1
|
Chen D, Wirth KM, Kizy S, Muretta JM, Markowski TW, Yong P, Sheka A, Abdelwahab H, Hertzel AV, Ikramuddin S, Yamamoto M, Bernlohr DA. Desmoglein 2 Functions as a Receptor for Fatty Acid Binding Protein 4 in Breast Cancer Epithelial Cells. Mol Cancer Res 2023; 21:836-848. [PMID: 37115197 PMCID: PMC10524127 DOI: 10.1158/1541-7786.mcr-22-0763] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/19/2023] [Accepted: 04/26/2023] [Indexed: 04/29/2023]
Abstract
Fatty acid binding protein 4 (FABP4) is a secreted adipokine linked to obesity and progression of a variety of cancers. Obesity increases extracellular FABP4 (eFABP4) levels in animal models and in obese breast cancer patients compared with lean healthy controls. Using MCF-7 and T47D breast cancer epithelial cells, we show herein that eFABP4 stimulates cellular proliferation in a time and concentration dependent manner while the non-fatty acid-binding mutant, R126Q, failed to potentiate growth. When E0771 murine breast cancer cells were injected into mice, FABP4 null animals exhibited delayed tumor growth and enhanced survival compared with injections into control C57Bl/6J animals. eFABP4 treatment of MCF-7 cells resulted in a significant increase in phosphorylation of extracellular signal-regulated kinase 1/2 (pERK), transcriptional activation of nuclear factor E2-related factor 2 (NRF2) and corresponding gene targets ALDH1A1, CYP1A1, HMOX1, SOD1 and decreased oxidative stress, while R126Q treatment did not show any effects. Proximity-labeling employing an APEX2-FABP4 fusion protein revealed several proteins functioning in desmosomes as eFABP4 receptor candidates including desmoglein (DSG), desmocollin, junction plankoglobin, desomoplankin, and cytokeratins. AlphaFold modeling predicted an interaction between eFABP4, and the extracellular cadherin repeats of DSG2 and pull-down and immunoprecipitation assays confirmed complex formation that was potentiated by oleic acid. Silencing of DSG2 in MCF-7 cells attenuated eFABP4 effects on cellular proliferation, pERK levels, and ALDH1A1 expression compared with controls. IMPLICATIONS These results suggest desmosomal proteins, and in particular desmoglein 2, may function as receptors of eFABP4 and provide new insight into the development and progression of obesity-associated cancers.
Collapse
Affiliation(s)
- Dongmei Chen
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Keith M. Wirth
- Department of Surgery, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Scott Kizy
- Department of Surgery, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Joseph M. Muretta
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Todd W Markowski
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Peter Yong
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Adam Sheka
- Department of Surgery, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Hisham Abdelwahab
- Department of Surgery, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Ann V. Hertzel
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Sayeed Ikramuddin
- Department of Surgery, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Masato Yamamoto
- Department of Surgery, The University of Minnesota-Twin Cities, Minneapolis, MN USA
- Department of Masonic Cancer Center, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - David A Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| |
Collapse
|
2
|
Uusitalo M, Klenow MB, Laulumaa S, Blakeley MP, Simonsen AC, Ruskamo S, Kursula P. Human myelin protein P2: from crystallography to time-lapse membrane imaging and neuropathy-associated variants. FEBS J 2021; 288:6716-6735. [PMID: 34138518 DOI: 10.1111/febs.16079] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022]
Abstract
Peripheral myelin protein 2 (P2) is a fatty acid-binding protein expressed in vertebrate peripheral nervous system myelin, as well as in human astrocytes. Suggested functions of P2 include membrane stacking and lipid transport. Mutations in the PMP2 gene, encoding P2, are associated with Charcot-Marie-Tooth disease (CMT). Recent studies have revealed three novel PMP2 mutations in CMT patients. To shed light on the structure and function of these P2 variants, we used X-ray and neutron crystallography, small-angle X-ray scattering, circular dichroism spectroscopy, computer simulations and lipid binding assays. The crystal and solution structures of the I50del, M114T and V115A variants of P2 showed minor differences to the wild-type protein, whereas their thermal stability was reduced. Vesicle aggregation assays revealed no change in membrane stacking characteristics, while the variants showed altered fatty acid binding. Time-lapse imaging of lipid bilayers indicated formation of double-membrane structures induced by P2, which could be related to its function in stacking of two myelin membrane surfaces in vivo. In order to better understand the links between structure, dynamics and function, the crystal structure of perdeuterated P2 was refined from room temperature data using neutrons and X-rays, and the results were compared to simulations and cryocooled crystal structures. Our data indicate similar properties for all known human P2 CMT variants; while crystal structures are nearly identical, thermal stability and function of CMT variants are impaired. Our data provide new insights into the structure-function relationships and dynamics of P2 in health and disease.
Collapse
Affiliation(s)
- Maiju Uusitalo
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| | - Martin Berg Klenow
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Saara Laulumaa
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland.,European Spallation Source, Lund, Sweden
| | | | - Adam Cohen Simonsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Salla Ruskamo
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| | - Petri Kursula
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland.,Department of Biomedicine, University of Bergen, Norway
| |
Collapse
|
3
|
Ruskamo S, Krokengen OC, Kowal J, Nieminen T, Lehtimäki M, Raasakka A, Dandey VP, Vattulainen I, Stahlberg H, Kursula P. Cryo-EM, X-ray diffraction, and atomistic simulations reveal determinants for the formation of a supramolecular myelin-like proteolipid lattice. J Biol Chem 2020; 295:8692-8705. [PMID: 32265298 DOI: 10.1074/jbc.ra120.013087] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/31/2020] [Indexed: 12/15/2022] Open
Abstract
Myelin protein P2 is a peripheral membrane protein of the fatty acid-binding protein family that functions in the formation and maintenance of the peripheral nerve myelin sheath. Several P2 gene mutations cause human Charcot-Marie-Tooth neuropathy, but the mature myelin sheath assembly mechanism is unclear. Here, cryo-EM of myelin-like proteolipid multilayers revealed an ordered three-dimensional (3D) lattice of P2 molecules between stacked lipid bilayers, visualizing supramolecular assembly at the myelin major dense line. The data disclosed that a single P2 layer is inserted between two bilayers in a tight intermembrane space of ∼3 nm, implying direct interactions between P2 and two membrane surfaces. X-ray diffraction from P2-stacked bicelle multilayers revealed lateral protein organization, and surface mutagenesis of P2 coupled with structure-function experiments revealed a role for both the portal region of P2 and its opposite face in membrane interactions. Atomistic molecular dynamics simulations of P2 on model membrane surfaces suggested that Arg-88 is critical for P2-membrane interactions, in addition to the helical lid domain. Negatively charged lipid headgroups stably anchored P2 on the myelin-like bilayer surface. Membrane binding may be accompanied by opening of the P2 β-barrel structure and ligand exchange with the apposing bilayer. Our results provide an unprecedented view into an ordered, multilayered biomolecular membrane system induced by the presence of a peripheral membrane protein from human myelin. This is an important step toward deciphering the 3D assembly of a mature myelin sheath at the molecular level.
Collapse
Affiliation(s)
- Salla Ruskamo
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014 Oulu, Finland; Biocenter Oulu, University of Oulu, 90014 Oulu, Finland
| | - Oda C Krokengen
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway
| | - Julia Kowal
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, 4058 Basel, Switzerland
| | - Tuomo Nieminen
- Computational Physics Laboratory, Tampere University, 33014 Tampere, Finland
| | - Mari Lehtimäki
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014 Oulu, Finland
| | - Arne Raasakka
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway
| | - Venkata P Dandey
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, 4058 Basel, Switzerland
| | - Ilpo Vattulainen
- Computational Physics Laboratory, Tampere University, 33014 Tampere, Finland; Department of Physics, University of Helsinki, 00014 Helsinki, Finland
| | - Henning Stahlberg
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, 4058 Basel, Switzerland
| | - Petri Kursula
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014 Oulu, Finland; Biocenter Oulu, University of Oulu, 90014 Oulu, Finland; Department of Biomedicine, University of Bergen, 5020 Bergen, Norway.
| |
Collapse
|
4
|
Laulumaa S, Nieminen T, Raasakka A, Krokengen OC, Safaryan A, Hallin EI, Brysbaert G, Lensink MF, Ruskamo S, Vattulainen I, Kursula P. Structure and dynamics of a human myelin protein P2 portal region mutant indicate opening of the β barrel in fatty acid binding proteins. BMC STRUCTURAL BIOLOGY 2018; 18:8. [PMID: 29940944 PMCID: PMC6020228 DOI: 10.1186/s12900-018-0087-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/13/2018] [Indexed: 02/04/2023]
Abstract
Background Myelin is a multilayered proteolipid sheath wrapped around selected axons in the nervous system. Its constituent proteins play major roles in forming of the highly regular membrane structure. P2 is a myelin-specific protein of the fatty acid binding protein (FABP) superfamily, which is able to stack lipid bilayers together, and it is a target for mutations in the human inherited neuropathy Charcot-Marie-Tooth disease. A conserved residue that has been proposed to participate in membrane and fatty acid binding and conformational changes in FABPs is Phe57. This residue is thought to be a gatekeeper for the opening of the portal region upon ligand entry and egress. Results We performed a structural characterization of the F57A mutant of human P2. The mutant protein was crystallized in three crystal forms, all of which showed changes in the portal region and helix α2. In addition, the behaviour of the mutant protein upon lipid bilayer binding suggested more unfolding than previously observed for wild-type P2. On the other hand, membrane binding rendered F57A heat-stable, similarly to wild-type P2. Atomistic molecular dynamics simulations showed opening of the side of the discontinuous β barrel, giving important indications on the mechanism of portal region opening and ligand entry into FABPs. The results suggest a central role for Phe57 in regulating the opening of the portal region in human P2 and other FABPs, and the F57A mutation disturbs dynamic cross-correlation networks in the portal region of P2. Conclusions Overall, the F57A variant presents similar properties to the P2 patient mutations recently linked to Charcot-Marie-Tooth disease. Our results identify Phe57 as a residue regulating conformational changes that may accompany membrane surface binding and ligand exchange in P2 and other FABPs. Electronic supplementary material The online version of this article (10.1186/s12900-018-0087-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Saara Laulumaa
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,European Spallation Source (ESS), Lund, Sweden
| | - Tuomo Nieminen
- Department of Physics, Tampere University of Technology, Tampere, Finland
| | - Arne Raasakka
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Oda C Krokengen
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Erik I Hallin
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Guillaume Brysbaert
- Unité de Glycobiologie Structurale et Fonctionnelle, University of Lille, CNRS UMR8576 UGSF, F-59000, Lille, France
| | - Marc F Lensink
- Unité de Glycobiologie Structurale et Fonctionnelle, University of Lille, CNRS UMR8576 UGSF, F-59000, Lille, France
| | - Salla Ruskamo
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Ilpo Vattulainen
- Department of Physics, Tampere University of Technology, Tampere, Finland.,Department of Physics, University of Helsinki, Helsinki, Finland
| | - Petri Kursula
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland. .,Department of Biomedicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
5
|
Li Y, Li X, Dong Z. Concerted dynamic motions of an FABP4 model and its ligands revealed by microsecond molecular dynamics simulations. Biochemistry 2014; 53:6409-17. [PMID: 25231537 PMCID: PMC4196735 DOI: 10.1021/bi500374t] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
In this work, we investigate the
dynamic motions of fatty acid
binding protein 4 (FABP4) in the absence and presence of a ligand
by explicitly solvated all-atom molecular dynamics simulations. The
dynamics of one ligand-free FABP4 and four ligand-bound FABP4s is
compared via multiple 1.2 μs simulations. In our simulations,
the protein interconverts between the open and closed states. Ligand-free
FABP4 prefers the closed state, whereas ligand binding induces a conformational
transition to the open state. Coupled with opening and closing of
FABP4, the ligand adopts distinct binding modes, which are identified
and compared with crystal structures. The concerted dynamics of protein
and ligand suggests that there may exist multiple FABP4–ligand
binding conformations. Thus, this work provides details about how
ligand binding affects the conformational preference of FABP4 and
how ligand binding is coupled with a conformational change of FABP4
at an atomic level.
Collapse
Affiliation(s)
- Yan Li
- The Hormel Institute, University of Minnesota , Austin, Minnesota 55912, United States
| | | | | |
Collapse
|
6
|
Detecting structural similarity of ligand interactions in the lipid metabolic system including enzymes, lipid-binding proteins and nuclear receptors. Protein Eng Des Sel 2011; 24:397-403. [DOI: 10.1093/protein/gzq121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
7
|
Hellberg K, Grimsrud PA, Kruse AC, Banaszak LJ, Ohlendorf DH, Bernlohr DA. X-ray crystallographic analysis of adipocyte fatty acid binding protein (aP2) modified with 4-hydroxy-2-nonenal. Protein Sci 2010; 19:1480-9. [PMID: 20509169 PMCID: PMC2923501 DOI: 10.1002/pro.427] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Fatty acid binding proteins (FABP) have been characterized as facilitating the intracellular solubilization and transport of long-chain fatty acyl carboxylates via noncovalent interactions. More recent work has shown that the adipocyte FABP is also covalently modified in vivo on Cys117 with 4-hydroxy-2-nonenal (4-HNE), a bioactive aldehyde linked to oxidative stress and inflammation. To evaluate 4-HNE binding and modification, the crystal structures of adipocyte FABP covalently and noncovalently bound to 4-HNE have been solved to 1.9 A and 2.3 A resolution, respectively. While the 4-HNE in the noncovalently modified protein is coordinated similarly to a carboxylate of a fatty acid, the covalent form show a novel coordination through a water molecule at the polar end of the lipid. Other defining features between the two structures with 4-HNE and previously solved structures of the protein include a peptide flip between residues Ala36 and Lys37 and the rotation of the side chain of Phe57 into its closed conformation. Representing the first structure of an endogenous target protein covalently modified by 4-HNE, these results define a new class of in vivo ligands for FABPs and extend their physiological substrates to include bioactive aldehydes.
Collapse
Affiliation(s)
| | | | | | | | | | - David A Bernlohr
- *Correspondence to: David A. Bernlohr, Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota-Twin Cities, MN 55455. E-mail:
| |
Collapse
|
8
|
Hertzel AV, Hellberg K, Reynolds JM, Kruse AC, Juhlmann BE, Smith AJ, Sanders MA, Ohlendorf DH, Suttles J, Bernlohr DA. Identification and characterization of a small molecule inhibitor of Fatty Acid binding proteins. J Med Chem 2009; 52:6024-31. [PMID: 19754198 PMCID: PMC2755644 DOI: 10.1021/jm900720m] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Molecular disruption of the lipid carrier AFABP/aP2 in mice results in improved insulin sensitivity and protection from atherosclerosis. Because small molecule inhibitors may be efficacious in defining the mechanism(s) of AFABP/aP2 action, a chemical library was screened and identified 1 (HTS01037) as a pharmacologic ligand capable of displacing the fluorophore 1-anilinonaphthalene 8-sulfonic acid from the lipid binding cavity. The X-ray crystal structure of 1 bound to AFABP/aP2 revealed that the ligand binds at a structurally similar position to a long-chain fatty acid. Similar to AFABP/aP2 knockout mice, 1 inhibits lipolysis in 3T3-L1 adipocytes and reduces LPS-stimulated inflammation in cultured macrophages. 1 acts as an antagonist of the protein-protein interaction between AFABP/aP2 and hormone sensitive lipase but does not activate PPARgamma in macrophage or CV-1 cells. These results identify 1 as an inhibitor of fatty acid binding and a competitive antagonist of protein-protein interactions mediated by AFABP/aP2.
Collapse
Affiliation(s)
- Ann V. Hertzel
- Departments of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - Kristina Hellberg
- Departments of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - Joseph M. Reynolds
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY 40292
| | - Andrew C. Kruse
- Departments of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - Brittany E. Juhlmann
- Departments of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - Anne J. Smith
- Departments of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - Mark A. Sanders
- Imaging Center, University of Minnesota, Minneapolis, MN 55455
| | - Douglas H. Ohlendorf
- Departments of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - Jill Suttles
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY 40292
| | - David A. Bernlohr
- Departments of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
9
|
Wang Q, Guan T, Li H, Bernlohr DA. A novel polymorphism in the chicken adipocyte fatty acid-binding protein gene (FABP4) that alters ligand-binding and correlates with fatness. Comp Biochem Physiol B Biochem Mol Biol 2009; 154:298-302. [PMID: 19595785 DOI: 10.1016/j.cbpb.2009.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 06/30/2009] [Accepted: 07/06/2009] [Indexed: 12/20/2022]
Abstract
Similar to the mammalian FABP4 gene, the chicken (Gallus gallus) FABP4 gene consists of four exons separated by three introns and encodes a 132 amino acid protein termed the adipocyte fatty acid-binding protein (AFABP). In the current study, a novel G/A polymorphism in exon 3 of the chicken FABP4 gene was identified associated with different chicken breeds that leads to either Ser or Asn at amino acid 89 of the AFABP protein. The Baier chicken averages 0.89+/-0.12% abdominal fat and expresses the G allele (Ser 89 isoform) while the Broiler chicken typically has 3.74+/-0.23% abdominal fat and expresses the A allele (Asn 89 isoforms). cDNAs corresponding to the two AFABP isoforms were cloned and expressed in Escherichia coli as GST fusions, purified by using glutathione sepharose 4B chromatography and evaluated for lipid binding using the fluorescent surrogate ligand 1-anilinonaphthalene 8-sulphonic acid (1,8-ANS). The results showed that AFABP Ser89 exhibited a lower ligand-binding affinity with apparent dissociation constants (Kd) of 7.31+/-3.75 microM, while the AFABP Asn89 isoform bound 1,8-ANS with an apparent dissociation constant of 2.99+/-1.00 microM (P=0.02). These results suggest that the Ser89Asn polymorphism may influence chicken AFABP function and ultimately lipid deposition through changing the ligand-binding activity of AFABP.
Collapse
Affiliation(s)
- Qigui Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | | | | | | |
Collapse
|
10
|
NMR evaluation of adipocyte fatty acid binding protein (aP2) with R- and S-ibuprofen. Bioorg Med Chem 2008; 16:4323-30. [DOI: 10.1016/j.bmc.2008.02.092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2007] [Revised: 02/11/2008] [Accepted: 02/25/2008] [Indexed: 01/22/2023]
|
11
|
Abstract
The family of proteins accountable for the intracellular movement of lipids is characterized by a 10-stranded beta-barrel that forms an internalized cavity varying in size and binding preferences. The loop connecting beta-strands E and F (the fifth and sixth strands) is the most striking conformational difference between adipocyte lipid binding protein (ALBP; fatty acids) and cellular retinoic acid binding protein type I (CRABP I). A three-residue mutation was made in wild-type (WT)-ALBP [ALBP with a three-residue mutation (EF-ALBP)] to mimic CRABP I. Crystal structures of ligand-free and EF-ALBP with bound oleic acid were solved to resolutions of 1.5 A and 1.7 A, respectively, and compared with previous studies of WT-ALBP. The changes in three residues of one loop of the protein appear to have altered the positioning of the C18 fatty acid, as observed in the electron density of EF-ALBP. The crystallographic studies made it possible to compare the protein conformation and ligand positioning with those found in the WT protein. Although the cavity binding sites in both the retinoid and fatty acid binding proteins are irregular, the ligand atoms appear to favor a relatively planar region of the cavities. Preliminary chemical characterization of the mutant protein indicated changes in some binding properties and overall protein stability.
Collapse
Affiliation(s)
- Amy J Reese
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | | |
Collapse
|
12
|
Schoeffler AJ, Ruiz CR, Joubert AM, Yang X, LiCata VJ. Salt modulates the stability and lipid binding affinity of the adipocyte lipid-binding proteins. J Biol Chem 2003; 278:33268-75. [PMID: 12794068 DOI: 10.1074/jbc.m304955200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Adipocyte lipid-binding protein (ALBP or aP2) is an intracellular fatty acid-binding protein that is found in adipocytes and macrophages and binds a large variety of intracellular lipids with high affinity. Although intracellular lipids are frequently charged, biochemical studies of lipid-binding proteins and their interactions often focus most heavily on the hydrophobic aspects of these proteins and their interactions. In this study, we have characterized the effects of KCl on the stability and lipid binding properties of ALBP. We find that added salt dramatically stabilizes ALBP, increasing its Delta G of unfolding by 3-5 kcal/mol. At 37 degrees C salt can more than double the stability of the protein. At the same time, salt inhibits the binding of the fluorescent lipid 1-anilinonaphthalene-8-sulfonate (ANS) to the protein and induces direct displacement of the lipid from the protein. Thermodynamic linkage analysis of the salt inhibition of ANS binding shows a nearly 1:1 reciprocal linkage: i.e. one ion is released from ALBP when ANS binds, and vice versa. Kinetic experiments show that salt reduces the rate of association between ANS and ALBP while simultaneously increasing the dissociation rate of ANS from the protein. We depict and discuss the thermodynamic linkages among stability, lipid binding, and salt effects for ALBP, including the use of these linkages to calculate the affinity of ANS for the denatured state of ALBP and its dependence on salt concentration. We also discuss the potential molecular origins and potential intracellular consequences of the demonstrated salt linkages to stability and lipid binding in ALBP.
Collapse
Affiliation(s)
- Allyn J Schoeffler
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | | | | | | | |
Collapse
|
13
|
Bennaars-Eiden A, Higgins L, Hertzel AV, Kapphahn RJ, Ferrington DA, Bernlohr DA. Covalent modification of epithelial fatty acid-binding protein by 4-hydroxynonenal in vitro and in vivo. Evidence for a role in antioxidant biology. J Biol Chem 2002; 277:50693-702. [PMID: 12386159 DOI: 10.1074/jbc.m209493200] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
4-Hydroxynonenal (4-HNE) is a cytotoxic alpha,beta-unsaturated acyl aldehyde that is naturally produced from lipid peroxidation and cleavage in response to oxidative stress and aging. Such reactive lipids covalently modify cellular target proteins, thereby affecting biological structure and function. Herein we report the identification of the epithelial fatty acid-binding protein (E-FABP) as a molecular target for 4-HNE modification both in vitro and in vivo. 4-HNE covalently modified (t(12) < 60 s) E-FABP in vitro, as revealed by a combination of matrix-assisted laser desorption ionization-time of flight mass spectrometry and immunochemical reactivity using antibodies directed to 4-HNE-protein conjugates. Identification of Cys-120 as the major site of modification was determined through tandem mass spectral sequencing of tryptic peptides, as well as analysis of E-FABP mutants C120A, C127A, and C120A/C127A. The in vitro modification of Cys-120 by 4-HNE was relatively insensitive to pH (6.4-8.4), and temperature (4-37 degrees C) but was markedly potentiated by noncovalently bound fatty acids. 4-HNE-modified E-FABP was more stable than unmodified E-FABP to chemical denaturation by guanidine hydrochloride, as assessed by changes in intrinsic tryptophan fluorescence. Analysis of soluble protein extracts from rat retina with antibodies directed to 4-HNE-protein conjugates revealed immunoreactivity with a 15-kDa protein that was identified by electrospray ionization and matrix-assisted laser desorption ionization-time of flight mass spectrometry as E-FABP. Evaluation of retinal pigment epithelial cell extracts derived from E-FABP null mice by two-dimensional gel electrophoresis using anti-4-HNE antibodies revealed increased modification in the null cells relative to those from wild type cells. These results indicate that E-FABP is a molecular target for 4-HNE modification and the hypothesis that E-FABP functions as an antioxidant protein by scavenging reactive lipids through covalent modification of Cys-120.
Collapse
|
14
|
Abstract
Cytoplasmic fatty acid-binding proteins (FABPs) are a family of proteins, expressed in a tissue-specific manner, that bind fatty acid ligands and are involved in shuttling fatty acids to cellular compartments, modulating intracellular lipid metabolism, and regulating gene expression. Several members of the FABP family have been shown to have important roles in regulating metabolism and have links to the development of insulin resistance and the metabolic syndrome. Recent studies demonstrate a role for intestinal FABP in the control of dietary fatty acid absorption and chylomicron secretion. Heart FABP is essential for normal myocardial fatty acid oxidation and modulates fatty acid uptake in skeletal muscle. Liver FABP is directly involved in fatty acid ligand signaling to the nucleus and interacts with peroxisome proliferator-activated receptors in hepatocytes. The adipocyte FABP (aP2) has been shown to affect insulin sensitivity, lipid metabolism and lipolysis, and has recently been shown to play an important role in atherosclerosis. Interestingly, expression of aP2 by the macrophage promotes atherogenesis, thus providing a link between insulin resistance, intracellular fatty acid disposition, and foam cell formation. The FABPs are promising targets for the treatment of dyslipidemia, insulin resistance, and atherosclerosis in humans.
Collapse
Affiliation(s)
- Jeffrey B Boord
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6300, USA
| | | | | |
Collapse
|
15
|
Chen YZ, Gu XL, Cao ZW. Can an optimization/scoring procedure in ligand-protein docking be employed to probe drug-resistant mutations in proteins? J Mol Graph Model 2002; 19:560-70. [PMID: 11552685 DOI: 10.1016/s1093-3263(01)00091-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A simple ligand-protein structural optimization and binding evaluation procedure has been routinely used in high-speed ligand-protein docking studies. In this work, we examine whether such an optimization/scoring procedure is useful in indicating possible drug-resistant mutations in proteins. Crystal structures of three wild-type enzymes (HIV-1 protease, HIV-1 reverse transcriptase, and Mycobacterium tuberculosis H37Rv enoyl-ACP reductase) complexed to a variety of inhibitors are studied. Mutations are introduced into these structures by using the molecular modeling software, SYBYL. Structural optimization and scoring of a mutant complex is conducted by a procedure similar to that used in a recent docking study (Wang et al., 1999). The computed results are compared with observed drug resistance data and the profile of nonresistant mutations. Most mutations studied show an energy change in the same direction as those indicated by observed resistance data. 50% of the polar to polar or nonpolar to nonpolar mutations are found to correlate qualitatively with observed drug resistance data. Van der Waals interactions account for most of these changes, which is in agreement with conclusions from structural studies. Substantially larger deviations are found between computed results and observed data for most polar to nonpolar or nonpolar to polar mutations, which result from deficiency in modelling and scoring ligand-protein interactions in our procedure. Our results suggest that an optimization/docking scoring procedure is useful for qualitatively probing polar to polar or nonpolar to nonpolar resistant mutations in addition to its application in screening active compounds. More accurate description of ligand-protein interactions and the use of methods such as free energy perturbation and Poisson-Boltzmann may be needed to further improve the quality of prediction.
Collapse
Affiliation(s)
- Y Z Chen
- Department of Computational Science, National University of Singapore, Lower Kent Ridge Road, Singapore 119260.
| | | | | |
Collapse
|
16
|
Lücke C, Rademacher M, Zimmerman AW, van Moerkerk HT, Veerkamp JH, Rüterjans H. Spin-system heterogeneities indicate a selected-fit mechanism in fatty acid binding to heart-type fatty acid-binding protein (H-FABP). Biochem J 2001; 354:259-66. [PMID: 11171102 PMCID: PMC1221651 DOI: 10.1042/0264-6021:3540259] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recent advances in the characterization of fatty acid-binding proteins (FABPs) by NMR have enabled various research groups to investigate the function of these proteins in aqueous solution. The binding of fatty acid molecules to FABPs, which proceeds through a portal region on the protein surface, is of particular interest. In the present study we have determined the three-dimensional solution structure of human heart-type FABP by multi-dimensional heteronuclear NMR spectroscopy. Subsequently, in combination with data collected on a F57S mutant we have been able to show that different fatty acids induce distinct conformational states of the protein backbone in this portal region, depending on the chain length of the fatty acid ligand. This indicates that during the binding process the protein accommodates the ligand molecule by a "selected-fit" mechanism. In fact, this behaviour appears to be especially pronounced in the heart-type FABP, possibly due to a more rigid backbone structure compared with other FABPs, as suggested by recent NMR relaxation studies. Thus differences in the dynamic behaviours of these proteins may be the key to understanding the variations in ligand affinity and specificity within the FABP family.
Collapse
Affiliation(s)
- C Lücke
- Institut für Biophysikalische Chemie, Johann Wolfgang Goethe-Universität, Marie-Curie-Strasse 9, 60439 Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
17
|
Lu J, Lin CL, Tang C, Ponder JW, Kao JL, Cistola DP, Li E. The structure and dynamics of rat apo-cellular retinol-binding protein II in solution: comparison with the X-ray structure. J Mol Biol 1999; 286:1179-95. [PMID: 10047490 DOI: 10.1006/jmbi.1999.2544] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The structure and dynamics of rat apo-cellular retinol binding protein II (apo-CRBP II) in solution has been determined by multidimensional NMR analysis of uniformly enriched recombinant rat 13C, 15N-apo-CRBP II and 15N-apo-CRBP II. The final ensemble of 24 NMR structures has been calculated from 3274 conformational restraints or 24.4 restraints/residue. The average root-mean-square deviation of the backbone atoms for the final 24 structures relative to their mean structure is 1.06 A. Although the average solution structure is very similar to the crystal structure, it differs at the putative entrance to the binding cavity, which is formed by the helix-turn-helix motif, the betaC-betaD turn and the betaE-betaF turn. The mean coordinates of the main-chain atoms of amino acid residues 28-38 are displaced in the solution structure relative to the crystal structure. The side-chain of F58, located on the betaC-betaD turn, is reoriented such that it interacts with L37 and no longer blocks entry into the ligand-binding pocket. Residues 28-35, which form the second helix of the helix-turn-helix motif in the crystal structure, do not exhibit a helical conformation in the solution structure. The solution structure of apo-CRBP II exhibits discrete regions of backbone disorder which are most pronounced at residues 28-32, 37-38 and 73-76 in the betaE-betaF turn as evaluated by the consensus chemical shift index, the root-mean-square deviation, amide 1H exchange rates and 15N relaxation studies. These studies indicate that fluctuations in protein conformation occur on the microseconds to ms time-scale in these regions of the protein. Some of these exchange processes can be directly observed in the three-dimensional 15N-resolved NOESY spectrum. These results suggest that in solution, apo-CRBP II undergoes conformational changes on the microseconds to ms time-scale which result in increased access to the binding cavity.
Collapse
Affiliation(s)
- J Lu
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|