Vibrio natriegens extracts by using DNA-binding proteins. Biotechnol Bioeng 2020; 117:3849-3857. [PMID: 32816360 DOI: 10.1002/bit.27538] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/08/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022]
Abstract
In crude extract-based cell-free protein synthesis (CFPS), DNA templates are transcribed and translated into functional proteins. Although linear expression templates (LETs) are less laborious and expensive to generate, plasmid templates are often desired over polymerase chain reaction-generated LETs due to increased stability and protection against exonucleases present in the extract of the reaction. Here we demonstrate that addition of a double stranded DNA-binding protein to the CFPS reaction, termed single-chain Cro protein (scCro), achieves terminal protection of LETs. This CroP-LET (scCro-based protection of LET) method effectively increases superfolder green fluorescent protein (sfGFP) expression levels from LETs in Escherichia coli CFPS reactions by sixfold. Our yields are comparable to other strategies that provide chemical and enzymatic DNA stabilization in E. coli CFPS. Notably, we also report that the CroP-LET method successfully enhanced yields in CFPS platforms derived from nonmodel organisms. Our results show that CroP-LET increased sfGFP yields by 18-fold in the Vibrio natriegens CFPS platform. With the fast-expanding applications of CFPS platforms, this method provides a practical and generalizable solution to protect linear expression DNA templates.
Collapse
Affiliation(s)
- Bo Zhu
- Laboratory of Molecular Biotechnology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Rui Gan
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois
| | - Maria D Cabezas
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois
| | - Takaaki Kojima
- Laboratory of Molecular Biotechnology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Robert Nicol
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois.,Center for Synthetic Biology, Northwestern University, Evanston, Illinois.,Simpson Querrey Institute, Northwestern University, Evanston, Illinois.,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois
| | - Hideo Nakano
- Laboratory of Molecular Biotechnology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
7
|
Kojima T. Ultra-high-throughput analysis of functional biomolecules using in vitro selection and bioinformatics. Biosci Biotechnol Biochem 2020; 84:1767-1774. [PMID: 32441212 DOI: 10.1080/09168451.2020.1768823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Functional analysis of biomolecules, including nucleic acids and proteins, is important for understanding biological mechanisms in living cells such as gene expression and metabolism. To analyze diverse biomolecular functions, large-scale screening systems for biomolecules have been developed for various applications such as to improve enzyme activity and identify target binding molecules. One of these systems, the Bead Display system, utilizes emulsion technology and is a powerful tool for rapidly screening functional nucleic acids or proteins in vitro. Furthermore, an analytical pipeline that consists of genomic systematic evolution of ligands by exponential enrichment (gSELEX)-Seq, gene expression analysis, and bioinformatics was shown to be a robust platform for comprehensively identifying genes regulated by a transcription factor. This review provides an overview of the biomolecular screening methods developed to date.
Collapse
Affiliation(s)
- Takaaki Kojima
- Graduate School of Bioagricultural Sciences, Nagoya University , Nagoya, Japan
| |
Collapse
|
8
|
Kojima T, Nakane A, Zhu B, Alfi A, Nakano H. A simple, real-time assay of horseradish peroxidase using biolayer interferometry. Biosci Biotechnol Biochem 2019; 83:1822-1828. [PMID: 31119970 DOI: 10.1080/09168451.2019.1621156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Horseradish peroxidase (HRP) isoenzyme C1a is one of the most widely used enzymes for various analytical methods in bioscience research and medical fields. In these fields, real-time monitoring of HRP activity is highly desirable because the utility of HRP as a reporter enzyme would be expanded. In this study, we developed a simple assay system enabling real-time monitoring of HRP activity by using biolayer interferometry (BLI). The HRP activity was quantitatively detected on a BLI sensor chip by tracing a binding response of tyramide, a substrate of HRP, onto an immobilized protein. This system could be applied to analyses related to oxidase activity, as well as to the functional analysis of recombinant HRP.
Collapse
Affiliation(s)
- Takaaki Kojima
- Graduate School of Bioagricultural Sciences, Nagoya University , Chikusa-ku, Nagoya , Japan
| | - Ayako Nakane
- Graduate School of Bioagricultural Sciences, Nagoya University , Chikusa-ku, Nagoya , Japan
| | - Bo Zhu
- Graduate School of Bioagricultural Sciences, Nagoya University , Chikusa-ku, Nagoya , Japan
| | - Almasul Alfi
- Graduate School of Bioagricultural Sciences, Nagoya University , Chikusa-ku, Nagoya , Japan
| | - Hideo Nakano
- Graduate School of Bioagricultural Sciences, Nagoya University , Chikusa-ku, Nagoya , Japan
| |
Collapse
|
9
|
Li M, Cao H, Lai L, Liu Z. Disordered linkers in multidomain allosteric proteins: Entropic effect to favor the open state or enhanced local concentration to favor the closed state? Protein Sci 2019; 27:1600-1610. [PMID: 30019371 DOI: 10.1002/pro.3475] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/12/2018] [Accepted: 06/24/2018] [Indexed: 12/11/2022]
Abstract
There are many multidomain allosteric proteins where an allosteric signal at the allosteric domain modifies the activity of the functional domain. Intrinsically disordered regions (linkers) are widely involved in this kind of regulation process, but the essential role they play therein is not well understood. Here, we investigated the effect of linkers in stabilizing the open or the closed states of multidomain proteins using combined thermodynamic deduction and coarse-grained molecular dynamics simulations. We revealed that the influence of linker can be fully characterized by an effective local concentration [B]0 . When Kd is smaller than [B]0 , the closed state would be favored; while the open state would be preferred when Kd is larger than [B]0 . We used four protein systems with markedly different domain-domain binding affinity and structural order/disorder as model systems to understand the relationship between [B]0 and the linker length as well as its flexibility. The linker length is the main practical determinant of [B]0 . [B]0 of a flexible linker with 40-60 residues was determined to be in a narrow range of 0.2-0.6 mM, while a too short or too long length would dramatically decrease [B]0 . With the revealed [B]0 range, the introduction of a flexible linker makes the regulation of weakly interacting partners possible.
Collapse
Affiliation(s)
- Maodong Li
- Center for Quantitative Biology, Peking University, Beijing, 100871, China
| | - Huaiqing Cao
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Luhua Lai
- Center for Quantitative Biology, Peking University, Beijing, 100871, China.,College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.,State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Peking University, Beijing, 100871, China
| | - Zhirong Liu
- Center for Quantitative Biology, Peking University, Beijing, 100871, China.,College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.,State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Peking University, Beijing, 100871, China
| |
Collapse
|
10
|
Garton M, MacKinnon SS, Malevanets A, Wodak SJ. Interplay of self-association and conformational flexibility in regulating protein function. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0190. [PMID: 29735742 DOI: 10.1098/rstb.2017.0190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2018] [Indexed: 12/18/2022] Open
Abstract
Many functional roles have been attributed to homodimers, the most common mode of protein self-association, notably in the regulation of enzymes, ion channels, transporters and transcription factors. Here we review findings that offer new insights into the different roles conformational flexibility plays in regulating homodimer function. Intertwined homodimers of two-domain proteins and their related family members display significant conformational flexibility, which translates into concerted motion between structural domains. This flexibility enables the corresponding proteins to regulate function across family members by modulating the spatial positions of key recognition surfaces of individual domains, to either maintain subunit interfaces, alter them or break them altogether, leading to a variety of functional consequences. Many proteins may exist as monomers but carry out their biological function as homodimers or higher-order oligomers. We present early evidence that in such systems homodimer formation primes the protein for its functional role. It does so by inducing elevated mobility in protein regions corresponding to the binding epitopes of functionally important ligands. In some systems this process acts as an allosteric response elicited by the self-association reaction itself. Our analysis furthermore suggests that the induced extra mobility likely facilitates ligand binding through the mechanism of conformational selection.This article is part of a discussion meeting issue 'Allostery and molecular machines'.
Collapse
Affiliation(s)
- Michael Garton
- Department of Molecular Genetics, University of Toronto, The Donnelly Centre, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Stephen S MacKinnon
- Cyclica Inc., 18 King Street East, Suite 810, Toronto, Ontario M5C 1C4, Canada
| | - Anatoly Malevanets
- Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| | - Shoshana J Wodak
- VIB Structural Biology research Centre, VUB, Building E Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
11
|
Kojima T, Hata J, Oka H, Hayashi K, Hitomi K, Nakano H. Spatial arrangement of proteins using scCro-tag: application for an in situ enzymatic microbead assay. Biosci Biotechnol Biochem 2018; 82:1911-1921. [PMID: 30067465 DOI: 10.1080/09168451.2018.1501265] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In natural systems, various metabolic reactions are often spatially organized to increase enzyme activity and specificity. Thus, by spatially arranging enzyme molecules in synthetic systems to imitate these natural systems, it is possible to promote a high rate of enzymatic turnover. In this present study, a normal and mutant form of the scCro DNA-binding protein were shown to bind orthogonally to specific recognition sequences under appropriate conditions. Furthermore, these DNA-binding tags were used to establish an enzyme assay system based on the spatial arrangement of transglutaminase and its substrate at the molecular level. Together, the results of the present study suggest that the scCro-tag may be a powerful tool to facilitate the synthetic spatial arrangement of proteins on a DNA ligand.
Collapse
Affiliation(s)
- Takaaki Kojima
- a Graduate School of Bioagricultural Sciences , Nagoya University , Nagoya , Japan
| | - Jumpei Hata
- a Graduate School of Bioagricultural Sciences , Nagoya University , Nagoya , Japan
| | - Hiroya Oka
- a Graduate School of Bioagricultural Sciences , Nagoya University , Nagoya , Japan
| | - Kenta Hayashi
- a Graduate School of Bioagricultural Sciences , Nagoya University , Nagoya , Japan
| | - Kiyotaka Hitomi
- b Graduate School of Pharmaceutical Sciences , Nagoya University , Nagoya , Japan
| | - Hideo Nakano
- a Graduate School of Bioagricultural Sciences , Nagoya University , Nagoya , Japan
| |
Collapse
|
12
|
Kojima T, Mizoguchi T, Ota E, Hata J, Homma K, Zhu B, Hitomi K, Nakano H. Immobilization of proteins onto microbeads using a DNA binding tag for enzymatic assays. J Biosci Bioeng 2016; 121:147-53. [DOI: 10.1016/j.jbiosc.2015.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 06/02/2015] [Accepted: 06/10/2015] [Indexed: 12/16/2022]
|
13
|
Aktas G, Skouridou V, Masip L. Novel signal amplification approach for HRP-based colorimetric genosensors using DNA binding protein tags. Biosens Bioelectron 2015; 74:1005-10. [DOI: 10.1016/j.bios.2015.07.077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/22/2015] [Accepted: 07/30/2015] [Indexed: 12/30/2022]
|
14
|
Abstract
Lambda Cro repressor is one of the best studied dimeric transcription factors. However, there has still been an unsettled debate for decades about whether it is a two-state dimer or three-state dimer. We provide a new mechanism model that can reconcile these seemingly conflicting (mutually exclusive) experimental results. From simulations with all-atom structure-based model, we observe that the dimerization process of Lambda Cro repressor starts from one folded monomer with one unfolded monomer. Intrasubunit folding and intersubunit binding are partially coupled, in a fly casting manner.
Collapse
Affiliation(s)
| | - Jin Wang
- ∥State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
| |
Collapse
|
15
|
Ultra-high-throughput screening of an in vitro-synthesized horseradish peroxidase displayed on microbeads using cell sorter. PLoS One 2015; 10:e0127479. [PMID: 25993095 PMCID: PMC4439038 DOI: 10.1371/journal.pone.0127479] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 04/14/2015] [Indexed: 11/30/2022] Open
Abstract
The C1a isoenzyme of horseradish peroxidase (HRP) is an industrially important heme-containing enzyme that utilizes hydrogen peroxide to oxidize a wide variety of inorganic and organic compounds for practical applications, including synthesis of fine chemicals, medical diagnostics, and bioremediation. To develop a ultra-high-throughput screening system for HRP, we successfully produced active HRP in an Escherichia coli cell-free protein synthesis system, by adding disulfide bond isomerase DsbC and optimizing the concentrations of hemin and calcium ions and the temperature. The biosynthesized HRP was fused with a single-chain Cro (scCro) DNA-binding tag at its N-terminal and C-terminal sites. The addition of the scCro-tag at both ends increased the solubility of the protein. Next, HRP and its fusion proteins were successfully synthesized in a water droplet emulsion by using hexadecane as the oil phase and SunSoft No. 818SK as the surfactant. HRP fusion proteins were displayed on microbeads attached with double-stranded DNA (containing the scCro binding sequence) via scCro-DNA interactions. The activities of the immobilized HRP fusion proteins were detected with a tyramide-based fluorogenic assay using flow cytometry. Moreover, a model microbead library containing wild type hrp (WT) and inactive mutant (MUT) genes was screened using fluorescence-activated cell-sorting, thus efficiently enriching the WT gene from the 1:100 (WT:MUT) library. The technique described here could serve as a novel platform for the ultra-high-throughput discovery of more useful HRP mutants and other heme-containing peroxidases.
Collapse
|
16
|
Wong-Deyrup SW, Prasannan C, Dupureur CM, Franklin SJ. DNA targeting and cleavage by an engineered metalloprotein dimer. J Biol Inorg Chem 2011; 17:387-98. [PMID: 22116546 DOI: 10.1007/s00775-011-0861-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 11/08/2011] [Indexed: 11/27/2022]
Abstract
Nature has illustrated through numerous examples that protein dimerization has structural and functional advantages. We previously reported the design and characterization of an engineered "metallohomeodomain" protein (C2) based on a chimera of the EF-hand Ca-binding motif and the helix-turn-helix motif of homeodomains (Lim and Franklin in Protein Sci. 15:2159-2165, 2004). This small metalloprotein binds the hard metal ions Ca(II) and Ln(III) and interacts with DNA with modest sequence preference and affinity, yet exhibits only residual DNA cleavage activity. Here we have achieved substantial improvement in function by constructing a covalent dimer of this C2 module (F2) to create a larger multidomain protein. As assayed via fluorescence spectroscopy, this F2 protein binds Ca(II) more avidly (25-fold) than C2 on a per-domain basis; in gel shift selection experiments, metallated F2 exhibits a specificity toward 5'-TAATTA-3' sequences. Finally, Ca(2)F2 cleaves plasmid DNA and generates a linear product in a Ca(II)-dependent way, unlike the CaC2 monomer. To the best of our knowledge this activation of Ca(II) in the context of an EF-hand binding motif is unique and represents a significant step forward in the design of artificial metallonucleases by utilizing biologically significant metal ions.
Collapse
|
17
|
Zhu XM, Yin L, Hood L, Ao P. ROBUSTNESS, STABILITY AND EFFICIENCY OF PHAGE λ GENETIC SWITCH: DYNAMICAL STRUCTURE ANALYSIS. J Bioinform Comput Biol 2011; 2:785-817. [PMID: 15617166 DOI: 10.1142/s0219720004000946] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2004] [Revised: 09/16/2004] [Accepted: 09/18/2004] [Indexed: 11/18/2022]
Abstract
Based on the dynamical structure theory for complex networks recently developed by one of us and on the physical-chemical models for gene regulation, developed by Shea and Ackers in the 1980's, we formulate a direct and concise mathematical framework for the genetic switch controlling phage λ life cycles, which naturally includes the stochastic effect. The dynamical structure theory states that the dynamics of a complex network is determined by its four elementary components: The dissipation (analogous to degradation), the stochastic force, the driving force determined by a potential, and the transverse force. The potential may be interpreted as a landscape for the phage development in terms of attractive basins, saddle points, peaks and valleys. The dissipation gives rise to the adaptivity of the phage in the landscape defined by the potential: The phage always has the tendency to approach the bottom of the nearby attractive basin. The transverse force tends to keep the network on the equal-potential contour of the landscape. The stochastic fluctuation gives the phage the ability to search around the potential landscape by passing through saddle points.With molecular parameters in our model fixed primarily by the experimental data on wild-type phage and supplemented by data on one mutant, our calculated results on mutants agree quantitatively with the available experimental observations on other mutants for protein number, lysogenization frequency, and a lysis frequency in lysogen culture. The calculation reproduces the observed robustness of the phage λ genetic switch. This is the first mathematical description that successfully represents such a wide variety of major experimental phenomena. Specifically, we find: (1) The explanation for both the stability and the efficiency of phage λ genetic switch is the exponential dependence of saddle point crossing rate on potential barrier height, a result of the stochastic motion in a landscape; and (2) The positive feedback of cI repressor gene transcription, enhanced by the CI dimer cooperative binding, is the key to the robustness of the phage λ genetic switch against mutations and fluctuations in kinetic parameter values.
Collapse
Affiliation(s)
- X-M Zhu
- GenMath, Corp. 5525 27th Ave.N.E., Seattle, WA 98105, USA
| | | | | | | |
Collapse
|
18
|
Hall BM, Vaughn EE, Begaye AR, Cordes MHJ. Reengineering Cro protein functional specificity with an evolutionary code. J Mol Biol 2011; 413:914-28. [PMID: 21945527 DOI: 10.1016/j.jmb.2011.08.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 08/13/2011] [Accepted: 08/29/2011] [Indexed: 11/17/2022]
Abstract
Cro proteins from different lambdoid bacteriophages are extremely variable in their target consensus DNA sequences and constitute an excellent model for evolution of transcription factor specificity. We experimentally tested a bioinformatically derived evolutionary code relating switches between pairs of amino acids at three recognition helix sites in Cro proteins to switches between pairs of nucleotide bases in the cognate consensus DNA half-sites. We generated all eight possible code variants of bacteriophage λ Cro and used electrophoretic mobility shift assays to compare binding of each variant to its own putative cognate site and to the wild-type cognate site; we also tested the wild-type protein against all eight DNA sites. Each code variant showed stronger binding to its putative cognate site than to the wild-type site, except some variants containing proline at position 27; each also bound its cognate site better than wild-type Cro bound the same site. Most code variants, however, displayed poorer affinity and specificity than wild-type λ Cro. Fluorescence anisotropy assays on λ Cro and the triple code variant (PSQ) against the two cognate sites confirmed the switch in specificity and showed larger apparent effects on binding affinity and specificity. Bacterial one-hybrid assays of λ Cro and PSQ against libraries of sequences with a single randomized half-site showed the expected switches in specificity at two of three coded positions and no clear switches in specificity at noncoded positions. With a few caveats, these results confirm that the proposed Cro evolutionary code can be used to reengineer Cro specificity.
Collapse
Affiliation(s)
- Branwen M Hall
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | |
Collapse
|
19
|
House RP, Pozzuto M, Patel P, Dulyaninova NG, Li ZH, Zencheck WD, Vitolo MI, Weber DJ, Bresnick AR. Two functional S100A4 monomers are necessary for regulating nonmuscle myosin-IIA and HCT116 cell invasion. Biochemistry 2011; 50:6920-32. [PMID: 21721535 DOI: 10.1021/bi200498q] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
S100A4, a member of the Ca(2+)-activated S100 protein family, regulates the motility and invasiveness of cancer cells. Moreover, high S100A4 expression levels correlate with poor patient survival in several cancers. Although biochemical, biophysical, and structural data indicate that S100A4 is a noncovalent dimer, it is unknown if two functional S100A4 monomers are required for the productive recognition of protein targets and the promotion of cell invasion. To address this question, we created covalently linked S100A4 dimers using a glycine rich flexible linker. The single-chain S100A4 (sc-S100A4) proteins exhibited wild-type affinities for calcium and nonmuscle myosin-IIA, retained the ability to regulate nonmuscle myosin-IIA assembly, and promoted tumor cell invasion when expressed in S100A4-deficient colon carcinoma cells. Mutation of the two calcium-binding EF-hands in one monomer, while leaving the other monomer intact, caused a 30-60-fold reduction in binding affinity for nonmuscle myosin-IIA concomitant with a weakened ability to regulate the monomer-polymer equilibrium of nonmuscle myosin-IIA. Moreover, sc-S100A4 proteins with one monomer deficient in calcium responsiveness did not support S100A4-mediated colon carcinoma cell invasion. Cross-linking and titration data indicate that the S100A4 dimer binds a single myosin-IIA target peptide. These data are consistent with a model in which a single peptide forms interactions in the vicinity of the canonical target binding cleft of each monomer in such a manner that both target binding sites are required for the efficient interaction with myosin-IIA.
Collapse
Affiliation(s)
- Reniqua P House
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Cheng J, Sagan SM, Assem N, Koukiekolo R, Goto NK, Pezacki JP. Stabilized recombinant suppressors of RNA silencing: Functional effects of linking monomers of Carnation Italian Ringspot virus p19. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:1528-35. [DOI: 10.1016/j.bbapap.2007.09.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 09/24/2007] [Accepted: 09/25/2007] [Indexed: 12/24/2022]
|
21
|
Enhancement of oligomeric stability by covalent linkage and its application to the human p53tet domain: thermodynamics and biological implications. Biochem Soc Trans 2007; 35:1574-8. [DOI: 10.1042/bst0351574] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The formation of oligomeric proteins proceeds at a major cost of reducing the translational and rotational entropy for their subunits in order to form the stabilizing interactions found in the oligomeric state. Unlike site-directed mutations, covalent linkage of subunits represents a generically applicable strategy for enhancing oligomeric stability by reducing the entropic driving force for dissociation. Although this can be realized by introducing de novo disulfide cross-links between subunits, issues with irreversible aggregation limit the utility of this approach. In contrast, tandem linkage of subunits in a single polypeptide chain offers a universal method of pre-paying the entropic cost of oligomer formation. In the present paper, thermodynamic, structural and experimental aspects of designing and characterizing tandem-linked oligomers are discussed with reference to engineering a stabilized tetramer of the oligomerization domain of the human p53 tumour-suppressor protein by tandem dimerization.
Collapse
|
22
|
Hall BM, Roberts SA, Heroux A, Cordes MHJ. Two structures of a lambda Cro variant highlight dimer flexibility but disfavor major dimer distortions upon specific binding of cognate DNA. J Mol Biol 2007; 375:802-11. [PMID: 18054042 DOI: 10.1016/j.jmb.2007.10.082] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 10/29/2007] [Accepted: 10/30/2007] [Indexed: 10/22/2022]
Abstract
Previously reported crystal structures of free and DNA-bound dimers of lambda Cro differ strongly (about 4 A backbone rmsd), suggesting both flexibility of the dimer interface and induced-fit protein structure changes caused by sequence-specific DNA binding. Here, we present two crystal structures, in space groups P3(2)21 and C2 at 1.35 and 1.40 A resolution, respectively, of a variant of lambda Cro with three mutations in its recognition helix (Q27P/A29S/K32Q, or PSQ for short). One dimer structure (P3(2)21; PSQ form 1) resembles the DNA-bound wild-type Cro dimer (1.0 A backbone rmsd), while the other (C2; PSQ form 2) resembles neither unbound (3.6 A) nor bound (2.4 A) wild-type Cro. Both PSQ form 2 and unbound wild-type dimer crystals have a similar interdimer beta-sheet interaction between the beta1 strands at the edges of the dimer. In the former, an infinite, open beta-structure along one crystal axis results, while in the latter, a closed tetrameric barrel is formed. Neither the DNA-bound wild-type structure nor PSQ form 1 contains these interdimer interactions. We propose that beta-sheet superstructures resulting from crystal contact interactions distort Cro dimers from their preferred solution conformation, which actually resembles the DNA-bound structure. These results highlight the remarkable flexibility of lambda Cro but also suggest that sequence-specific DNA binding may not induce large changes in the protein structure.
Collapse
Affiliation(s)
- Branwen M Hall
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | |
Collapse
|
23
|
Poon GMK, Brokx RD, Sung M, Gariépy J. Tandem Dimerization of the Human p53 Tetramerization Domain Stabilizes a Primary Dimer Intermediate and Dramatically Enhances its Oligomeric Stability. J Mol Biol 2007; 365:1217-31. [PMID: 17113101 DOI: 10.1016/j.jmb.2006.10.051] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Revised: 10/04/2006] [Accepted: 10/13/2006] [Indexed: 11/18/2022]
Abstract
Tetramerization of the human p53 tumor suppressor protein is required for its biological functions. However, cellular levels of p53 indicate that it exists predominantly in a monomeric state. Since the oligomerization of p53 involves the rate-limiting formation of a primary dimer intermediate, we engineered a covalently linked pair of human p53 tetramerization (p53tet) domains to generate a tandem dimer (p53tetTD) that minimizes the energetic requirements for forming the primary dimer. We demonstrate that p53tetTD self-assembles into an oligomeric structure equivalent to the wild-type p53tet tetramer and exhibits dramatically enhanced oligomeric stability. Specifically, the p53tetTD dimer exhibits an unfolding/dissociation equilibrium constant of 26 fM at 37 degrees C, or a million-fold increase in stability relative to the wild-type p53tet tetramer, and resists subunit exchange with monomeric p53tet. In addition, whereas the wild-type p53tet tetramer undergoes coupled (i.e. two-state) dissociation/unfolding to unfolded monomers, the p53tetTD dimer denatures via an intermediate that is detectable by differential scanning calorimetry but not CD spectroscopy, consistent with a folded p53tetTD monomer that is equivalent to the p53tet primary dimer. Given its oligomeric stability and resistance against hetero-oligomerization, dimerization of p53 constructs incorporating the tetramerization domain may yield functional constructs that may resist exchange with wild-type or mutant forms of p53.
Collapse
Affiliation(s)
- Gregory M K Poon
- Ontario Cancer Institute, University Health Network, Ontario, Canada M5G 2M9
| | | | | | | |
Collapse
|
24
|
Kamionka A, Majewski M, Roth K, Bertram R, Kraft C, Hillen W. Induction of single chain tetracycline repressor requires the binding of two inducers. Nucleic Acids Res 2006; 34:3834-41. [PMID: 16899452 PMCID: PMC1557800 DOI: 10.1093/nar/gkl316] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 03/20/2006] [Accepted: 04/12/2006] [Indexed: 11/13/2022] Open
Abstract
In this article we report the in vivo and in vitro characterization of single chain tetracycline repressor (scTetR) variants in Escherichia coli. ScTetR is genetically and proteolytically stable and exhibits the same regulatory properties as dimeric TetR in E.coli. Urea-dependent denaturation of scTetR is independent of the protein concentration and follows the two-state model with a monophasic transition. Contrary to dimeric TetR, scTetR allows the construction of scTetR mutants, in which one subunit contains a defective inducer binding site while the other is functional. We have used this approach to establish that scTetR needs occupation of both inducer binding sites for in vivo and in vitro induction. Single mutations causing loss of induction in dimeric TetR lead to non-inducible scTetR when inserted into one half-side. The construction of scTetR H64K S135L S138I (scTetR(i2)) in which one half-side is specific for 4-dedimethylamino-anhydrotetracycline (4-ddma-atc) and the other for tetracycline (tc) leads to a protein which is only inducible by the mixture of tc and 4-ddma-atc. Fluorescence titration of scTetR(i2) with both inducers revealed distinct occupancy with each of these inducers yielding roughly a 1:1 stoichiometry of each inducer per scTetR(i2). The properties of this gain of function mutant clearly demonstrate that scTetR requires the binding of two inducers for induction of transcription.
Collapse
Affiliation(s)
- Annette Kamionka
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-NürnbergStaudtstrasse 5, 91058 Erlangen, Germany
| | - Marius Majewski
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-NürnbergStaudtstrasse 5, 91058 Erlangen, Germany
| | - Karin Roth
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-NürnbergStaudtstrasse 5, 91058 Erlangen, Germany
| | - Ralph Bertram
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-NürnbergStaudtstrasse 5, 91058 Erlangen, Germany
| | - Christine Kraft
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-NürnbergStaudtstrasse 5, 91058 Erlangen, Germany
| | - Wolfgang Hillen
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-NürnbergStaudtstrasse 5, 91058 Erlangen, Germany
| |
Collapse
|
25
|
Rau DC. Sequestered water and binding energy are coupled in complexes of lambda Cro repressor with non-consensus binding sequences. J Mol Biol 2006; 361:352-61. [PMID: 16828799 DOI: 10.1016/j.jmb.2006.06.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 06/07/2006] [Accepted: 06/14/2006] [Indexed: 11/28/2022]
Abstract
We use the osmotic pressure dependence of dissociation rates and relative binding constants to infer differences in sequestered water among complexes of lambda Cro repressor with varied DNA recognition sequences. For over a 1000-fold change in association constant, the number of water molecules sequestered by non-cognate complexes varies linearly with binding free energy. One extra bound water molecule is coupled with the loss of approximately 150 cal/mol complex in binding free energy. Equivalently, every tenfold decrease in binding constant at constant salt and temperature is associated with eight to nine additional water molecules sequestered in the non-cognate complex. The relative insensitivity of the difference in water molecules to the nature of the osmolyte used to probe the reaction suggests that the water is sterically sequestered. If the previously measured changes in heat capacity for lambda Cro binding to different non-cognate sequences are attributed solely to this change in water, then the heat capacity change per incorporated water is almost the same as the difference between ice and water. The associated changes in enthalpies and entropies, however, indicate that the change in complex structure involves more than a simple incorporation of fixed water molecules that act as adaptors between non-complementary surfaces.
Collapse
Affiliation(s)
- Donald C Rau
- Laboratory of Physical and Structural Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
26
|
Surovaya AN, Gitelson GI, Gursky GV. Interaction of λ Cro repressor and its V55C mutant S-S dimer with symmetrical and asymmetrical DNA. Biophysics (Nagoya-shi) 2006. [DOI: 10.1134/s0006350906030109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
27
|
Lee S, Arunkumar AI, Chen X, Giedroc DP. Structural Insights into Homo- and Heterotropic Allosteric Coupling in the Zinc Sensor S. aureus CzrA from Covalently Fused Dimers. J Am Chem Soc 2006; 128:1937-47. [PMID: 16464095 DOI: 10.1021/ja0546828] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Zn(II)/Co(II)-sensing transcriptional repressor, Staphylococcus aureus CzrA, is a homodimer containing a symmetry-related pair of subunit-bridging tetrahedral N(3)O metal sensor coordination sites. A metal-induced quaternary structural change within the homodimer is thought to govern the biological activity of this and other metal sensor proteins. Here, we exploit covalent (Gly(4)Ser)(n)() linkers of variable length in "fused" CzrAs, where n = 1 (designated 5L-fCzrA), 2 (10L-fCzrA), or 3 (15L-fCzrA), as molecular rulers designed to restrict any quaternary structural changes that are associated with metal binding and metal-mediated allosteric regulation of DNA binding to varying degrees. While 15L-fCzrA exhibits properties most like homodimeric CzrA, shortening the linker in 10L-fCzrA abolishes negative homotropic cooperativity of Zn(II) binding and reduces DNA binding affinity of the apoprotein significantly. Decreasing the linker length further in 5L-fCzrA effectively destroys one metal site altogether and further reduces DNA binding affinity. However, Zn(II) negatively regulates DNA binding of all fCzrAs, with allosteric coupling free energies (DeltaG(1)(c)) of 4.6, 3.1, and 2.7 kcal mol(-1) for 15L-, 10L-, and 5L-fCzrAs, respectively. Introduction of a single nonliganding H97N substitution into either the N-terminal or C-terminal protomer domain in 10L-fCzrA results in DeltaG(1)(c) = 2.6 kcal mol(-1) or approximately 83% that of 10L-fCzrA; in contrast, homodimeric H97N CzrA gives DeltaG(1)(c) = 0. (1)H-(15)N HSQC spectra acquired for wt-, 10L-fCzrA and H97N 10L-fCzrA in various Zn(II) ligation states reveal that the allosteric change of the protomer domains within the fused dimer is independent and not concerted. Thus, occupancy of a single metal site by Zn(II) introduces asymmetry into the CzrA homodimer that leads to significant allosteric regulation of DNA binding.
Collapse
Affiliation(s)
- Sunbae Lee
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA
| | | | | | | |
Collapse
|
28
|
Jonas K, Van Der Vries E, Nilsson MTI, Widersten M. Isolation of novel single-chain Cro proteins targeted for binding to the bcl-2 transcription initiation site by repertoire selection and subunit combinatorics. Protein Eng Des Sel 2005; 18:537-46. [PMID: 16186141 DOI: 10.1093/protein/gzi058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
New designed DNA-binding proteins may be recruited to act as transcriptional regulators and could provide new therapeutic agents in the treatment of genetic disorders such as cancer. We have isolated tailored DNA-binding proteins selected for affinity to a region spanning the transcription initiation site of the human bcl-2 gene. The proteins were derived from a single-chain derivative of the lambda Cro protein (scCro), randomly mutated in its recognition helices to construct libraries of protein variants of distinct DNA-binding properties. By phage display-afforded affinity selections combined with recombination of shuffled subunits, protein variants were isolated, which displayed high affinity for the target bcl-2 sequence, as determined by electrophoretic mobility shift and biosensor assays. The proteins analyzed were moderately sequence-specific but provide a starting point for further maturation of desired function.
Collapse
Affiliation(s)
- Kristina Jonas
- Department of Biochemistry, Uppsala University, Biomedical Center, Box 576, SE-751 23 Uppsala, Sweden
| | | | | | | |
Collapse
|
29
|
Jia H, Satumba WJ, Bidwell GL, Mossing MC. Slow Assembly and Disassembly of λ Cro Repressor Dimers. J Mol Biol 2005; 350:919-29. [PMID: 15982668 DOI: 10.1016/j.jmb.2005.05.054] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Revised: 05/03/2005] [Accepted: 05/23/2005] [Indexed: 11/23/2022]
Abstract
Dimers of Cro are required to recognize operator DNA and repress transcription, but dimerization is weak compared to DNA binding. Fluorophore-conjugated, single-cysteine variants of Cro have been used to investigate the equilibria and kinetics of dimer assembly. Equilibrium distributions of mixed dimers, monitored by fluorescence resonance energy transfer (FRET), confirm that labeled variants have equilibrium dimer dissociation constants in the micromolar concentration range. Subunit exchange experiments yield first order rate constants for dimer dissociation that range from 0.02 s(-1) to 0.04 s(-1). Association rate constants calculated from the ratios of dissociation equilibrium and rate constants range from 0.7x10(4) M(-1) s(-1) to 3x10(4) M(-1) s(-1), depending on the site of the fluorescent label. At nanomolar concentrations of subunits, assembly can be driven by addition of DNA. The bimolecular association rate constants measured under these conditions are not dramatically enhanced, ranging from 7x10(4) M(-1) s(-1) to 9x10(4) M(-1) s(-1). The association rate is second order in protein but independent of DNA concentration between 10 nM and 200 nM. The association of subunits under native conditions is more than four orders of magnitude slower than the fast assembly phase measured previously in refolding experiments, and is unaffected by peptidyl-prolyl isomerases. Stabilization of the folded structure of the protein by residue substitution in Cro F58W or reduced temperature increases the ratio of dimers to monomers and decreases the rate of subunit exchange. These data suggest that native monomers have compact structures with substantial barriers to unfolding and that unfolded or partially folded monomers are the preferred substrates for dimer assembly. Cro binding in vivo may be under kinetic rather than thermodynamic control. The slow assembly of Cro dimers demonstrated here provides a new perspective on the lysis/lysogeny switch of bacteriophage lambda.
Collapse
Affiliation(s)
- Haifeng Jia
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA
| | | | | | | |
Collapse
|
30
|
Maity H, Mossing MC, Eftink MR. Equilibrium unfolding of dimeric and engineered monomeric forms of lambda Cro (F58W) repressor and the effect of added salts: evidence for the formation of folded monomer induced by sodium perchlorate. Arch Biochem Biophys 2005; 434:93-107. [PMID: 15629113 DOI: 10.1016/j.abb.2004.10.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Indexed: 11/28/2022]
Abstract
The equilibrium unfolding transitions of Cro repressor variants, dimeric variant Cro F58W and monomer Cro K56[DGEVK]F58W, have been studied by urea and guanidine hydrochloride to probe the folding mechanism. The unfolding transitions of a dimeric variant are well described by a two state process involving native dimer and unfolded monomer with a free energy of unfolding, DeltaG(0,un)(0), of approximately 10-11 kcal/mol. The midpoint of transition curves is dependent on total protein concentration and DeltaG(0,un)(0) is independent of protein concentration, as expected for this model. Unfolding of Cro monomer is well described by the standard two state model. The stability of both forms of protein increases in the presence of salt but decreases with the decrease in pH. Because of the suggested importance of a N2<-->2F dimerization process in DNA binding, we have also studied the effect of sodium perchlorate, containing the chaotropic perchlorate anion, on the conformational transition of Cro dimer by CD, fluorescence and NMR (in addition to urea and guanidine hydrochloride) in an attempt both to characterize the thermodynamics of the process and to identify conditions that lead to an increase in the population of the folded monomers. Data suggest that sodium perchlorate stabilizes the protein at low concentration (<1.5 M) and destabilizes the protein at higher perchlorate concentration with the formation of a "significantly folded" monomer. The tryptophan residue in the "significantly folded" monomer induced by perchlorate is more exposed to the solvent than in native dimer.
Collapse
Affiliation(s)
- Haripada Maity
- Department of Chemistry and Biochemistry, University of Mississippi, Coulter Hall University, MS 38677, USA
| | | | | |
Collapse
|
31
|
Zhou HX. Loops, linkages, rings, catenanes, cages, and crowders: entropy-based strategies for stabilizing proteins. Acc Chem Res 2004; 37:123-30. [PMID: 14967059 DOI: 10.1021/ar0302282] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A protein molecule exists in either a compact folded state or a variable and open unfolded state. Since the unfolded state is favored by chain entropy, restricting its entropy is an attractive mechanism for shifting the equilibrium toward the folded state. A number of entropy-based strategies have been engineered or used by natural proteins to increase the folding stability: (a) shortening of loop lengths, (b) covalent linkage of dimeric proteins, (c) backbone cyclization, (d) catenation, (e) spatial confinement, and (f) macromolecular crowding. Theoretical analyses demonstrate the importance of accounting for consequences on the folded as well as the unfolded state and provide guidance for further exploitation of these stabilization strategies.
Collapse
Affiliation(s)
- Huan-Xiang Zhou
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306, USA
| |
Collapse
|
32
|
Collins CH, Yokobayashi Y, Umeno D, Arnold FH. Engineering proteins that bind, move, make and break DNA. Curr Opin Biotechnol 2003; 14:371-8. [PMID: 12943845 DOI: 10.1016/s0958-1669(03)00091-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Recent protein engineering efforts have generated artificial transcription factors that bind new target DNA sequences and enzymes that modify DNA at new target sites. Zinc-finger-based transcription factors are favored targets for design; important technological advances in their construction and numerous biotechnological applications have been reported. Other notable advances include the generation of endonucleases and recombinases with altered specificities, made by innovative combinatorial and evolutionary protein engineering strategies. An unexpectedly high tolerance to mutation in the active sites of DNA polymerases is being exploited to engineer polymerases to incorporate artificial nucleotides or to display other, nonnatural activities.
Collapse
Affiliation(s)
- Cynthia H Collins
- Biochemistry and Molecular Biophysics, California Institute of Technology, mail code 210-41, Pasadena, California 91125, USA
| | | | | | | |
Collapse
|
33
|
Krueger C, Berens C, Schmidt A, Schnappinger D, Hillen W. Single-chain Tet transregulators. Nucleic Acids Res 2003; 31:3050-6. [PMID: 12799431 PMCID: PMC162254 DOI: 10.1093/nar/gkg421] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We demonstrate here that the Tet repressor (TetR), a dimeric allosterical regulatory protein, can be converted to a fully functional monomer when connected by a 29 amino acid linker. TetR-based transregulators are widely used to regulate gene expression in eukaryotes. They can be fused to form single-chain (sc) Tet transregulators with two TetR moieties and one eukaryotic regulatory domain. Sc variants of transactivator and transsilencer exhibit the same regulatory properties as their respective dimeric counterparts in human cell lines. In particular, the reverse 'tet-on' phenotype of rtTA variants is also present in the sc variants. Coexpression of a reverse transactivator and sc transsilencer leads to reduced background expression and shows full activation upon induction. The data demonstrate that sc Tet transregulators exhibit the phenotype of their respective dimers and lack functional interference when coexpressed in the same cell.
Collapse
Affiliation(s)
- Christel Krueger
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstrasse 5, D-91058 Erlangen, Germany
| | | | | | | | | |
Collapse
|
34
|
Aurell E, Brown S, Johanson J, Sneppen K. Stability puzzles in phage lambda. PHYSICAL REVIEW E 2002; 65:051914. [PMID: 12059600 DOI: 10.1103/physreve.65.051914] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2002] [Indexed: 11/07/2022]
Abstract
In the absence of RecA-mediated cleavage of the repressor, the lambda prophage is exceptionally stable. We develop a stochastic model that predicts the stability of such epigenetic states from affinities of the molecular components. We find that the stability, in particular, depends on the maximum possible cI protein production, and on the number of translated cro proteins per transcribed mRNA. We apply the model to the behavior of recently published mutants of O(R) and find, in particular, that a mutant that overexpress cro behaves in a different way than what was predicted, thus suggesting that the current view of the O(R) switch is incomplete. The approach described here should be generally applicable to the stability of expressed states.
Collapse
Affiliation(s)
- Erik Aurell
- SICS, Box 1263, SE-14 29 Kista, SwedenNordita, Blegdamvej 17, DK-2100 Copenhagen, Denmark
| | | | | | | |
Collapse
|
35
|
Abstract
Cys2His2 zinc finger proteins offer a stable and versatile framework for the design of proteins that recognize desired target sites on double-stranded DNA. Individual fingers from these proteins have a simple beta beta alpha structure that folds around a central zinc ion, and tandem sets of fingers can contact neighboring subsites of 3-4 base pairs along the major groove of the DNA. Although there is no simple, general code for zinc finger-DNA recognition, selection strategies have been developed that allow these proteins to be targeted to almost any desired site on double-stranded DNA. The affinity and specificity of these new proteins can also be improved by linking more fingers together or by designing proteins that bind as dimers and thus recognize an extended site. These new proteins can then be modified by adding other domains--for activation or repression of transcription, for DNA cleavage, or for other activities. Such designer transcription factors and other new proteins will have important applications in biomedical research and in gene therapy.
Collapse
Affiliation(s)
- C O Pabo
- Department of Biology, Massachusetts Institute of Technology, Howard Hughes Medical Institute, Cambridge, Massachusetts 02139, USA.
| | | | | |
Collapse
|
36
|
Facchini LM, Lingwood CA. A verotoxin 1 B subunit-lambda CRO chimeric protein specifically binds both DNA and globotriaosylceramide (Gb(3)) to effect nuclear targeting of exogenous DNA in Gb(3) positive cells. Exp Cell Res 2001; 269:117-29. [PMID: 11525645 DOI: 10.1006/excr.2001.5297] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Inefficient nuclear incorporation of foreign DNA remains a critical roadblock in the development of effective nonviral gene delivery systems. DNA delivered by traditional protocols remains within endosomal/lysosomal vesicles, or is rapidly degraded in the cytoplasm. Verotoxin I (VT), an AB(5) subunit toxin produced by enterohaemorrhagic Escherichia coli, binds to the cell surface glycolipid, globotriaosylceramide (Gb(3)) and is internalized into preendosomes. VT is then retrograde transported to the Golgi, endoplasmic reticulum (ER), and nucleus of highly VT-sensitive cells. We have utilized this nuclear targeting of VT to design a unique delivery system which transports exogenous DNA via vesicular traffic to the nucleus. The nontoxic VT binding subunit (VTB) was fused to the lambda Cro DNA-binding repressor, generating a 14-kDa VTB-Cro chimera. VTB-Cro binds specifically via the Cro domain to a 25-bp DNA fragment containing the consensus Cro operator. VTB-Cro demonstrates simultaneous specific binding to Gb(3). Treatment of Vero cells with fluorescent-labeled Cro operator DNA in the presence of VTB-Cro, results in DNA internalization to the Golgi, ER, and nucleus, whereas fluorescent DNA alone is incorporated poorly and randomly within the cytoplasm. VTB-Cro mediated nuclear DNA transport is prevented by brefeldin A, consistent with Golgi/ER intracellular routing. Pretreatment with filipin had no effect, indicating that caveoli are not involved. This novel VTB-Cro shuttle protein may find practical applications in the fields of intracellular targeting, gene delivery, and gene therapy.
Collapse
Affiliation(s)
- L M Facchini
- Division of Infection, Immunity, Injury and Repair, Research Institute, University of Toronto, Toronto, Canada
| | | |
Collapse
|
37
|
Liang T, Chen J, Tjörnhammar ML, Pongor S, Simoncsits A. Modular construction of extended DNA recognition surfaces: mutant DNA-binding domains of the 434 repressor as building blocks. PROTEIN ENGINEERING 2001; 14:591-9. [PMID: 11579228 DOI: 10.1093/protein/14.8.591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Single-chain derivatives of the 434 repressor containing one wild-type and one mutant DNA-binding domain recognize the general operator ACAA-6 base pairs-NNNN, where the ACAA operator subsite is contacted by the wild-type and the NNNN tetramer by the mutant domain. The DNA-binding specificities of several single-chain mutants were studied in detail and the optimal subsites of the mutant domains were determined. The characterized mutant domains were used as building units to obtain homo- and heterodimeric single-chain derivatives. The DNA-binding properties of these domain-shuffled derivatives were tested with a series of designed operators of NNNN-6 base pairs-NNNN type. It was found that the binding specificities of the mutant domains were generally maintained in the new environments and the binding affinities for the optimal DNA ligands were high (with K(d) values in the range of 10(-11)-10(-10) M). Considering that only certain sequence motifs in place of the six base pair spacer can support optimal contacts between the mutant domains and their subsites, the single-chain 434 repressor mutants are highly specific for a limited subset of 14 base pair long DNA targets.
Collapse
Affiliation(s)
- T Liang
- Present address: Institute of Botany, Chinese Academy of Sciences, Xiang Shan, Hai Dian Qu, Bejing 100093, China
| | | | | | | | | |
Collapse
|
38
|
Langdon RC, Burr T, Pagan-Westphal S, Hochschild A. A chimeric activator of transcription that uses two DNA-binding domains to make simultaneous contact with pairs of recognition sites. Mol Microbiol 2001; 41:885-96. [PMID: 11532151 DOI: 10.1046/j.1365-2958.2001.02583.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many well-known transcriptional regulatory proteins are composed of at least two independently folding domains and, typically, only one of these is a DNA-binding domain. However, some transcriptional regulators have been described that have more than one DNA-binding domain. Regulators with a single DNA-binding domain often bind co-operatively to the DNA in homotypic or heterotypic combinations, and two or more DNA-binding domains of a single regulatory protein can also bind co-operatively to suitably positioned recognition sequences. Here, we examine the behaviour of a chimeric activator of transcription with two different DNA-binding domains, that of the bacteriophage lambda cI protein and that of the Escherichia coli cyclic AMP receptor protein. We show that these two DNA-binding moieties, when present in the same molecule, can bind co-operatively to a pair of cognate recognition sites located upstream of a test promoter, thereby permitting the chimera to function as a particularly strong activator of transcription from this promoter. Our results show how such a bivalent DNA-binding protein can be used to regulate transcription differentially from promoters that bear either one or both recognition sites.
Collapse
Affiliation(s)
- R C Langdon
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
39
|
Eggers CT, Wang SX, Fletterick RJ, Craik CS. The role of ecotin dimerization in protease inhibition. J Mol Biol 2001; 308:975-91. [PMID: 11352586 DOI: 10.1006/jmbi.2001.4754] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ecotin is a homodimeric protein from Escherichia coli that inhibits many serine proteases of the chymotrypsin fold, often with little effect from the character or extent of enzyme substrate specificity. This pan-specificity of inhibition is believed to derive from formation of a heterotetrameric complex with target proteases involving three types of interface: the dimerization interface, a primary substrate-like interaction, and a smaller secondary interaction between the partner ecotin subunit and the protease. A monomeric ecotin variant (mEcotin) and a single-chain ecotin dimer (scEcotin) were constructed to study the effect of a network of protein interactions on binding affinity and the role of dimerization in broad inhibitor specificity. mEcotin was produced by inserting a beta-turn into the C-terminal arm, which normally exchanges with the other subunit. While the dimerization constant (K(dim)) of wild-type (WT) ecotin was found to be picomolar by subunit exchange experiments using FRET and by association kinetics, mEcotin was monomeric up to 1 mM as judged by gel filtration and analytical centrifugation. A crystal structure of uncomplexed mEcotin to 2.0 A resolution verifies the design, showing a monomeric protein in which the C-terminal arm folds back onto itself to form a beta-barrel structure nearly identical to its dimeric counterpart. The kinetic rate constants and equilibrium dissociation constants for monomeric and dimeric ecotin variants were determined with both trypsin and chymotrypsin. The effect of the secondary binding site on affinity was found to vary inversely with the strength of the interaction at the primary site. This compensatory effect yields a nonadditivity of up to 5 kcal/mol and can be explained in terms of the optimization of binding orientation. Such a mechanism of adaptability allows femtomolar affinities for two proteases with very different specificities.
Collapse
Affiliation(s)
- C T Eggers
- Departments of Biochemistry and Biophysics, University of California at San Francisco 94143-0446, USA
| | | | | | | |
Collapse
|
40
|
Simoncsits A, Tjörnhammar ML, Raskó T, Kiss A, Pongor S. Covalent joining of the subunits of a homodimeric type II restriction endonuclease: single-chain PvuII endonuclease. J Mol Biol 2001; 309:89-97. [PMID: 11491304 DOI: 10.1006/jmbi.2001.4651] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The PvuII restriction endonuclease has been converted from its natural homodimeric form into a single polypeptide chain by tandemly linking the two subunits through a short peptide linker. The arrangement of the single-chain PvuII (sc PvuII) is (2-157)-GlySerGlyGly-(2-157), where (2-157) represents the amino acid residues of the enzyme subunit and GlySerGlyGly is the peptide linker. By introducing the corresponding tandem gene into Escherichia coli, PvuII endonuclease activity could be detected in functional in vivo assays. The sc enzyme was expressed at high level as a soluble protein. The purified enzyme was shown to have the molecular mass expected for the designed sc protein. Based on the DNA cleavage patterns obtained with different substrates, the cleavage specificity of the sc PvuII is indistinguishable from that of the wild-type (wt) enzyme. The sc enzyme binds specifically to the cognate DNA site under non-catalytic conditions, in the presence of Ca2+, with the expected 1:1 stoichiometry. Under standard catalytic conditions, the sc enzyme cleaves simultaneously the two DNA strands in a concerted manner. Steady-state kinetic parameters of DNA cleavage by the sc and wt PvuII showed that the sc enzyme is a potent, but somewhat less efficient catalyst; the k(cat)/K(M) values are 1.11 x 10(9) and 3.50 x 10(9) min(-1) M(-1) for the sc and wt enzyme, respectively. The activity decrease is due to the lower turnover number and to the lower substrate affinity. The sc arrangement provides a facile route to obtain asymmetrically modified heterodimeric enzymes.
Collapse
Affiliation(s)
- A Simoncsits
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy.
| | | | | | | | | |
Collapse
|
41
|
Sato H, Kudo S, Ohnishi K, Mizuguchi M, Goto E, Suzuki K. Nucleotide sequence analysis of 5'-flanking region of salicylate hydroxylase gene, and identification and purification of a LysR-type regulator, SalR. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:2229-38. [PMID: 11298739 DOI: 10.1046/j.1432-1327.2001.02098.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The sal gene comprised of 1266 nucleotides encoding salicylate hydroxylase was cloned from the chromosomal DNA of Pseudomonas putida S-1 and sequenced [Suzuki, K., Mizuguchi, M., Ohnishi, K. and Itagaki, E. (1996) Biochim. Biophys. Acta 1275, 154-156]. Here, we describe the nucleotide sequences of the regulatory region of the sal gene and an ORF (salR gene) divergently oriented from the sal gene, which encodes the protein SalR. This gene product positively controls sal gene expression at the transcriptional level. The salR gene consists of 930 base pairs starting from a GTG codon and encodes a protein of 309 amino acids with a molecular mass of 34 542 Da. The amino-acid sequence is homologous to LysR-family regulatory proteins such as CatR of P. putida RB1 and has helix-turn-helix DNA binding motif near its N-terminal. Transcription start sites of sal and salR genes were determined to lie 30- and 24-bp upstream of the respective initiation codons and separated from each other by 78 nucleotides. A Shine-Dalgarno sequence and the putative promoter sequences containing -10 and -35 sequences were seen in the sal and salR genes. Expression of the salR gene on a plasmid in Escherichia coli cells was confirmed by DNA mobility shift assay. For the overexpression of the salR gene, it was cloned to pET28a (pSAHR) which was transferred to E. coli BL21 (E. coli BL21/pSAHR), and expressed by an inducer, isopropyl thio-beta-D-galactoside. SalR was further purified to homogeneity from the cell-free extracts in yields of approximately 3 mg.L-1 culture volume. The molecular mass was determined to be 33 kDa and the N-terminal amino-acid sequence was the same as that deduced from the nucleotide sequence of salR gene. Native SalR was also purified to homogeneity from P. putida S-1 with very low contents. The properties of the protein were similar to those of SalR expressed in E. coli.
Collapse
Affiliation(s)
- H Sato
- Department of Chemistry, Faculty of Science, Kanazawa University, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
The arginine-rich RNA-binding domain of bovine immunodeficiency virus (BIV) Tat adopts a beta-hairpin conformation upon binding to the major groove of BIV TAR. Based on its NMR structure, we modeled dimeric arrangements in which two adjacent TAR sites might be recognized with high affinity by a dimeric peptide. Some dimeric RNAs efficiently bound two unlinked BIV Tat peptides in vitro, but could not bind even one monomeric peptide in vivo, as monitored by transcriptional activation of human immunodeficiency virus long terminal repeat reporters. Results with additional reporters suggest that extending the RNA helix in the dimeric arrangements inhibits peptide binding by decreasing major groove accessibility. In contrast, a dimeric peptide efficiently bound an optimally arranged dimeric TAR in vivo, and bound with an affinity at least 10-fold higher than the monomeric peptide in vitro. Mutating specific nucleotides in each RNA 'half-site' or specific amino acids in each beta-hairpin of the dimeric peptide substantially decreased binding affinity, providing evidence for the modeled dimer-dimer interaction. These studies provide a starting point for identifying dimeric RNA-protein interactions with even higher binding affinities and specificities.
Collapse
Affiliation(s)
| | | | - Alan D. Frankel
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA 94143-0448, USA
Corresponding author e-mail:
| |
Collapse
|
43
|
The Transcription of Genes. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50031-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Nilsson MT, Mossing MC, Widersten M. Functional expression and affinity selection of single-chain cro by phage display: isolation of novel DNA-binding proteins. PROTEIN ENGINEERING 2000; 13:519-26. [PMID: 10906348 DOI: 10.1093/protein/13.7.519] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A robust selection system affording phage display of the DNA-binding helix-turn-helix protein Cro is presented. The aim of the work was to construct an experimental system allowing for the construction and isolation of Cro-derived protein with new DNA-binding properties. A derivative of the phage lambda Cro repressor, scCro8, in which the protein subunits had been covalently connected via a peptide linker was expressed in fusion with the gene 3 protein of Escherichia coli filamentous phage. The phage-displayed single-chain Cro was shown to retain the DNA binding properties of its wild-type Cro counterpart regarding DNA sequence specificity and binding affinity. A kinetic analysis revealed the rate constant of dissociation of the single-chain Cro-phage/DNA complex to be indistinguishable from that of the free single-chain Cro. Affinity selection using a biotinylated DNA with a target consensus operator sequence allowed for a 3000-fold enrichment of phages displaying single-chain Cro over control phages. The selection was based on entrapment of phage/DNA complexes formed in solution on streptavidin-coated paramagnetic beads. The expression system was subsequently used to isolate variant scCro8 proteins, mutated in their DNA-binding residues, that specifically recognized new, unnatural target DNA ligands.
Collapse
Affiliation(s)
- M T Nilsson
- Department of Biochemistry, Uppsala University, Biomedical Center, Box 576, SE-751 23 Uppsala, Sweden.
| | | | | |
Collapse
|
45
|
Dong F, Spott S, Zimmermann O, Kisters-Woike B, Müller-Hill B, Barker A. Dimerisation mutants of Lac repressor. I. A monomeric mutant, L251A, that binds Lac operator DNA as a dimer. J Mol Biol 1999; 290:653-66. [PMID: 10395821 DOI: 10.1006/jmbi.1999.2902] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dimer formation between monomers of the Escherichia coli Lac repressor is substantially specificed by the interactions between three alpha-helices in each monomer which form a hydrophobic interface. As a first step in analysing the specificity of this interaction, we examined the mutant L251A. LacR bearing this mutation in a background lacking the C-terminal heptad repeats is completely incapable of forming dimers in solution, with a dimer-monomer equilibrium dissociation constant, or Kd, higher than 10(-5)M. This correlates with a 200-fold decrease in its ability to repress the lac operon in vivo compared to dimeric LacR. Surprisingly, the mutant is still capable of forming dimers upon binding to short operator DNA in vitro. Analysis of the kinetic parameters of binding of the mutant to operator DNA reveals a 2000 to 3000-fold increase in the equilibrium dissociation constant (Kd) of the mutant-DNA complex in comparison to dimeric LacR-operator complexes, with the change almost entirely due to a greater than 1000-fold decrease in association rate. The dissociation rate varies only by a factor of about two, in comparison to dimeric LacR. This change reflects a kinetic pathway in which dimer formation, in solution or on DNA, is the rate-limiting step. These findings have implications for the specificity and stability of the protein-protein interface in question.
Collapse
Affiliation(s)
- F Dong
- Institut für Genetik der Universität zu Köln, Köln, Weyertal 121, 50931, Germany
| | | | | | | | | | | |
Collapse
|
46
|
Ruiz-Sanz J, Simoncsits A, Törö I, Pongor S, Mateo PL, Filimonov VV. A thermodynamic study of the 434-repressor N-terminal domain and of its covalently linked dimers. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 263:246-53. [PMID: 10429210 DOI: 10.1046/j.1432-1327.1999.00491.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The isolated N-terminal 1-69 domain of the 434-phage repressor, R69, and its covalently linked (head-to-tail and tail-to-tail) dimers have been studied by differential scanning microcalorimetry (DSC) and CD. At neutral solvent conditions the R69 domain maintains its native structure, both in isolated form and within the dimers. The stability of the domain depends highly upon pH within the acidic range, thus at pH 2 and low ionic strength R69 is already partially unfolded at room temperature. The thermodynamic parameters of unfolding calculated from the DSC data are typical for small globular proteins. At neutral pH and moderate ionic strength, the domains of the dimers behave as two independent units with unfolding parameters similar to those of the isolated domain, which means that linking two R69 domains, either by a long peptide linker or by a designed C-terminal disulfide bridge, does not induce any cooperation between them.
Collapse
Affiliation(s)
- J Ruiz-Sanz
- Department of Physical Chemistry, Institute of Biotechnology, Faculty of Sciences, University of Granada, Spain
| | | | | | | | | | | |
Collapse
|