1
|
Rüdiger D, Piasecka J, Küchler J, Pontes C, Laske T, Kupke SY, Reichl U. Mathematical model calibrated to in vitro data predicts mechanisms of antiviral action of the influenza defective interfering particle "OP7". iScience 2024; 27:109421. [PMID: 38523782 PMCID: PMC10959662 DOI: 10.1016/j.isci.2024.109421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/08/2024] [Accepted: 02/29/2024] [Indexed: 03/26/2024] Open
Abstract
Defective interfering particles (DIPs) are regarded as potent broad-spectrum antivirals. We developed a mathematical model that describes intracellular co-infection dynamics of influenza standard virus (STV) and "OP7", a new type of influenza DIP discovered recently. Based on experimental data from in vitro studies to calibrate the model and confirm its predictions, we deduce OP7's mechanisms of interference, which were yet unknown. Simulations suggest that the "superpromoter" on OP7 genomic viral RNA enhances its replication and results in a depletion of viral proteins. This reduces STV genomic RNA replication, which appears to constitute an antiviral effect. Further, a defective viral protein (M1-OP7) likely causes the deficiency of OP7's replication. It appears unable to bind to genomic viral RNAs to facilitate their nuclear export, a critical step in the viral life cycle. An improved understanding of OP7's antiviral mechanism is crucial toward application in humans as a prospective antiviral treatment strategy.
Collapse
Affiliation(s)
- Daniel Rüdiger
- Department of Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Saxony-Anhalt, Germany
| | - Julita Piasecka
- Department of Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Saxony-Anhalt, Germany
| | - Jan Küchler
- Department of Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Saxony-Anhalt, Germany
| | - Carolina Pontes
- Department of Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Saxony-Anhalt, Germany
| | - Tanja Laske
- Department of Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Saxony-Anhalt, Germany
- Institute for Computational Systems Biology, University of Hamburg, 20148 Hamburg, Germany
| | - Sascha Y. Kupke
- Department of Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Saxony-Anhalt, Germany
| | - Udo Reichl
- Department of Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Saxony-Anhalt, Germany
- Chair of Bioprocess Engineering, Otto-von-Guericke University, 39106 Magdeburg, Saxony-Anhalt, Germany
| |
Collapse
|
2
|
Canova CT, Inguva PK, Braatz RD. Mechanistic modeling of viral particle production. Biotechnol Bioeng 2023; 120:629-641. [PMID: 36461898 DOI: 10.1002/bit.28296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022]
Abstract
Viral systems such as wild-type viruses, viral vectors, and virus-like particles are essential components of modern biotechnology and medicine. Despite their importance, the commercial-scale production of viral systems remains highly inefficient for multiple reasons. Computational strategies are a promising avenue for improving process development, optimization, and control, but require a mathematical description of the system. This article reviews mechanistic modeling strategies for the production of viral particles, both at the cellular and bioreactor scales. In many cases, techniques and models from adjacent fields such as epidemiology and wild-type viral infection kinetics can be adapted to construct a suitable process model. These process models can then be employed for various purposes such as in-silico testing of novel process operating strategies and/or advanced process control.
Collapse
Affiliation(s)
- Christopher T Canova
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Pavan K Inguva
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Richard D Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
3
|
Duval JFL, van Leeuwen HP, Norde W, Town RM. Chemodynamic features of nanoparticles: Application to understanding the dynamic life cycle of SARS-CoV-2 in aerosols and aqueous biointerfacial zones. Adv Colloid Interface Sci 2021; 290:102400. [PMID: 33713994 PMCID: PMC7931671 DOI: 10.1016/j.cis.2021.102400] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/23/2022]
Abstract
We review concepts involved in describing the chemodynamic features of nanoparticles and apply the framework to gain physicochemical insights into interactions between SARS-CoV-2 virions and airborne particulate matter (PM). Our analysis is highly pertinent given that the World Health Organisation acknowledges that SARS-CoV-2 may be transmitted by respiratory droplets, and the US Center for Disease Control and Prevention recognises that airborne transmission of SARS-CoV-2 can occur. In our theoretical treatment, the virion is assimilated to a core-shell nanoparticle, and contributions of various interaction energies to the virion-PM association (electrostatic, hydrophobic, London-van der Waals, etc.) are generically included. We review the limited available literature on the physicochemical features of the SARS-CoV-2 virion and identify knowledge gaps. Despite the lack of quantitative data, our conceptual framework qualitatively predicts that virion-PM entities are largely able to maintain equilibrium on the timescale of their diffusion towards the host cell surface. Comparison of the relevant mass transport coefficients reveals that virion biointernalization demand by alveolar host cells may be greater than the diffusive supply. Under such conditions both the free and PM-sorbed virions may contribute to the transmitted dose. This result points to the potential for PM to serve as a shuttle for delivery of virions to host cell targets. Thus, our critical review reveals that the chemodynamics of virion-PM interactions may play a crucial role in the transmission of COVID-19, and provides a sound basis for explaining reported correlations between episodes of air pollution and outbreaks of COVID-19.
Collapse
Affiliation(s)
| | - Herman P van Leeuwen
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708, WE, Wageningen, the Netherlands
| | - Willem Norde
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708, WE, Wageningen, the Netherlands
| | - Raewyn M Town
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708, WE, Wageningen, the Netherlands; Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, Universiteit Antwerpen, Groenenborgerlaan 171, 2020 Antwerpen, Belgium..
| |
Collapse
|
4
|
Oscar TP. A multiple therapy hypothesis for treatment of COVID-19 patients. Med Hypotheses 2020; 145:110353. [PMID: 33129008 PMCID: PMC7577273 DOI: 10.1016/j.mehy.2020.110353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/17/2020] [Indexed: 11/30/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, which is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has killed more than one million people as of October 1, 2020. Consequently, a search is on for a treatment that can bring the pandemic to an end. However, treatments (vaccine, antiviral, plasma) that are directed at specific viral proteins (RNA polymerase, spike proteins) may not work well against all strains of the virus. Therefore, it is hypothesized that a therapy based on multiple treatments is needed for COVID-19 patients and to bring the pandemic to an end. Here, it is proposed that a combination of cool air therapy (CAT) and purified air technology (PAT) in an oxygen species cool air respirator (OSCAR) could be used to reduce viral (SARS-CoV-2) load and severity of illness in COVID-19 patients through the individual dose-response relationship. In addition, the proposed therapy (CAT + PAT in OSCAR), which works by a more general physical and chemical mechanism, should work well with other treatments (vaccine, antiviral, plasma) that target specific viral proteins (RNA polymerase, spike proteins) to provide a safe and effective multiple therapy approach for ending the COVID-19 pandemic caused by SARS-CoV-2.
Collapse
Affiliation(s)
- Thomas P Oscar
- U.S. Department of Agriculture, Agricultural Research Service, Chemical Residue and Predictive Microbiology Research Unit, Room 2111, Center for Food Science and Technology, University of Maryland Eastern Shore, Princess Anne, MD 21853, United States.
| |
Collapse
|
5
|
Cheloha RW, Li Z, Bousbaine D, Woodham AW, Perrin P, Volarić J, Ploegh HL. Internalization of Influenza Virus and Cell Surface Proteins Monitored by Site-Specific Conjugation of Protease-Sensitive Probes. ACS Chem Biol 2019; 14:1836-1844. [PMID: 31348637 DOI: 10.1021/acschembio.9b00493] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Commonly used methods to monitor internalization of cell surface structures involve application of fluorescently or otherwise labeled antibodies against the target of interest. Genetic modification of the protein of interest, for example through creation of fusions with fluorescent or enzymatically active protein domains, is another approach to follow trafficking behavior. The former approach requires indirect methods, such as multiple rounds of cell staining, to distinguish between a target that remains surface-disposed and an internalized and/or recycled species. The latter approach necessitates the creation of fusions whose behavior may not accurately reflect that of their unmodified counterparts. Here, we report a method for the characterization of protein internalization in real time through sortase-mediated, site-specific labeling of single-domain antibodies or viral proteins with a newly developed, cathepsin-sensitive quenched-fluorophore probe. Quenched probes of this type have been used to measure enzyme activity in complex environments and for different cell types, but not as a sensor of protein movement into living cells. This approach allows a quantitative assessment of the movement of proteins into protease-containing endosomes in real time in living cells. We demonstrate considerable variation in the rate of endosomal delivery for different cell surface receptors. We were also able to characterize the kinetics of influenza virus delivery to cathepsin-positive compartments, showing highly coordinated arrival in endosomal compartments. This approach should be useful for identifying proteins expressed on cells of interest for targeted endosomal delivery of payloads, such as antibody-drug conjugates or antigens that require processing.
Collapse
Affiliation(s)
- Ross W. Cheloha
- Boston Children’s Hospital and Harvard Medical School, 1 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Zeyang Li
- Boston Children’s Hospital and Harvard Medical School, 1 Blackfan Circle, Boston, Massachusetts 02115, United States
- Massachusetts Institute of Technology, 455 Main St, Cambridge, Massachusetts 02142, United States
| | - Djenet Bousbaine
- Boston Children’s Hospital and Harvard Medical School, 1 Blackfan Circle, Boston, Massachusetts 02115, United States
- Massachusetts Institute of Technology, 455 Main St, Cambridge, Massachusetts 02142, United States
| | - Andrew W. Woodham
- Boston Children’s Hospital and Harvard Medical School, 1 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Priscillia Perrin
- Massachusetts Institute of Technology, 455 Main St, Cambridge, Massachusetts 02142, United States
| | - Jana Volarić
- Boston Children’s Hospital and Harvard Medical School, 1 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Hidde L. Ploegh
- Boston Children’s Hospital and Harvard Medical School, 1 Blackfan Circle, Boston, Massachusetts 02115, United States
| |
Collapse
|
6
|
Gale P. Towards a thermodynamic mechanistic model for the effect of temperature on arthropod vector competence for transmission of arboviruses. MICROBIAL RISK ANALYSIS 2019; 12:27-43. [PMID: 32289057 PMCID: PMC7104215 DOI: 10.1016/j.mran.2019.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 03/03/2019] [Accepted: 03/03/2019] [Indexed: 05/21/2023]
Abstract
Arboviruses such as West Nile virus (WNV), bluetongue virus (BTV), dengue virus (DENV) and chikungunya virus (CHIKV) infect their arthropod vectors over a range of average temperatures depending on the ambient temperature. How the transmission efficiency of an arbovirus (i.e. vector competence) varies with temperature influences not only the short term risk of arbovirus outbreaks in humans and livestock but also the long term impact of climate change on the geographical range of the virus. The strength of the interaction between viral surface (glyco)protein (GP) and the host cell receptor (Cr) on binding of virus to host cell is defined by the thermodynamic dissociation constant Kd_receptor which is assumed to equal 10-3 M (at 37 °C) for binding of a sialic acid (SA) on the arthropod midgut epithelial cell surface to a SA-binding site on the surface of BTV, for example. Here virus binding affinity is modelled with increasing number of GP/Cr contacts at temperatures from 10 °C to 35 °C taking into account the change in entropy on immobilization of the whole virus on binding (ΔSa_immob). Based on published data, three thermodynamic GP/Cr binding scenarios, namely enthalpy-driven, entropy-assisted and entropy-driven, are shown to affect the temperature sensitivity of virus binding in different ways. Thus for enthalpy-driven GP/Cr binding, viruses bind host cells much more strongly at 10 °C than 35 °C. A mechanistic model is developed for the number of arthropod midgut cells with bound virus and by building in a kinetic component for the rate of arbovirus replication and subsequent spread to the arthropod salivary glands, a model for the effect of temperature on vector competence is developed. The model separates the opposing effects of temperature on midgut cell binding affinity from the kinetic component of virogenesis. It successfully accommodates both increases in vector competence with temperature as for DENV and WNV in mosquitoes and decreases as for the CHIKV 2010-1909 strain in various populations of Aedes albopictus mosquitoes. Enhanced cell binding at lower temperatures through enthalpy-driven GP/Cr binding compensates for the lower replication rate to some degree such that some transmission can still occur at lower temperatures. In contrast, the strength of entropy-driven GP/Cr binding diminishes at low temperatures although there is no minimum temperature threshold for transmission efficiency. The magnitude of ΔSa_immob is an important data gap. It is concluded that thermodynamic and kinetic data obtained at the molecular level will prove important in modelling vector competence with temperature.
Collapse
Key Words
- AIV, avian influenza virus
- Arbovirus
- BBF, brush border fragments from midgut
- C.VT, number of arthropod midgut cells with bound arbovirus at temperature T
- CHIKV, chikungunya virus
- Cfree, number of midgut epithelial cells which can bind virus with no virus bound
- Cr, host cell receptor
- Ctotal_midgut, number of midgut epithelial cells which can bind virus
- DENV, dengue fever virus
- EA, activation energy
- EBOV, Zaire ebolavirus
- EIP, extrinsic incubation period
- Enthalpy
- Entropy
- Fc, fraction of arthropod midgut cells with bound virus at temperature T
- GP, viral (glyco)protein on virus surface that binds to Cr
- HA, haemagglutinin
- HRV3, human rhinovirus serotype 3
- ICAM-1, intercellular adhesion molecule-1
- IDR, intrinsically disordered region of a protein
- Ka, binding affinity for virus to host cells at temperature T
- Kd_receptor, dissociation constant for GP from Cr
- Kd_virus, dissociation constant for virus from host cell
- M, molar (moles dm−3)
- NA, neuraminidase
- R, ideal gas constant
- RdRp, RNA dependent RNA polymerase
- SA, sialic acid
- Temperature
- VEEV, Venezuelan equine encephalitis virus
- VSV, vesicular stomatitis virus
- Vector competence
- Vfree, virus not bound to cells
- Vtotal, virus challenge dose to midgut
- WEEV, Western equine encephalitis virus
- WNV, West Nile virus
- k, rate of reaction
- n, number of GP/Cr contacts made on virus binding to cell
- pcompleteT, probability, given a virion has bound to the surface of a midgut cell, that that midgut cell becomes infected and that its progeny viruses go on to infect the salivary gland so completing the arthropod infection process within the life time of the arthropod at temperature T
- pfu, plaque-forming unit
- ptransmissionT, probability of successful infection of the arthropod salivary glands given oral exposure at temperature T
- ΔGa_receptor, change in Gibbs free energy on association of GP and Cr receptor
- ΔHa_receptor, change in enthalpy for binding of virus GP to host Cr receptor
- ΔHa_virus, change in enthalpy for binding of virus to host cell
- ΔSa_immob, change in entropy on immobilization of virus to cell surface
- ΔSa_receptor, change in entropy for binding of virus GP to host Cr receptor
- ΔSa_virus, change in entropy for binding of virus to host cell
- ΔSconf, change in conformation entropy within GP or Cr
Collapse
Affiliation(s)
- Paul Gale
- 15 Weare Close, Portland, Dorset DT5 1JP, United Kingdom
| |
Collapse
|
7
|
Gale P. Using thermodynamic parameters to calibrate a mechanistic dose-response for infection of a host by a virus. MICROBIAL RISK ANALYSIS 2018; 8:1-13. [PMID: 32289059 PMCID: PMC7103988 DOI: 10.1016/j.mran.2018.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/29/2017] [Accepted: 01/03/2018] [Indexed: 05/21/2023]
Abstract
Assessing the risk of infection from emerging viruses or of existing viruses jumping the species barrier into novel hosts is limited by the lack of dose response data. The initial stages of the infection of a host by a virus involve a series of specific contact interactions between molecules in the host and on the virus surface. The strength of the interaction is quantified in the literature by the dissociation constant (Kd) which is determined experimentally and is specific for a given virus molecule/host molecule combination. Here, two stages of the initial infection process of host intestinal cells are modelled, namely escape of the virus in the oral challenge dose from the innate host defenses (e.g. mucin proteins in mucus) and the subsequent binding of any surviving virus to receptor molecules on the surface of the host epithelial cells. The strength of virus binding to host cells and to mucins may be quantified by the association constants, Ka and Kmucin, respectively. Here, a mechanistic dose-response model for the probability of infection of a host by a given virus dose is constructed using Ka and Kmucin which may be derived from published Kd values taking into account the number of specific molecular interactions. It is shown that the effectiveness of the mucus barrier is determined not only by the amount of mucin but also by the magnitude of Kmucin. At very high Kmucin values, slight excesses of mucin over virus are sufficient to remove all the virus according to the model. At lower Kmucin values, high numbers of virus may escape even with large excesses of mucin. The output from the mechanistic model is the probability (p1) of infection by a single virion which is the parameter used in conventional dose-response models to predict the risk of infection of the host from the ingested dose. It is shown here how differences in Ka (due to molecular differences in an emerging virus strain or new host) affect p1, and how these differences in Ka may be quantified in terms of two thermodynamic parameters, namely enthalpy and entropy. This provides the theoretical link between sequencing data and risk of infection. Lack of data on entropy is a limitation at present and may also affect our interpretation of Kd in terms of infectivity. It is concluded that thermodynamic approaches have a major contribution to make in developing dose-response models for emerging viruses.
Collapse
Key Words
- Asp, aspartate
- CRD, carbohydrate-recognition domain
- Cr, host cell receptor
- Dose-response
- EBOV, Zaire ebolavirus
- Enthalpy
- Entropy
- G, Gibbs free energy
- GI, gastrointestinal
- GP, glycoprotein
- H, enthalpy
- HA, haemagglutinin
- HBGA, histoblood group antigen
- HeV, Hendra virus
- Ka, Kmucin, association constants
- Kd, dissociation constant for two molecules bound to each other
- L, Avogadro number
- M, molar (moles dm−3)
- MBP, mannose binding protein
- MERS-CoV, MERS coronavirus
- MRA, microbiological risk assessment
- Mucin
- NPC1, Niemann-Pick C1 protein
- NiV, Nipah virus
- NoV, norovirus
- PL, phospholipid
- PRR, pathogen recognition receptor
- Phe, phenylalanine
- R, ideal gas constant
- S, entropy
- SPR, surface plasmon resonance
- T, temperature
- TIM-1, T-cell immunoglobulin and mucin domain protein 1
- VSV, vesicular stomatitis virus
- Virus
- k, on/off rate constant
- n, number of GP/Cr molecular contacts per virus/host cell binding
- pfu, plaque-forming unit
- ΔGa, change in Gibbs free energy on association of virus and cell
- ΔHa, change in enthalpy on association of virus and cell
- ΔSa, change in entropy on association of virus and cell
- ΔΔHa, change in ΔHa
Collapse
|
8
|
Liao LE, Kowal S, Cardenas DA, Beauchemin CAA. Exploring virus release as a bottleneck for the spread of influenza A virus infection in vitro and the implications for antiviral therapy with neuraminidase inhibitors. PLoS One 2017; 12:e0183621. [PMID: 28837615 PMCID: PMC5570347 DOI: 10.1371/journal.pone.0183621] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/08/2017] [Indexed: 11/24/2022] Open
Abstract
Mathematical models (MMs) have been used to study the kinetics of influenza A virus infections under antiviral therapy, and to characterize the efficacy of antivirals such as neuraminidase inhibitors (NAIs). NAIs prevent viral neuraminidase from cleaving sialic acid receptors that bind virus progeny to the surface of infected cells, thereby inhibiting their release, suppressing infection spread. When used to study treatment with NAIs, MMs represent viral release implicitly as part of viral replication. Consequently, NAIs in such MMs do not act specifically and exclusively on virus release. We compared a MM with an explicit representation of viral release (i.e., distinct from virus production) to a simple MM without explicit release, and investigated whether parameter estimation and the estimation of NAI efficacy were affected by the use of a simple MM. Since the release rate of influenza A virus is not well-known, a broad range of release rates were considered. If the virus release rate is greater than ∼0.1 h−1, the simple MM provides accurate estimates of infection parameters, but underestimates NAI efficacy, which could lead to underdosing and the emergence of NAI resistance. In contrast, when release is slower than ∼0.1 h−1, the simple MM accurately estimates NAI efficacy, but it can significantly overestimate the infectious lifespan (i.e., the time a cell remains infectious and producing free virus), and it will significantly underestimate the total virus yield and thus the likelihood of resistance emergence. We discuss the properties of, and a possible lower bound for, the influenza A virus release rate.
Collapse
Affiliation(s)
- Laura E Liao
- Department of Physics, Ryerson University, Toronto, ON, Canada
| | - Szymon Kowal
- Department of Physics, Ryerson University, Toronto, ON, Canada
| | | | - Catherine A A Beauchemin
- Department of Physics, Ryerson University, Toronto, ON, Canada.,Interdisciplinary Theoretical and Mathematical Sciences (iTHES, iTHEMS) research group at RIKEN, Wako, Japan
| |
Collapse
|
9
|
Alymova IV, York IA, Air GM, Cipollo JF, Gulati S, Baranovich T, Kumar A, Zeng H, Gansebom S, McCullers JA. Glycosylation changes in the globular head of H3N2 influenza hemagglutinin modulate receptor binding without affecting virus virulence. Sci Rep 2016; 6:36216. [PMID: 27796371 PMCID: PMC5086918 DOI: 10.1038/srep36216] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/12/2016] [Indexed: 12/19/2022] Open
Abstract
Since the emergence of human H3N2 influenza A viruses in the pandemic of 1968, these viruses have become established as strains of moderate severity. A decline in virulence has been accompanied by glycan accumulation on the hemagglutinin globular head, and hemagglutinin receptor binding has changed from recognition of a broad spectrum of glycan receptors to a narrower spectrum. The relationship between increased glycosylation, binding changes, and reduction in H3N2 virulence is not clear. We evaluated the effect of hemagglutinin glycosylation on receptor binding and virulence of engineered H3N2 viruses. We demonstrate that low-binding virus is as virulent as higher binding counterparts, suggesting that H3N2 infection does not require either recognition of a wide variety of, or high avidity binding to, receptors. Among the few glycans recognized with low-binding virus, there were two structures that were bound by the vast majority of H3N2 viruses isolated between 1968 and 2012. We suggest that these two structures support physiologically relevant binding of H3N2 hemagglutinin and that this physiologically relevant binding has not changed since the 1968 pandemic. Therefore binding changes did not contribute to reduced severity of seasonal H3N2 viruses. This work will help direct the search for factors enhancing influenza virulence.
Collapse
Affiliation(s)
- Irina V Alymova
- Influenza Division, National Center for Immunization & Respiratory Diseases, Centers for Disease Control &Prevention, Atlanta, GA, USA
| | - Ian A York
- Influenza Division, National Center for Immunization & Respiratory Diseases, Centers for Disease Control &Prevention, Atlanta, GA, USA
| | - Gillian M Air
- Department of Biochemistry &Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - John F Cipollo
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Shelly Gulati
- Department of Biochemistry &Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tatiana Baranovich
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Amrita Kumar
- Influenza Division, National Center for Immunization & Respiratory Diseases, Centers for Disease Control &Prevention, Atlanta, GA, USA.,Battelle Memorial Institute, Atlanta, GA, USA
| | - Hui Zeng
- Influenza Division, National Center for Immunization & Respiratory Diseases, Centers for Disease Control &Prevention, Atlanta, GA, USA
| | - Shane Gansebom
- Influenza Division, National Center for Immunization & Respiratory Diseases, Centers for Disease Control &Prevention, Atlanta, GA, USA
| | - Jonathan A McCullers
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Pediatrics, University of Tennessee Health Sciences Center, Memphis, TN, USA
| |
Collapse
|
10
|
Ramakrishnan B, Viswanathan K, Tharakaraman K, Dančík V, Raman R, Babcock GJ, Shriver Z, Sasisekharan R. A Structural and Mathematical Modeling Analysis of the Likelihood of Antibody-Dependent Enhancement in Influenza. Trends Microbiol 2016; 24:933-943. [PMID: 27751627 DOI: 10.1016/j.tim.2016.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/15/2016] [Accepted: 09/12/2016] [Indexed: 12/26/2022]
Abstract
Broadly neutralizing monoclonal antibodies (bNAbs) for viral infections, such as HIV, respiratory syncytial virus (RSV), and influenza, are increasingly entering clinical development. For influenza, most neutralizing antibodies target influenza virus hemagglutinin. These bNAbs represent an emerging, promising modality for treatment and prophylaxis of influenza due to their multiple mechanisms of antiviral action and generally safe profile. Preclinical work in other viral diseases, such as dengue, has demonstrated the potential for antibody-based therapies to enhance viral uptake, leading to enhanced viremia and worsening of disease. This phenomenon is referred to as antibody-dependent enhancement (ADE). In the context of influenza, ADE has been used to explain several preclinical and clinical phenomena. Using structural and viral kinetics modeling, we assess the role of ADE in the treatment of influenza with a bNAb.
Collapse
Affiliation(s)
| | | | - Kannan Tharakaraman
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 01890, USA
| | - Vlado Dančík
- Center for the Science of Therapeutics, Broad Institute, Cambridge, MA 02142, USA
| | - Rahul Raman
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 01890, USA
| | - Gregory J Babcock
- Visterra, Inc. One Kendall Square, Suite B3301, Cambridge, MA 02139, USA
| | - Zachary Shriver
- Visterra, Inc. One Kendall Square, Suite B3301, Cambridge, MA 02139, USA
| | - Ram Sasisekharan
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 01890, USA.
| |
Collapse
|
11
|
Heldt FS, Kupke SY, Dorl S, Reichl U, Frensing T. Single-cell analysis and stochastic modelling unveil large cell-to-cell variability in influenza A virus infection. Nat Commun 2015; 6:8938. [PMID: 26586423 PMCID: PMC4673863 DOI: 10.1038/ncomms9938] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 10/19/2015] [Indexed: 01/08/2023] Open
Abstract
Biochemical reactions are subject to stochastic fluctuations that can give rise to cell-to-cell variability. Yet, how this variability affects viral infections, which themselves involve noisy reactions, remains largely elusive. Here we present single-cell experiments and stochastic simulations that reveal a large heterogeneity between influenza A virus (IAV)-infected cells. In particular, experimental data show that progeny virus titres range from 1 to 970 plaque-forming units and intracellular viral RNA (vRNA) levels span three orders of magnitude. Moreover, the segmentation of IAV genomes seems to increase the susceptibility of their replication to noise, since the level of different genome segments can vary substantially within a cell. In addition, simulations suggest that the abortion of virus entry and random degradation of vRNAs can result in a large fraction of non-productive cells after single-hit infection. These results challenge current beliefs that cell population measurements and deterministic simulations are an accurate representation of viral infections.
Collapse
Affiliation(s)
- Frank S. Heldt
- Department of Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Sascha Y. Kupke
- Department of Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Sebastian Dorl
- Department of Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Udo Reichl
- Department of Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
- Chair of Bioprocess Engineering, Otto von Guericke University Magdeburg, Universitaetsplatz 2, 39106 Magdeburg, Germany
| | - Timo Frensing
- Department of Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
- Chair of Bioprocess Engineering, Otto von Guericke University Magdeburg, Universitaetsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|
12
|
Handel A, Akin V, Pilyugin SS, Zarnitsyna V, Antia R. How sticky should a virus be? The impact of virus binding and release on transmission fitness using influenza as an example. J R Soc Interface 2014; 11:20131083. [PMID: 24430126 DOI: 10.1098/rsif.2013.1083] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Budding viruses face a trade-off: virions need to efficiently attach to and enter uninfected cells while newly generated virions need to efficiently detach from infected cells. The right balance between attachment and detachment-the right amount of stickiness-is needed for maximum fitness. Here, we design and analyse a mathematical model to study in detail the impact of attachment and detachment rates on virus fitness. We apply our model to influenza, where stickiness is determined by a balance of the haemagglutinin (HA) and neuraminidase (NA) proteins. We investigate how drugs, the adaptive immune response and vaccines impact influenza stickiness and fitness. Our model suggests that the location in the 'stickiness landscape' of the virus determines how well interventions such as drugs or vaccines are expected to work. We discuss why hypothetical NA enhancer drugs might occasionally perform better than the currently available NA inhibitors in reducing virus fitness. We show that an increased antibody or T-cell-mediated immune response leads to maximum fitness at higher stickiness. We further show that antibody-based vaccines targeting mainly HA or NA, which leads to a shift in stickiness, might reduce virus fitness above what can be achieved by the direct immunological action of the vaccine. Overall, our findings provide potentially useful conceptual insights for future vaccine and drug development and can be applied to other budding viruses beyond influenza.
Collapse
Affiliation(s)
- Andreas Handel
- Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, , Athens, GA 30602, USA
| | | | | | | | | |
Collapse
|
13
|
Mair CM, Ludwig K, Herrmann A, Sieben C. Receptor binding and pH stability - how influenza A virus hemagglutinin affects host-specific virus infection. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:1153-68. [PMID: 24161712 DOI: 10.1016/j.bbamem.2013.10.004] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/26/2013] [Accepted: 10/01/2013] [Indexed: 11/28/2022]
Abstract
Influenza A virus strains adopt different host specificities mainly depending on their hemagglutinin (HA) protein. Via HA, the virus binds sialic acid receptors of the host cell and, upon endocytic uptake, HA triggers fusion between the viral envelope bilayer and the endosomal membrane by a low pH-induced conformational change leading to the release of the viral genome into the host cell cytoplasm. Both functions are crucial for viral infection enabling the genesis of new progeny virus. Adaptation to different hosts in vitro was shown to require mutations within HA altering the receptor binding and/or fusion behavior of the respective virus strain. Human adapted influenza virus strains (H1N1, H3N2, H2N2) as well as recent avian influenza virus strains (H5, H7 and H9 subtypes) which gained the ability to infect humans mostly contained mutations in the receptor binding site (RBS) of HA enabling increased binding affinity of these viruses to human type (α-2,6 linked sialic acid) receptors. Thus, the receptor binding specificity seems to be the major requirement for successful adaptation to the human host; however, the RBS is not the only determinant of host specificity. Increased binding to a certain cell type does not always correlate with infection efficiency. Furthermore, viruses carrying mutations in the RBS often resulted in reduced viral fitness and were still unable to transmit between mammals. Recently, the pH stability of HA was reported to affect the transmissibility of influenza viruses. This review summarizes recent findings on the adaptation of influenza A viruses to the human host and related amino acid substitutions resulting in altered receptor binding specificity and/or modulated fusion pH of HA. Furthermore, the role of these properties (receptor specificity and pH stability of HA) for adaptation to and transmissibility in the human host is discussed. This article is part of a Special Issue entitled: Viral Membrane Proteins -- Channels for Cellular Networking.
Collapse
Affiliation(s)
- Caroline M Mair
- Group of Molecular Biophysics, Institute of Biology, Humboldt University Berlin, Invalidenstraße 42, 10115 Berlin, Germany
| | - Kai Ludwig
- Research center of Electron Microscopy, Institute of Chemistry and Biochemistry, Free University Berlin, Fabeckstraße 36a, 14195 Berlin, Germany
| | - Andreas Herrmann
- Group of Molecular Biophysics, Institute of Biology, Humboldt University Berlin, Invalidenstraße 42, 10115 Berlin, Germany.
| | - Christian Sieben
- Group of Molecular Biophysics, Institute of Biology, Humboldt University Berlin, Invalidenstraße 42, 10115 Berlin, Germany
| |
Collapse
|
14
|
Murillo LN, Murillo MS, Perelson AS. Towards multiscale modeling of influenza infection. J Theor Biol 2013; 332:267-90. [PMID: 23608630 DOI: 10.1016/j.jtbi.2013.03.024] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 02/19/2013] [Accepted: 03/27/2013] [Indexed: 02/05/2023]
Abstract
Aided by recent advances in computational power, algorithms, and higher fidelity data, increasingly detailed theoretical models of infection with influenza A virus are being developed. We review single scale models as they describe influenza infection from intracellular to global scales, and, in particular, we consider those models that capture details specific to influenza and can be used to link different scales. We discuss the few multiscale models of influenza infection that have been developed in this emerging field. In addition to discussing modeling approaches, we also survey biological data on influenza infection and transmission that is relevant for constructing influenza infection models. We envision that, in the future, multiscale models that capitalize on technical advances in experimental biology and high performance computing could be used to describe the large spatial scale epidemiology of influenza infection, evolution of the virus, and transmission between hosts more accurately.
Collapse
Affiliation(s)
- Lisa N Murillo
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | | | | |
Collapse
|
15
|
Modeling the intracellular dynamics of influenza virus replication to understand the control of viral RNA synthesis. J Virol 2012; 86:7806-17. [PMID: 22593159 DOI: 10.1128/jvi.00080-12] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Influenza viruses transcribe and replicate their negative-sense RNA genome inside the nucleus of host cells via three viral RNA species. In the course of an infection, these RNAs show distinct dynamics, suggesting that differential regulation takes place. To investigate this regulation in a systematic way, we developed a mathematical model of influenza virus infection at the level of a single mammalian cell. It accounts for key steps of the viral life cycle, from virus entry to progeny virion release, while focusing in particular on the molecular mechanisms that control viral transcription and replication. We therefore explicitly consider the nuclear export of viral genome copies (vRNPs) and a recent hypothesis proposing that replicative intermediates (cRNA) are stabilized by the viral polymerase complex and the nucleoprotein (NP). Together, both mechanisms allow the model to capture a variety of published data sets at an unprecedented level of detail. Our findings provide theoretical support for an early regulation of replication by cRNA stabilization. However, they also suggest that the matrix protein 1 (M1) controls viral RNA levels in the late phase of infection as part of its role during the nuclear export of viral genome copies. Moreover, simulations show an accumulation of viral proteins and RNA toward the end of infection, indicating that transport processes or budding limits virion release. Thus, our mathematical model provides an ideal platform for a systematic and quantitative evaluation of influenza virus replication and its complex regulation.
Collapse
|
16
|
The fusion of synaptic vesicle membranes studied by lipid mixing: the R18 fluorescence assay validity. Chem Phys Lipids 2010; 163:778-86. [DOI: 10.1016/j.chemphyslip.2010.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 09/03/2010] [Accepted: 09/07/2010] [Indexed: 12/27/2022]
|
17
|
Sidorenko Y, Schulze-Horsel J, Voigt A, Reichl U, Kienle A. Stochastic population balance modeling of influenza virus replication in vaccine production processes. Chem Eng Sci 2008. [DOI: 10.1016/j.ces.2007.09.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Möhler L, Flockerzi D, Sann H, Reichl U. Mathematical model of influenza A virus production in large-scale microcarrier culture. Biotechnol Bioeng 2005; 90:46-58. [PMID: 15736163 DOI: 10.1002/bit.20363] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A mathematical model that describes the replication of influenza A virus in animal cells in large-scale microcarrier culture is presented. The virus is produced in a two-step process, which begins with the growth of adherent Madin-Darby canine kidney (MDCK) cells. After several washing steps serum-free virus maintenance medium is added, and the cells are infected with equine influenza virus (A/Equi 2 (H3N8), Newmarket 1/93). A time-delayed model is considered that has three state variables: the number of uninfected cells, infected cells, and free virus particles. It is assumed that uninfected cells adsorb the virus added at the time of infection. The infection rate is proportional to the number of uninfected cells and free virions. Depending on multiplicity of infection (MOI), not necessarily all cells are infected by this first step leading to the production of free virions. Newly produced viruses can infect the remaining uninfected cells in a chain reaction. To follow the time course of virus replication, infected cells were stained with fluorescent antibodies. Quantitation of influenza viruses by a hemagglutination assay (HA) enabled the estimation of the total number of new virions produced, which is relevant for the production of inactivated influenza vaccines. It takes about 4-6 h before visibly infected cells can be identified on the microcarriers followed by a strong increase in HA titers after 15-16 h in the medium. Maximum virus yield Vmax was about 1x10(10) virions/mL (2.4 log HA units/100 microL), which corresponds to a burst size ratio of about 18,755 virus particles produced per cell. The model tracks the time course of uninfected and infected cells as well as virus production. It suggests that small variations (<10%) in initial values and specific rates do not have a significant influence on Vmax. The main parameters relevant for the optimization of virus antigen yields are specific virus replication rate and specific cell death rate due to infection. Simulation studies indicate that a mathematical model that neglects the delay between virus infection and the release of new virions gives similar results with respect to overall virus dynamics compared with a time delayed model.
Collapse
Affiliation(s)
- Lars Möhler
- Otto-von-Guericke-Universität Magdeburg, Lehrstuhl für Bioprozesstechnik, Universitätsplatz 2, 39106 Magdeburg, Germany
| | | | | | | |
Collapse
|
19
|
Abstract
Intracellular events that take place during influenza virus replication in animal cells are well understood qualitatively. However, to better understand the complex interaction of the virus with its host cell and to quantitatively analyze the use of cellular resources for virion formation or the overall dynamic for the entire infection cycle, a mathematical model for influenza virus replication has to be formulated. Here, we present a structured model for the single-cell reproductive cycle of influenza A virus in animal cells that accounts for the individual steps of the process such as attachment, internalization, genome replication and translation, and progeny virion assembly. The model describes an average cell surrounded by a small quantity of medium and infected by a low number of virus particles. The model allows estimation of the cellular resources consumed by virus replication. Simulation results show that the number of cellular surface receptors and endosomes, as well as other resources, such as the number of free nucleotides or amino acids, is not significantly influenced by influenza virus propagation. A factor that limits the growth rate of progeny viruses and their release is the total amount of matrix proteins (M1) in the nucleus while other newly synthesized viral proteins (e.g., nucleoprotein NP) and viral RNAs accumulate. During budding, synthesis of vRNPs (viral ribonucleoprotein complexes) represents another limiting factor. Based on this model it is also possible to analyze effects of parameter changes on the dynamics of virus replication, to identify possible targets for molecular engineering, or to develop strategies for improving yields in vaccine production processes. Furthermore, a better insight into the interactions of viruses and host cells might help to improve our understanding of virus-related diseases and to develop therapies.
Collapse
Affiliation(s)
- Y Sidorenko
- Max-Planck-Institute for Dynamics of Complex Technical Systems, Magdeburg, Sandtorstr. 1, 39106 Magdeburg, Germany
| | | |
Collapse
|
20
|
Chu VC, Whittaker GR. Influenza virus entry and infection require host cell N-linked glycoprotein. Proc Natl Acad Sci U S A 2004; 101:18153-8. [PMID: 15601777 PMCID: PMC535801 DOI: 10.1073/pnas.0405172102] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A widely held view of influenza virus infection is that the viral receptor consists of cell surface carbohydrate sialic acid, which can be present as glycoprotein or glycolipid. Here, we examined influenza virus entry and infection in Lec1 cells, a mutant CHO cell line deficient in terminal N-linked glycosylation caused by a mutation in the N-acetylglucosaminyltransferase I (GnT1) gene. We show that influenza virus cannot infect Lec1 cells, despite having full capacity to undergo virus binding and fusion. Lec1 cells also show no virus replication defect, and infection was restored in Lec1 cells expressing wild-type GnT1. Viruses were apparently arrested at the level of internalization from the plasma membrane and were not endocytosed. Lec1 cells were refractory to infection by several strains of influenza virus, including H1 and H3 strains of influenza A, as well as influenza B virus. Finally, cleavage of N-glycans from wild-type CHO cells markedly reduced infection by influenza virus. We suggest that influenza virus specifically requires N-linked glycoprotein for entry into cells, and that sialic acid, although acting as an efficient attachment factor, is not sufficient as an influenza virus receptor in vivo.
Collapse
Affiliation(s)
- Victor C Chu
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
21
|
Eliaz RE, Nir S, Szoka FC. Interactions of hyaluronan-targeted liposomes with cultured cells: modeling of binding and endocytosis. Methods Enzymol 2004; 387:16-33. [PMID: 15172155 DOI: 10.1016/s0076-6879(04)87002-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Rom E Eliaz
- Department of Biopharmaceutical Sciences and Pharmaceutiical Chemistry, School of Pharmacy, University of California, San Francisco, 94143, USA
| | | | | |
Collapse
|
22
|
Nir S, Nieva JL. Uptake of liposomes by cells: experimental procedures and modeling. Methods Enzymol 2003; 372:235-48. [PMID: 14610816 DOI: 10.1016/s0076-6879(03)72013-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Affiliation(s)
- Shlomo Nir
- Seagram Center for Soil and Water Sciences, Faculty of Agricultural, Food and Environmental Quality Sciences, Rehovot 76100, Israel
| | | |
Collapse
|
23
|
Nunes-Correia I, Nir S, Pedroso de Lima MC. Kinetics of influenza virus fusion with the endosomal and plasma membranes of cultured cells. Effect of temperature. J Membr Biol 2003; 195:21-6. [PMID: 14502422 DOI: 10.1007/s00232-003-2040-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2003] [Indexed: 10/27/2022]
Abstract
We performed a detailed kinetic analysis of influenza virus fusion with the endosomal and plasma membranes of Madin Darby canine kidney (MDCK) cells and provided a comparison of the kinetic parameters obtained for both cases at 20 degrees C and 37 degrees C. Using our mass action kinetic model, we determined that the fusion rate constant, f, for influenza virus with the endosomal membrane was 0.02 s(-1) at 37 degrees C and 0.0035 s(-1) at 20 degrees C. The analysis of the fusion kinetics of influenza virus with the plasma membrane yielded that the fusion rate constants were close to those deduced with the endosomal membrane. The systematic kinetic analysis performed in this study provides for the first time a biophysical support for studies on influenza virus-cell fusion where the acidic endosomal internal environment is simulated artificially by lowering the pH of the medium.
Collapse
Affiliation(s)
- I Nunes-Correia
- Department of Biochemistry, University of Coimbra, Apartado 3126, 3000 Coimbra, Portugal
| | | | | |
Collapse
|
24
|
Kroschewski H, Allison SL, Heinz FX, Mandl CW. Role of heparan sulfate for attachment and entry of tick-borne encephalitis virus. Virology 2003; 308:92-100. [PMID: 12706093 DOI: 10.1016/s0042-6822(02)00097-1] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Attachment of the flavivirus tick-borne encephalitis (TBE) virus to different permissive cell lines was investigated by a newly established quantitative assay using fluorescence-labeled virus. Previous work had shown that BHK-21 cell-adapted mutants of TBE virus had acquired potential heparan sulfate (HS) binding sites on the outer surface of protein E. Quantitative analysis of one of these mutants indicated that it attached to HS-expressing cell lines with a 10- to 13-fold higher affinity than wild-type TBE virus strain Neudoerfl. CHO cells deficient in HS synthesis bound less than 5% of the amount of wild-type or mutant virus that could attach to HS-containing CHO cells but were nevertheless found to be highly susceptible to infection with both viruses. Thus, even though HS is a major determinant of TBE virus attachment on HS-expressing cells, our findings suggest the existence of an alternative host cell receptor that is less abundant than HS.
Collapse
|
25
|
Nunes-Correia I, Eulálio A, Nir S, Düzgünes N, Ramalho-Santos J, Pedroso de Lima MC. Fluorescent probes for monitoring virus fusion kinetics: comparative evaluation of reliability. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1561:65-75. [PMID: 11988181 DOI: 10.1016/s0005-2736(01)00457-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fluorescence assays for viral membrane fusion employ lipidic probes whose kinetics of fluorescence dequenching should mimic the actual kinetics of membrane merging. We examined the fusion of influenza virus with CEM cells, erythrocyte ghosts or liposomes by monitoring the fluorescence dequenching of each one of the three probes, octadecylrhodamine B chloride (R18), N-(lissamine rhodamine B sulfonyl)phosphatidylethanolamine (Rh-PE), or rac-2,3-dioleoylglycerol ester of rhodamine B (DORh-B), inserted into the virus membrane. Experimental conditions were designed to allow a clear distinction between membrane mixing and non-specific probe transfer. Fluorescence dequenching observed with Rh-PE was much slower than with R18, unless a particular experimental procedure was used. Using liposomes as a target membrane, the kinetics and extent of the decrease in resonance energy transfer between N-(7-nitro-2,1,3-benzoxadiazol-4-yl)phosphatidylethanolamine (NBD-PE) and Rh-PE, initially embedded in the liposome membrane, were matched by that of the dequenching of viral R18, but not of viral Rh-PE. DORh-B was found not to be appropriate to follow membrane merging. Our results indicate that on a time scale of several minutes R18 more accurately reflects the kinetics of membrane fusion. Nevertheless, control experiments should be performed to evaluate non-specific probe transfer of R18 molecules, whose contribution to fluorescence dequenching can become significant after long incubation times.
Collapse
Affiliation(s)
- Isabel Nunes-Correia
- Department of Biochemistry, Faculty of Sciences and Technology, University of Coimbra, Apartado 3126, 3000, Portugal
| | | | | | | | | | | |
Collapse
|
26
|
Razinkov V, Gazumyan A, Nikitenko A, Ellestad G, Krishnamurthy G. RFI-641 inhibits entry of respiratory syncytial virus via interactions with fusion protein. CHEMISTRY & BIOLOGY 2001; 8:645-59. [PMID: 11451666 DOI: 10.1016/s1074-5521(01)00042-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND RFI-641, a small dendrimer-like compound, is a potent and selective inhibitor of respiratory syncytial virus (RSV), which is currently a clinical candidate for the treatment of upper and lower respiratory tract infections caused by RSV. RFI-641 inhibits RSV growth with an IC(50) value of 50 nM and prevents syncytia formation in tissue culture. RSV contains of three surface glycoproteins, a small hydrophobic (SH) protein of unknown function, and attachment (G) and fusion (F) proteins that enable binding and fusion of virus, respectively, with target cells. Because of their role in attachment and fusion, the G and F surface proteins are prominent targets for therapeutic intervention. RFI-641 was previously shown to bind purified preparations of RSV fusion protein. Based on this observation, in conjunction with the biological results, it was speculated that the fusion event might be the target of these inhibitors. RESULTS A fusion assay based upon the relief of self-quenching of octadecyl rhodamine R18 was used to determine effects of the inhibitors on binding and fusion of RSV. The results show that RFI-641 inhibits both RSV-cell binding and fusion events. The inhibition of RSV is mediated via binding to the fusion protein on the viral surface. A closely related analog, WAY-158830, which is much less active in the virus-infectivity assay does not inhibit binding and fusion of RSV with Vero cells. CONCLUSIONS RFI-641, an in vivo active RSV inhibitor, is shown to inhibit both binding and fusion of RSV with cells, events that are early committed steps in RSV entry and pathogenicity. The results described here demonstrate that a non-peptidic, small molecule can inhibit binding and fusion of enveloped virus specifically via interaction with the viral fusion protein.
Collapse
Affiliation(s)
- V Razinkov
- Department of Biological Chemistry, Wyeth-Ayerst Research, Pearl River, NY 10965, USA
| | | | | | | | | |
Collapse
|
27
|
Slepushkin VA, Staber PD, Wang G, McCray PB, Davidson BL. Infection of human airway epithelia with H1N1, H2N2, and H3N2 influenza A virus strains. Mol Ther 2001; 3:395-402. [PMID: 11273782 PMCID: PMC7106098 DOI: 10.1006/mthe.2001.0277] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2000] [Accepted: 02/02/2001] [Indexed: 11/26/2022] Open
Abstract
Three subtypes of influenza A virus cause human disease: H1N1, H2N2, and H3N2. Although all result in respiratory illness, little is known about how these subtypes infect differentiated airway epithelia. Therefore, we assayed A/PR/8/34 (H1N1), A/Japan/305/57 (H2N2), and X31 (H3N2) influenza virus strains for binding and infection on fully differentiated primary cultures of airway epithelia isolated from human bronchus, grown on semiporous filters at an air-liquid interface. In this model system, viral infectivity was highest when virus was applied to the apical versus the basolateral surface; Japan was most infectious, followed by PR8. The X31 strain showed very low levels of infectivity. Confocal microscopy and fluorescence-resonance energy transfer studies indicated that Japan virus could enter and fuse with cellular membranes, while infection with X31 virions was greatly inhibited. Japan virus could also productively infect human trachea explant tissues. These data show that influenza viruses with SAalpha2,3Gal binding specificity, like Japan, productively infect differentiated human airway epithelia from the apical surface. These data are important to consider in the development of pseudotyped recombinant viral vectors for gene transfer to human airway epithelia for gene therapy.
Collapse
Affiliation(s)
- Vladimir A. Slepushkin
- Program in Gene Therapy, Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, Iowa, 52242
| | - Patrick D. Staber
- Program in Gene Therapy, Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, Iowa, 52242
| | - Guoshun Wang
- Program in Gene Therapy, Department of Pediatrics, University of Iowa College of Medicine, Iowa City, Iowa, 52242
| | - Paul B. McCray
- Program in Gene Therapy, Department of Pediatrics, University of Iowa College of Medicine, Iowa City, Iowa, 52242
| | - Beverly L. Davidson
- Program in Gene Therapy, Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, Iowa, 52242
- Program in Gene Therapy, Department of Neurology, University of Iowa College of Medicine, Iowa City, Iowa, 52242
- Program in Gene Therapy, Department of Physiology and Biophysics, University of Iowa College of Medicine, Iowa City, Iowa, 52242
| |
Collapse
|
28
|
da Cruz MT, Simões S, Pires PP, Nir S, de Lima MC. Kinetic analysis of the initial steps involved in lipoplex--cell interactions: effect of various factors that influence transfection activity. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1510:136-51. [PMID: 11342154 DOI: 10.1016/s0005-2736(00)00342-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We investigated the mode of interaction of lipoplexes (DOTAP:DOPE/DNA) with HeLa cells, focusing on the analysis of the initial steps involved in the process of gene delivery. We evaluated the effect of different factors, namely the stoichiometry of cationic lipids and DNA, the presence of serum in the cell culture medium, and the incorporation of the ligand transferrin into the lipoplexes, on the extent of binding, association and fusion (lipid mixing) of the lipoplexes with the cells. Parallel experiments were performed upon cell treatment with inhibitors of endocytosis. Our results indicate that a decrease of the net charge of the complexes (upon addition of DNA) generally leads to a decrease in the extent of binding, cell association and fusion, except for the neutral complexes. Association of transferrin to the lipoplexes resulted in a significant enhancement of the interaction processes referred to above, which correlates well with the promotion of transfection observed under the same conditions. Besides triggering internalization of the complexes, transferrin was also shown to mediate fusion with the endosomal membrane. The extent of fusion of this type of complexes was reduced upon their incubation with cells in the presence of serum, suggesting that serum components limit the transferrin fusogenic properties. Results were analyzed by using a theoretical model which allowed to estimate the kinetic parameters involved in lipoplex--cell interactions. The deduced fusion and endocytosis rate constants are discussed and compared with those obtained for other biological systems. From the kinetic studies we found a twofold enhancement of the fusion rate constant (f) for the ternary lipoplexes. We also concluded that HeLa cells yield a relatively low rate of endocytosis. Overall, our results estimate the relative contribution of fusion of lipoplexes with the plasma membrane, endocytosis and fusion with the endosomal membrane to their interactions with cells, this information being of crucial importance for the development of gene therapy strategies.
Collapse
Affiliation(s)
- M T da Cruz
- Department of Biochemistry, Faculty of Sciences and Technology, University of Coimbra, Portugal
| | | | | | | | | |
Collapse
|
29
|
Abstract
Although the possibility of targeting drugs to specific tissues and cells, as well as facilitating their uptake and cytoplasmic delivery has rendered liposomes a versatile drug carrier system with numerous potential applications in medicine, the molecular mechanisms of liposome-cell interactions are not understood well. Here we have reviewed the early and current concepts of liposome-cell interactions, including possible liposome receptors. Uptake of liposomes by cells can be modified by the lipid composition, particularly by the inclusion of steric stabilizers such as PEG-conjugated lipids. Such modifications also alter the circulation time and biodistribution of liposomes, which can thus be tailored for particular applications. The intracellular fate of encapsulated molecules can be modified by the use of pH-sensitive liposomes which can also be sterically stabilized. Cationic liposomes that can undergo lipid mixing with cellular membranes can deliver complexed DNA to cells, but most likely via an endocytotic process. Kinetic analysis of liposome-cell interactions can elucidate the numbers of liposome receptors of several types and the corresponding binding constants. It is likely that liposomes bind to different cell surface receptors on different cells, and that they utilize more than one type of receptor on a particular cell. The kinetic analysis also provides the rate constants of endocytosis and the percentages of liposomes that are bound or endocytosed.
Collapse
Affiliation(s)
- N Düzgüneş
- Department of Microbiology, School of Dentistry, University of the Pacific, 2155 Webster Street, San Francisco, CA, USA
| | | |
Collapse
|