1
|
Dadi P, Pauling CW, Shrivastava A, Shah DD. Synthesis of versatile neuromodulatory molecules by a gut microbial glutamate decarboxylase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.02.583032. [PMID: 38915512 PMCID: PMC11195143 DOI: 10.1101/2024.03.02.583032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Dysbiosis of the microbiome correlates with many neurological disorders, yet very little is known about the chemistry that controls the production of neuromodulatory molecules by gut microbes. Here, we found that an enzyme glutamate decarboxylase (BfGAD) of a gut microbe Bacteroides fragilis forms multiple neuromodulatory molecules such as γ-aminobutyric acid (GABA), hypotaurine, taurine, homotaurine, and β-alanine. We evolved BfGAD and doubled its taurine productivity. Additionally, we increased its specificity towards the substrate L-glutamate. Here, we provide a chemical strategy via which the BfGAD activity could be fine-tuned. In future, this strategy could be used to modulate the production of neuromodulatory molecules by gut microbes.
Collapse
Affiliation(s)
- Pavani Dadi
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85281
- School of Life Sciences, Arizona State University, Tempe, AZ 85281
| | - Clint W. Pauling
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85281
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306
| | - Abhishek Shrivastava
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85281
- School of Life Sciences, Arizona State University, Tempe, AZ 85281
| | - Dhara D. Shah
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85281
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306
| |
Collapse
|
2
|
Melkonian TR, Vuksanovic N, Silvaggi NR. Probing mechanistic questions in the PLP- and O 2-dependent l-Arg oxidases. Methods Enzymol 2023; 685:493-529. [PMID: 37245913 DOI: 10.1016/bs.mie.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The pyridoxal-5'-phosphate-dependent l-Arg oxidases are unusual in that they are able to catalyze 4-electron oxidations of arginine using only the PLP cofactor. No metals or other accessory cosubstrates are involved; only arginine, dioxygen, and PLP. The catalytic cycles of these enzymes are replete with colored intermediates whose accumulation and decay can be monitored spectrophotometrically. This makes the l-Arg oxidases excellent subjects for detailed mechanistic investigations. They are worth studying, because they can teach us much about how PLP-dependent enzymes modulate the cofactor (structure-function-dynamics) and how new activities can arise from existing enzyme scaffolds. Herein we describe a series of experiments that can be used to probe the mechanisms of l-Arg oxidases. These methods by no means originated in our lab but were learned from talented researchers in other enzyme fields (flavoenzymes and Fe(II)-dependent oxygenases) and have been adapted to fit the requirements of our system. We present practical information for expressing and purifying the l-Arg oxidases, protocols for running stopped-flow experiments to examine the reactions with l-Arg and with dioxygen, and a tandem mass spectrometry-based quench-flow assay to follow the accumulation of the products of the hydroxylating l-Arg oxidases.
Collapse
Affiliation(s)
- Trevor R Melkonian
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | | | - Nicholas R Silvaggi
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, United States.
| |
Collapse
|
3
|
Bisello G, Kusmierska K, Verbeek MM, Sykut-Cegielska J, Willemsen MAAP, Wevers RA, Szymańska K, Poznanski J, Drozak J, Wertheim-Tysarowska K, Rygiel AM, Bertoldi M. The novel P330L pathogenic variant of aromatic amino acid decarboxylase maps on the catalytic flexible loop underlying its crucial role. Cell Mol Life Sci 2022; 79:305. [PMID: 35593933 PMCID: PMC9121088 DOI: 10.1007/s00018-022-04343-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/13/2022] [Accepted: 05/01/2022] [Indexed: 12/14/2022]
Abstract
Aromatic amino acid decarboxylase (AADC) deficiency is a rare monogenic disease, often fatal in the first decade, causing severe intellectual disability, movement disorders and autonomic dysfunction. It is due to mutations in the gene coding for the AADC enzyme responsible for the synthesis of dopamine and serotonin. Using whole exome sequencing, we have identified a novel homozygous c.989C > T (p.Pro330Leu) variant of AADC causing AADC deficiency. Pro330 is part of an essential structural and functional element: the flexible catalytic loop suggested to cover the active site as a lid and properly position the catalytic residues. Our investigations provide evidence that Pro330 concurs in the achievement of an optimal catalytic competence. Through a combination of bioinformatic approaches, dynamic light scattering measurements, limited proteolysis experiments, spectroscopic and in solution analyses, we demonstrate that the substitution of Pro330 with Leu, although not determining gross conformational changes, results in an enzymatic species that is highly affected in catalysis with a decarboxylase catalytic efficiency decreased by 674- and 194-fold for the two aromatic substrates. This defect does not lead to active site structural disassembling, nor to the inability to bind the pyridoxal 5’-phosphate (PLP) cofactor. The molecular basis for the pathogenic effect of this variant is rather due to a mispositioning of the catalytically competent external aldimine intermediate, as corroborated by spectroscopic analyses and pH dependence of the kinetic parameters. Altogether, we determined the structural basis for the severity of the manifestation of AADC deficiency in this patient and discussed the rationale for a precision therapy.
Collapse
Affiliation(s)
- Giovanni Bisello
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy
| | - Katarzyna Kusmierska
- Department of Screening and Metabolic Diagnostics, Institute of Mother and Child, Warsaw, Poland
| | - Marcel M Verbeek
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
- Translational Metabolic Laboratory, Department Laboratory Medicine, Radboud University Medical Cente, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Jolanta Sykut-Cegielska
- Department of Inborn Errors of Metabolism and Paediatrics, Institute of Mother and Child, Warsaw, Poland
| | - Michèl A A P Willemsen
- Department of Pediatric Neurology, Radboud University Medical Centre, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Ron A Wevers
- Translational Metabolic Laboratory, Department Laboratory Medicine, Radboud University Medical Cente, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Krystyna Szymańska
- Department of Child and Adolescent Psychiatry, Medical University of Warsaw, Warsaw, Poland
| | - Jarosław Poznanski
- Department of Biophysics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Jakub Drozak
- Department of Metabolic Regulation, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | | | - Mariarita Bertoldi
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy.
| |
Collapse
|
4
|
Blahut M, Wise CE, Bruno MR, Dong G, Makris TM, Frantom PA, Dunkle JA, Outten FW. Direct observation of intermediates in the SufS cysteine desulfurase reaction reveals functional roles of conserved active-site residues. J Biol Chem 2019; 294:12444-12458. [PMID: 31248989 DOI: 10.1074/jbc.ra119.009471] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/16/2019] [Indexed: 12/25/2022] Open
Abstract
Iron-sulfur (Fe-S) clusters are necessary for the proper functioning of numerous metalloproteins. Fe-S cluster (Isc) and sulfur utilization factor (Suf) pathways are the key biosynthetic routes responsible for generating these Fe-S cluster prosthetic groups in Escherichia coli Although Isc dominates under normal conditions, Suf takes over during periods of iron depletion and oxidative stress. Sulfur acquisition via these systems relies on the ability to remove sulfur from free cysteine using a cysteine desulfurase mechanism. In the Suf pathway, the dimeric SufS protein uses the cofactor pyridoxal 5'-phosphate (PLP) to abstract sulfur from free cysteine, resulting in the production of alanine and persulfide. Despite much progress, the stepwise mechanism by which this PLP-dependent enzyme operates remains unclear. Here, using rapid-mixing kinetics in conjunction with X-ray crystallography, we analyzed the pre-steady-state kinetics of this process while assigning early intermediates of the mechanism. We employed H123A and C364A SufS variants to trap Cys-aldimine and Cys-ketimine intermediates of the cysteine desulfurase reaction, enabling direct observations of these intermediates and associated conformational changes of the SufS active site. Of note, we propose that Cys-364 is essential for positioning the Cys-aldimine for Cα deprotonation, His-123 acts to protonate the Ala-enamine intermediate, and Arg-56 facilitates catalysis by hydrogen bonding with the sulfhydryl of Cys-aldimine. Our results, along with previous SufS structural findings, suggest a detailed model of the SufS-catalyzed reaction from Cys binding to C-S bond cleavage and indicate that Arg-56, His-123, and Cys-364 are critical SufS residues in this C-S bond cleavage pathway.
Collapse
Affiliation(s)
- Matthew Blahut
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Courtney E Wise
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Michael R Bruno
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 35487
| | - Guangchao Dong
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Thomas M Makris
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Patrick A Frantom
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 35487
| | - Jack A Dunkle
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 35487.
| | - F Wayne Outten
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208.
| |
Collapse
|
5
|
Zeifman YS, Boyko KM, Nikolaeva AY, Timofeev VI, Rakitina TV, Popov VO, Bezsudnova EY. Functional characterization of PLP fold type IV transaminase with a mixed type of activity from Haliangium ochraceum. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:575-585. [PMID: 30902765 DOI: 10.1016/j.bbapap.2019.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/01/2019] [Accepted: 03/16/2019] [Indexed: 12/11/2022]
Abstract
Pyridoxal-5'-phosphate (PLP)-dependent transaminases are industrially important enzymes catalyzing the stereoselective amination of ketones and keto acids. Transaminases of PLP fold type IV are characterized by (R)- or (S)-stereoselective transfer of amino groups, depending on the substrate profile of the enzyme. PLP fold type IV transaminases include branched-chain amino acid transaminases (BCATs), D-amino acid transaminases and (R)-amine:pyruvate transaminases. Recently, transaminases with a mixed type of activity were identified and characterized. Here, we report biochemical and structural characterization of a transaminase from myxobacterium Haliangium ochraceum (Hoch3033), which is active towards keto analogs of branched-chain amino acids (specific substrates for BCATs) and (R)-(+)-α-methylbenzylamine (specific substrate for (R)-amine:pyruvate transaminases). The enzyme is characterized by an alkaline pH optimum (pH 10.0-10.5) and a tolerance to high salt concentrations (up to 2 M NaCl). The structure of Hoch3033 was determined at 2.35 Å resolution. The overall fold of the enzyme was similar to those of known enzymes of PLP fold type IV. The mixed type of activity of Hoch3033 was implemented within the BCAT-like active site. However, in the active site of Hoch3033, we observed substitutions of specificity-determining residues that are important for substrate binding in canonical BCATs. We suggest that these changes result in the loss of activity towards α-ketoglutarate and increase the affinity towards (R)-(+)-α-methylbenzylamine. These results complement our knowledge of the catalytic diversity of transaminases and indicate the need for further research to understand the structural basis of substrate specificity in these enzymes.
Collapse
Affiliation(s)
- Yulia S Zeifman
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russian Federation; Kurchatov Complex of NBICS-Technologies, National Research Center "Kurchatov Institute", Akad. Kurchatova sqr 1, 123182 Moscow, Russian Federation.
| | - Konstantin M Boyko
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russian Federation; Kurchatov Complex of NBICS-Technologies, National Research Center "Kurchatov Institute", Akad. Kurchatova sqr 1, 123182 Moscow, Russian Federation
| | - Alena Yu Nikolaeva
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russian Federation; Kurchatov Complex of NBICS-Technologies, National Research Center "Kurchatov Institute", Akad. Kurchatova sqr 1, 123182 Moscow, Russian Federation
| | - Vladimir I Timofeev
- Kurchatov Complex of NBICS-Technologies, National Research Center "Kurchatov Institute", Akad. Kurchatova sqr 1, 123182 Moscow, Russian Federation; FSRC «Crystallography and Photonics» RAS, Leninskiy Prospekt 59, 119333 Moscow, Russian Federation
| | - Tatiana V Rakitina
- Kurchatov Complex of NBICS-Technologies, National Research Center "Kurchatov Institute", Akad. Kurchatova sqr 1, 123182 Moscow, Russian Federation; Shemyakin&Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya str. 16/10, 117997 Moscow, Russian Federation
| | - Vladimir O Popov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russian Federation; Kurchatov Complex of NBICS-Technologies, National Research Center "Kurchatov Institute", Akad. Kurchatova sqr 1, 123182 Moscow, Russian Federation
| | - Ekaterina Yu Bezsudnova
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russian Federation
| |
Collapse
|
6
|
Abstract
The pKa values for substrates acting as carbon acids (i.e., C-H deprotonation reactions) in several enzyme active sites are presented. The information needed to calculate them includes the pKa of the active site acid/base catalyst and the equilibrium constant for the deprotonation step. Carbon acidity is obtained from the relation pKeq = pKar–pKap = ΔpKa for a proton transfer reaction. Five enzymatic free energy profiles (FEPs) were calculated to obtain the equilibrium constants for proton transfer from carbon in the active site, and six additional proton transfer equilibrium constants were extracted from data available in the literature, allowing substrate C-H pKas to be calculated for 11 enzymes. Active site-bound substrate C-H pKa values range from 5.6 for ketosteroid isomerase to 16 for proline racemase. Compared to values in water, enzymes lower substrate C-H pKas by up to 23 units, corresponding to 31 kcal/mol of carbanion stabilization energy. Calculation of Marcus intrinsic barriers (ΔG0‡) for pairs of non-enzymatic/enzymatic reactions shows significant reductions in ΔG0‡ for cofactor-independent enzymes, while pyridoxal phosphate dependent enzymes appear to increase ΔG0‡ to a small extent as a consequence of carbanion resonance stabilization. The large increases in carbon acidity found here are central to the large rate enhancements observed in enzymes that catalyze carbon deprotonation.
Collapse
Affiliation(s)
- Michael D Toney
- Department of Chemistry, University of California, Davis, Davis, CA, United States
| |
Collapse
|
7
|
Unique substrate specificity of ornithine aminotransferase from Toxoplasma gondii. Biochem J 2017; 474:939-955. [DOI: 10.1042/bcj20161021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/25/2017] [Accepted: 01/25/2017] [Indexed: 12/28/2022]
Abstract
Toxoplasma gondii is a protozoan parasite of medical and veterinary relevance responsible for toxoplasmosis in humans. As an efficacious vaccine remains a challenge, chemotherapy is still the most effective way to combat the disease. In search of novel druggable targets, we performed a thorough characterization of the putative pyridoxal 5′-phosphate (PLP)-dependent enzyme ornithine aminotransferase from T. gondii ME49 (TgOAT). We overexpressed the protein in Escherichia coli and analysed its molecular and kinetic properties by UV-visible absorbance, fluorescence and CD spectroscopy, in addition to kinetic studies of both the steady state and pre-steady state. TgOAT is largely similar to OATs from other species regarding its general transamination mechanism and spectral properties of PLP; however, it does not show a specific ornithine aminotransferase activity like its human homologue, but exhibits both N-acetylornithine and γ-aminobutyric acid (GABA) transaminase activity in vitro, suggesting a role in both arginine and GABA metabolism in vivo. The presence of Val79 in the active site of TgOAT in place of Tyr, as in its human counterpart, provides the necessary room to accommodate N-acetylornithine and GABA, resembling the active site arrangement of GABA transaminases. Moreover, mutation of Val79 to Tyr results in a change of substrate preference between GABA, N-acetylornithine and L-ornithine, suggesting a key role of Val79 in defining substrate specificity. The findings that TgOAT possesses parasite-specific structural features as well as differing substrate specificity from its human homologue make it an attractive target for anti-toxoplasmosis inhibitor design that can be exploited for chemotherapeutic intervention.
Collapse
|
8
|
Amorim Franco TM, Hegde S, Blanchard JS. Chemical Mechanism of the Branched-Chain Aminotransferase IlvE from Mycobacterium tuberculosis. Biochemistry 2016; 55:6295-6303. [PMID: 27780341 DOI: 10.1021/acs.biochem.6b00928] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The biosynthetic pathway of the branched-chain amino acids is essential for Mycobacterium tuberculosis growth and survival. We report here the kinetic and chemical mechanism of the pyridoxal 5'-phosphate (PLP)-dependent branched-chain aminotransferase, IlvE, from M. tuberculosis (MtIlvE). This enzyme is responsible for the final step of the synthesis of the branched-chain amino acids isoleucine, leucine, and valine. As seen in other aminotransferases, MtIlvE displays a ping-pong kinetic mechanism. pK values were identified from the pH dependence on V as well as V/K, indicating that the phosphate ester of the PLP cofactor, and the α-amino group from l-glutamate and the active site Lys204, play roles in acid-base catalysis and binding, respectively. An intrinsic primary kinetic isotope effect was identified for the α-C-H bond cleavage of l-glutamate. Large solvent kinetic isotope effect values for the ping and pong half-reactions were also identified. The absence of a quininoid intermediate in combination with the Dkobs in our multiple kinetic isotope effects under single-turnover conditions suggests a concerted type of mechanism. The deprotonation of C2 of l-glutamate and the protonation of C4' of the PLP cofactor happen synchronously in the ping half-reaction. A chemical mechanism is proposed on the basis of the results obtained here.
Collapse
Affiliation(s)
- Tathyana M Amorim Franco
- Department of Biochemistry, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Subray Hegde
- Department of Biochemistry, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - John S Blanchard
- Department of Biochemistry, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| |
Collapse
|
9
|
Molecular and Spectroscopic Characterization of Aspergillus flavipes and Pseudomonas putida L-Methionine γ-Lyase in Vitro. Appl Biochem Biotechnol 2016; 181:1513-1532. [PMID: 27796875 DOI: 10.1007/s12010-016-2299-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/20/2016] [Indexed: 01/11/2023]
Abstract
Pseudomonas putida L-methionine γ-lyase (PpMGL) has been recognized as an efficient anticancer agent, however, its antigenicity and stability remain as critical challenges for its clinical use. From our studies, Aspergillus flavipes L-methionine γ-lyase (AfMGL) displayed more affordable biochemical properties than PpMGL. Thus, the objective of this work was to comparatively assess the functional properties of AfMGL and PpMGL via stability of their internal aldimine linkage, tautomerism of pyridoxal 5'-phosphate (PLP) and structural stability responsive to physicochemical factors. The internal Schiff base of AfMGL and PpMGL have the same stability to hydroxylamine and human serum albumin. Acidic pHs resulted in strong cleavage of the internal Schiff base, inducing the unfolding of MGLs, compared to neutral-alkaline pHs. At λ 280 nm excitation, both AfMGL and PpMGL have identical fluorescence emission spectra at λ 335 nm for the intrinsic tryptophan and λ 560 nm for the internal Schiff base. The maximum PLP tautomeric shift of ketoenamine to enolimine was detected at acidic pH causing complete enzyme unfolding, subunits dissociation and tautomeric shift of intrinsic PLP, rather than neutral-alkaline ones. The T m of AfMGL and PpMGL in presence of thermal stabilizer/ destabilizer was assayed by DSF. The T m of AfMGL and PpMGL was 73.1 °C and 74.4 °C, respectively, suggesting the higher proximity to the tertiary structure of both enzymes. The T m of AfMGL and PpMGL was slightly increased by trehalose and EDTA in contrast to guanidine HCl and urea. The active site and PLP-binding domains are identically conserved in both AfMGL and PpMGL.
Collapse
|
10
|
El-Sayed AS, Abdel-Azeim S, Ibrahim HM, Yassin MA, Abdel-Ghany SE, Esener S, Ali GS. Biochemical stability and molecular dynamic characterization of Aspergillus fumigatus cystathionine γ-lyase in response to various reaction effectors. Enzyme Microb Technol 2015; 81:31-46. [DOI: 10.1016/j.enzmictec.2015.08.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 06/28/2015] [Accepted: 08/10/2015] [Indexed: 01/28/2023]
|
11
|
Takenaka T, Ito T, Miyahara I, Hemmi H, Yoshimura T. A new member of MocR/GabR-type PLP-binding regulator ofd-alanyl-d-alanine ligase inBrevibacillus brevis. FEBS J 2015; 282:4201-17. [DOI: 10.1111/febs.13415] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 07/28/2015] [Accepted: 08/12/2015] [Indexed: 11/27/2022]
Affiliation(s)
- Takashi Takenaka
- Department of Applied Molecular Biosciences; Graduate School of Bioagricultural Sciences; Nagoya University; Japan
| | - Tomokazu Ito
- Department of Applied Molecular Biosciences; Graduate School of Bioagricultural Sciences; Nagoya University; Japan
| | - Ikuko Miyahara
- Department of Chemistry; Graduate School of Science; Osaka City University; Japan
| | - Hisashi Hemmi
- Department of Applied Molecular Biosciences; Graduate School of Bioagricultural Sciences; Nagoya University; Japan
| | - Tohru Yoshimura
- Department of Applied Molecular Biosciences; Graduate School of Bioagricultural Sciences; Nagoya University; Japan
| |
Collapse
|
12
|
Mechanistic studies of a novel C-S lyase in ergothioneine biosynthesis: the involvement of a sulfenic acid intermediate. Sci Rep 2015; 5:11870. [PMID: 26149121 PMCID: PMC4493562 DOI: 10.1038/srep11870] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/09/2015] [Indexed: 12/29/2022] Open
Abstract
Ergothioneine is a histidine thio-derivative isolated in 1909. In ergothioneine biosynthesis, the combination of a mononuclear non-heme iron enzyme catalyzed oxidative C-S bond formation reaction and a PLP-mediated C-S lyase (EgtE) reaction results in a net sulfur transfer from cysteine to histidine side-chain. This demonstrates a new sulfur transfer strategy in the biosynthesis of sulfur-containing natural products. Due to difficulties associated with the overexpression of Mycobacterium smegmatis EgtE protein, the proposed EgtE functionality remained to be verified biochemically. In this study, we have successfully overexpressed and purified M. smegmatis EgtE enzyme and evaluated its activities under different in vitro conditions: C-S lyase reaction using either thioether or sulfoxide as a substrate in the presence or absence of reductants. Results from our biochemical characterizations support the assignment of sulfoxide 4 as the native EgtE substrate and the involvement of a sulfenic acid intermediate in the ergothioneine C-S lyase reaction.
Collapse
|
13
|
Chan-Huot M, Dos A, Zander R, Sharif S, Tolstoy PM, Compton S, Fogle E, Toney MD, Shenderovich I, Denisov GS, Limbach HH. NMR Studies of Protonation and Hydrogen Bond States of Internal Aldimines of Pyridoxal 5′-Phosphate Acid–Base in Alanine Racemase, Aspartate Aminotransferase, and Poly-l-lysine. J Am Chem Soc 2013; 135:18160-75. [DOI: 10.1021/ja408988z] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Monique Chan-Huot
- Institut
für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
- Ecole Normale Supérieure, Laboratoire des BioMolécules, 24 rue Lhomond, 75231 Cedex 05, Paris, France
| | - Alexandra Dos
- Institut
für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Reinhard Zander
- Institut
für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Shasad Sharif
- Institut
für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Peter M. Tolstoy
- Institut
für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
- Department
of Chemistry, St. Petersburg State University, Universitetskij pr. 26, 198504 St. Petersburg, Russian Federation
| | - Shara Compton
- Department
of Chemistry, University of California—Davis, One Shields Avenue, Davis, California 95616, United States
- Department
of Chemistry, Widener University, One University Place, Chester, Pennsylvania 19013, United States
| | - Emily Fogle
- Department
of Chemistry, University of California—Davis, One Shields Avenue, Davis, California 95616, United States
- Department of Chemistry & Biochemistry, CalPoly, San Luis Obispo, California 93407, United States
| | - Michael D. Toney
- Department
of Chemistry, University of California—Davis, One Shields Avenue, Davis, California 95616, United States
| | - Ilya Shenderovich
- Institut
für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
- University of Regensburg, Universitätsstr.
31, 93040 Regensburg, Germany
| | - Gleb S. Denisov
- Institute
of Physics, St. Petersburg State University, 198504 St. Petersburg, Russian Federation
| | - Hans-Heinrich Limbach
- Institut
für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| |
Collapse
|
14
|
Interaction of human Dopa decarboxylase with L-Dopa: spectroscopic and kinetic studies as a function of pH. BIOMED RESEARCH INTERNATIONAL 2013; 2013:161456. [PMID: 23781496 PMCID: PMC3677616 DOI: 10.1155/2013/161456] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 05/08/2013] [Indexed: 01/03/2023]
Abstract
Human Dopa decarboxylase (hDDC), a pyridoxal 5′-phosphate (PLP) enzyme, displays maxima at 420 and 335 nm and emits fluorescence at 384 and 504 nm upon excitation at 335 nm and at 504 nm when excited at 420 nm. Absorbance and fluorescence titrations of hDDC-bound coenzyme identify a single pKspec of ~7.2. This pKspec could not represent the ionization of a functional group on the Schiff base but that of an enzymic residue governing the equilibrium between the low- and the high-pH forms of the internal aldimine. During the reaction of hDDC with L-Dopa, monitored by stopped-flow spectrophotometry, a 420 nm band attributed to the 4′-N-protonated external aldimine first appears, and its decrease parallels the emergence of a 390 nm peak, assigned to the 4′-N-unprotonated external aldimine. The pH profile of the spectral change at 390 nm displays a pK of 6.4, a value similar to that (~6.3) observed in both kcat and kcat/Km profiles. This suggests that this pK represents the ESH+ → ES catalytic step. The assignment of the pKs of 7.9 and 8.3 observed on the basic side of kcat and the PLP binding affinity profiles, respectively, is also analyzed and discussed.
Collapse
|
15
|
Özdemir N, Dayan S, Dayan O, Dinçer M, Kalaycıoğlu NÖ. Experimental and molecular modeling investigation of (E)-N-{2-[(2-hydroxybenzylidene)amino]phenyl}benzenesulfonamide. Mol Phys 2012. [DOI: 10.1080/00268976.2012.742209] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Namık Özdemir
- a Department of Physics , Faculty of Arts and Sciences, Ondokuz Mayıs University , 55139, Samsun , Turkey
| | - Serkan Dayan
- b Department of Chemistry , Faculty of Science, Erciyes University , 38039, Kayseri , Turkey
| | - Osman Dayan
- c Laboratory of Inorganic Synthesis and Molecular Catalysis , Çanakkale Onsekiz Mart University , 17020, Çanakkale , Turkey
| | - Muharrem Dinçer
- a Department of Physics , Faculty of Arts and Sciences, Ondokuz Mayıs University , 55139, Samsun , Turkey
| | - Nilgün Ö. Kalaycıoğlu
- b Department of Chemistry , Faculty of Science, Erciyes University , 38039, Kayseri , Turkey
| |
Collapse
|
16
|
Li T, Huo L, Pulley C, Liu A. Decarboxylation mechanisms in biological system. Bioorg Chem 2012; 43:2-14. [PMID: 22534166 DOI: 10.1016/j.bioorg.2012.03.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 03/04/2012] [Accepted: 03/19/2012] [Indexed: 11/30/2022]
Abstract
This review examines the mechanisms propelling cofactor-independent, organic cofactor-dependent and metal-dependent decarboxylase chemistry. Decarboxylation, the removal of carbon dioxide from organic acids, is a fundamentally important reaction in biology. Numerous decarboxylase enzymes serve as key components of aerobic and anaerobic carbohydrate metabolism and amino acid conversion. In the past decade, our knowledge of the mechanisms enabling these crucial decarboxylase reactions has continued to expand and inspire. This review focuses on the organic cofactors biotin, flavin, NAD, pyridoxal 5'-phosphate, pyruvoyl, and thiamin pyrophosphate as catalytic centers. Significant attention is also placed on the metal-dependent decarboxylase mechanisms.
Collapse
Affiliation(s)
- Tingfeng Li
- Department of Biochemistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | | | | | | |
Collapse
|
17
|
Eklund S, Lindås AC, Hamnevik E, Widersten M, Tomkinson B. Exploring the active site of tripeptidyl-peptidase II through studies of pH dependence of reaction kinetics. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:561-70. [DOI: 10.1016/j.bbapap.2012.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 01/03/2012] [Accepted: 01/03/2012] [Indexed: 11/16/2022]
|
18
|
Open conformation of human DOPA decarboxylase reveals the mechanism of PLP addition to Group II decarboxylases. Proc Natl Acad Sci U S A 2011; 108:20514-9. [PMID: 22143761 DOI: 10.1073/pnas.1111456108] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DOPA decarboxylase, the dimeric enzyme responsible for the synthesis of neurotransmitters dopamine and serotonin, is involved in severe neurological diseases such as Parkinson disease, schizophrenia, and depression. Binding of the pyridoxal-5'-phosphate (PLP) cofactor to the apoenzyme is thought to represent a central mechanism for the regulation of its activity. We solved the structure of the human apoenzyme and found it exists in an unexpected open conformation: compared to the pig kidney holoenzyme, the dimer subunits move 20 Å apart and the two active sites become solvent exposed. Moreover, by tuning the PLP concentration in the crystals, we obtained two more structures with different conformations of the active site. Analysis of three-dimensional data coupled to a kinetic study allows to identify the structural determinants of the open/close conformational change occurring upon PLP binding and thereby propose a model for the preferential degradation of the apoenzymes of Group II decarboxylases.
Collapse
|
19
|
Karsten WE, Reyes ZL, Bobyk KD, Cook PF, Chooback L. Mechanism of the aromatic aminotransferase encoded by the Aro8 gene from Saccharomyces cerevisiae. Arch Biochem Biophys 2011; 516:67-74. [PMID: 21982920 DOI: 10.1016/j.abb.2011.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 09/20/2011] [Accepted: 09/22/2011] [Indexed: 11/28/2022]
Abstract
The amino acid L-lysine is synthesized in Saccharomyces cerevisiae via the α-aminoadipate pathway. An as yet unidentified PLP-containing aminotransferase is thought to catalyze the formation of α-aminoadipate from α-ketoadipate in the L-lysine biosynthetic pathway that could be the yeast Aro8 gene product. A screen of several different amino acids and keto-acids showed that the enzyme uses L-tyrosine, L-phenylalanine, α-ketoadipate, and L-α-aminoadipate as substrates. The UV-visible spectrum of the aminotransferase exhibits maxima at 280 and 343 nm at pH 7.5. As the pH is decreased the peak at 343 nm (the unprotonated internal aldimine) disappears and two new peaks at 328 and 400 nm are observed representing the enolimine and ketoenamine tautomers of the protonated aldimine, respectively. Addition, at pH 7.1, of α-ketoadipate to free enzyme leads to disappearance of the absorbance at 343 nm and appearance of peaks at 328 and 424 nm. The V/E(t) and V/K(α-ketoadipate)E(t) pH profiles are pH independent from pH 6.5 to 9.6, while the V/K(L-tyrosine) pH-rate profile decreases below a single pK(a) of 7.0 ± 0.1. Data suggest the active enzyme form is with the internal aldimine unprotonated. We conclude the enzyme should be categorized as a α-aminoadipate aminotransferase.
Collapse
Affiliation(s)
- William E Karsten
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, 73019, USA
| | | | | | | | | |
Collapse
|
20
|
Türkoğlu G, Berber H, Dal H, Öğretir C. Synthesis, characterization, tautomerism and theoretical study of some new Schiff base derivatives. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2011; 79:1573-1583. [PMID: 21641858 DOI: 10.1016/j.saa.2011.04.089] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 03/30/2011] [Accepted: 04/10/2011] [Indexed: 05/30/2023]
Abstract
New Schiff base derivatives were prepared by the condensation of 5-chloro and 5-bromo salicylaldehyde with bis(o-aminophenol)ethers. Five bis(o-nitrophenol)ether compounds were synthesized using some ditosylate, 1,3-dibromopropane and 1,4-dibromobuthane with o-nitrophenol. These compounds were reduced to bis(o-aminophenol)ethers. The products have been characterized by elemental analysis, FTIR, 1H, 13C NMR, HETCOR and HMBC spectroscopic techniques. The tautomerisms of all of the Schiff bases compounds were determined in DMSO, CHCl3, C2H5OH and C6H12 solvents and in both acidic and basic media using the UV-vis spectrophotometric method. The heat of formation (ΔHf), enthalpy (ΔH), entropy (ΔS), Gibbs free energy (ΔGf and ΔG), stable isomers, conformations and tautomers of the synthesized compounds are calculated using the MOPAC2009 (PM6) program.
Collapse
Affiliation(s)
- Gülşen Türkoğlu
- Anadolu University, Faculty of Science, Chemistry Department, 26470 Eskişehir, Turkey
| | | | | | | |
Collapse
|
21
|
Limbach HH, Chan-Huot M, Sharif S, Tolstoy PM, Shenderovich IG, Denisov GS, Toney MD. Critical hydrogen bonds and protonation states of pyridoxal 5'-phosphate revealed by NMR. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1426-37. [PMID: 21703367 DOI: 10.1016/j.bbapap.2011.06.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 06/04/2011] [Accepted: 06/07/2011] [Indexed: 12/01/2022]
Abstract
In this contribution we review recent NMR studies of protonation and hydrogen bond states of pyridoxal 5'-phosphate (PLP) and PLP model Schiff bases in different environments, starting from aqueous solution, the organic solid state to polar organic solution and finally to enzyme environments. We have established hydrogen bond correlations that allow one to estimate hydrogen bond geometries from (15)N chemical shifts. It is shown that protonation of the pyridine ring of PLP in aspartate aminotransferase (AspAT) is achieved by (i) an intermolecular OHN hydrogen bond with an aspartate residue, assisted by the imidazole group of a histidine side chain and (ii) a local polarity as found for related model systems in a polar organic solvent exhibiting a dielectric constant of about 30. Model studies indicate that protonation of the pyridine ring of PLP leads to a dominance of the ketoenamine form, where the intramolecular OHN hydrogen bond of PLP exhibits a zwitterionic state. Thus, the PLP moiety in AspAT carries a net positive charge considered as a pre-requisite to initiate the enzyme reaction. However, it is shown that the ketoenamine form dominates in the absence of ring protonation when PLP is solvated by polar groups such as water. Finally, the differences between acid-base interactions in aqueous solution and in the interior of proteins are discussed. This article is part of a special issue entitled: Pyridoxal Phosphate Enzymology.
Collapse
Affiliation(s)
- Hans-Heinrich Limbach
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraβe 3, D-14195, Germany.
| | | | | | | | | | | | | |
Collapse
|
22
|
Controlling reaction specificity in pyridoxal phosphate enzymes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1407-18. [PMID: 21664990 DOI: 10.1016/j.bbapap.2011.05.019] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 05/18/2011] [Accepted: 05/25/2011] [Indexed: 11/20/2022]
Abstract
Pyridoxal 5'-phosphate enzymes are ubiquitous in the nitrogen metabolism of all organisms. They catalyze a wide variety of reactions including racemization, transamination, decarboxylation, elimination, retro-aldol cleavage, Claisen condensation, and others on substrates containing an amino group, most commonly α-amino acids. The wide variety of reactions catalyzed by PLP enzymes is enabled by the ability of the covalent aldimine intermediate formed between substrate and PLP to stabilize carbanionic intermediates at Cα of the substrate. This review attempts to summarize the mechanisms by which reaction specificity can be achieved in PLP enzymes by focusing on three aspects of these reactions: stereoelectronic effects, protonation state of the external aldimine intermediate, and interaction of the carbanionic intermediate with the protein side chains present in the active site. This article is part of a Special Issue entitled: Pyridoxal Phosphate Enzymology.
Collapse
|
23
|
Moya-García AA, Rodríguez-Agudo D, Hayashi H, Medina MA, Urdiales JL, Sánchez-Jiménez F. Analysis of Mammalian Histidine Decarboxylase Dimerization Interface Reveals an Electrostatic Hotspot Important for Catalytic Site Topology and Function. J Chem Theory Comput 2011; 7:1935-42. [DOI: 10.1021/ct100690p] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Aurelio A. Moya-García
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Campus de Teatinos, Universidad de Málaga, Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER), Málaga, Spain
| | - Daniel Rodríguez-Agudo
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Campus de Teatinos, Universidad de Málaga, Málaga, Spain
| | - Hideyuki Hayashi
- Department of Biochemistry, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Miguel Angel Medina
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Campus de Teatinos, Universidad de Málaga, Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER), Málaga, Spain
| | - José Luis Urdiales
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Campus de Teatinos, Universidad de Málaga, Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER), Málaga, Spain
| | - Francisca Sánchez-Jiménez
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Campus de Teatinos, Universidad de Málaga, Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER), Málaga, Spain
| |
Collapse
|
24
|
Crugeiras J, Rios A, Riveiros E, Richard JP. Substituent effects on electrophilic catalysis by the carbonyl group: anatomy of the rate acceleration for PLP-catalyzed deprotonation of glycine. J Am Chem Soc 2011; 133:3173-83. [PMID: 21323335 DOI: 10.1021/ja110795m] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
First-order rate constants, determined by (1)H NMR, are reported for deuterium exchange between solvent D(2)O and the α-amino carbon of glycine in the presence of increasing concentrations of carbonyl compounds (acetone, benzaldehyde, and salicylaldehyde) and at different pD and buffer concentrations. These rate data were combined with (1)H NMR data that define the position of the equilibrium for formation of imines/iminium ions from addition of glycine to the respective carbonyl compounds, to give second-order rate constants k(DO) for deprotonation of α-imino carbon by DO(-). The assumption that these second-order rate constants lie on linear structure-reactivity correlations between log k(OL) and pK(a) was made in estimating the following pK(a)'s for deprotonation of α-imino carbon: pK(a) = 22, glycine-acetone iminium ion; pK(a) = 27, glycine-benzaldehyde imine; pK(a) ≈ 23, glycine-benzaldehyde iminium ion; and, pK(a) = 25, glycine-salicylaldehyde iminium ion. The much lower pK(a) of 17 [Toth, K.; Richard, J. P. J. Am. Chem. Soc. 2007, 129, 3013-3021] for carbon deprotonation of the adduct between 5'-deoxypyridoxal (DPL) and glycine shows that the strongly electron-withdrawing pyridinium ion is unique in driving the extended delocalization of negative charge from the α-iminium to the α-pyridinium carbon. This favors carbanion protonation at the α-pyridinium carbon, and catalysis of the 1,3-aza-allylic isomerization reaction that is a step in enzyme-catalyzed transamination reactions. An analysis of the effect of incremental changes in structure on the activity of benzaldehyde in catalysis of deprotonation of glycine shows the carbonyl group electrophile, the 2-O(-) ring substituent and the cation pyridinium nitrogen of DPL each make a significant contribution to the catalytic activity of this cofactor analogue. The extraordinary activity of DPL in catalysis of deprotonation of α-amino carbon results from the summation of these three smaller effects.
Collapse
Affiliation(s)
- Juan Crugeiras
- Departamento de Química Física, Facultad de Química, Universidad de Santiago, 15782 Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
25
|
Thibodeaux CJ, Liu HW. Mechanistic studies of 1-aminocyclopropane-1-carboxylate deaminase: characterization of an unusual pyridoxal 5'-phosphate-dependent reaction. Biochemistry 2011; 50:1950-62. [PMID: 21244019 DOI: 10.1021/bi101927s] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1-Aminocyclopropane-1-carboxylic acid (ACC) deaminase (ACCD) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that cleaves the cyclopropane ring of ACC, to give α-ketobutyric acid and ammonia as products. The cleavage of the C(α)-C(β) bond of an amino acid substrate is a rare event in PLP-dependent enzyme catalysis. Potential chemical mechanisms involving nucleophile- or acid-catalyzed cyclopropane ring opening have been proposed for the unusual transformation catalyzed by ACCD, but the actual mode of cyclopropane ring cleavage remains obscure. In this report, we aim to elucidate the mechanistic features of ACCD catalysis by investigating the kinetic properties of ACCD from Pseudomonas sp. ACP and several of its mutant enzymes. Our studies suggest that the pK(a) of the conserved active site residue, Tyr294, is lowered by a hydrogen bonding interaction with a second conserved residue, Tyr268. This allows Tyr294 to deprotonate the incoming amino group of ACC to initiate the aldimine exchange reaction between ACC and the PLP coenzyme and also likely helps to activate Tyr294 for a role as a nucleophile to attack and cleave the cyclopropane ring of the substrate. In addition, solvent kinetic isotope effect (KIE), proton inventory, and (13)C KIE studies of the wild type enzyme suggest that the C(α)-C(β) bond cleavage step in the chemical mechanism is at least partially rate-limiting under k(cat)/K(m) conditions and is likely preceded in the mechanism by a partially rate-limiting step involving the conversion of a stable gem-diamine intermediate into a reactive external aldimine intermediate that is poised for cyclopropane ring cleavage. When viewed within the context of previous mechanistic and structural studies of ACCD enzymes, our studies are most consistent with a mode of cyclopropane ring cleavage involving nucleophilic catalysis by Tyr294.
Collapse
Affiliation(s)
- Christopher J Thibodeaux
- Division of Medicinal Chemistry, College of Pharmacy, Department of Chemistry and Biochemistry, and Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712, United States
| | | |
Collapse
|
26
|
Fogle EJ, Toney MD. Mutational analysis of substrate interactions with the active site of dialkylglycine decarboxylase. Biochemistry 2010; 49:6485-93. [PMID: 20540501 DOI: 10.1021/bi100648w] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pyridoxal phosphate (PLP)-dependent enzymes catalyze many different types of reactions at the alpha-, beta-, and gamma-carbons of amine and amino acid substrates. Dialkylglycine decarboxylase (DGD) is an unusual PLP-dependent enzyme that catalyzes two reaction types, decarboxylation and transamination, in the same active site. A structurally based, functional model has been proposed for the DGD active site, which maintains that R406 is important in determining substrate specificity through interactions with the substrate carboxylate while W138 provides specificity for short-chain alkyl groups. The mechanistic roles of R406 and W138 were investigated using site-directed mutagenesis, alternate substrates, and analysis of steady-state and half-reaction kinetics. Experiments with the R406M and R406K mutants confirm the importance of R406 in substrate binding. Surprisingly, this work also shows that the positive charge of R406 facilitates catalysis of decarboxylation. The W138F mutant demonstrates that W138 indeed acts to limit the size of the subsite C binding pocket, determining specificity for 2,2-dialkylglycines with small side chains as predicted by the model. Finally, work with the double mutant W138F/M141R shows that these mutations expand substrate specificity to include l-glutamate and lead to an increase in specificity for l-glutamate over 2-aminoisobutyrate of approximately 8 orders of magnitude compared to that of wild-type DGD.
Collapse
Affiliation(s)
- Emily J Fogle
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | | |
Collapse
|
27
|
Unver H, Hayvali Z. Synthesis, spectroscopic studies and structures of square-planar nickel(II) and copper(II) complexes derived from 2-{(Z)-[furan-2-ylmethyl]imino]methyl}-6-methoxyphenol. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2010; 75:782-788. [PMID: 20047854 DOI: 10.1016/j.saa.2009.11.055] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 11/20/2009] [Accepted: 11/27/2009] [Indexed: 05/28/2023]
Abstract
Two new nickel(II) [Ni(L)(2)] and copper(II) [Cu(L)(2)] complexes have been synthesized with bidentate NO donor Schiff base ligand (2-{(Z)-[furan-2-ylmethyl]imino]methyl}-6-methoxyphenol) (HL) and both complexes Ni(L)(2) and Cu(L)(2) have been characterized by elemental analyses, IR, UV-vis, (1)H, (13)C NMR, mass spectroscopy and room temperature magnetic susceptibility measurement. The tautomeric equilibria (phenol-imine, O-H...N and keto-amine, O...H-N forms) have been systemetically studied by using UV-vis absorption spectra for the ligand HL. The UV-vis spectra of this ligand HL were recorded and commented in polar, non-polar, acidic and basic media. The crystal structures of these complexes have also been determined by using X-ray crystallographic techniques. The complexes Ni(L)(2) and Cu(L)(2) crystallize in the monoclinic space group P2(1)/n and P2(1)/c with unit cell parameters: a=10.4552(3)A and 12.1667(4)A, b=8.0121(3)A and 10.4792(3)A, c=13.9625(4)A and 129.6616(3)A, V=1155.22(6)A(3) and 1155.22(6)A(3), D(x)=1.493 and 1.476 g cm(-3) and Z=2 and 2, respectively. The crystal structures were solved by direct methods and refined by full-matrix least squares to a find R=0.0377 and 0.0336 of for 2340 and 2402 observed reflections, respectively.
Collapse
Affiliation(s)
- Hüseyin Unver
- Faculty of Science, Department of Physics, Ankara University, TR-06100 Tandogan, Ankara, Turkey.
| | | |
Collapse
|
28
|
Pennacchietti E, Lammens TM, Capitani G, Franssen MCR, John RA, Bossa F, De Biase D. Mutation of His465 alters the pH-dependent spectroscopic properties of Escherichia coli glutamate decarboxylase and broadens the range of its activity toward more alkaline pH. J Biol Chem 2009; 284:31587-96. [PMID: 19797049 DOI: 10.1074/jbc.m109.049577] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glutamate decarboxylase (GadB) from Escherichia coli is a hexameric, pyridoxal 5'-phosphate-dependent enzyme catalyzing CO(2) release from the alpha-carboxyl group of L-glutamate to yield gamma-aminobutyrate. GadB exhibits an acidic pH optimum and undergoes a spectroscopically detectable and strongly cooperative pH-dependent conformational change involving at least six protons. Crystallographic studies showed that at mildly alkaline pH GadB is inactive because all active sites are locked by the C termini and that the 340 nm absorbance is an aldamine formed by the pyridoxal 5'-phosphate-Lys(276) Schiff base with the distal nitrogen of His(465), the penultimate residue in the GadB sequence. Herein we show that His(465) has a massive influence on the equilibrium between active and inactive forms, the former being favored when this residue is absent. His(465) contributes with n approximately 2.5 to the overall cooperativity of the system. The residual cooperativity (n approximately 3) is associated with the conformational changes still occurring at the N-terminal ends regardless of the mutation. His(465), dispensable for the cooperativity that affects enzyme activity, is essential to include the conformational change of the N termini into the cooperativity of the whole system. In the absence of His(465), a 330-nm absorbing species appears, with fluorescence emission spectra more complex than model compounds and consisting of two maxima at 390 and 510 nm. Because His(465) mutants are active at pH well above 5.7, they appear to be suitable for biotechnological applications.
Collapse
Affiliation(s)
- Eugenia Pennacchietti
- Istituto Pasteur, Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Sapienza Università di Roma, 00185 Roma, Italy
| | | | | | | | | | | | | |
Collapse
|
29
|
A Common Structural Basis for pH- and Calmodulin-mediated Regulation in Plant Glutamate Decarboxylase. J Mol Biol 2009; 392:334-51. [DOI: 10.1016/j.jmb.2009.06.080] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 06/27/2009] [Accepted: 06/29/2009] [Indexed: 01/11/2023]
|
30
|
Hauenstein SI, Perona JJ. Redundant synthesis of cysteinyl-tRNACys in Methanosarcina mazei. J Biol Chem 2008; 283:22007-17. [PMID: 18559341 PMCID: PMC2494925 DOI: 10.1074/jbc.m801839200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 05/19/2008] [Indexed: 11/06/2022] Open
Abstract
A subset of methanogenic archaea synthesize the cysteinyl-tRNA(Cys) (Cys-tRNA(Cys)) needed for protein synthesis using both a canonical cysteinyl-tRNA synthetase (CysRS) as well as a set of two enzymes that operate via a separate indirect pathway. In the indirect route, phosphoseryl-tRNA(Cys) (Sep-tRNA(Cys)) is first synthesized by phosphoseryl-tRNA synthetase (SepRS), and this misacylated intermediate is then converted to Cys-tRNA(Cys) by Sep-tRNA:Cys-tRNA synthase (SepCysS) via a pyridoxal phosphate-dependent mechanism. Here, we explore the function of all three enzymes in the mesophilic methanogen Methanosarcina mazei. The genome of M. mazei also features three distinct tRNA(Cys) isoacceptors, further indicating the unusual and complex nature of Cys-tRNA(Cys) synthesis in this organism. Comparative aminoacylation kinetics by M. mazei CysRS and SepRS reveals that each enzyme prefers a distinct tRNA(Cys) isoacceptor or pair of isoacceptors. Recognition determinants distinguishing the tRNAs are shown to reside in the globular core of the molecule. Both enzymes also require the S-adenosylmethione-dependent formation of (m1)G37 in the anticodon loop for efficient aminoacylation. We further report a new, highly sensitive assay to measure the activity of SepCysS under anaerobic conditions. With this approach, we demonstrate that SepCysS functions as a multiple-turnover catalyst with kinetic behavior similar to bacterial selenocysteine synthase and the archaeal/eukaryotic SepSecS enzyme. Together, these data suggest that both metabolic routes and all three tRNA(Cys) species in M. mazei play important roles in the cellular physiology of the organism.
Collapse
Affiliation(s)
- Scott I Hauenstein
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, USA
| | | |
Collapse
|
31
|
Hayvali Z, Yardimci D. Synthesis and spectroscopic characterization of asymmetric Schiff bases derived from 4′-formylbenzo-15-crown-5 containing recognition sites for alkali and transition metal guest cations. TRANSIT METAL CHEM 2008. [DOI: 10.1007/s11243-008-9060-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
32
|
Observation by NMR of the tautomerism of an intramolecular OHOHN-charge relay chain in a model Schiff base. J Mol Struct 2007. [DOI: 10.1016/j.molstruc.2007.04.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Turbeville TD, Zhang J, Hunter GA, Ferreira GC. Histidine 282 in 5-aminolevulinate synthase affects substrate binding and catalysis. Biochemistry 2007; 46:5972-81. [PMID: 17469798 PMCID: PMC2566939 DOI: 10.1021/bi062053k] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
5-Aminolevulinate synthase (ALAS), the first enzyme of the heme biosynthetic pathway in mammalian cells, is a member of the alpha-oxoamine synthase family of pyridoxal 5'-phosphate (PLP)-dependent enzymes. In all structures of the enzymes of the -oxoamine synthase family, a conserved histidine hydrogen bonds with the phenolic oxygen of the PLP cofactor and may be significant for substrate binding, PLP positioning, and maintenance of the pKa of the imine nitrogen. In ALAS, replacing the equivalent histidine, H282, with alanine reduces the catalytic efficiency for glycine 450-fold and decreases the slow phase rate for glycine binding by 85%. The distribution of the absorbing 420 and 330 nm species was altered with an A420/A330 ratio increased from 0.45 to 1.05. This shift in species distribution was mirrored in the cofactor fluorescence and 300-500 nm circular dichroic spectra and likely reflects variation in the tautomer distribution of the holoenzyme. The 300-500 nm circular dichroism spectra of ALAS and H282A diverged in the presence of either glycine or aminolevulinate, indicating that the reorientation of the PLP cofactor upon external aldimine formation is impeded in H282A. Alterations were also observed in the K(Gly)d value and spectroscopic and kinetic properties, while the K(PLP)d increased 9-fold. Altogether, the results imply that H282 coordinates the movement of the pyridine ring with the reorganization of the active site hydrogen bond network and acts as a hydrogen bond donor to the phenolic oxygen to maintain the protonated Schiff base and enhance the electron sink function of the PLP cofactor.
Collapse
Affiliation(s)
- Tracy D Turbeville
- Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, Florida 33612, USA
| | | | | | | |
Collapse
|
34
|
Wu Q, Liu YN, Chen H, Molitor EJ, Liu HW. A retro-evolution study of CDP-6-deoxy-D-glycero-L-threo-4-hexulose-3-dehydrase (E1) from Yersinia pseudotuberculosis: implications for C-3 deoxygenation in the biosynthesis of 3,6-dideoxyhexoses. Biochemistry 2007; 46:3759-67. [PMID: 17323931 PMCID: PMC2515278 DOI: 10.1021/bi602352g] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
CDP-6-deoxy-l-threo-d-glycero-4-hexulose-3-dehydrase (E1), which catalyzes C-3 deoxygenation of CDP-4-keto-6-deoxyglucose in the biosynthesis of 3,6-dideoxyhexoses, shares a modest sequence identity with other B6-dependent enzymes, albeit with two important distinctions. It is a rare example of a B6-dependent enzyme that harbors a [2Fe-2S] cluster, and a highly conserved lysine that serves as an anchor for PLP in most B6-dependent enzymes is replaced by histidine at position 220 in E1. Since alteration of His220 to a lysine residue may produce a putative progenitor of E1, the H220K mutant was constructed and tested for the ability to process the predicted substrate, CDP-4-amino-4,6-dideoxyglucose, using PLP as the coenzyme. Our data showed that H220K-E1 has no dehydrase activity, but can act as a PLP-dependent transaminase. However, the reaction is not catalytic since PLP cannot be regenerated during turnover. Reported herein are the results of this investigation and the implications for the role of His220 in the catalytic mechanism of E1.
Collapse
Affiliation(s)
| | | | | | | | - Hung-wen Liu
- To whom correspondence and reprint requests should be addressed. Phone: 512-232-7811. Fax: 512-471-2746. E-mail:
| |
Collapse
|
35
|
Hontzeas N, Hontzeas CE, Glick BR. Reaction mechanisms of the bacterial enzyme 1-aminocyclopropane-1-carboxylate deaminase. Biotechnol Adv 2006; 24:420-6. [PMID: 16524684 DOI: 10.1016/j.biotechadv.2006.01.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase promotes plant growth by sequestering and cleaving plant-produced ACC thereby lowering the level of ethylene in the plant. Decreased ethylene levels allow the plant to be more resistant to a wide variety of environmental stresses. Here the biochemical reaction mechanisms involved in ACC deaminase activity are critically reviewed.
Collapse
Affiliation(s)
- Nikos Hontzeas
- Department of Pathology and Laboratory Medicine, UCLA David Geffen School of Medicine, 650 Charles E. Young Drive South, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
36
|
Schnackerz KD, Keller J, Phillips RS, Toney MD. Ionization state of pyridoxal 5′-phosphate in d-serine dehydratase, dialkylglycine decarboxylase and tyrosine phenol-lyase and the influence of monovalent cations as inferred by 31P NMR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:230-8. [PMID: 16290167 DOI: 10.1016/j.bbapap.2005.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2005] [Revised: 10/10/2005] [Accepted: 10/14/2005] [Indexed: 10/25/2022]
Abstract
The 31P NMR spectroscopy of three pyridoxal 5'-phosphate-dependent enzymes, monomeric D-serine dehydratase, tetrameric dialkylglycine decarboxylase and tetrameric tyrosine phenol-lyase, whose enzymatic activities are dependent on alkali metal ions, was studied. 31P NMR spectra of the latter two enzymes have never been reported, their 3D-structures, however, are available. The cofactor phosphate chemical shift of all three enzymes changes by approximately 3 ppm as a function of pH, indicating that the phosphate group changes from being monoanionic at low pH to dianionic at high pH. The 31P NMR signal of the phosphate group of pyridoxal 5'-phosphate provides a measure of the active site changes that occur when various alkali metal ions are bound. Structural information is used to assist in the interpretation of the chemical shift changes observed. For D-serine dehydratase, no structural data are available but nevertheless the metal ion arrangement in the PLP binding site can be predicted from 31P NMR data.
Collapse
Affiliation(s)
- Klaus D Schnackerz
- Biozentrum der Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| | | | | | | |
Collapse
|
37
|
Dynamic NMR studies of base-catalyzed intramolecular single vs. intermolecular double proton transfer of 1,3-bis(4-fluorophenyl)triazene. Chem Phys 2005. [DOI: 10.1016/j.chemphys.2005.05.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Zhang J, Cheltsov AV, Ferreira GC. Conversion of 5-aminolevulinate synthase into a more active enzyme by linking the two subunits: spectroscopic and kinetic properties. Protein Sci 2005; 14:1190-200. [PMID: 15840827 PMCID: PMC2253255 DOI: 10.1110/ps.041258305] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The two active sites of dimeric 5-aminolevulinate synthase (ALAS), a pyridoxal 5'-phosphate (PLP)-dependent enzyme, are located on the subunit interface with contribution of essential amino acids from each subunit. Linking the two subunits into a single polypeptide chain dimer (2XALAS) yielded an enzyme with an approximate sevenfold greater turnover number than that of wild-type ALAS. Spectroscopic and kinetic properties of 2XALAS were investigated to explore the differences in the coenzyme structure and kinetic mechanism relative to those of wild-type ALAS that confer a more active enzyme. The absorption spectra of both ALAS and 2XALAS had maxima at 410 and 330 nm, with a greater A(410)/A(330) ratio at pH approximately 7.5 for 2XALAS. The 330 nm absorption band showed an intense fluorescence at 385 nm but not at 510 nm, indicating that the 330 nm absorption species is the substituted aldamine rather than the enolimine form of the Schiff base. The 385 nm emission intensity increased with increasing pH with a single pK of approximately 8.5 for both enzymes, and thus the 410 and 330 nm absorption species were attributed to the ketoenamine and substituted aldamine, respectively. Transient kinetic analysis of the formation and decay of the quinonoid intermediate EQ(2) indicated that, although their rates were similar in ALAS and 2XALAS, accumulation of this intermediate was greater in the 2XALAS-catalyzed reaction. Collectively, these results suggest that ketoenamine is the active form of the coenzyme and forms a more prominent coenzyme structure in 2XALAS than in ALAS at pH approximately 7.5.
Collapse
Affiliation(s)
- Junshun Zhang
- Department of Biochemistry and Molecular Biology, University of South Florida, Tampa 33612, USA
| | | | | |
Collapse
|
39
|
Hontzeas N, Zoidakis J, Glick BR, Abu-Omar MM. Expression and characterization of 1-aminocyclopropane-1-carboxylate deaminase from the rhizobacterium Pseudomonas putida UW4: a key enzyme in bacterial plant growth promotion. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1703:11-9. [PMID: 15588698 DOI: 10.1016/j.bbapap.2004.09.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Revised: 09/03/2004] [Accepted: 09/08/2004] [Indexed: 11/16/2022]
Abstract
The enzyme 1-aminocyclopropane-1-carboxylate deaminase (ACCD) converts ACC, the precursor of the plant hormone ethylene, to alpha-ketobutyrate and ammonium. This enzyme has been identified in soil bacteria and has been proposed to play a key role in microbe-plant association. A soluble recombinant ACCD from Pseudomonas putida UW4 of molecular weight 41 kDa has been cloned, expressed, and purified. It showed selectivity and high activity towards the substrate ACC: K(M)=3.4+/-0.2 mM and k(cat)=146+/-5 min(-1) at pH 8.0 and 22 degrees C. The enzyme displayed optimal activity at pH 8.0 with a sharp decline to essentially no activity below pH 6.5 and a slightly less severe tapering in activity at higher pH resulting in loss of activity at pH>10. The major component of the enzyme's secondary structure was determined to be alpha-helical by circular dichroism (CD). P. putida UW4 ACCD unfolded at 60 degrees C as determined by its CD temperature profile as well as by differential scanning microcalorimetry (DSC). Enzyme activity was knocked out in the point mutant Gly44Asp. Modeling this mutation into the known yeast ACCD structure shed light on the role this highly conserved residue plays in allowing substrate accessibility to the active site. This enzyme's biochemical and biophysical properties will serve as an important reference point to which newly isolated ACC deaminases from other organisms can be compared.
Collapse
Affiliation(s)
- Nikos Hontzeas
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1
| | | | | | | |
Collapse
|
40
|
Toney MD. Reaction specificity in pyridoxal phosphate enzymes. Arch Biochem Biophys 2005; 433:279-87. [PMID: 15581583 DOI: 10.1016/j.abb.2004.09.037] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Revised: 09/15/2004] [Indexed: 11/23/2022]
Abstract
Pyridoxal phosphate enzymes catalyze a wide variety of reaction types on amines and amino acids, generally by stabilizing carbanionic intermediates. This makes them very useful in cellular metabolism, but it also creates problems in controlling the reaction pathway that a given enzyme follows, i.e., in controlling reaction specificity. Stereoelectronic effects have been proposed to play a major role in determining the bond to Calpha that gets broken in the external aldimine intermediate that is common to all PLP enzymes. Here, we discuss our work on dialkylglycine decarboxylase aimed at providing direct evidence for stereoelectronic control of external aldimine reactivity. Once a bond to Calpha has been broken to form the carbanionic intermediate, enzymes must also carefully control the fate of this reactive species. Our studies with alanine racemase suggest that the enzyme selectively destabilizes the carbanionic quinonoid intermediate to promote higher racemization specificity by avoiding transamination side reactions.
Collapse
Affiliation(s)
- Michael D Toney
- Department of Chemistry, University of California-Davis, One Shields Ave, Davis, CA 95616, USA.
| |
Collapse
|
41
|
Gutteridge A, Bartlett GJ, Thornton JM. Using a neural network and spatial clustering to predict the location of active sites in enzymes. J Mol Biol 2003; 330:719-34. [PMID: 12850142 DOI: 10.1016/s0022-2836(03)00515-1] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Structural genomics projects aim to provide a sharp increase in the number of structures of functionally unannotated, and largely unstudied, proteins. Algorithms and tools capable of deriving information about the nature, and location, of functional sites within a structure are increasingly useful therefore. Here, a neural network is trained to identify the catalytic residues found in enzymes, based on an analysis of the structure and sequence. The neural network output, and spatial clustering of the highly scoring residues are then used to predict the location of the active site.A comparison of the performance of differently trained neural networks is presented that shows how information from sequence and structure come together to improve the prediction accuracy of the network. Spatial clustering of the network results provides a reliable way of finding likely active sites. In over 69% of the test cases the active site is correctly predicted, and a further 25% are partially correctly predicted. The failures are generally due to the poor quality of the automatically generated sequence alignments. We also present predictions identifying the active site, and potential functional residues in five recently solved enzyme structures, not used in developing the method. The method correctly identifies the putative active site in each case. In most cases the likely functional residues are identified correctly, as well as some potentially novel functional groups.
Collapse
Affiliation(s)
- Alex Gutteridge
- EBI, Wellcome Trust Genome Campus, EMBL Outstation, Hinxton, Cambridgeshire CB10 1SD, UK
| | | | | |
Collapse
|
42
|
Sivaraman J, Li Y, Larocque R, Schrag JD, Cygler M, Matte A. Crystal structure of histidinol phosphate aminotransferase (HisC) from Escherichia coli, and its covalent complex with pyridoxal-5'-phosphate and l-histidinol phosphate. J Mol Biol 2001; 311:761-76. [PMID: 11518529 DOI: 10.1006/jmbi.2001.4882] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The biosynthesis of histidine is a central metabolic process in organisms ranging from bacteria to yeast and plants. The seventh step in the synthesis of histidine within eubacteria is carried out by a pyridoxal-5'-phosphate (PLP)-dependent l-histidinol phosphate aminotransferase (HisC, EC 2.6.1.9). Here, we report the crystal structure of l-histidinol phosphate aminotransferase from Escherichia coli, as a complex with pyridoxamine-5'-phosphate (PMP) at 1.5 A resolution, as the internal aldimine with PLP, and in a covalent, tetrahedral complex consisting of PLP and l-histidinol phosphate attached to Lys214, both at 2.2 A resolution. This covalent complex resembles, in structural terms, the gem-diamine intermediate that is formed transiently during conversion of the internal to external aldimine.HisC is a dimeric enzyme with a mass of approximately 80 kDa. Like most PLP-dependent enzymes, each HisC monomer consists of two domains, a larger PLP-binding domain having an alpha/beta/alpha topology, and a smaller domain. An N-terminal arm contributes to the dimerization of the two monomers. The PLP-binding domain of HisC shows weak sequence similarity, but significant structural similarity with the PLP-binding domains of a number of PLP-dependent enzymes. Residues that interact with the PLP cofactor, including Tyr55, Asn157, Asp184, Tyr187, Ser213, Lys214 and Arg222, are conserved in the family of aspartate, tyrosine and histidinol phosphate aminotransferases. The imidazole ring of l-histidinol phosphate is bound, in part, through a hydrogen bond with Tyr110, a residue that is substituted by Phe in the broad substrate specific HisC enzymes from Zymomonas mobilis and Bacillus subtilis. Comparison of the structures of the HisC internal aldimine, the PMP complex and the HisC l-histidinol phosphate complex reveal minimal changes in protein or ligand structure. Proton transfer, required for conversion of the gem-diamine to the external aldimine, does not appear to be limited by the distance between substrate and lysine amino groups. We propose that the tetrahedral complex has resulted from non-productive binding of l-histidinol phosphate soaked into the HisC crystals, resulting in its inability to be converted to the external aldimine at the HisC active site.
Collapse
Affiliation(s)
- J Sivaraman
- Biotechnology Research Institute, 6100 Royalmount Ave., Montreal, H4P 2R2 and, Canada
| | | | | | | | | | | |
Collapse
|
43
|
Karsten WE, Ohshiro T, Izumi Y, Cook PF. Initial velocity, spectral, and pH studies of the serine-glyoxylate aminotransferase from Hyphomicrobiuim methylovorum. Arch Biochem Biophys 2001; 388:267-75. [PMID: 11368164 DOI: 10.1006/abbi.2001.2294] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Serine-glyoxylate aminotransferase (SGAT) from Hyphomicrobium methylovorum is a pyridoxal 5'-phosphate (PLP) enzyme that catalyzes the interconversion of L-serine and glyoxylate to hydroxypyruvate and glycine. The initial velocity and dead-end inhibition patterns are consistent with a ping-pong kinetic mechanism. The Km values for L-serine and the alternative substrate ketomalonate are 0.28 +/- 0.02 and 1.13 +/- 0.08 mM, respectively. The spectrum of SGAT at pH 7.5 shows an absorbance maximum at 413 nm and a shoulder centered at 330 nm corresponding to the ketoenamine and enolimine forms of the protonated Schiff's base with the enolimine tautomer predominating. As determined by the changes in the enzyme absorbance spectrum the enzyme can be converted from the E-PLP to the E-pyridoxamine 5'-phosphate (E-PMP) form on addition of L-serine. The enzyme can subsequently be converted back to E-PLP by addition of glyoxylate or hydroxypyruvate. The enzyme displays a pH-dependent spectral change with a pK of about 8.2 which is ascribed to the ionization of an enzymatic residue that effects the tautomeric equilibrium between the ketoenamine and enolimine tautomers of the protonated aldimine. The V/K(L-serine) pH profile displays two pK values at pH 7.5 and 8.5 with limiting slopes of 1 and -1. The V/K(ketomalonate) pH profile displays one pK at 8.2 on the basic side with a limiting slope of 1 and the log K(I oxalate) pH profile shows one pK on the basic side at pH 7.2. The data suggest the active enzyme is the protonated aldimine and an enzymatic base with a pK of 7.5 accepts a proton from the alpha-amine of substrate to initiate catalysis.
Collapse
Affiliation(s)
- W E Karsten
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman 73019, USA
| | | | | | | |
Collapse
|
44
|
Metzler DE, Metzler CM, Sauke DJ. Coenzymes. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50017-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|