1
|
Wang Y, Frasconi M, Stoddart JF. Introducing Stable Radicals into Molecular Machines. ACS CENTRAL SCIENCE 2017; 3:927-935. [PMID: 28979933 PMCID: PMC5620985 DOI: 10.1021/acscentsci.7b00219] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Indexed: 06/07/2023]
Abstract
Ever since their discovery, stable organic radicals have received considerable attention from chemists because of their unique optical, electronic, and magnetic properties. Currently, one of the most appealing challenges for the chemical community is to develop sophisticated artificial molecular machines that can do work by consuming external energy, after the manner of motor proteins. In this context, radical-pairing interactions are important in addressing the challenge: they not only provide supramolecular assistance in the synthesis of molecular machines but also open the door to developing multifunctional systems relying on the various properties of the radical species. In this Outlook, by taking the radical cationic state of 1,1'-dialkyl-4,4'-bipyridinium (BIPY•+) as an example, we highlight our research on the art and science of introducing radical-pairing interactions into functional systems, from prototypical molecular switches to complex molecular machines, followed by a discussion of the (i) limitations of the current systems and (ii) future research directions for designing BIPY•+-based molecular machines with useful functions.
Collapse
Affiliation(s)
- Yuping Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Marco Frasconi
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova 35131, Italy
| | - J. Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
2
|
Spataru T, Fernandez F. The Nature of the Co-C Bond Cleavage Processes in Methylcob(II)Alamin and Adenosylcob(III)Alamin. CHEMISTRY JOURNAL OF MOLDOVA 2016. [DOI: 10.19261/cjm.2016.11(1).01] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
3
|
Brunk E, Kellett W, Richards NGJ, Rothlisberger U. A mechanochemical switch to control radical intermediates. Biochemistry 2014; 53:3830-8. [PMID: 24846280 PMCID: PMC4067147 DOI: 10.1021/bi500050k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 05/17/2014] [Indexed: 12/24/2022]
Abstract
B₁₂-dependent enzymes employ radical species with exceptional prowess to catalyze some of the most chemically challenging, thermodynamically unfavorable reactions. However, dealing with highly reactive intermediates is an extremely demanding task, requiring sophisticated control strategies to prevent unwanted side reactions. Using hybrid quantum mechanical/molecular mechanical simulations, we follow the full catalytic cycle of an AdoB₁₂-dependent enzyme and present the details of a mechanism that utilizes a highly effective mechanochemical switch. When the switch is "off", the 5'-deoxyadenosyl radical moiety is stabilized by releasing the internal strain of an enzyme-imposed conformation. Turning the switch "on," the enzyme environment becomes the driving force to impose a distinct conformation of the 5'-deoxyadenosyl radical to avoid deleterious radical transfer. This mechanochemical switch illustrates the elaborate way in which enzymes attain selectivity of extremely chemically challenging reactions.
Collapse
Affiliation(s)
- Elizabeth Brunk
- Laboratory
of Computational Chemistry and Biochemistry, EPFL, Lausanne, Switzerland 1015
| | - Whitney
F. Kellett
- Indiana
University-Purdue University, Indianapolis, Indiana 46202, United States
| | - Nigel G. J. Richards
- Indiana
University-Purdue University, Indianapolis, Indiana 46202, United States
| | - Ursula Rothlisberger
- Laboratory
of Computational Chemistry and Biochemistry, EPFL, Lausanne, Switzerland 1015
| |
Collapse
|
4
|
Knör G, Monkowius U. Photosensitization and photocatalysis in bioinorganic, bio-organometallic and biomimetic systems. ADVANCES IN INORGANIC CHEMISTRY 2011. [DOI: 10.1016/b978-0-12-385904-4.00005-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
5
|
Hong SM, Yamashita J, Mitsunobu H, Uchino K, Kobayashi I, Sezutsu H, Tamura T, Nakajima H, Miyagawa Y, Lee JM, Mon H, Miyata Y, Kawaguchi Y, Kusakabe T. Efficient soluble protein production on transgenic silkworms expressing cytoplasmic chaperones. Appl Microbiol Biotechnol 2010; 87:2147-56. [DOI: 10.1007/s00253-010-2617-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 04/07/2010] [Accepted: 04/12/2010] [Indexed: 11/29/2022]
|
6
|
Kozlowski PM, Kamachi T, Kumar M, Nakayama T, Yoshizawa K. Theoretical Analysis of the Diradical Nature of Adenosylcobalamin Cofactor−Tyrosine Complex in B12-Dependent Mutases: Inspiring PCET-Driven Enzymatic Catalysis. J Phys Chem B 2010; 114:5928-39. [DOI: 10.1021/jp100573b] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Pawel M. Kozlowski
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, and Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takashi Kamachi
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, and Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Manoj Kumar
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, and Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tomonori Nakayama
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, and Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kazunari Yoshizawa
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, and Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
7
|
Patwardhan A, Marsh ENG. Changes in the free energy profile of glutamate mutase imparted by the mutation of an active site arginine residue to lysine. Arch Biochem Biophys 2007; 461:194-9. [PMID: 17306212 PMCID: PMC1995565 DOI: 10.1016/j.abb.2007.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Accepted: 01/04/2007] [Indexed: 11/23/2022]
Abstract
Arginine 100 plays an important role in substrate recognition in adenosylcobalamin-dependent glutamate mutase. We have examined how the mutation of this residue to lysine affects the partitioning of tritium, incorporated at the exchangeable position of the coenzyme, between substrate and product. We find that partitioning of tritium back to the substrate predominates in the mutant enzyme, regardless of whether the reaction is run in the forward or reverse direction. This contrasts with the behavior of the wild-type enzyme in which tritium partitions equally between substrate and product, independent of the direction of the reaction. From this we conclude that the mutation significantly impairs the ability of the enzyme to catalyze the rearrangement of substrate radical to product radical. The results illustrate the importance of electrostatic interactions in stabilizing free radical intermediates in this class of enzymes.
Collapse
|
8
|
Substrate-Enzyme Interactions from Modeling and Isotope Effects. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/1-4020-5372-x_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
9
|
Banerjee R, Dybala-Defratyka A, Paneth P. Quantum catalysis in B12-dependent methylmalonyl-CoA mutase: experimental and computational insights. Philos Trans R Soc Lond B Biol Sci 2006; 361:1333-9. [PMID: 16873121 PMCID: PMC1647305 DOI: 10.1098/rstb.2006.1866] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
B12-dependent methylmalonyl-CoA mutase catalyses the interchange of a hydrogen atom and the carbonyl-CoA group on adjacent carbons of methylmalonyl-CoA to give the rearranged product, succinyl-CoA. The first step in this reaction involves the transient generation of cofactor radicals by homolytic rupture of the cobalt-carbon bond to generate the deoxyadenosyl radical and cob(II)alamin. This step exhibits a curious sensitivity to isotopic substitution in the substrate, methylmalonyl-CoA, which has been interpreted as evidence for kinetic coupling. The magnitude of the isotopic discrimination is large and a deuterium isotope effect ranging from 35.6 at 20 degrees C to 49.9 at 5 degrees C has been recorded. Arrhenius analysis of the temperature dependence of this isotope effect provides evidence for quantum tunnelling in this hydrogen transfer step. The mechanistic complexity of the observed rate constant for cobalt-carbon bond homolysis together with the spectroscopically silent nature of many of the component steps limits the insights that can be derived by experimental approaches alone. Computational studies using a newly developed geometry optimization scheme that allows determination of the transition state in the full quantum mechanical/molecular mechanical coordinate space have yielded novel insights into the strategy deployed for labilizing the cobalt-carbon bond and poising the resulting deoxyadenosyl radical for subsequent hydrogen atom abstraction.
Collapse
Affiliation(s)
- Ruma Banerjee
- Biochemistry Department, University of Nebraska, Lincoln, NE 68588-0664, USA.
| | | | | |
Collapse
|
10
|
Affiliation(s)
- Perry A Frey
- Department of Biochemistry, University of Wisconsin-Madison, 1710 University Avenue, Madison, Wisconsin 53726, USA
| | | | | |
Collapse
|
11
|
Sandala GM, Smith DM, Coote ML, Golding BT, Radom L. Insights into the hydrogen-abstraction reactions of diol dehydratase: relevance to the catalytic mechanism and suicide inactivation. J Am Chem Soc 2006; 128:3433-44. [PMID: 16522124 DOI: 10.1021/ja057902q] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
High-level quantum chemistry calculations have been used to examine the hydrogen-abstraction reactions of diol dehydratase (DDH) in the context of both the catalytic mechanism and the enzyme dysfunction phenomenon termed suicide inactivation. The barriers for the catalytic hydrogen-abstraction reactions of ethane-1,2-diol and propane-1,2-diol are examined in isolation, as well as in the presence of various Brønsted acids and bases. Modest changes in the magnitudes of the initial and final abstraction barriers are seen, depending on the strength of the acid or base, and on whether these effects are considered individually or together. The most significant changes (ca. 20 kJ mol(-1)) are found for the initial abstraction barrier when the spectator OH group is partially deprotonated. Kinetic isotope effects including Eckart tunneling corrections (KIEs) have also been calculated for these model systems. We find that contributions from tunneling are of a magnitude similar to that of the contributions from semiclassical theory alone, meaning that quantum effects serve to significantly accelerate the rate of hydrogen transfer. The calculated KIEs for the partially deprotonated system are in qualitative agreement with experimentally determined values. In complementary investigations, the ability of DDH to become deactivated by certain substrate analogues is examined. In all cases, the formation of a stable radical intermediate causes the hydrogen re-abstraction step to become an extremely endothermic process. The consequent inability of 5'-deoxyadenosyl radical to be regenerated breaks the catalytic cycle, resulting in the suicide inactivation of DDH.
Collapse
Affiliation(s)
- Gregory M Sandala
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | | | |
Collapse
|
12
|
Padovani D, Banerjee R. Alternative pathways for radical dissipation in an active site mutant of B12-dependent methylmalonyl-CoA mutase. Biochemistry 2006; 45:2951-9. [PMID: 16503649 PMCID: PMC3190604 DOI: 10.1021/bi051742d] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Methylmalonyl-CoA mutase catalyzes the adenosylcobalamin-dependent rearrangement of (2R)-methylmalonyl-CoA to succinyl-CoA. The crystal structure of the enzyme reveals that Y243 is in van der Waals contact with the methyl group of the substrate and suggests a possible role for it in the stereochemical control of the reaction. This hypothesis was tested by designing a molecular hole by replacing the phenolic side chain of Y243 with the methyl group of alanine. The Y243A mutation lowered the catalytic efficiency >(4 x 10(4))-fold compared to wild-type enzyme, the K(M)app for the cofactor approximately 4-fold, and the cob(II)alamin concentration under steady-state turnover conditions approximately 2-fold. However, the mutation did not appear to lead to loss of the stereochemical preference for the substrate. The Y243A mutation is expected to create a cavity and should, in principle, allow accommodation of bulkier substrates. To test this, we used ethylmalonyl-CoA and allylmalonyl-CoA as alternate substrates. Surprisingly, both analogues resulted in suicidal inactivation, albeit in an O(2)-dependent and O(2)-independent fashion, respectively. The inactivation by allylmalonyl-CoA was further investigated, and revealed formation of cob(II)alamin at an approximately 1.5-fold higher rate than with wild-type mutase under single-turnover conditions. Product analysis revealed a stoichiometric mixture of 5'-deoxyadenosine, aquocobalamin, and allylmalonyl-CoA. Taken together, these results are consistent with an internal electron transfer from cob(II)alamin to the substrate analogue radical. These studies serve to emphasize the fine control exerted by Y243 in the vicinity of the substrate to minimize radical extinction in side reactions.
Collapse
Affiliation(s)
| | - Ruma Banerjee
- Corresponding Author: , Telephone: (402)-472-2941, fax: (402)-472-4961
| |
Collapse
|
13
|
Jensen KP, Ryde U. How the Co-C bond is cleaved in coenzyme B12 enzymes: a theoretical study. J Am Chem Soc 2005; 127:9117-28. [PMID: 15969590 DOI: 10.1021/ja050744i] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The homolytic cleavage of the organometallic Co-C bond in vitamin B12-dependent enzymes is accelerated by a factor of approximately 10(12) in the protein compared to that of the isolated cofactor in aqueous solution. To understand this much debated effect, we have studied the Co-C bond cleavage in the enzyme glutamate mutase with combined quantum and molecular mechanics methods. We show that the calculated bond dissociation energy (BDE) of the Co-C bond in adenosyl cobalamin is reduced by 135 kJ/mol in the enzyme. This catalytic effect can be divided into four terms. First, the adenosine radical is kept within 4.2 angstroms of the Co ion in the enzyme, which decreases the BDE by 20 kJ/mol. Second, the surrounding enzyme stabilizes the dissociated state by 42 kJ/mol using electrostatic and van der Waals interactions. Third, the protein itself is stabilized by 11 kJ/mol in the dissociated state. Finally, the coenzyme is geometrically distorted by the protein, and this distortion is 61 kJ/mol larger in the Co(III) state. This deformation of the coenzyme is caused mainly by steric interactions, and it is especially the ribose moiety and the Co-C5'-C4' angle that are distorted. Without the polar ribose group, the catalytic effect is much smaller, e.g. only 42 kJ/mol for methyl cobalamin. The deformation of the coenzyme is caused mainly by the substrate, a side chain of the coenzyme itself, and a few residues around the adenosine part of the coenzyme.
Collapse
Affiliation(s)
- Kasper P Jensen
- Department of Theoretical Chemistry, Lund University, Chemical Center, P.O. Box 124, S-221 00 Lund, Sweden
| | | |
Collapse
|
14
|
Rangel M, Leite A, Gomes J, de Castro B. Photolysis Secondary Products of Cobaloximes and Imino/Oxime Compounds Controlled by Steric Hindrance Imposed by the Lewis Base. Organometallics 2005. [DOI: 10.1021/om0580046] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maria Rangel
- REQUIMTE/Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Portugal, and REQUIMTE/Departamento de Química, Faculdade de Ciências do Porto, Portugal
| | - Andreia Leite
- REQUIMTE/Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Portugal, and REQUIMTE/Departamento de Química, Faculdade de Ciências do Porto, Portugal
| | - João Gomes
- REQUIMTE/Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Portugal, and REQUIMTE/Departamento de Química, Faculdade de Ciências do Porto, Portugal
| | - Baltazar de Castro
- REQUIMTE/Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Portugal, and REQUIMTE/Departamento de Química, Faculdade de Ciências do Porto, Portugal
| |
Collapse
|
15
|
Brown KL, Marques HM. Product stabilization in the enzymatic activation of coenzyme B12: a molecular modeling study. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.theochem.2004.11.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Hamza MSA, Zou X, Banka R, Brown KL, van Eldik R. Kinetic and thermodynamic studies on ligand substitution reactions and base-on/base-off equilibria of cyanoimidazolylcobamide, a vitamin B12 analog with an imidazole axial nucleoside. Dalton Trans 2005:782-7. [PMID: 15702190 DOI: 10.1039/b414092c] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ligand substitution reactions of the vitamin B12 analog cyanoimidazolylcobamide, CN(Im)Cbl, with cyanide were studied. Cyanide substitutes imidazole (Im) in the alpha-position more slowly than it substitutes dimethylbenzimidazole in cyanocobalamin (vitamin B12). The kinetics of the displacement of Im by CN- showed saturation behaviour at high cyanide concentration; the limiting rate constant was found to be 0.0264 s(-1) at 25 degrees C and is characterized by the activation parameters: DeltaH(not =) = 111 +/- 2 kJ mol(-1), DeltaS(not =) = +97 +/- 6 J K(-1) mol(-1), and DeltaV(not =) = +9.3 +/- 0.3 cm3 mol(-1). These parameters are interpreted in terms of an I(d) mechanism. The equilibrium constant for the reaction of CN(Im)Cbl with CN- was found to be 861 +/- 75 M(-1), which is significantly less than that obtained for the reaction of cyanocobalamin with CN- (viz. 10(4) M(-1)). pKbase-off for the base-on/base-off equilibrium was determined spectrophotometrically and found to be 0.99 +/- 0.05, which is about 0.9 pH units higher than that obtained previously in the case of cyanocobalamin. In addition, the kinetics of the base-on/base-off reaction was studied using a pH-jump technique and the data obtained revealed evidence for an acid catalyzed reaction path. The results obtained in this study are discussed in reference to those reported previously for cyanocobalamin.
Collapse
Affiliation(s)
- Mohamed S A Hamza
- Institute for Inorganic Chemistry, University of Erlangen-Nurnberg, Egerlandstr.1, 91058, Erlangen, Germany
| | | | | | | | | |
Collapse
|
17
|
Brown KL, Zou X, Banka RR, Perry CB, Marques HM. Solution Structure and Thermolysis of Coβ-5‘-Deoxyadenosylimidazolylcobamide, a Coenzyme B12 Analogue with an Imidazole Axial Nucleoside. Inorg Chem 2004; 43:8130-42. [PMID: 15578853 DOI: 10.1021/ic040079z] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The solution structure of Cobeta-5'-deoxyadenosylimidazolylcobamide, Ado(Im)Cbl, the coenzyme B(12) analogue in which the axial 5,6-dimethylbenzimidazole (Bzm) ligand is replaced by imidazole, has been determined by NMR-restrained molecular modeling. A two-state model, in which a conformation with the adenosyl moiety over the southern quadrant of the corrin and a conformation with the adenosyl ligand over the eastern quadrant of the corrin are both populated at room temperature, was required by the nOe data. A rotation profile and molecular dynamics simulations suggest that the eastern conformation is the more stable, in contrast to AdoCbl itself in which the southern conformation is preferred. Consensus structures of the two conformers show that the axial Co-N bond is slightly shorter and the corrin ring is less folded in Ado(Im)Cbl than in AdoCbl. A study of the thermolysis of Ado(Im)Cbl in aqueous solution (50-125 degrees C) revealed competing homolytic and heterolytic pathways as for AdoCbl but with heterolysis being 9-fold faster and homolysis being 3-fold slower at 100 degrees C than for AdoCbl. Determination of the pK(a)'s for the Ado(Im)Cbl base-on/base-off reaction and for the detached imidazole ribonucleoside as a function of temperature permitted correction of the homolysis and heterolysis rate constants for the temperature-dependent presence of the base-off species of Ado(Im)Cbl. Activation analysis of the resulting rate constants for the base-on species show that the entropy of activation for Ado(Im)Cbl homolysis (13.7 +/- 0.9 cal mol(-1) K(-1)) is identical with that of AdoCbl (13.5 +/- 0.7 cal mol(-1) K(-1)) but that the enthalpy of activation (34.8 kcal mol(-1)) is 1.0 +/- 0.4 kcal mol(-1) larger. The opposite effect is seen for heterolysis, where the enthalpies of activation are identical but the entropy of activation is 5 +/- 1 cal mol(-1) K(-1) less negative for Ado(Im)Cbl. Extrapolation to 37 degrees C provides a rate constant for Ado(Im)Cbl homolysis of 2.1 x 10(-9) s(-1), 4.3-fold smaller than for AdoCbl. Combined with earlier results for the enzyme-induced homolysis of Ado(Im)Cbl by the ribonucleoside triphosphate reductase from Lactobacillus leichmannii, the catalytic efficiency of the enzyme for homolysis of Ado(Im)Cbl at 37 degrees C can be calculated to be 4.0 x 10(8), 3.8-fold, or 0.8 kcal mol(-1), smaller than for AdoCbl. Thus, the bulky Bzm ligand makes at best a <1 kcal mol(-1) contribution to the enzymatic activation of coenzyme B(12).
Collapse
Affiliation(s)
- Kenneth L Brown
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, USA.
| | | | | | | | | |
Collapse
|
18
|
Daublain P, Horner JH, Kuznetsov A, Newcomb M. Solvent polarity effects and limited acid catalysis in rearrangements of model radicals for the methylmalonyl-CoA mutase- and isobutyryl-CoA mutase-catalyzed isomerization reactions. J Am Chem Soc 2004; 126:5368-9. [PMID: 15113202 DOI: 10.1021/ja049913+] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The kinetics of reactions of models for the intermediate radicals formed in the methylmalonyl-CoA mutase- and isobutyryl-CoA mutase-catalyzed rearrangements were studied by laser flash photolysis methods. The aldehyde-containing model analogous to the propanal-3-yl radical reacted via 3-exo cyclization with rate constants that varied with solvent polarity (k in the range 2 x 105 to 1 x 107 s-1). The analogous methyl ketone-containing radical reacted 2 orders of magnitude less rapidly, and the ethylthiocarbonyl-containing radical analogue reacted too slowly for kinetic measurements. No acid catalysis was observed in acetic acid, but the CF3CO2H-complexed radicals reacted 1 order of magnitude faster than the uncomplexed radicals. The results indicate that catalysis of the 3-exo radical cyclizations of the radicals formed in the enzymes by hydrogen bonding to an acid, so-called "partial protonation", is not adequate for acceleration of the reactions to the point of kinetic competence. A dissociative mechanism for the radical rearrangements in nature is considered as an alternative.
Collapse
Affiliation(s)
- Pierre Daublain
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, USA
| | | | | | | |
Collapse
|
19
|
Brown KL, Zou X, Chen G, Xia Z, Marques HM. Solution structure, enzymatic, and non-enzymatic reactivity of 3-isoadenosylcobalamin, a structural isomer of coenzyme B12 with surprising coenzymic activity. J Inorg Biochem 2004; 98:287-300. [PMID: 14729309 DOI: 10.1016/j.jinorgbio.2003.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The coenzymic activity of eight analogs of coenzyme B(12) (5'-deoxyadenosyl-cobalamin, AdoCbl) with structural alterations in the Ado ligand has been investigated with the AdoCbl-dependent ribonucleoside triphosphate reductase (RTPR) from Lactobacillus leichmannii. Six of the analogs were partially active coenzymes, and one, 3-iso-5'-deoxyadenosylcobalamin (3-IsoAdoCbl) was nearly as active as AdoCbl itself. NMR-restrained molecular modeling of 3-IsoAdoCbl revealed a highly conformationally mobile structure which required a four state model to be consistent with the NMR data. Thus, two conformations, one with the IsoAdo ligand over the eastern quadrant of the corrin, and one with the IsoAdo ligand over the northern quadrant, each undergo a facile syn/anti conformational equilibrium in the IsoAdo ligand. Spectrophotometric measurement of the kinetics of RTPR-induced cleavage of the carbon-cobalt bond of 3-IsoAdoCbl showed that it binds to the enzyme with the same affinity as AdoCbl, but its homolysis is only 20% as rapid. Investigation of the non-enzymatic thermolysis of 3-IsoAdoCbl showed that like AdoCbl, 3-IsoAdoCbl decomposes by competing homolytic and heterolytic pathways. A complete temperature-dependent kinetic and product analysis, followed by correction for the base-off species permitted deconvolution of the specific rate constant for both pathways. Eyring plots for the homolysis and heterolysis rate constant cross at 93 degrees C, so that homolysis is the predominant pathway at high temperature, but heterolysis is the predominant pathway at low temperature. At 37 degrees C, the homolysis of 3-IsoAdoCbl is 5.5-fold faster than that of AdoCbl, and the enzyme catalyzes carbon-cobalt bond homolysis in 3-IsoAdoCbl by a factor of 5.9 x 10(7), only 3.9% of the catalytic efficiency with AdoCbl itself. It seems likely that the conformational flexibility of 3-IsoAdoCbl allows it to adopt a coformation in which the hydrogen bonding patterns of the adenine moiety are similar to those of AdoCbl itself, and that this is responsible for the high enzymatic activity of this analog.
Collapse
Affiliation(s)
- Kenneth L Brown
- Department of Chemistry and Biochemistry, Clippinger Laboratories, Ohio University, Athens, OH 45701, USA.
| | | | | | | | | |
Collapse
|
20
|
Toraya T. Radical catalysis in coenzyme B12-dependent isomerization (eliminating) reactions. Chem Rev 2003; 103:2095-127. [PMID: 12797825 DOI: 10.1021/cr020428b] [Citation(s) in RCA: 312] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tetsuo Toraya
- Department of Bioscience and Biotechnology, Faculty of Engineering, Okayama University, Tsushima-naka, Okayama 700-8530, Japan.
| |
Collapse
|
21
|
Vlasie MD, Banerjee R. Tyrosine 89 accelerates Co-carbon bond homolysis in methylmalonyl-CoA mutase. J Am Chem Soc 2003; 125:5431-5. [PMID: 12720457 DOI: 10.1021/ja029420+] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The contribution of the active-site residue, Y89, to the trillion-fold acceleration of Co-carbon bond homolysis rate in the methylmalonyl-CoA mutase-catalyzed reaction has been evaluated by site-directed mutagenesis. Conversion of Y89 to phenylalanine or alanine results in a 10(3)-fold diminution of k(cat) and suppression of the overall kinetic isotope effect. The spectrum of the enzyme under steady-state conditions reveals the presence of AdoCbl but no cob(II)alamin. Together, these results are consistent with homolysis becoming completely rate determining in the forward direction in the two mutants and points to the role of Y89 as a molecular wedge in accelerating Co-carbon bond cleavage.
Collapse
Affiliation(s)
- Monica D Vlasie
- Biochemistry Department, University of Nebraska, Lincoln, Nebraska 68588-0664, USA
| | | |
Collapse
|
22
|
Chih HW, Roymoulik I, Huhta MS, Madhavapeddi P, Marsh ENG. Adenosylcobalamin-dependent glutamate mutase: pre-steady-state kinetic methods for investigating reaction mechanism. Methods Enzymol 2003; 354:380-99. [PMID: 12418241 DOI: 10.1016/s0076-6879(02)54030-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Affiliation(s)
- Hung-Wei Chih
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
23
|
Loferer MJ, Webb BM, Grant GH, Liedl KR. Energetic and stereochemical effects of the protein environment on substrate: a theoretical study of methylmalonyl-CoA mutase. J Am Chem Soc 2003; 125:1072-8. [PMID: 12537507 DOI: 10.1021/ja028906n] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
QM/MM methods were used to study the isomerization step from (2R)-methylmalonyl-CoA to succinyl-CoA. A pathway via a "fragmentation-recombination" mechanism is ruled out on energetic grounds. For the other radicalic pathway, involving an addition recombination step, geometries and vibrational contributions have been determined, and a barrier height of 11.70 kcal/mol was found. The effect of adjacent hydrogen-donating groups was found to reduce the energy barrier by 1-2 kcal/mol each and thus to provide a significant catalytic effect for this reaction. By means of molecular dynamics studies, the stereochemistry of the methylmalonyl-CoA mutase catalyzed reaction was examined. It is shown that TYR89 is essential for maintaining stereoselectivity of the abstraction of a hydrogen in the backreaction. The subsequent selective formation of one isomer of methylmalonyl-CoA is probably due to the presence of a bulky side chain.
Collapse
Affiliation(s)
- Markus J Loferer
- Institute of General, Inorganic, and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria
| | | | | | | |
Collapse
|
24
|
Jensen KP, Ryde U. The axial N -base has minor influence on Co–C bond cleavage in cobalamins. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s0166-1280(02)00049-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Marques HM, Brown KL. Molecular mechanics and molecular dynamics simulations of porphyrins, metalloporphyrins, heme proteins and cobalt corrinoids. Coord Chem Rev 2002. [DOI: 10.1016/s0010-8545(01)00411-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
Wetmore SD, Smith DM, Radom L. Catalysis by mutants of methylmalonyl-CoA mutase: a theoretical rationalization for a change in the rate-determining step. Chembiochem 2001; 2:919-22. [PMID: 11948881 DOI: 10.1002/1439-7633(20011203)2:12<919::aid-cbic919>3.0.co;2-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- S D Wetmore
- Research School of Chemistry, Australian National University, Canberra, ACT 0200 Australia
| | | | | |
Collapse
|
27
|
Dybala-Defratyka A, Paneth P. Theoretical evaluation of the hydrogen kinetic isotope effect on the first step of the methylmalonyl-CoA mutase reaction. J Inorg Biochem 2001; 86:681-9. [PMID: 11583786 DOI: 10.1016/s0162-0134(01)00230-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We have calculated hydrogen kinetic isotope effects (KIEs) for the first step of the methylmalonyl-CoA mutase reaction, including multidimensional tunneling correction at the zero curvature (ZCT) level, and compared them with the experimental values. Both alternative mechanisms of this step, concerted and stepwise, can be accommodated. It turned out to be essential to include Arg207 hydrogen-bonded to the reactant in the mechanism predicting simultaneous breaking of the Co-C bond of AdoCbl and hydrogen atom transfer. The consequence of the stepwise mechanism is a much larger facilitation of the homolytic dissociation of the carbon-cobalt bond by the enzyme than currently appreciated; our results suggest lowering of the activation energy by about 23 kcal mol(-1). We have also shown that large hydrogen KIEs of tunneling origin do not necessarily break the Swain-Schaad equation. Furthermore, when this equation does not hold, the exponent may be smaller in the presence of tunneling than it is at the semi-classical limit, indicating that nonclassical behavior may be a more common phenomenon than expected.
Collapse
Affiliation(s)
- A Dybala-Defratyka
- Institute of Applied Radiation Chemistry, Department of Chemistry, Technical University of Lodz, Zeromskiego 116, 90-924, Lodz, Poland
| | | |
Collapse
|
28
|
Marques H, Ngoma B, Egan T, Brown K. Parameters for the amber force field for the molecular mechanics modeling of the cobalt corrinoids. J Mol Struct 2001. [DOI: 10.1016/s0022-2860(00)00920-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
29
|
Affiliation(s)
- E N Marsh
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
30
|
Brown KL, Marques HM. Molecular modeling of the mechanochemical triggering mechanism for catalysis of carbon-cobalt bond homolysis in coenzyme B12. J Inorg Biochem 2001; 83:121-32. [PMID: 11237251 DOI: 10.1016/s0162-0134(00)00188-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The possible contributions of the mechanochemical triggering effect to the enzymatic activation of the carbon-cobalt bond of coenzyme B12 (5'-deoxyadenosylcobalamin, AdoCbl) for homolytic cleavage have been studied by molecular modeling and semiempirical molecular orbital calculations. Classically, this effect has envisioned enzymatic compression of the axial Co-N bond in the ground state to cause upward folding of the corrin ring and subsequent sterically induced distortion of the Co-C bond leading to its destabilization. The models of this process show that in both methylcobalamin (CH3Cbl) and AdoCbl, compression of the axial Co-N bond does engender upward folding of the corrin ring, and that the extent of such upward folding is smaller in an analog in which the normal 5,6-dimethylbenzimidazole axial ligand is replaced by the sterically smaller ligand, imidazole (CH3(lm)Cbl and Ado(lm)Cbl). Furthermore, in AdoCbl, this upward folding of the corrin is accompanied by increases in the carbon-cobalt bond length and in the Co-C-C bond angle (which are also less pronounced in Ado(Im)Cbl), and which indicate that the Co-C bond is indeed destabilized by this mechanism. However, these effects on the Co-C bond are small, and destabilization of this bond by this mechanism is unlikely to contribute more than ca. 3 kcal mol(-1) towards the enzymatic catalysis of Co-C bond homolysis, far short of the observed ca. 14 kcal mol(-1). A second version of mechanochemical triggering, in which compression of the axial Co-N bond in the transition state for Co-C bond homolysis stabilizes the transition state by increased Co-N orbital overlap, has also been investigated. Stretching the Co-C bond to simulate the approach to the transition state was found to result in an upward folding of the corrin ring, a slight decrease in the axial Co-N bond length, a slight displacement of the metal atom from the plane of the equatorial nitrogens towards the "lower" axial ligand, and a decrease in strain energy amounting to about 8 kcal mol(-1) for both AdoCbl and Ado(Im)Cbl. In such modeled transition states, compression of the axial Co-N bond to just below 2.0 A (the distance subsequently found to provide maximal stabilization of the transition state by increased orbital overlap) required about 4 kcal mol(-1) for AdoCbl, and about 2.5 kcal mol(-1) for Ado(Im)Cbl. ZINDO/1 calculations on slightly simplified structures showed that maximal electronic stabilization of the transition state by about 10 kcal mol(-1) occurred at an axial Co-N bond distance of 1.96 A for both AdoCbl and Ado(Im)Cbl. The net result is that this type of transition state mechanochemical triggering can provide 14 kcal mol(-1) of transition state stabilization for AdoCbl, and about 15.5 kcal mol(-1) for the Ado(Im)Cbl, enough to completely explain the observed enzymatic catalysis. These results are discussed in the light of current knowledge about class I AdoCbl-dependent enzymes, in which the coenzyme is bound in its "base-off" conformation, with the lower axial ligand position occupied by the imidazole moiety of an active site histidine residue, and the class II enzymes, in which AdoCbl binds to the enzyme in its "base-on" conformation, and the pendent 5,6-dimethylbenzimidazole base remains coordinated to the metal during Co-C bond activation.
Collapse
Affiliation(s)
- K L Brown
- Department of Chemistry and Biochemistry, Ohio University, Athens 45701-2979, USA.
| | | |
Collapse
|
31
|
Metzler DE, Metzler CM, Sauke DJ. Transition Metals in Catalysis and Electron Transport. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50019-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Theoretical studies of coenzyme B12-dependent carbon-skeleton rearrangements. THEORETICAL AND COMPUTATIONAL CHEMISTRY 2001. [DOI: 10.1016/s1380-7323(01)80006-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
33
|
Chih HW, Marsh ENG. Mechanism of Glutamate Mutase: Identification and Kinetic Competence of Acrylate and Glycyl Radical as Intermediates in the Rearrangement of Glutamate to Methylaspartate. J Am Chem Soc 2000. [DOI: 10.1021/ja002488+] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Maiti N, Widjaja L, Banerjee R. Proton transfer from histidine 244 may facilitate the 1,2 rearrangement reaction in coenzyme B(12)-dependent methylmalonyl-CoA mutase. J Biol Chem 1999; 274:32733-7. [PMID: 10551831 DOI: 10.1074/jbc.274.46.32733] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Methylmalonyl-CoA mutase is an adenosylcobalamin-dependent enzyme that catalyzes the 1,2 rearrangement of methylmalonyl-CoA to succinyl-CoA. This reaction results in the interchange of a carbonyl-CoA group and a hydrogen atom on vicinal carbons. The crystal structure of the enzyme reveals the presence of an aromatic cluster of residues in the active site that includes His-244, Tyr-243, and Tyr-89 in the large subunit. Of these, His-244 is within hydrogen bonding distance to the carbonyl oxygen of the carbonyl-CoA moiety of the substrate. The location of these aromatic residues suggests a possible role for them in catalysis either in radical stabilization and/or by direct participation in one or more steps in the reaction. The mechanism by which the initially formed substrate radical isomerizes to the product radical during the rearrangement of methylmalonyl-CoA to succinyl-CoA is unknown. Ab initio molecular orbital theory calculations predict that partial proton transfer can contribute significantly to the lowering of the barrier for the rearrangement reaction. In this study, we report the kinetic characterization of the H244G mutant, which results in an acute sensitivity of the enzyme to oxygen, indicating the important role of this residue in radical stabilization. Mutation of His-244 leads to an approximately 300-fold lowering in the catalytic efficiency of the enzyme and loss of one of the two titratable pK(a) values that govern the activity of the wild type enzyme. These data suggest that protonation of His-244 increases the reaction rate in wild type enzyme and provides experimental support for ab initio molecular orbital theory calculations that predict rate enhancement of the rearrangement reaction by the interaction of the migrating group with a general acid. However, the magnitude of the rate enhancement is significantly lower than that predicted by the theoretical studies.
Collapse
Affiliation(s)
- N Maiti
- Biochemistry Department, University of Nebraska, Lincoln, Nebraska 68588-0664, USA
| | | | | |
Collapse
|
35
|
Brown KL, Zou X. Thermolysis of coenzymes B12 at physiological temperatures: activation parameters for cobalt-carbon bond homolysis and a quantitative analysis of the perturbation of the homolysis equilibrium by the ribonucleoside triphosphate reductase from Lactobacillus leichmannii. J Inorg Biochem 1999; 77:185-95. [PMID: 10643658 DOI: 10.1016/s0162-0134(99)00190-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The kinetics of the thermolysis of 5'-deoxyadenosylcobalamin (AdoCbl, coenzyme B12) in aqueous solution, pH 7.5, have been studied in the temperature range 30-85 degrees C using AdoCbl tritiated at the adenine C2 position and the method of initial rates. Combined with a careful analysis of the distribution of adenine-containing products, the results permit the dissection of the competing rate constants for carbon-cobalt bond homolysis and heterolysis. After correction for the temperature-dependent occurrence of the much less reactive base-off species of AdoCbl, the activation parameters for homolysis of the base-on species were found to be delta H++homo,on = 33.8 +/- 0.2 kcal mol-1 and delta S++homo,on = 13.5 +/- 0.7 cal mol-1 K-1, values not significantly different from those determined by Hay and Finke (J. Am. Chem. Soc. 108 (1986) 4820), in the temperature range 85-115 degrees C. In contrast, the heterolysis of base-on AdoCbl was characterized by a much smaller enthalpy of activation (delta H++het,on = 18.5 +/- 0.2 kcal mol-1) and a negative entropy of activation (delta S++het,on = -34.0 +/- 0.7 cal mol-1 K-1) so that heterolysis, which is minor pathway at elevated temperatures, is the dominant pathway for AdoCbl decomposition at physiological temperatures. Using literature values for the rate constant for the reverse reaction, the equilibrium constant for AdoCbl homolysis at 37 degrees C was calculated to be 7.9 x 10(-18). Comparison with the equilibrium constant for this homolysis at the active site of the ribonucleoside triphosphate reductase from Lactobacillus leichmannii shows that the enzymes shifts the equilibrium constant towards homolysis products by a factor of 2.9 x 10(12) (17.7 kcal mol-1) by binding the thermolysis products with an equilibrium constant of 7.1 x 10(16) M-2, compared to the bonding constant for AdoCbl of 2.4 x 10(4) M-1.
Collapse
Affiliation(s)
- K L Brown
- Department of Chemistry and Biochemistry, Ohio University, Athens 45701, USA.
| | | |
Collapse
|
36
|
Ratnatilleke A, Vrijbloed JW, Robinson JA. Cloning and sequencing of the coenzyme B(12)-binding domain of isobutyryl-CoA mutase from Streptomyces cinnamonensis, reconstitution of mutase activity, and characterization of the recombinant enzyme produced in Escherichia coli. J Biol Chem 1999; 274:31679-85. [PMID: 10531377 DOI: 10.1074/jbc.274.44.31679] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Isobutyryl-CoA mutase (ICM) catalyzes the reversible, coenzyme B(12)-dependent rearrangement of isobutyryl-CoA to n-butyryl-CoA, which is similar to, but distinct from, that catalyzed by methylmalonyl-CoA mutase. ICM has been detected so far in a variety of aerobic and anaerobic bacteria, where it appears to play a key role in valine and fatty acid catabolism. ICM from Streptomyces cinnamonensis is composed of a large subunit (IcmA) of 62.5 kDa and a small subunit (IcmB) of 14.3 kDa. icmB encodes a protein of 136 residues with high sequence similarity to the cobalamin-binding domains of methylmalonyl-CoA mutase, glutamate mutase, methyleneglutarate mutase, and cobalamin-dependent methionine synthase, including a conserved DXHXXG cobalamin-binding motif. Using IcmA and IcmB produced separately in Escherichia coli, we show that IcmB is necessary and sufficient with IcmA and coenzyme B(12) to afford the active ICM holoenzyme. The large subunit (IcmA) forms a tightly associated homodimer, whereas IcmB alone exists as a monomer. In the absence of coenzyme B(12), the association between IcmA and IcmB is weak. The ICM holoenzyme appears to comprise an alpha(2)beta(2)-heterotetramer with up to two molecules of bound coenzyme B(12). The equilibrium constant for the ICM reaction at 30 degrees C is 1.7 in favor of isobutyryl-CoA, and the pH optimum is near 7.4. The K(m) values for isobutyryl-CoA, n-butyryl-CoA, and coenzyme B(12) determined with an equimolar ratio of IcmA and IcmB are 57 +/- 13, 54 +/- 12, and 12 +/- 2 microM, respectively. A V(max) of 38 +/- 3 units/mg IcmA and a k(cat) of 39 +/- 3 s(-1) were determined under saturating molar ratios of IcmB to IcmA.
Collapse
Affiliation(s)
- A Ratnatilleke
- Institute of Organic Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | | |
Collapse
|
37
|
Smith DM, Golding BT, Radom L. Understanding the Mechanism of B12-Dependent Methylmalonyl-CoA Mutase: Partial Proton Transfer in Action. J Am Chem Soc 1999. [DOI: 10.1021/ja991649a] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- David M. Smith
- Contribution from the Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia, and Department of Chemistry, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, U.K
| | - Bernard T. Golding
- Contribution from the Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia, and Department of Chemistry, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, U.K
| | - Leo Radom
- Contribution from the Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia, and Department of Chemistry, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, U.K
| |
Collapse
|
38
|
Buckel W, Golding BT. Radical species in the catalytic pathways of enzymes from anaerobes. FEMS Microbiol Rev 1998. [DOI: 10.1111/j.1574-6976.1998.tb00385.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|