1
|
Grage SL, Guschtschin-Schmidt N, Meng B, Kohlmeyer A, Afonin S, Ulrich AS. Interaction of Squalamine with Lipid Membranes. J Phys Chem B 2025. [PMID: 39905636 DOI: 10.1021/acs.jpcb.4c06576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Squalamine is an aminosterol from dogfish shark which has drawn attention, besides its antimicrobial activity, as a drug candidate in the treatment of Parkinson's disease due to its ability to prevent binding of α-synuclein to lipid membranes. To get insight into the mode of action of this steroid, we studied the influence of squalamine on lipid bilayers and whether it could inhibit the binding of a model peptide. Solid-state 19F NMR of labeled [KIGAKI]3 indicated that, indeed, this peptide no longer binds as a flexible chain to the bilayer in the presence of squalamine. When the cationic squalamine was added to lipid vesicles containing phosphatidylglycerol lipids, the aminosterol was found in differential scanning calorimetry and solid-state 31P NMR experiments to lower the gel-to-fluid phase transition and cause the phase separation of domains enriched in anionic lipids. Squalamine had only a little influence on 2H NMR relaxation and on the order parameters of the chains. These findings indicate that the aminosterol does not affect the molecular mobility of the hydrophobic core of the bilayer; hence, it does not insert into the membrane, nor causes thinning as found for molecules inserting in the headgroup region. On the other hand, squalamine was found to interact with lipid headgroups through electrostatic interactions, as seen by solid-state 2H NMR on headgroup-labeled lipids. Furthermore, 31P NMR showed that squalamine shifted the lamellar-to-hexagonal phase transition of phosphatidylethanolamine lipids to higher temperatures, indicating a preference for positively curved membranes. Altogether, our experiments indicate a strong interaction of the cationic squalamine with lipid headgroups, in particular with anionic lipids. This affinity for membranes is strong enough to efficiently displace cationic polypeptides, confirming the proposed action mechanism in Parkinson treatment. Notably, supported by 1H-1H NOESY experiments, it was found that squalamine does not insert into the bilayer, but rather acts as facial amphiphile binding to the membrane surface. The binding to membranes may be envisaged in the form of oligomeric or micellar assemblies, which can disrupt the membrane at high concentrations, thereby explaining the antimicrobial and antifungal activities of squalamine.
Collapse
Affiliation(s)
- Stephan L Grage
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Nadja Guschtschin-Schmidt
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Beibei Meng
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Annika Kohlmeyer
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Sergii Afonin
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Anne S Ulrich
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), P.O. Box 3640, 76021 Karlsruhe, Germany
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| |
Collapse
|
2
|
Epand RM. The scientific adventures of Richard Epand. Biophys Chem 2023; 292:106931. [PMID: 36434860 DOI: 10.1016/j.bpc.2022.106931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/05/2022] [Indexed: 11/13/2022]
Abstract
This essay summarizes the many areas of science that my career has contributed to. It attempts to highlight some of the innovative concepts that developed from this work. The discussion encompasses studies I undertook from graduate school to the present but it will not attempt to be comprehensive. I apologize to individuals whose work I omitted. Because of space I cannot acknowledge all the contributions from other individuals that made these achievements possible.
Collapse
Affiliation(s)
- Richard M Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Health Sciences Centre, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada.
| |
Collapse
|
3
|
Siegel DP. Bicontinuous inverted cubic phase stabilization as an index of antimicrobial and membrane fusion peptide activity. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183815. [PMID: 34748744 DOI: 10.1016/j.bbamem.2021.183815] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/06/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023]
Abstract
Some antimicrobial peptides (AMPs) and membrane fusion-catalyzing peptides (FPs) stabilize bicontinuous inverted cubic (QII) phases. Previous authors proposed a topological rationale: since AMP-induced pores, fusion intermediates, and QII phases all have negative Gaussian curvature (NGC), peptides which produce NGC in one structure also do it in another. This assumes that peptides change the curvature energy of the lipid membranes. Here I test this with a Helfrich curvature energy model. First, experimentally, I show that lipid systems often used to study peptide NGC have NGC without peptides at higher temperatures. To determine the net effect of an AMP on NGC, the equilibrium phase behavior of the host lipids must be determined. Second, the model shows that AMPs must make large changes in the curvature energy to stabilize AMP-induced pores. Peptide-induced changes in elastic constants affect pores and QII phase differently. Changes in spontaneous curvature affect them in opposite ways. The observed correlation between QII phase stabilization and AMP activity doesn't show that AMPs act by lowering pore curvature energy. A different rationale is proposed. In theory, AMPs could simultaneously stabilize QII phase and pores by drastically changing two particular elastic constants. This could be tested by measuring AMP effects on the individual constants. I propose experiments to do that. Unlike AMPs, FPs must make only small changes in the curvature energy to catalyze fusion. It they act in this way, their fusion activity should correlate with their ability to stabilize QII phases.
Collapse
Affiliation(s)
- D P Siegel
- Givaudan Inc., 1199 Edison Drive, Cincinnati, OH 45216, United States of America.
| |
Collapse
|
4
|
Pattnaik GP, Meher G, Chakraborty H. Exploring the Mechanism of Viral Peptide-Induced Membrane Fusion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1112:69-78. [PMID: 30637691 DOI: 10.1007/978-981-13-3065-0_6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Membrane fusion is essential in several cellular processes in the existence of eukaryotic cells such as cellular trafficking, compartmentalization, intercellular communication, sexual reproduction, cell division, and endo- and exocytosis. Membrane fusion proceeds in model membranes as well as biological membranes through the rearrangement of lipids. The stalk hypothesis provides a picture of the general nature of lipid rearrangement based on mechanical properties and phase behavior of water-lipid mesomorphic systems. In spite of extensive research on exploring the mechanism of membrane fusion, a clear molecular understanding of intermediate and pore formation is lacking. In addition, the mechanism by which proteins and peptides reduce the activation energy for stalk and pore formation is not yet clear though there are several propositions on how they catalyze membrane fusion. In this review, we have discussed about various putative functions of fusion peptides by which they reduce activation barrier and thus promote membrane fusion. A careful analysis of the discussed effects of fusion peptides on membranes might open up new possibilities for better understanding of the membrane fusion mechanism.
Collapse
|
5
|
Chavarha M, Loney RW, Rananavare SB, Hall SB. Hydrophobic surfactant proteins strongly induce negative curvature. Biophys J 2016; 109:95-105. [PMID: 26153706 DOI: 10.1016/j.bpj.2015.05.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 04/23/2015] [Accepted: 05/28/2015] [Indexed: 01/31/2023] Open
Abstract
The hydrophobic surfactant proteins SP-B and SP-C greatly accelerate the adsorption of vesicles containing the surfactant lipids to form a film that lowers the surface tension of the air/water interface in the lungs. Pulmonary surfactant enters the interface by a process analogous to the fusion of two vesicles. As with fusion, several factors affect adsorption according to how they alter the curvature of lipid leaflets, suggesting that adsorption proceeds via a rate-limiting structure with negative curvature, in which the hydrophilic face of the phospholipid leaflets is concave. In the studies reported here, we tested whether the surfactant proteins might promote adsorption by inducing lipids to adopt a more negative curvature, closer to the configuration of the hypothetical intermediate. Our experiments used x-ray diffraction to determine how the proteins in their physiological ratio affect the radius of cylindrical monolayers in the negatively curved, inverse hexagonal phase. With binary mixtures of dioleoylphosphatidylethanolamine (DOPE) and dioleoylphosphatidylcholine (DOPC), the proteins produced a dose-related effect on curvature that depended on the phospholipid composition. With DOPE alone, the proteins produced no change. With an increasing mol fraction of DOPC, the response to the proteins increased, reaching a maximum 50% reduction in cylindrical radius at 5% (w/w) protein. This change represented a doubling of curvature at the outer cylindrical surface. The change in spontaneous curvature, defined at approximately the level of the glycerol group, would be greater. Analysis of the results in terms of a Langmuir model for binding to a surface suggests that the effect of the lipids is consistent with a change in the maximum binding capacity. Our findings show that surfactant proteins can promote negative curvature, and support the possibility that they facilitate adsorption by that mechanism.
Collapse
Affiliation(s)
- Mariya Chavarha
- Department of Biochemistry & Molecular Biology, Oregon Health & Science University, Portland, Oregon; Department of Medicine, Oregon Health & Science University, Portland, Oregon; Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, Oregon
| | - Ryan W Loney
- Department of Biochemistry & Molecular Biology, Oregon Health & Science University, Portland, Oregon; Department of Medicine, Oregon Health & Science University, Portland, Oregon; Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, Oregon
| | | | - Stephen B Hall
- Department of Biochemistry & Molecular Biology, Oregon Health & Science University, Portland, Oregon; Department of Medicine, Oregon Health & Science University, Portland, Oregon; Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, Oregon.
| |
Collapse
|
6
|
Membrane curvature modulation of protein activity determined by NMR. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:220-8. [DOI: 10.1016/j.bbamem.2014.05.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/28/2014] [Accepted: 05/04/2014] [Indexed: 02/04/2023]
|
7
|
Fuhrmans M, Marelli G, Smirnova YG, Müller M. Mechanics of membrane fusion/pore formation. Chem Phys Lipids 2015; 185:109-28. [DOI: 10.1016/j.chemphyslip.2014.07.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 07/07/2014] [Accepted: 07/24/2014] [Indexed: 11/27/2022]
|
8
|
Delgado CL, Núñez E, Yélamos B, Gómez-Gutiérrez J, Peterson DL, Gavilanes F. Study of the putative fusion regions of the preS domain of hepatitis B virus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:895-906. [PMID: 25554595 DOI: 10.1016/j.bbamem.2014.12.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/01/2014] [Accepted: 12/22/2014] [Indexed: 02/09/2023]
Abstract
In a previous study, it was shown that purified preS domains of hepatitis B virus (HBV) could interact with acidic phospholipid vesicles and induce aggregation, lipid mixing and leakage of internal contents which could be indicative of their involvement in the fusion of the viral and cellular membranes (Núñez, E. et al. 2009. Interaction of preS domains of hepatitis B virus with phospholipid vesicles. Biochim. Biophys. Acta 17884:417-424). In order to locate the region responsible for the fusogenic properties of preS, five mutant proteins have been obtained from the preS1 domain of HBV, in which 40 amino acids have been deleted from the sequence, with the starting point of each deletion moving 20 residues along the sequence. These proteins have been characterized by fluorescence and circular dichroism spectroscopy, establishing that, in all cases, they retain their mostly non-ordered conformation with a high percentage of β structure typical of the full-length protein. All the mutants can insert into the lipid matrix of dimyristoylphosphatidylglycerol vesicles. Moreover, we have studied the interaction of the proteins with acidic phospholipid vesicles and each one produces, to a greater or lesser extent, the effects of destabilizing vesicles observed with the full-length preS domain. The ability of all mutants, which cover the complete sequence of preS1, to destabilize the phospholipid bilayers points to a three-dimensional structure and/or distribution of amino acids rather than to a particular amino acid sequence as being responsible for the membrane fusion process.
Collapse
Affiliation(s)
- Carmen L Delgado
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
| | - Elena Núñez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
| | - Belén Yélamos
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
| | - Julián Gómez-Gutiérrez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
| | - Darrell L Peterson
- Department of Biochemistry and Molecular Biology, Medical College of Virginia, Virginia Commonwealth University, Richmond, 23298 VA, USA
| | - Francisco Gavilanes
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain.
| |
Collapse
|
9
|
Smrt ST, Draney AW, Lorieau JL. The influenza hemagglutinin fusion domain is an amphipathic helical hairpin that functions by inducing membrane curvature. J Biol Chem 2014; 290:228-38. [PMID: 25398882 DOI: 10.1074/jbc.m114.611657] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The highly conserved N-terminal 23 residues of the hemagglutinin glycoprotein, known as the fusion peptide domain (HAfp23), is vital to the membrane fusion and infection mechanism of the influenza virus. HAfp23 has a helical hairpin structure consisting of two tightly packed amphiphilic helices that rest on the membrane surface. We demonstrate that HAfp23 is a new class of amphipathic helix that functions by leveraging the negative curvature induced by two tightly packed helices on membranes. The helical hairpin structure has an inverted wedge shape characteristic of negative curvature lipids, with a bulky hydrophobic region and a relatively small hydrophilic head region. The F3G mutation reduces this inverted wedge shape by reducing the volume of its hydrophobic base. We show that despite maintaining identical backbone structures and dynamics as the wild type HAfp23, the F3G mutant has an attenuated fusion activity that is correlated to its reduced ability to induce negative membrane curvature. The inverted wedge shape of HAfp23 is likely to play a crucial role in the initial stages of membrane fusion by stabilizing negative curvature in the fusion stalk.
Collapse
Affiliation(s)
- Sean T Smrt
- From the Department of Chemistry, University of Illinois, Chicago, Illinois 60607
| | - Adrian W Draney
- From the Department of Chemistry, University of Illinois, Chicago, Illinois 60607
| | - Justin L Lorieau
- From the Department of Chemistry, University of Illinois, Chicago, Illinois 60607
| |
Collapse
|
10
|
Tenchov BG, MacDonald RC, Lentz BR. Fusion peptides promote formation of bilayer cubic phases in lipid dispersions. An x-ray diffraction study. Biophys J 2013; 104:1029-37. [PMID: 23473485 DOI: 10.1016/j.bpj.2012.12.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 12/08/2012] [Accepted: 12/17/2012] [Indexed: 10/27/2022] Open
Abstract
Small angle x-ray diffraction revealed a strong influence of the N-terminal influenza hemagglutinin fusion peptide on the formation of nonlamellar lipid phases. Comparative measurements were made on a series of three peptides, a 20-residue wild-type X-31 influenza virus fusion peptide, GLFGAIAGFIENGWEGMIDG, and its two point-mutant, fusion-incompetent peptides G1E and G13L, in mixtures with hydrated phospholipids, either dipalmitoleoylphosphatidylethanolamine (DPoPE), or monomethylated dioleoyl phosphatidylethanolamine (DOPE-Me), at lipid/peptide molar ratios of 200:1 and 50:1. All three peptides suppressed the HII phase and shifted the L(α)-H(II) transition to higher temperatures, simultaneously promoting formation of inverted bicontinuous cubic phases, Q(II), which becomes inserted between the L(α) and H(II) phases on the temperature scale. Peptide-induced Q(II) had strongly reduced lattice constants in comparison to the Q(II) phases that form in pure lipids. Q(II) formation was favored at the expense of both L(α) and H(II) phases. The wild-type fusion peptide, WT-20, was distinguished from G1E and G13L by the markedly greater magnitude of its effect. WT-20 disordered the L(α) phase and completely abolished the HII phase in DOPE-Me/WT-20 50:1 dispersions, converted the Q(II) phase type from Im3m to Pn3m and reduced the unit cell size from ∼38 nm for the Im3m phase of DOPE-Me dispersions to ∼15 nm for the Pn3m phase in DOPE-Me/WT-20 peptide mixtures. The strong reduction of the cubic phase lattice parameter suggests that the fusion-promoting WT-20 peptide may function by favoring bilayer states of more negative gaussian curvature and promoting fusion along pathways involving Pn3m phase-like fusion pore intermediates rather than pathways involving H(II) phase-like intermediates.
Collapse
Affiliation(s)
- Boris G Tenchov
- Department of Medical Physics and Biophysics, Medical University Sofia, Sofia, Bulgaria.
| | | | | |
Collapse
|
11
|
Harroun TA, Balai-Mood K, Hauß T, Otomo T, Bradshaw JP. Neutron diffraction with an excess-water cell. J Biol Phys 2013; 31:207-18. [PMID: 23345892 DOI: 10.1007/s10867-005-2097-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
As part of a study of the molecular basis of membrane fusion by enveloped viruses, we have used neutron diffraction to study the lamellar (L(α)) to inverse hexagonal (H(II)) phase transition in the phospholipid N-methylated dioleoylphosphatidylethanolamine. This lipid was chosen because its phase transitions are particularly sensitive to the presence of agents that have been demonstrated to promote or inhibit membrane fusion. Two different geometries of neutron diffraction were used: small angle scattering (SANS) and a membrane diffractometer. The SANS measurements were carried out on the SWAN instrument at KEK, Japan, using dispersions of multilamellar vesicles (MLVs). The diffractometer measurements used the V1 instrument at BeNSC-HMI, Germany, with a specially-constructed cell that holds a stack of lipid bilayers in an excess-water state. The two approaches are compared and discussed. Although the diffractometer takes considerably longer to collect the data, it records much higher resolution than the SANS instrument. The samples recorded in the excess-water cell were shown to be well aligned, despite the lipids being fully hydrated, allowing for the production of high-resolution data. Trial measurements performed have demonstrated that sample alignment is preserved throughout the L(α) to H(II) phase transition, thereby opening up possibilities for obtaining high-resolution data from non-lamellar phases.
Collapse
Affiliation(s)
- Thad A Harroun
- Preclinical Veterinary Sciences, R.(D.)S.V.S., University of Edinburgh, Summerhall, Edinburgh EH9 1QH UK ; National Research Council, Neutron Program for Materials Research, Chalk River Laboratories, Chalk River, Ontario K0J 1J0 Canada
| | | | | | | | | |
Collapse
|
12
|
Delgado CL, Núñez E, Yélamos B, Gómez-Gutiérrez J, Peterson DL, Gavilanes F. Spectroscopic Characterization and Fusogenic Properties of PreS Domains of Duck Hepatitis B Virus. Biochemistry 2012; 51:8444-54. [DOI: 10.1021/bi3008406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Carmen L. Delgado
- Departamento de Bioquímica
y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, Madrid 28040, Spain
| | - Elena Núñez
- Departamento de Bioquímica
y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, Madrid 28040, Spain
| | - Belén Yélamos
- Departamento de Bioquímica
y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, Madrid 28040, Spain
| | - Julián Gómez-Gutiérrez
- Departamento de Bioquímica
y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, Madrid 28040, Spain
| | - Darrell L. Peterson
- Department of Biochemistry and
Molecular Biology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298, United
States
| | - Francisco Gavilanes
- Departamento de Bioquímica
y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, Madrid 28040, Spain
| |
Collapse
|
13
|
Tristram-Nagle S, Chan R, Kooijman E, Uppamoochikkal P, Qiang W, Weliky DP, Nagle JF. HIV fusion peptide penetrates, disorders, and softens T-cell membrane mimics. J Mol Biol 2010; 402:139-53. [PMID: 20655315 DOI: 10.1016/j.jmb.2010.07.026] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 07/12/2010] [Accepted: 07/13/2010] [Indexed: 02/01/2023]
Abstract
This work investigates the interaction of N-terminal gp41 fusion peptide (FP) of human immunodeficiency virus type 1 (HIV-1) with model membranes in order to elucidate how FP leads to fusion of HIV and T-cell membranes. FP constructs were (i) wild-type FP23 (23 N-terminal amino acids of gp41), (ii) water-soluble monomeric FP that adds six lysines on the C-terminus of FP23 (FPwsm), and (iii) the C-terminus covalently linked trimeric version (FPtri) of FPwsm. Model membranes were (i) LM3 (a T-cell mimic), (ii) 1,2-dioleoyl-sn-glycero-3-phosphocholine, (iii) 1,2-dioleoyl-sn-glycero-3-phosphocholine/30 mol% cholesterol, (iv) 1,2-dierucoyl-sn-glycero-3-phosphocholine, and (v) 1,2-dierucoyl-sn-glycero-3-phosphocholine/30 mol% cholesterol. Diffuse synchrotron low-angle x-ray scattering from fully hydrated samples, supplemented by volumetric data, showed that FP23 and FPtri penetrate into the hydrocarbon region and cause membranes to thin. Depth of penetration appears to depend upon a complex combination of factors including bilayer thickness, presence of cholesterol, and electrostatics. X-ray data showed an increase in curvature in hexagonal phase 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine, which further indicates that FP23 penetrates into the hydrocarbon region rather than residing in the interfacial headgroup region. Low-angle x-ray scattering data also yielded the bending modulus K(C), a measure of membrane stiffness, and wide-angle x-ray scattering yielded the S(xray) orientational order parameter. Both FP23 and FPtri decreased K(C) and S(xray) considerably, while the weak effect of FPwsm suggests that it did not partition strongly into LM3 model membranes. Our results are consistent with the HIV FP disordering and softening the T-cell membrane, thereby lowering the activation energy for viral membrane fusion.
Collapse
Affiliation(s)
- Stephanie Tristram-Nagle
- Biological Physics Group, Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
The Gaussian curvature elastic energy contribution to the energy of membrane fusion intermediates has usually been neglected because the Gaussian curvature elastic modulus, kappa, was unknown. It is now possible to measure kappa for phospholipids that form bicontinuous inverted cubic (Q(II)) phases. Here, it is shown that one can estimate kappa for lipids that do not form Q(II) phases by studying the phase behavior of lipid mixtures. The method is used to estimate kappa for several lipid compositions in excess water. The values of kappa are used to compute the curvature elastic energies of stalks and catenoidal fusion pores according to recent models. The Gaussian curvature elastic contribution is positive and similar in magnitude to the bending energy contribution: it increases the total curvature energy of all the fusion intermediates by 100 units of k(B)T or more. It is important to note that this contribution makes the predicted intermediate energies compatible with observed lipid phase behavior in excess water. An order-of-magnitude fusion rate equation is used to estimate whether the predicted stalk energies are consistent with the observed rates of stalk-mediated processes in pure lipid systems. The current theory predicts a stalk energy that is slightly too large, by approximately 30 k(B)T, to rationalize the observed rates of stalk-mediated processes in phosphatidylethanolamine or N-monomethylated dioleoylphosphatidylethanolamine systems. Despite this discrepancy, the results show that models of fusion intermediate energy are accurate enough to make semiquantitative predictions about how proteins mediate biomembrane fusion. The same rate model shows that for proteins to drive biomembrane fusion at observed rates, they have to perform mediating functions corresponding to a reduction in the energy of a purely lipidic stalk by several tens of k(B)T. By binding particular peptide sequences to the monolayer surface, proteins could lower fusion intermediate energies by altering the elastic constants of the patches of lipid monolayer that form the stalk. Here, it is shown that if peptide binding changes kappa or some other combinations of local elastic constants by only tens of percents, the stalk energy and the energy of catenoidal fusion pores would decrease by tens of k(B)T relative to the pure lipid value. This is comparable to the required mediating effect. The curvature energies of stalks and catenoidal fusion pores have almost the same dependence on monolayer elastic constants as the curvature energies of the rhombohedral and Q(II) phases; respectively. The effects of isolated fusion-relevant peptides on the energies of these intermediates can be determined by studying the effects of the peptides on the stability of rhombohedral and Q(II) phases.
Collapse
|
15
|
Relationships between the orientation and the structural properties of peptides and their membrane interactions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1537-44. [DOI: 10.1016/j.bbamem.2008.04.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Revised: 04/14/2008] [Accepted: 04/21/2008] [Indexed: 11/17/2022]
|
16
|
Epand RF, Zhang YL, Mirzabekov T, Kagan B, Silberstein A, Hubbell WL, Epand RM, Chakraborti S, Dimitrov DS, Anderson WF, Rozenberg-Adler Y. Membrane activity of an amphiphilic alpha-helical membrane-proximal cytoplasmic domain of the MoMuLV envelope glycoprotein. Exp Mol Pathol 2007; 84:9-17. [PMID: 18206141 DOI: 10.1016/j.yexmp.2007.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2007] [Accepted: 11/14/2007] [Indexed: 11/27/2022]
Abstract
In the Moloney murine leukemia virus (MoMuLV) envelope glycoprotein (Env) we identified a membrane-proximal cytoplasmic domain (residues 598-616) that facilitates the Env incorporation into virions and Env-mediated fusion [Rozenberg, Y., Conner, J., Aguilar-Carreno, H., Chakraborti, S., Dimiter, D.S., Anderson, W.F., 2008. Viral entry: membrane-proximal cytoplasmic domain of MoMuLV envelope tail facilitates fusion. In the same issue. (accompanying paper)]. By biophysical methods (CD, EPR) a corresponding peptide (membrane-proximal peptide, 598-616) was demonstrated to form a membrane-parallel amphiphilic alpha-helix in the presence of membranes. Electrophysiological studies with planar bilayers and liposomes indicate that the membrane-proximal peptide is membrane destabilizing. This peptide and the fusion peptide from the MoMuLV transmembrane (TM) ectodomain were tested for their effect on the bilayer for hexagonal phase transition temperature of dipalmitoleoylphosphatidylethanolamine (T(H)). Importantly, the external fusion peptide and the internal membrane-proximal peptides of MoMuLV env exert opposite effects on membrane curvature. The fusion peptide lowers T(H) while the membrane proximal peptide raises it. These effects on T(H) correlate with the ability of these peptides to induce lipid mixing in large unilamellar vesicles composed of dioleoylphosphatidylethanolamine: dioleoylphosphatidylcholine:cholesterol (1:1:1 mol). When added externally to preformed liposomes, the N-terminal fusion peptide promotes lipid mixing while the cytoplasmic membrane-proximal peptide inhibits this effect. These finding indicate a possible mechanism by which the membrane-proximal domain in MoMuLV Env may affect the formation of membrane fusion intermediates.
Collapse
Affiliation(s)
- Raquel F Epand
- Department of Biochemistry, McMaster University Health Sciences Center, Hamilton, ON L8N 3Z5 Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Powers JPS, Tan A, Ramamoorthy A, Hancock REW. Solution structure and interaction of the antimicrobial polyphemusins with lipid membranes. Biochemistry 2006; 44:15504-13. [PMID: 16300399 PMCID: PMC1386647 DOI: 10.1021/bi051302m] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The horseshoe crab cationic antimicrobial peptide polyphemusin I is highly active in vitro but not protective in mouse models of bacterial and LPS challenge, while a synthetic polyphemusin variant, PV5, was previously shown to be protective in vivo. In this study, we investigated the interaction of these peptides with lipid membranes in an effort to propose a mechanism of interaction. The solution structure of PV5 was determined by proton NMR in the absence and presence of dodecylphosphocholine (DPC) micelles. Like polyphemusin I, PV5 is a beta-hairpin but appeared less amphipathic in solution. Upon association with DPC micelles, PV5 underwent side chain rearrangements which resulted in an increased amphipathic conformation. Using fluorescence spectroscopy, both peptides were found to have limited affinity for neutral vesicles composed of phosphatidylcholine (PC). Incorporation of 25 mol % cholesterol or phosphatidylethanolamine into PC vesicles produced little change in the partitioning of either peptide. Incorporation of 25 mol % phosphatidylglycerol (PG) into PC vesicles, a simple prokaryotic model, resulted in a large increase in the affinity for both peptides, but the partition coefficient for PV5 was almost twice that of polyphemusin I. Differential scanning calorimetry studies supported the partitioning data and demonstrated that neither peptide interacted readily with neutral PC vesicles. Both peptides showed affinity for negatively charged membranes incorporating PG. The affinity of PV5 was much greater as the pretransition peak was absent at low peptide to lipid ratios (1:400) and the reduction in enthalpy of the main transition was greater than that produced by polyphemusin I. Both peptides decreased the lamellar to inverted hexagonal phase transition temperature of PE indicating the induction of negative curvature strain. These results, combined with previous findings that polyphemusin I promotes lipid flip-flop but does not induce significant vesicle leakage, ruled out the torroidal pore and carpet mechanisms of antimicrobial action for these polyphemusins.
Collapse
|
18
|
Siegel DP, Cherezov V, Greathouse DV, Koeppe RE, Killian JA, Caffrey M. Transmembrane peptides stabilize inverted cubic phases in a biphasic length-dependent manner: implications for protein-induced membrane fusion. Biophys J 2005; 90:200-11. [PMID: 16214859 PMCID: PMC1367019 DOI: 10.1529/biophysj.105.070466] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
WALP peptides consist of repeating alanine-leucine sequences of different lengths, flanked with tryptophan "anchors" at each end. They form membrane-spanning alpha-helices in lipid membranes, and mimic protein transmembrane domains. WALP peptides of increasing length, from 19 to 31 amino acids, were incorporated into N-monomethylated dioleoylphosphatidylethanolamine (DOPE-Me) at concentrations up to 0.5 mol % peptide. When pure DOPE-Me is heated slowly, the lamellar liquid crystalline (L(alpha)) phase first forms an inverted cubic (Q(II)) phase, and the inverted hexagonal (H(II)) phase at higher temperatures. Using time-resolved x-ray diffraction and slow temperature scans (1.5 degrees C/h), WALP peptides were shown to decrease the temperatures of Q(II) and H(II) phase formation (T(Q) and T(H), respectively) as a function of peptide concentration. The shortest and longest peptides reduced T(Q) the most, whereas intermediate lengths had weaker effects. These findings are relevant to membrane fusion because the first step in the L(alpha)/Q(II) phase transition is believed to be the formation of fusion pores between pure lipid membranes. These results imply that physiologically relevant concentrations of these peptides could increase the susceptibility of biomembrane lipids to fusion through an effect on lipid phase behavior, and may explain one role of the membrane-spanning domains in the proteins that mediate membrane fusion.
Collapse
|
19
|
Kozlovsky Y, Zimmerberg J, Kozlov MM. Orientation and interaction of oblique cylindrical inclusions embedded in a lipid monolayer: a theoretical model for viral fusion peptides. Biophys J 2005; 87:999-1012. [PMID: 15298906 PMCID: PMC1304507 DOI: 10.1529/biophysj.104.041467] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We consider the elastic behavior of flat lipid monolayer embedding cylindrical inclusions oriented obliquely with respect to the monolayer plane. An oblique inclusion models a fusion peptide, a part of a specialized protein capable of inducing merger of biological membranes in the course of fundamental cellular processes. Although the crucial importance of the fusion peptides for membrane merger is well established, the molecular mechanism of their action remains unknown. This analysis is aimed at revealing mechanical deformations and stresses of lipid monolayers induced by the fusion peptides, which, potentially, can destabilize the monolayer structure and enhance membrane fusion. We calculate the deformation of a monolayer embedding a single oblique inclusion and subject to a lateral tension. We analyze the membrane-mediated interactions between two inclusions, taking into account bending of the monolayer and tilt of the hydrocarbon chains with respect to the surface normal. In contrast to a straightforward prediction that the oblique inclusions should induce tilt of the lipid chains, our analysis shows that the monolayer accommodates the oblique inclusion solely by bending. We find that the interaction between two inclusions varies nonmonotonically with the interinclusion distance and decays at large separations as square of the distance, similar to the electrostatic interaction between two electric dipoles in two dimensions. This long-range interaction is predicted to dominate the other interactions previously considered in the literature.
Collapse
Affiliation(s)
- Yonathan Kozlovsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | | | | |
Collapse
|
20
|
Siegel DP, Kozlov MM. The gaussian curvature elastic modulus of N-monomethylated dioleoylphosphatidylethanolamine: relevance to membrane fusion and lipid phase behavior. Biophys J 2004; 87:366-74. [PMID: 15240471 PMCID: PMC1304357 DOI: 10.1529/biophysj.104.040782] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2004] [Accepted: 03/12/2004] [Indexed: 11/18/2022] Open
Abstract
The energy of intermediates in fusion of phospholipid bilayers is sensitive to kappa(m), the saddle splay (Gaussian curvature) elastic modulus of the lipid monolayers. The value kappa(m) is also important in understanding the stability of inverted cubic (Q(II)) and rhombohedral (R) phases relative to the lamellar (L(alpha)) and inverted hexagonal (H(II)) phases in phospholipids. However, kappa(m) cannot be measured directly. It was previously measured by observing changes in Q(II) phase lattice dimensions as a function of water content. Here we use observations of the phase behavior of N-mono-methylated dioleoylphosphatidylethanolamine (DOPE-Me) to determine kappa(m). At the temperature of the L(alpha)/Q(II) phase transition, T(Q), the partial energies of the two phases are equal, and we can express kappa(m) in terms of known lipid monolayer parameters: the spontaneous curvature of DOPE-Me, the monolayer bending modulus kappa(m), and the distance of the monolayer neutral surface from the bilayer midplane, delta. The calculated ratio kappa(m)/kappa(m) is -0.83 +/- 0.08 at T(Q) approximately 55 degrees C. The uncertainty is due primarily to uncertainty in the value of delta for the L(alpha) phase. This value of kappa(m)/kappa(m) is in accord with theoretical expectations, including recent estimates of the value required to rationalize observations of rhombohedral (R) phase stability in phospholipids. The value kappa(m) substantially affects the free energy of formation of fusion intermediates: more energy (tens of k(B)T) is required to form stalks and fusion pores (ILAs) than estimated solely on the basis of the bending elastic energy. In particular, ILAs are much higher in energy than previously estimated. This rationalizes the action of fusion-catalyzing proteins in stabilizing nascent fusion pores in biomembranes; a function inferred from recent experiments in viral systems. These results change predictions of earlier work on ILA and Q(II) phase stability and L(alpha)/Q(II) phase transition mechanisms. To our knowledge, this is the first determination of the saddle splay (Gaussian) modulus in a lipid system consisting only of phospholipids.
Collapse
Affiliation(s)
- D P Siegel
- Givaudan, Inc., Cincinnati, Ohio 45216, USA.
| | | |
Collapse
|
21
|
Cherezov V, Siegel DP, Shaw W, Burgess SW, Caffrey M. The kinetics of non-lamellar phase formation in DOPE-Me: relevance to biomembrane fusion. J Membr Biol 2004; 195:165-82. [PMID: 14724762 DOI: 10.1007/s00232-003-0617-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2003] [Accepted: 07/15/2003] [Indexed: 11/28/2022]
Abstract
The mechanism of the lamellar/inverted cubic (QII) phase transition is related to that of membrane fusion in lipid systems. N-Monomethylated dioleoylphosphatidylethanolamine (DOPE-Me) exhibits this transition and is commonly used to investigate the effects of exogenous substances, such as viral fusion peptides, on the mechanism of membrane fusion. We studied DOPE-Me phase behavior as a first step in evaluating the effects of membrane-spanning peptides on inverted phase formation and membrane fusion. These measurements show that: a) the onset temperatures for QII and inverted hexagonal (HII) phase formation both are temperature scan rate-dependent; b) longer pre-incubation times at low temperature and lower temperature scan rates favor formation of the QII phase; and c) in temperature-jump experiments between 61 and 65 degrees C, the meta-stable HII phase forms initially, and disappears slowly while the QII phase develops. These observations are rationalized in the context of a mechanism for both the lamellar/non-lamellar phase transition and the related process of membrane fusion.
Collapse
Affiliation(s)
- V Cherezov
- Biochemistry, Biophysics and Chemistry, The Ohio State University, 100W 18th Ave., Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
22
|
Harroun TA, Balali-Mood K, Gourlay I, Bradshaw JP. The fusion peptide of simian immunodeficiency virus and the phase behaviour of N-methylated dioleoylphosphatidylethanolamine. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1617:62-8. [PMID: 14637020 DOI: 10.1016/j.bbamem.2003.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Temperature-scan X-ray scattering was used to study the effect of the fusion peptide of simian immunodeficiency virus (SIV) on the lipid polymorphism of N-methylated dioleoylphosphatidylethanolamine (DOPE-Me), in the presence and absence of one or both of the fusion inhibitors carbobenzoxy-D-phenylalanine-L-phenylalanine-glycine and 1-lauroyl-2-hydroxy-sn-glycero-3-phosphocholine (LPC). Using X-ray diffraction at stations 2.1 and 8.2 of the Synchrotron Radiation Source at Daresbury Laboratory, UK, the structure of multilamellar vesicles (MLVs) was probed as the temperature was raised from 20 to 90 degrees C. The results are compared to those of similar studies, reported earlier, that used the fusion peptide of feline leukaemia virus (FeLV) which, at 28 amino acid residues in length, is considerably longer than the SIV peptide (12 amino acid residues). We interpret the results within the framework of current understanding of membrane fusion, and demonstrate how observed lipid polymorphism might describe the fusion process.
Collapse
Affiliation(s)
- Thad A Harroun
- Department of Preclinical Veterinary Sciences, Royal School of Veterinary Studies, University of Edinburgh, Summerhall, EH9 1QH Scotland, Edinburgh, UK
| | | | | | | |
Collapse
|
23
|
Nieva JL, Agirre A. Are fusion peptides a good model to study viral cell fusion? BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1614:104-15. [PMID: 12873771 DOI: 10.1016/s0005-2736(03)00168-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fusion peptides are hydrophobic and conserved sequences located within glycoprotein ectodomains that protrude from the virion surface. Direct participation of fusion peptides in the viral membrane fusion phenomenon has been inferred from genetic analyses showing that even a single residue substitution or a deletion within these sequences may completely block the process. However, the specific fusion peptide activities associated to the multi-step fusion mechanism are not well defined. Based on the assumption that fusion peptides are transferred into target membranes, biophysical methodologies have been applied to study integration into model membranes of synthetic fragments representing functional and non-functional sequences. From these studies, it is inferred that, following insertion, functional sequences generate target membrane perturbations and adopt specific structural arrangements within. Further characterization of these artificial systems may help in understanding the molecular processes that bring initial bilayer destabilizations to the eventual opening of a fusion pore.
Collapse
Affiliation(s)
- José L Nieva
- Unidad de Biofísica (CSIC-UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Aptdo. 644, 48080, Bilbao, Spain.
| | | |
Collapse
|
24
|
Darkes MJM, Harroun TA, Davies SMA, Bradshaw JP. The effect of fusion inhibitors on the phase behaviour of N-methylated dioleoylphosphatidylethanolamine. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1561:119-28. [PMID: 11988186 DOI: 10.1016/s0005-2736(01)00464-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The effects of two fusion inhibitors on the lipid polymorphism of N-methylated dioleoylphosphatidylethanolamine were studied using temperature-resolved, small-angle X-ray diffraction. The inhibitory role of the tri-peptide carbobenzoxy-D-phenylalanine-L-phenylalanine-glycine and the lipid 1-lauroyl-2-hydroxy-sn-glycero-3-phosphocholine in the fusion pathway was studied, using the non-lamellar phase behaviour of the lipid as a model. We used p15EK, the N-terminal region of gp41 from feline leukaemia virus as promoter of membrane fusion, and measured the structural parameters of each observed lipid phase as a function of temperature. The fusion inhibitors were found to impede the expression of negative curvature of lipid monolayers even in the presence of fusion peptide. The results of this study are interpreted in relation to models of the membrane fusion mechanism.
Collapse
Affiliation(s)
- Malcolm J M Darkes
- Department of Preclinical Veterinary Sciences, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Summerhall, EH9 1QH, UK
| | | | | | | |
Collapse
|
25
|
Abstract
The fusion of two stable bilayers likely proceeds through intermediates in which the membrane acquires curvature. The insertion of peptides into the membrane will affect its curvature tendency. Studies with a number of small viral fusion peptides indicate that these peptides promote negative curvature at low concentration. This is in accord with the curvature requirements to initiate membrane fusion according to the stalk-pore model. Although a characteristic of fusion peptides, the promotion of negative curvature is only one of several mechanisms by which fusion proteins accelerate the rate of fusion. In addition, the fusion peptide itself, as well as other regions in the viral fusion protein, facilitates membrane fusion by mechanisms that are largely independent of curvature. Leakage of the internal aqueous contents of liposomes is another manifestation of the alteration of membrane properties. Peptides exhibit quite different relative potencies between fusion and leakage that is determined by the structure and mode of insertion of the peptide into the membrane.
Collapse
Affiliation(s)
- R M Epand
- Department of Biochemistry, McMaster University, Hamilton, Ontario L8N 3Z5 Canada.
| | | |
Collapse
|
26
|
Chávez A, Pujol M, Haro I, Alsina MA, Cajal Y. Membrane fusion by an RGD-containing sequence from the core protein VP3 of hepatitis A virus and the RGA-analogue: implications for viral infection. Biopolymers 2001; 58:63-77. [PMID: 11072230 DOI: 10.1002/1097-0282(200101)58:1<63::aid-bip70>3.0.co;2-l] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The interaction of an RGD-containing epitope from the hepatitis A virus VP3 capsid protein and its RGA-analogue with lipid membranes was studied by biophysical methods. Two types of model membrane were used: vesicles and monolayers spread at the air/water interface, with a composition that closely resembles the lipid moiety of hepatocyte membranes: PC/SM/PE/PC (40:33:12:15; PC: 1-palmitoyl-2-oleoylglycero-sn-3-phosphocholine; SM: sphingomyelin from chicken egg yolk; PE, 1,2-dipalmitoyl-phosphatidylethanolamine; PS: L-alpha-phosphatidyl-L-serine from bovine brain). In addition, zwitterionic PC/SM/PE (47:39:14) and cationic PC/SM/PE/DOTAP (40:33:12:15; DOTAP: 1,2-dioleoyl-3-trimethylammonium-propane) membranes were also prepared in order to dissect the electrostatic and hydrophobic components in the interaction. Changes in tryptophan fluorescence, acrylamide quenching, and resonance energy transfer experiments in the presence of vesicles, as well as the kinetics of insertion in monolayers, indicate that both peptides bind to the three types of membrane at neutral and acidic pH; however, binding is irreversible only at low pH. Membrane-destabilizing and fusogenic activities are triggered by acidification at pH 4-6, characteristic of the endosome. Fluorescence experiments show that VP3-RGD and VP3-RGA induce mixing of lipids and leakage or mixing of aqueous contents in anionic and cationic vesicles at pH 4-6, indicating leaky fusion. Interaction with zwitterionic vesicles (PC/SM/PE) results in leakage without lipid mixing, indicating pore formation. Replacement of aspartic acid in the RGD motif by alanine maintains the membrane-destabilizing properties of the peptide at low pH, but not its antigenicity. Since the RGD tripeptide is related to receptor-mediated cell adhesion and antigenicity, results suggest that receptor binding is not a molecular requirement for fusion. The possible involvement of peptide-induced membrane destabilization in the mechanism of hepatitis A virus infection of hepatocytes by the endosomal route is discussed.
Collapse
Affiliation(s)
- A Chávez
- Department of Physical Chemistry, School of Pharmacy, University of Barcelona, Avn. Joan XXIII s/n, 08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|
27
|
Abstract
Although membrane fusion occurs ubiquitously and continuously in all eukaroytic cells, little is known about the mechanism that governs lipid bilayer fusion associated with any intracellular fusion reactions. Recent studies of the fusion of enveloped viruses with host cell membranes have helped to define the fusion process. The identification and characterization of key proteins involved in fusion reactions have mainly driven recent advances in our understanding of membrane fusion. The most important denominator among the fusion proteins is the fusion peptide. In this review, work done in the last few years on the molecular mechanism of viral membrane fusion will be highlighted, focusing in particular on the role of the fusion peptide and the modification of the lipid bilayer structure. Much of what is known regarding the molecular mechanism of viral membrane fusion has been gained using liposomes as model systems in which the molecular components of the membrane and the environment are strictly controlled. Many amphilphilic peptides have a high affinity for lipid bilayers, but only a few sequences are able to induce membrane fusion. The presence of alpha-helical structure in at least part of the fusion peptide is strongly correlated with activity whereas, beta-structure tends to be less prevalent, associated with non-native experimental conditions, and more related to vesicle aggregation than fusion. The specific angle of insertion of the peptides into the membrane plane is also found to be an important characteristic for the fusion process. A shallow penetration, extending only to the central aliphatic core region, is likely responsible for the destabilization of the lipids required for coalescence of the apposing membranes and fusion.
Collapse
Affiliation(s)
- I Martin
- Laboratoire de Chimie-Physique des Macromolécules aux Interfaces (LPCMI) CP206/2, Université Libre de Bruxelles, Brussels, Belgium.
| | | |
Collapse
|
28
|
Siegel DP, Epand RM. Effect of influenza hemagglutinin fusion peptide on lamellar/inverted phase transitions in dipalmitoleoylphosphatidylethanolamine: implications for membrane fusion mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1468:87-98. [PMID: 11018654 DOI: 10.1016/s0005-2736(00)00246-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Low mole fractions of viral fusion peptides induce inverted cubic (Q(II)) phases in dipalmitoleoylphosphatidylethanolamine (DiPoPE), a lipid with unsaturated acyl chains that normally forms inverted hexagonal phase (H(II)) above 43 degrees C. The ability to form a Q(II) phase is relevant to the study of membrane fusion: fusion occurs in liposomal systems under conditions where Q(II) phase precursors form, and fusion may be an obligatory step in the lamellar (L(alpha))/Q(II) phase transition. We used X-ray diffraction and time-resolved cryoelectron microscopy (TRC-TEM) to study the effects of the influenza hemagglutinin fusion peptide on the phase behavior and structure of DiPoPE. X-ray diffraction data show that at concentrations of 3-7 mol%, the fusion peptide (FP) induces formation of a Q(II) phase in preference to the H(II) phase. TRC-TEM data show that the FP acts at early stages in the phase transition (i.e. within seconds): at 2-7 mol%, FP decreases or inhibits formation of the L(alpha)/H(II) intermediate morphology observed via TRC-TEM in pure DiPoPE at the same temperature. Our X-ray diffraction data imply that FP either does not affect, or slightly increases, the spontaneous curvature of the host lipid (i.e. either does not affect or tends to destabilize inverted phases, respectively). FP may act in part by affecting the relative stability of two intermediate structures in the phase transition mechanism, as suggested previously. These results indicate a new way in which hydrophobic sequences of membrane proteins may be fusogenic.
Collapse
Affiliation(s)
- D P Siegel
- Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | | |
Collapse
|
29
|
Abstract
Membrane fusion involves the merger of two phospholipid bilayers in an aqueous environment. In artificial lipid bilayers, fusion proceeds by means of defined transition states, including hourglass-shaped intermediates in which the proximal leaflets of the fusing membranes are merged whereas the distal leaflets are separate (fusion stalk), followed by the reversible opening of small aqueous fusion pores. Fusion of biological membranes requires the action of specific fusion proteins. Best understood are the viral fusion proteins that are responsible for merging the viral with the host cell membrane during infection. These proteins undergo spontaneous and dramatic conformational changes upon activation. In the case of the paradigmatic fusion proteins of the influenza virus and of the human immunodeficiency virus, an amphiphilic fusion peptide is inserted into the target membrane. The protein then reorients itself, thus forcing the fusing membranes together and inducing lipid mixing. Fusion of intracellular membranes in eukaryotic cells involves several protein families including SNAREs, Rab proteins, and Sec1/Munc-18 related proteins (SM-proteins). SNAREs form a novel superfamily of small and mostly membrane-anchored proteins that share a common motif of about 60 amino acids (SNARE motif). SNAREs reversibly assemble into tightly packed helical bundles, the core complexes. Assembly is thought to pull the fusing membranes closely together, thus inducing fusion. SM-proteins comprise a family of soluble proteins that bind to certain types of SNAREs and prevent the formation of core complexes. Rab proteins are GTPases that undergo highly regulated GTP-GDP cycles. In their GTP form, they interact with specific proteins, the effector proteins. Recent evidence suggests that Rab proteins function in the initial membrane contact connecting the fusing membranes but are not involved in the fusion reaction itself.
Collapse
Affiliation(s)
- R Jahn
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.
| | | |
Collapse
|
30
|
Pereira FB, Valpuesta JM, Basañez G, Goñi FM, Nieva JL. Interbilayer lipid mixing induced by the human immunodeficiency virus type-1 fusion peptide on large unilamellar vesicles: the nature of the nonlamellar intermediates. Chem Phys Lipids 1999; 103:11-20. [PMID: 10701076 DOI: 10.1016/s0009-3084(99)00087-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A peptide corresponding to the 23 N-terminal amino acid residues of the human immunodeficiency virus type-1 (HIV-1) gp41 has the capacity to induce intervesicular lipid mixing in large unilamellar liposomes composed of dioleoylphosphatidylcholine (DOPC), dioleoylphosphatidylethanolamine (DOPE) and cholesterol (CHOL) (molar ratio, 1:1:1). Cryo-transmission electron microscopy (cryo-TEM) of diluted vesicles to which peptides has been externally added reveals a morphology that is compatible with the formation of nonlamellar lipidic aggregates during the time-course of lipid mixing. 31P-nuclear magnetic resonance and 1-(4-trimethylaminophenyl)-6-phenyl-1,3,5-hexatriene (TMADPH) steady-state anisotropy data at equilibrium indicate that the peptide is able to modulate the lipid polymorphism in pelletted membranes by: (i) promoting the thermotropic formation of inverted phases; and (ii) driving the lamellar-to-nonlamellar transition towards the formation of isotropic phases. Therefore, our combined morphological and spectroscopic data reveal the existence of a direct correlation between the ability of the externally added peptide to induce lipid-mixing in dilute liposome samples and its capacity to modulate lipid polymorphism in stacked bilayers.
Collapse
Affiliation(s)
- F B Pereira
- Unidad de Biofísica (CSIC-EHU/UPV), Universidad del País Vasco, Bilbao, Spain
| | | | | | | | | |
Collapse
|
31
|
Darkes MJ, Davies SM, Bradshaw JP. X-ray diffraction study of feline leukemia virus fusion peptide and lipid polymorphism. FEBS Lett 1999; 461:178-82. [PMID: 10567693 DOI: 10.1016/s0014-5793(99)01454-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The structural effects of the fusion peptide of feline leukemia virus (FeLV) on the lipid polymorphism of N-methylated dioleoylphosphatidylethanolamine were studied using a temperature ramp with sequential X-ray diffraction. This peptide, the hydrophobic amino-terminus of p15E, has been proven to be fusogenic and to promote the formation of highly curved, intermediate structures on the lamellar liquid-crystal to inverse hexagonal phase transition pathway. The FeLV peptide produces marked effects on the thermotropic mesomorphic behaviour of MeDOPE, a phospholipid with an intermediate spontaneous radius of curvature. The peptide is shown to reduce the lamellar repeat distance of the membrane prior to the onset of an inverted cubic phase. This suggests that membrane thinning may play a role in peptide-induced membrane fusion and strengthens the link between the fusion pathway and inverted cubic phase formation. The results of this study are interpreted in relation to models of the membrane fusion mechanism.
Collapse
Affiliation(s)
- M J Darkes
- Department of Preclinical Veterinary Sciences, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Summerhall, Edinburgh, UK
| | | | | |
Collapse
|
32
|
Ulrich AS, Tichelaar W, Förster G, Zschörnig O, Weinkauf S, Meyer HW. Ultrastructural characterization of peptide-induced membrane fusion and peptide self-assembly in the lipid bilayer. Biophys J 1999; 77:829-41. [PMID: 10423429 PMCID: PMC1300375 DOI: 10.1016/s0006-3495(99)76935-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The peptide sequence B18, derived from the membrane-associated sea urchin sperm protein bindin, triggers fusion between lipid vesicles. It exhibits many similarities to viral fusion peptides and may have a corresponding function in fertilization. The lipid-peptide and peptide-peptide interactions of B18 are investigated here at the ultrastructural level by electron microscopy and x-ray diffraction. The histidine-rich peptide is shown to self-associate into two distinctly different supramolecular structures, depending on the presence of Zn(2+), which controls its fusogenic activity. In aqueous buffer the peptide per se assembles into beta-sheet amyloid fibrils, whereas in the presence of Zn(2+) it forms smooth globular clusters. When B18 per se is added to uncharged large unilamellar vesicles, they become visibly disrupted by the fibrils, but no genuine fusion is observed. Only in the presence of Zn(2+) does the peptide induce extensive fusion of vesicles, which is evident from their dramatic increase in size. Besides these morphological changes, we observed distinct fibrillar and particulate structures in the bilayer, which are attributed to B18 in either of its two self-assembled forms. We conclude that membrane fusion involves an alpha-helical peptide conformation, which can oligomerize further in the membrane. The role of Zn(2+) is to promote this local helical structure in B18 and to prevent its inactivation as beta-sheet fibrils.
Collapse
Affiliation(s)
- A S Ulrich
- Institut für Molekularbiologie, Friedrich-Schiller-Universität Jena, 07745 Jena, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Ge M, Freed JH. Electron-spin resonance study of aggregation of gramicidin in dipalmitoylphosphatidylcholine bilayers and hydrophobic mismatch. Biophys J 1999; 76:264-80. [PMID: 9876140 PMCID: PMC1302517 DOI: 10.1016/s0006-3495(99)77195-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The effect of aggregation of gramicidin A' (GA) on the phase structure of dipalmitoylphosphatidylcholine (DPPC) multilamellar vesicles was studied by cw-ESR using a chain-labeled lipid (16PC) at temperatures between 30 degrees and 45 degreesC that span the main phase transition of DPPC. Boundary lipids were observed only in dispersions with GA/DPPC molar ratios >1:15, where GA aggregates. Detailed fits by nonlinear least squares (NLLS) methods are consistent with the boundary lipid being characterized by a large negative order parameter ( approximately -0.4), indicative of a dynamic bending of the end of the acyl chain, and a substantially reduced motion, about an order of magnitude slower than that of the bulk lipid. The NLLS analysis compares favorably with a recent two-dimensional Fourier transform ESR study on DPPC/GA vesicles, which accurately discerned the bulk lipid. The detailed ESR observables are discussed in terms of the ordering effect of GA at low concentration of GA, the dissociation of the GA channel and the dynamic bending of the end chain segment of boundary lipid at high concentration of GA, and of HII phase formation induced by GA. It is suggested that these phenomena can be interpreted in terms of the combined effects of partial dehydration of the lipid headgroup by the GA and of the hydrophobic mismatch between GA and DPPC molecules. Substantial hysteresis is observed for heating versus cooling cycles, but only for a GA/DPPC molar ratio >1:15. This is consistent with the aggregation of GA molecules at high concentrations.
Collapse
Affiliation(s)
- M Ge
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
34
|
Protein and peptide interactions with lipids: Structure, membrane function and new methods. Curr Opin Colloid Interface Sci 1998. [DOI: 10.1016/s1359-0294(98)80024-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|