1
|
Antimicrobial Activity Developed by Scorpion Venoms and Its Peptide Component. Toxins (Basel) 2022; 14:toxins14110740. [PMID: 36355990 PMCID: PMC9693228 DOI: 10.3390/toxins14110740] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/28/2022] [Accepted: 10/23/2022] [Indexed: 01/26/2023] Open
Abstract
Microbial infections represent a problem of great importance at the public health level, with a high rate of morbidity-mortality worldwide. However, treating the different diseases generated by microorganisms requires a gradual increase in acquired resistance when applying or using them against various antibiotic therapies. Resistance is caused by various molecular mechanisms of microorganisms, thus reducing their effectiveness. Consequently, there is a need to search for new opportunities through natural sources with antimicrobial activity. One alternative is using peptides present in different scorpion venoms, specifically from the Buthidae family. Different peptides with biological activity in microorganisms have been characterized as preventing their growth or inhibiting their replication. Therefore, they represent an alternative to be used in the design and development of new-generation antimicrobial drugs in different types of microorganisms, such as bacteria, fungi, viruses, and parasites. Essential aspects for its disclosure, as shown in this review, are the studies carried out on different types of peptides in scorpion venoms with activity against pathogenic microorganisms, highlighting their high therapeutic potential.
Collapse
|
2
|
Torretta S, Colombo G, Travelli C, Boumya S, Lim D, Genazzani AA, Grolla AA. The Cytokine Nicotinamide Phosphoribosyltransferase (eNAMPT; PBEF; Visfatin) Acts as a Natural Antagonist of C-C Chemokine Receptor Type 5 (CCR5). Cells 2020; 9:cells9020496. [PMID: 32098202 PMCID: PMC7072806 DOI: 10.3390/cells9020496] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/15/2020] [Accepted: 02/21/2020] [Indexed: 12/23/2022] Open
Abstract
(1) Background: Extracellular nicotinamide phosphoribosyltrasferase (eNAMPT) is released by various cell types with pro-tumoral and pro-inflammatory properties. In cancer, eNAMPT regulates tumor growth through the activation of intracellular pathways, suggesting that it acts through a putative receptor, although its nature is still elusive. It has been shown, using surface plasma resonance, that eNAMPT binds to the C-C chemokine receptor type 5 (CCR5), although the physiological meaning of this finding is unknown. The aim of the present work was to characterize the pharmacodynamics of eNAMPT on CCR5. (2) Methods: HeLa CCR5-overexpressing stable cell line and B16 melanoma cells were used. We focused on some phenotypic effects of CCR5 activation, such as calcium release and migration, to evaluate eNAMPT actions on this receptor. (3) Results: eNAMPT did not induce ERK activation or cytosolic Ca2+-rises alone. Furthermore, eNAMPT prevents CCR5 internalization mediated by Rantes. eNAMPT pretreatment inhibits CCR5-mediated PKC activation and Rantes-dependent calcium signaling. The effect of eNAMPT on CCR5 was specific, as the responses to ATP and carbachol were unaffected. This was strengthened by the observation that eNAMPT inhibited Rantes-induced Ca2+-rises and Rantes-induced migration in a melanoma cell line. (4) Conclusions: Our work shows that eNAMPT binds to CCR5 and acts as a natural antagonist of this receptor.
Collapse
Affiliation(s)
- Simone Torretta
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (S.T.); (G.C.); (S.B.); (D.L.); (A.A.G.)
| | - Giorgia Colombo
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (S.T.); (G.C.); (S.B.); (D.L.); (A.A.G.)
| | - Cristina Travelli
- Department of Pharmaceutical Sciences, Università di Pavia, 27100 Pavia, Italy;
| | - Sara Boumya
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (S.T.); (G.C.); (S.B.); (D.L.); (A.A.G.)
| | - Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (S.T.); (G.C.); (S.B.); (D.L.); (A.A.G.)
| | - Armando A. Genazzani
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (S.T.); (G.C.); (S.B.); (D.L.); (A.A.G.)
| | - Ambra A. Grolla
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (S.T.); (G.C.); (S.B.); (D.L.); (A.A.G.)
- Correspondence: ; Tel.: +39-0321-375822; Fax: +39-0321-375821
| |
Collapse
|
3
|
Complex and Dynamic Interactions between Parvovirus Capsids, Transferrin Receptors, and Antibodies Control Cell Infection and Host Range. J Virol 2018; 92:JVI.00460-18. [PMID: 29695427 DOI: 10.1128/jvi.00460-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 04/17/2018] [Indexed: 01/18/2023] Open
Abstract
Antibody and receptor binding are key virus-host interactions that control host range and determine the success of infection. Canine and feline parvovirus capsids bind the transferrin receptor type 1 (TfR) to enter host cells, and specific structural interactions appear necessary to prepare the stable capsids for infection. Here, we define the details of binding, competition, and occupancy of wild-type and mutant parvovirus capsids with purified receptors and antibodies. TfR-capsid binding interactions depended on the TfR species and varied widely, with no direct relationship between binding affinity and infection. Capsids bound feline, raccoon, and black-backed jackal TfRs at high affinity but barely bound canine TfRs, which mediated infection efficiently. TfRs from different species also occupied capsids to different levels, with an estimated 1 to 2 feline TfRs but 12 black-backed jackal TfRs binding each capsid. Multiple alanine substitutions within loop 1 on the capsid surface reduced TfR binding but substitutions within loop 3 did not, suggesting that loop 1 directly engaged the TfR and loop 3 sterically affected that interaction. Binding and competition between different TfRs and/or antibodies showed complex relationships. Both antibodies 14 and E competed capsids off TfRs, but antibody E could also compete capsids off itself and antibody 14, likely by inducing capsid structural changes. In some cases, the initial TfR or antibody binding event affected subsequent TfR binding, suggesting that capsid structure changes occur after TfR or antibody binding and may impact infection. This shows that precise, host-specific TfR-capsid interactions, beyond simple attachment, are important for successful infection.IMPORTANCE Host receptor binding is a key step during viral infection and may control both infection and host range. In addition to binding, some viruses require specific interactions with host receptors in order to infect, and anti-capsid antibodies can potentially disrupt these interactions, leading to neutralization. Here, we examine the interactions between parvovirus capsids, the receptors from different hosts, and anti-capsid antibodies. We show that interactions between parvovirus capsids and host-specific TfRs vary in both affinity and in the numbers of receptors bound, with complex effects on infection. In addition, antibodies binding to two sites on the capsids had different effects on TfR-capsid binding. These experiments confirm that receptor and antibody binding to parvovirus capsids are complex processes, and the infection outcome is not determined simply by the affinity of attachment.
Collapse
|
4
|
Increased, Durable B-Cell and ADCC Responses Associated with T-Helper Cell Responses to HIV-1 Envelope in Macaques Vaccinated with gp140 Occluded at the CD4 Receptor Binding Site. J Virol 2017; 91:JVI.00811-17. [PMID: 28701402 PMCID: PMC5599767 DOI: 10.1128/jvi.00811-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/26/2017] [Indexed: 01/05/2023] Open
Abstract
Strategies are needed to improve the immunogenicity of HIV-1 envelope (Env) antigens (Ag) for more long-lived, efficacious HIV-1 vaccine-induced B-cell responses. HIV-1 Env gp140 (native or uncleaved molecules) or gp120 monomeric proteins elicit relatively poor B-cell responses which are short-lived. We hypothesized that Env engagement of the CD4 receptor on T-helper cells results in anergic effects on T-cell recruitment and consequently a lack of strong, robust, and durable B-memory responses. To test this hypothesis, we occluded the CD4 binding site (CD4bs) of gp140 by stable cross-linking with a 3-kDa CD4 miniprotein mimetic, serving to block ligation of gp140 on CD4+ T cells while preserving CD4-inducible (CDi) neutralizing epitopes targeted by antibody-dependent cellular cytotoxicity (ADCC) effector responses. Importantly, immunization of rhesus macaques consistently gave superior B-cell (P < 0.001) response kinetics and superior ADCC (P < 0.014) in a group receiving the CD4bs-occluded vaccine compared to those of animals immunized with gp140. Of the cytokines examined, Ag-specific interleukin-4 (IL-4) T-helper enzyme-linked immunosorbent spot (ELISpot) assays of the CD4bs-occluded group increased earlier (P = 0.025) during the inductive phase. Importantly, CD4bs-occluded gp140 antigen induced superior B-cell and ADCC responses, and the elevated B-cell responses proved to be remarkably durable, lasting more than 60 weeks postimmunization. IMPORTANCE Attempts to develop HIV vaccines capable of inducing potent and durable B-cell responses have been unsuccessful until now. Antigen-specific B-cell development and affinity maturation occurs in germinal centers in lymphoid follicles through a critical interaction between B cells and T follicular helper cells. The HIV envelope binds the CD4 receptor on T cells as soluble shed antigen or as antigen-antibody complexes, causing impairment in the activation of these specialized CD4-positive T cells. We proposed that CD4-binding impairment is partly responsible for the relatively poor B-cell responses to HIV envelope-based vaccines. To test this hypothesis, we blocked the CD4 binding site of the envelope antigen and compared it to currently used unblocked envelope protein. We found superior and durable B-cell responses in macaques vaccinated with an occluded CD4 binding site on the HIV envelope antigen, demonstrating a potentially important new direction in future design of new HIV vaccines.
Collapse
|
5
|
da Mata ÉCG, Mourão CBF, Rangel M, Schwartz EF. Antiviral activity of animal venom peptides and related compounds. J Venom Anim Toxins Incl Trop Dis 2017; 23:3. [PMID: 28074089 PMCID: PMC5217322 DOI: 10.1186/s40409-016-0089-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/30/2016] [Indexed: 12/11/2022] Open
Abstract
Viruses exhibit rapid mutational capacity to trick and infect host cells, sometimes assisted through virus-coded peptides that counteract host cellular immune defense. Although a large number of compounds have been identified as inhibiting various viral infections and disease progression, it is urgent to achieve the discovery of more effective agents. Furthermore, proportionally to the great variety of diseases caused by viruses, very few viral vaccines are available, and not all are efficient. Thus, new antiviral substances obtained from natural products have been prospected, including those derived from venomous animals. Venoms are complex mixtures of hundreds of molecules, mostly peptides, that present a large array of biological activities and evolved to putatively target the biochemical machinery of different pathogens or host cellular structures. In addition, non-venomous compounds, such as some body fluids of invertebrate organisms, exhibit antiviral activity. This review provides a panorama of peptides described from animal venoms that present antiviral activity, thereby reinforcing them as important tools for the development of new therapeutic drugs.
Collapse
Affiliation(s)
- Élida Cleyse Gomes da Mata
- Laboratory of Toxinology, Department of Physiological Sciences, University of Brasília, Brasília, DF 70910-900 Brazil
| | | | - Marisa Rangel
- Laboratory of Toxinology, Department of Physiological Sciences, University of Brasília, Brasília, DF 70910-900 Brazil ; Laboratory of Immunopathology, Butantan Institute, São Paulo, SP 05508-900 Brazil
| | - Elisabeth Ferroni Schwartz
- Laboratory of Toxinology, Department of Physiological Sciences, University of Brasília, Brasília, DF 70910-900 Brazil
| |
Collapse
|
6
|
Range of CD4-Bound Conformations of HIV-1 gp120, as Defined Using Conditional CD4-Induced Antibodies. J Virol 2016; 90:4481-4493. [PMID: 26889042 DOI: 10.1128/jvi.03206-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/14/2016] [Indexed: 01/23/2023] Open
Abstract
UNLABELLED The HIV envelope binds cellular CD4 and undergoes a range of conformational changes that lead to membrane fusion and delivery of the viral nucleocapsid into the cellular cytoplasm. This binding to CD4 reveals cryptic and highly conserved epitopes, the molecular nature of which is still not fully understood. The atomic structures of CD4 complexed with gp120 core molecules (a form of gp120 in which the V1, V2, and V3 loops and N and C termini have been truncated) have indicated that a hallmark feature of the CD4-bound conformation is the bridging sheet minidomain. Variations in the orientation of the bridging sheet hairpins have been revealed when CD4-liganded gp120 was compared to CD4-unliganded trimeric envelope structures. Hence, there appears to be a number of conformational transitions possible in HIV-1 monomeric gp120 that are affected by CD4 binding. The spectrum of CD4-bound conformations has been interrogated in this study by using a well-characterized panel of conditional, CD4-induced (CD4i) monoclonal antibodies (MAbs) that bind HIV-1 gp120 and its mutations under various conditions. Two distinct CD4i epitopes of the outer domain were studied: the first comprises the bridging sheet, while the second contains elements of the V2 loop. Furthermore, we show that the unliganded extended monomeric core of gp120 (coree) assumes an intermediate CD4i conformation in solution that further undergoes detectable rearrangements upon association with CD4. These discoveries impact both accepted paradigms concerning gp120 structure and the field of HIV immunogen design. IMPORTANCE Elucidation of the conformational transitions that the HIV-1 envelope protein undergoes during the course of entry into CD4(+)cells is fundamental to our understanding of HIV biology. The binding of CD4 triggers a range of gp120 structural rearrangements that could present targets for future drug design and development of preventive vaccines. Here we have systematically interrogated and scrutinized these conformational transitions using a panel of antibody probes that share a specific preference for the CD4i conformations. These have been employed to study a collection of gp120 mutations and truncations. Through these analyses, we propose 4 distinct sequential steps in CD4i transitions of gp120 conformations, each defined by antibody specificities and structural requirements of the HIV envelope monomer. As a result, we not only provide new insights into this dynamic process but also define probes to further investigate HIV infection.
Collapse
|
7
|
Acharya P, Lusvarghi S, Bewley CA, Kwong PD. HIV-1 gp120 as a therapeutic target: navigating a moving labyrinth. Expert Opin Ther Targets 2015; 19:765-83. [PMID: 25724219 DOI: 10.1517/14728222.2015.1010513] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION The HIV-1 gp120 envelope (Env) glycoprotein mediates attachment of virus to human target cells that display requisite receptors, CD4 and co-receptor, generally CCR5. Despite high-affinity interactions with host receptors and proof-of-principle by the drug maraviroc that interference with CCR5 provides therapeutic benefit, no licensed drug currently targets gp120. AREAS COVERED An overview of the role of gp120 in HIV-1 entry and of sites of potential gp120 vulnerability to therapeutic inhibition is presented. Viral defenses that protect these sites and turn gp120 into a moving labyrinth are discussed together with strategies for circumventing these defenses to allow therapeutic targeting of gp120 sites of vulnerability. EXPERT OPINION The gp120 envelope glycoprotein interacts with host proteins through multiple interfaces and has conserved structural features at these interaction sites. In spite of this, targeting gp120 for therapeutic purposes is challenging. Env mechanisms that have evolved to evade the humoral immune response also shield it from potential therapeutics. Nevertheless, substantial progress has been made in understanding HIV-1 gp120 structure and its interactions with host receptors, and in developing therapeutic leads that potently neutralize diverse HIV-1 strains. Synergies between advances in understanding, needs for therapeutics against novel viral targets and characteristics of breadth and potency for a number of gp120-targetting lead molecules bodes well for gp120 as a HIV-1 therapeutic target.
Collapse
Affiliation(s)
- Priyamvada Acharya
- National Institute of Allergy and Infectious Diseases/National Institutes of Health, Vaccine Research Center, Structural Biology Section , Room 4609B, 40 Convent Drive, Bethesda, MD 20892 , USA
| | | | | | | |
Collapse
|
8
|
Wang J, Li Y, Yang Y, Zhang J, Du J, Zhang S, Yang L. Profiling the interaction mechanism of indole-based derivatives targeting the HIV-1 gp120 receptor. RSC Adv 2015. [DOI: 10.1039/c5ra04299b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A glycoprotein exposed on a viral surface, human immunodeficiency virus type 1 (HIV-1) gp120 is essential for virus entry into cells as it plays a vital role in seeking out specific cell surface receptors for entry.
Collapse
Affiliation(s)
- Jinghui Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE)
- Department of Materials Sciences and Chemical Engineering
- Dalian University of Technology
- Dalian
- China
| | - Yan Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE)
- Department of Materials Sciences and Chemical Engineering
- Dalian University of Technology
- Dalian
- China
| | - Yinfeng Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE)
- Department of Materials Sciences and Chemical Engineering
- Dalian University of Technology
- Dalian
- China
| | - Jingxiao Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE)
- Department of Materials Sciences and Chemical Engineering
- Dalian University of Technology
- Dalian
- China
| | - Jian Du
- Institute of Chemical Process Systems Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Shuwei Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE)
- Department of Materials Sciences and Chemical Engineering
- Dalian University of Technology
- Dalian
- China
| | - Ling Yang
- Laboratory of Pharmaceutical Resource Discovery
- Dalian Institute of Chemical Physics
- Graduate School of the Chinese Academy of Sciences
- Dalian
- China
| |
Collapse
|
9
|
HIV-1 tropism testing and clinical management of CCR5 antagonists: Quebec review and recommendations. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2014; 24:202-8. [PMID: 24489562 DOI: 10.1155/2013/982759] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
HIV-1 tropism assays play a crucial role in determining the response to CCR5 receptor antagonists. Initially, phenotypic tests were used, but limited access to these tests prompted the development of alternative strategies. Recently, genotyping tropism has been validated using a Canadian technology in clinical trials investigating the use of maraviroc in both experienced and treatment-naive patients. The present guidelines review the evidence supporting the use of genotypic assays and provide recommendations regarding tropism testing in daily clinical management.
Collapse
|
10
|
Buonaguro L, Tagliamonte M, Visciano ML. Chemokine receptor interactions with virus-like particles. Methods Mol Biol 2013; 1013:57-66. [PMID: 23625493 DOI: 10.1007/978-1-62703-426-5_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Virus-like particles (VLPs) presenting conformational envelope proteins on their surface represent an invaluable tool to study molecular interactions between viruses and cellular receptors/co-receptors, eliminating biological risks associated with working with live native viruses. The availability of target cells expressing specific chemokine receptors facilitates the dissection of specific interactions between human immunodeficiency virus (HIV) viral envelope proteins and these receptors in the laboratory. Here, we describe a method to evaluate HIV-VLP binding to cellular chemokine co-receptors, by carboxyfluorescein succinimidyl ester labeling and cellular uptake.
Collapse
Affiliation(s)
- Luigi Buonaguro
- Molecular Biology and Viral Oncology, Department of Experimental Oncology, Istituto Nazionale Tumori "Fond G. Pascale", Naples, Italy
| | | | | |
Collapse
|
11
|
Dobrowsky TM, Rabi SA, Nedellec R, Daniels BR, Mullins JI, Mosier DE, Siliciano RF, Wirtz D. Adhesion and fusion efficiencies of human immunodeficiency virus type 1 (HIV-1) surface proteins. Sci Rep 2013; 3:3014. [PMID: 24145278 PMCID: PMC3804852 DOI: 10.1038/srep03014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 09/30/2013] [Indexed: 12/20/2022] Open
Abstract
In about half of patients infected with HIV-1 subtype B, viral populations shift from utilizing the transmembrane protein CCR5 to CXCR4, as well as or instead of CCR5, during late stage progression of the disease. How the relative adhesion efficiency and fusion competency of the viral Env proteins relate to infection during this transition is not well understood. Using a virus-cell fusion assay and live-cell single-molecule force spectroscopy, we compare the entry competency of viral clones to tensile strengths of the individual Env-receptor bonds of Env proteins obtained from a HIV-1 infected patient prior to and during coreceptor switching. The results suggest that the genetic determinants of viral entry were predominantly enriched in the C3, HR1 and CD regions rather than V3. Env proteins can better mediate entry into cells after coreceptor switch; this effective entry capacity does not correlate with the bond strengths between viral Env and cellular receptors.
Collapse
Affiliation(s)
- Terrence M Dobrowsky
- 1] Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA [2]
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Residue-level prediction of HIV-1 antibody epitopes based on neutralization of diverse viral strains. J Virol 2013; 87:10047-58. [PMID: 23843642 DOI: 10.1128/jvi.00984-13] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Delineation of antibody epitopes at the residue level is key to understanding antigen resistance mutations, designing epitope-specific probes for antibody isolation, and developing epitope-based vaccines. Ideally, epitope residues are determined in the context of the atomic-level structure of the antibody-antigen complex, though structure determination may in many cases be impractical. Here we describe an efficient computational method to predict antibody-specific HIV-1 envelope (Env) epitopes at the residue level, based on neutralization panels of diverse viral strains. The method primarily utilizes neutralization potency data over a set of diverse viral strains representing the antigen, and enhanced accuracy could be achieved by incorporating information from the unbound structure of the antigen. The method was evaluated on 19 HIV-1 Env antibodies with neutralization panels comprising 181 diverse viral strains and with available antibody-antigen complex structures. Prediction accuracy was shown to improve significantly over random selection, with an average of greater-than-8-fold enrichment of true positives at the 0.05 false-positive rate level. The method was used to prospectively predict epitope residues for two HIV-1 antibodies, 8ANC131 and 8ANC195, for which we experimentally validated the predictions. The method is inherently applicable to antigens that exhibit sequence diversity, and its accuracy was found to correlate inversely with sequence conservation of the epitope. Together the results show how knowledge inherent to a neutralization panel and unbound antigen structure can be utilized for residue-level prediction of antibody epitopes.
Collapse
|
13
|
Korkut A, Hendrickson WA. Structural plasticity and conformational transitions of HIV envelope glycoprotein gp120. PLoS One 2012; 7:e52170. [PMID: 23300605 PMCID: PMC3531394 DOI: 10.1371/journal.pone.0052170] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 11/12/2012] [Indexed: 11/18/2022] Open
Abstract
HIV envelope glycoproteins undergo large-scale conformational changes as they interact with cellular receptors to cause the fusion of viral and cellular membranes that permits viral entry to infect targeted cells. Conformational dynamics in HIV gp120 are also important in masking conserved receptor epitopes from being detected for effective neutralization by the human immune system. Crystal structures of HIV gp120 and its complexes with receptors and antibody fragments provide high-resolution pictures of selected conformational states accessible to gp120. Here we describe systematic computational analyses of HIV gp120 plasticity in such complexes with CD4 binding fragments, CD4 mimetic proteins, and various antibody fragments. We used three computational approaches: an isotropic elastic network analysis of conformational plasticity, a full atomic normal mode analysis, and simulation of conformational transitions with our coarse-grained virtual atom molecular mechanics (VAMM) potential function. We observe collective sub-domain motions about hinge points that coordinate those motions, correlated local fluctuations at the interfacial cavity formed when gp120 binds to CD4, and concerted changes in structural elements that form at the CD4 interface during large-scale conformational transitions to the CD4-bound state from the deformed states of gp120 in certain antibody complexes.
Collapse
Affiliation(s)
- Anil Korkut
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America
| | - Wayne A. Hendrickson
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York, United States of America
- Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
14
|
PGV04, an HIV-1 gp120 CD4 binding site antibody, is broad and potent in neutralization but does not induce conformational changes characteristic of CD4. J Virol 2012; 86:4394-403. [PMID: 22345481 DOI: 10.1128/jvi.06973-11] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recently, several broadly neutralizing monoclonal antibodies (bnMAbs) directed to the CD4-binding site (CD4bs) of gp120 have been isolated from HIV-1-positive donors. These include VRC01, 3BNC117, and NIH45-46, all of which are capable of neutralizing about 90% of circulating HIV-1 isolates and all of which induce conformational changes in the HIV-1 gp120 monomer similar to those induced by the CD4 receptor. In this study, we characterize PGV04 (also known as VRC-PG04), a MAb with potency and breadth that rivals those of the prototypic VRC01 and 3BNC117. When screened on a large panel of viruses, the neutralizing profile of PGV04 was distinct from those of CD4, b12, and VRC01. Furthermore, the ability of PGV04 to neutralize pseudovirus containing single alanine substitutions exhibited a pattern distinct from those of the other CD4bs MAbs. In particular, substitutions D279A, I420A, and I423A were found to abrogate PGV04 neutralization. In contrast to VRC01, PGV04 did not enhance the binding of 17b or X5 to their epitopes (the CD4-induced [CD4i] site) in the coreceptor region on the gp120 monomer. Furthermore, in contrast to CD4, none of the anti-CD4bs MAbs induced the expression of the 17b epitope on cell surface-expressed cleaved Env trimers. We conclude that potent CD4bs bnMAbs can display differences in the way they recognize and access the CD4bs and that mimicry of CD4, as assessed by inducing conformational changes in monomeric gp120 that lead to enhanced exposure of the CD4i site, is not uniquely correlated with effective neutralization at the site of CD4 binding on HIV-1.
Collapse
|
15
|
Abstract
The combination of carbohydrate and lipid generates unusual molecules in which the two distinctive halves of the glycoconjugate influence the function of each other. Membrane glycolipids can act as primary receptors for carbohydrate binding proteins to mediate transmembrane signaling despite restriction to the outer bilayer leaflet. The extensive heterogeneity of the lipid moiety plays a significant, but still largely unknown, role in glycosphingolipid function. Potential interplay between glycolipids and their fatty acid isoforms, together with their preferential interaction with cholesterol, generates a complex mechanism for the regulation of their function in cellular physiology.
Collapse
Affiliation(s)
- Clifford A Lingwood
- Research Institute, Hospital for Sick Children, Molecular Structure and Function, Toronto, Ontario M5G 1X8, Canada.
| |
Collapse
|
16
|
Martin G, Burke B, Thaï R, Dey AK, Combes O, Ramos OHP, Heyd B, Geonnotti AR, Montefiori DC, Kan E, Lian Y, Sun Y, Abache T, Ulmer JB, Madaoui H, Guérois R, Barnett SW, Srivastava IK, Kessler P, Martin L. Stabilization of HIV-1 envelope in the CD4-bound conformation through specific cross-linking of a CD4 mimetic. J Biol Chem 2011; 286:21706-16. [PMID: 21487012 DOI: 10.1074/jbc.m111.232272] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CD4 binding on gp120 leads to the exposure of highly conserved regions recognized by the HIV co-receptor CCR5 and by CD4-induced (CD4i) antibodies. A covalent gp120-CD4 complex was shown to elicit CD4i antibody responses in monkeys, which was correlated with control of the HIV virus infection (DeVico, A., Fouts, T., Lewis, G. K., Gallo, R. C., Godfrey, K., Charurat, M., Harris, I., Galmin, L., and Pal, R. (2007) Proc. Natl. Acad. Sci. U.S.A. 104, 17477-17482). Because the inclusion of CD4 in a vaccine formulation should be avoided, due to potential autoimmune reactions, we engineered small sized CD4 mimetics (miniCD4s) that are poorly immunogenic and do not induce anti-CD4 antibodies. We made covalent complexes between such an engineered miniCD4 and gp120 or gp140, through a site-directed coupling reaction. These complexes were recognized by CD4i antibodies as well as by the HIV co-receptor CCR5. In addition, they elicit CD4i antibody responses in rabbits and therefore represent potential vaccine candidates that mimic an important HIV fusion intermediate, without autoimmune hazard.
Collapse
Affiliation(s)
- Grégoire Martin
- Commissariat à l'Energie Atomique, iBiTecS, Service d'Ingénierie Moléculaire des Protéines, Gif-sur-Yvette F-91191, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Tagliamonte M, Tornesello ML, Buonaguro FM, Buonaguro L. Conformational HIV-1 envelope on particulate structures: a tool for chemokine coreceptor binding studies. J Transl Med 2011; 9 Suppl 1:S1. [PMID: 21284899 PMCID: PMC3105500 DOI: 10.1186/1479-5876-9-s1-s1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) external envelope glycoprotein gp120 presents conserved binding sites for binding to the primary virus receptor CD4 as well as the major HIV chemokine coreceptors, CCR5 and CXCR4. Concerted efforts are underway to understand the specific interactions between gp120 and coreceptors as well as their contribution to the subsequent membrane fusion process. The present review summarizes the current knowledge on this biological aspect, which represents one of the key and essential points of the HIV-host cell interplay and HIV life cycle. The relevance of conformational HIV-1 Envelope proteins presented on Virus-like Particles for appropriate assessment of this molecular interaction, is also discussed.
Collapse
Affiliation(s)
- Maria Tagliamonte
- Lab, of Molecular Biology and Viral Oncogenesis & AIDS Reference Center, Istituto Nazionale Tumori Fond, G, Pascale, Naples, Italy
| | | | | | | |
Collapse
|
18
|
Joubert MK, Kinsley N, Capovilla A, Sewell BT, Jaffer MA, Khati M. A Modeled Structure of an Aptamer−gp120 Complex Provides Insight into the Mechanism of HIV-1 Neutralization. Biochemistry 2010; 49:5880-90. [DOI: 10.1021/bi100301k] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Nichole Kinsley
- Elevation Biotech, 8 Blackwood Avenue, Parktown, Johannesburg 2193, South Africa
| | - Alexio Capovilla
- Elevation Biotech, 8 Blackwood Avenue, Parktown, Johannesburg 2193, South Africa
- Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - B. Trevor Sewell
- Electron Microscope Unit, University of Cape Town, Rondebosch 7701, South Africa
| | - Mohamed A. Jaffer
- Electron Microscope Unit, University of Cape Town, Rondebosch 7701, South Africa
| | - Makobetsa Khati
- CSIR Biosciences, P.O. Box 395, Pretoria 0001, South Africa
- Department of Medicine, Groote Schuur Hospital and University of Cape Town, Cape Town, South Africa
| |
Collapse
|
19
|
Cavrois M, Neidleman J, Galloway N, Derdeyn CA, Hunter E, Greene WC. Measuring HIV fusion mediated by envelopes from primary viral isolates. Methods 2010; 53:34-8. [PMID: 20554044 DOI: 10.1016/j.ymeth.2010.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 05/19/2010] [Accepted: 05/26/2010] [Indexed: 11/19/2022] Open
Abstract
Over the course of infection, the human immunodeficiency virus type 1 (HIV-1) continuously adapts in part to evade the host's neutralizing antibody response. Antibodies often target the HIV envelope proteins that mediate HIV fusion to its cellular targets. HIV virions pseudotyped with primary envelopes have often been used to explore the fusogenic properties of these envelopes. Unfortunately, these pseudotyped virions fuse with greatly reduced efficiency to primary cells. Here, we describe a relatively simple strategy to clone primary envelopes into a provirus and increase the sensitivity of the virion-based fusion assay.
Collapse
Affiliation(s)
- Marielle Cavrois
- Gladstone Institute of Virology and Immunology, San Francisco, CA 94158, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Lingwood CA, Manis A, Mahfoud R, Khan F, Binnington B, Mylvaganam M. New aspects of the regulation of glycosphingolipid receptor function. Chem Phys Lipids 2010; 163:27-35. [DOI: 10.1016/j.chemphyslip.2009.09.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 09/15/2009] [Accepted: 09/16/2009] [Indexed: 12/19/2022]
|
21
|
Structure-based stabilization of HIV-1 gp120 enhances humoral immune responses to the induced co-receptor binding site. PLoS Pathog 2009; 5:e1000445. [PMID: 19478876 PMCID: PMC2680979 DOI: 10.1371/journal.ppat.1000445] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 04/25/2009] [Indexed: 11/23/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) exterior envelope glycoprotein, gp120, possesses conserved binding sites for interaction with the primary virus receptor, CD4, and also for the co-receptor, generally CCR5. Although gp120 is a major target for virus-specific neutralizing antibodies, the gp120 variable elements and its malleable nature contribute to evasion of effective host-neutralizing antibodies. To understand the conformational character and immunogenicity of the gp120 receptor binding sites as potential vaccine targets, we introduced structure-based modifications to stabilize gp120 core proteins (deleted of the gp120 major variable regions) into the conformation recognized by both receptors. Thermodynamic analysis of the re-engineered core with selected ligands revealed significant stabilization of the receptor-binding regions. Stabilization of the co-receptor-binding region was associated with a marked increase in on-rate of ligand binding to this site as determined by surface plasmon resonance. Rabbit immunization studies showed that the conformational stabilization of core proteins, along with increased ligand affinity, was associated with strikingly enhanced humoral immune responses against the co-receptor-binding site. These results demonstrate that structure-based approaches can be exploited to stabilize a conformational site in a large functional protein to enhance immunogenic responses specific for that region. Vaccination is an effective means to control worldwide human diseases caused by viruses and other pathogens. Most viral vaccines work by inducing the immune system to generate neutralizing antibodies. The human immunodeficiency virus (HIV) continues to cause huge tolls in terms of human death and disease. The generation of neutralizing antibodies against HIV remains a key but elusive goal for the development of an effective vaccine. Here, we describe a novel approach that uses atomic-level structures of the HIV surface protein, gp120, together with extensive biophysical analysis of this protein, to design modified vaccine candidates. Immunization with these modified gp120 proteins revealed a new relationship between structure-guided protein stability and the efficient elicitation of antibodies against the highly conserved co-receptor binding site of HIV. These data demonstrate the potential for using the design principles established here to develop improved antibody-generating HIV vaccines and for vaccines against other pathogens.
Collapse
|
22
|
Wood N, Bhattacharya T, Keele BF, Giorgi E, Liu M, Gaschen B, Daniels M, Ferrari G, Haynes BF, McMichael A, Shaw GM, Hahn BH, Korber B, Seoighe C. HIV evolution in early infection: selection pressures, patterns of insertion and deletion, and the impact of APOBEC. PLoS Pathog 2009; 5:e1000414. [PMID: 19424423 PMCID: PMC2671846 DOI: 10.1371/journal.ppat.1000414] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Accepted: 04/06/2009] [Indexed: 11/24/2022] Open
Abstract
The pattern of viral diversification in newly infected individuals provides information about the host environment and immune responses typically experienced by the newly transmitted virus. For example, sites that tend to evolve rapidly across multiple early-infection patients could be involved in enabling escape from common early immune responses, could represent adaptation for rapid growth in a newly infected host, or could represent reversion from less fit forms of the virus that were selected for immune escape in previous hosts. Here we investigated the diversification of HIV-1 env coding sequences in 81 very early B subtype infections previously shown to have resulted from transmission or expansion of single viruses (n = 78) or two closely related viruses (n = 3). In these cases, the sequence of the infecting virus can be estimated accurately, enabling inference of both the direction of substitutions as well as distinction between insertion and deletion events. By integrating information across multiple acutely infected hosts, we find evidence of adaptive evolution of HIV-1 env and identify a subset of codon sites that diversified more rapidly than can be explained by a model of neutral evolution. Of 24 such rapidly diversifying sites, 14 were either i) clustered and embedded in CTL epitopes that were verified experimentally or predicted based on the individual's HLA or ii) in a nucleotide context indicative of APOBEC-mediated G-to-A substitutions, despite having excluded heavily hypermutated sequences prior to the analysis. In several cases, a rapidly evolving site was embedded both in an APOBEC motif and in a CTL epitope, suggesting that APOBEC may facilitate early immune escape. Ten rapidly diversifying sites could not be explained by CTL escape or APOBEC hypermutation, including the most frequently mutated site, in the fusion peptide of gp41. We also examined the distribution, extent, and sequence context of insertions and deletions, and we provide evidence that the length variation seen in hypervariable loop regions of the envelope glycoprotein is a consequence of selection and not of mutational hotspots. Our results provide a detailed view of the process of diversification of HIV-1 following transmission, highlighting the role of CTL escape and hypermutation in shaping viral evolution during the establishment of new infections. HIV is a rapidly evolving virus, displaying enormous genetic diversity between and even within infected individuals, with implications for vaccine design and drug treatment. Yet, recent research has shown that most new infections result from transmission of a single virus resulting in a homogeneous viral population in early infection. The process of diversification from the transmitted virus provides information about the selection pressures experienced by the virus during the establishment of a new infection. In this paper, we studied early diversification of the envelope gene in a cohort of 81 subjects acutely infected with HIV-1 subtype B and found evidence of adaptive evolution, with a proportion of sites that tended to diversify more rapidly than expected under a model of neutral evolution. Several of these rapidly diversifying sites facilitate escape from early cytotoxic immune responses. Interestingly, hypermutation of the virus, brought about by host proteins as a strategy to restrict infection, appeared to be associated with early immune escape. In addition to single base substitutions, insertions and deletions are an important aspect of HIV evolution. We show that insertion and deletion mutations occur evenly across the gene, but are preferentially fixed in the variable loop regions.
Collapse
Affiliation(s)
- Natasha Wood
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town, South Africa
- Centre for High-Performance Computing, CSIR Campus, Rosebank, Cape Town, South Africa
| | - Tanmoy Bhattacharya
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
| | - Brandon F. Keele
- University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Elena Giorgi
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Michael Liu
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Brian Gaschen
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Marcus Daniels
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Guido Ferrari
- Duke University, Durham, North Carolina, United States of America
| | - Barton F. Haynes
- Duke University, Durham, North Carolina, United States of America
| | - Andrew McMichael
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - George M. Shaw
- University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Beatrice H. Hahn
- University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Bette Korber
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
| | - Cathal Seoighe
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town, South Africa
- Centre for High-Performance Computing, CSIR Campus, Rosebank, Cape Town, South Africa
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland Galway, Galway, Ireland
- * E-mail:
| |
Collapse
|
23
|
Gopi H, Cocklin S, Pirrone V, McFadden K, Tuzer F, Zentner I, Ajith S, Baxter S, Jawanda N, Krebs FC, Chaiken IM. Introducing metallocene into a triazole peptide conjugate reduces its off-rate and enhances its affinity and antiviral potency for HIV-1 gp120. J Mol Recognit 2009; 22:169-74. [PMID: 18498083 DOI: 10.1002/jmr.892] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In this work, we identified a high affinity and potency metallocene-containing triazole peptide conjugate that suppresses the interactions of HIV-1 envelope gp120 at both its CD4 and co-receptor binding sites. The ferrocene-peptide conjugate, HNG-156, was formed by an on-resin copper-catalysed [2+3] cycloaddition reaction. Surface plasmon resonance interaction analysis revealed that, compared to a previously reported phenyl-containing triazole conjugate HNG-105 (105), peptide 156 had a higher direct binding affinity for several subtypes of HIV-1 gp120 due mainly to the decreased dissociation rate of the conjugate-gp120 complex. The ferrocene triazole conjugate bound to gp120 of both clade A (92UG037-08) and clade B (YU-2 and SF162) virus subtypes with nanomolar KD in direct binding and inhibited the binding of gp120 to soluble CD4 and to antibodies that bind to HIV-1YU-2 gp120 at both the CD4 binding site and CD4-induced binding sites. HNG-156 showed a close-to nanomolar IC50 for inhibiting cell infection by HIV-1BaL whole virus. The dual receptor site antagonist activity and potency of HNG-156 make it a promising viral envelope inhibitor lead for developing anti-HIV-1 treatments.
Collapse
Affiliation(s)
- Hosahudya Gopi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Madani N, Schön A, Princiotto AM, Lalonde JM, Courter JR, Soeta T, Ng D, Wang L, Brower ET, Xiang SH, Kwon YD, Huang CC, Wyatt R, Kwong PD, Freire E, Smith AB, Sodroski J. Small-molecule CD4 mimics interact with a highly conserved pocket on HIV-1 gp120. Structure 2009; 16:1689-701. [PMID: 19000821 DOI: 10.1016/j.str.2008.09.005] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 09/16/2008] [Accepted: 09/18/2008] [Indexed: 10/21/2022]
Abstract
Human immunodeficiency virus (HIV-1) interaction with the primary receptor, CD4, induces conformational changes in the viral envelope glycoproteins that allow binding to the CCR5 second receptor and virus entry into the host cell. The small molecule NBD-556 mimics CD4 by binding the gp120 exterior envelope glycoprotein, moderately inhibiting virus entry into CD4-expressing target cells and enhancing CCR5 binding and virus entry into CCR5-expressing cells lacking CD4. Studies of NBD-556 analogs and gp120 mutants suggest that (1) NBD-556 binds within the Phe 43 cavity, a highly conserved, functionally important pocket formed as gp120 assumes the CD4-bound conformation; (2) the NBD-556 phenyl ring projects into the Phe 43 cavity; (3) enhancement of CD4-independent infection by NBD-556 requires the induction of conformational changes in gp120; and (4) increased affinity of NBD-556 analogs for gp120 improves antiviral potency during infection of CD4-expressing cells.
Collapse
Affiliation(s)
- Navid Madani
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, 44 Binney Street, JFB 824, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
The V1-V3 region of a brain-derived HIV-1 envelope glycoprotein determines macrophage tropism, low CD4 dependence, increased fusogenicity and altered sensitivity to entry inhibitors. Retrovirology 2008; 5:89. [PMID: 18837996 PMCID: PMC2576352 DOI: 10.1186/1742-4690-5-89] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Accepted: 10/06/2008] [Indexed: 11/17/2022] Open
Abstract
Background HIV-1 infects macrophages and microglia in the brain and can cause neurological disorders in infected patients. We and others have shown that brain-derived envelope glycoproteins (Env) have lower CD4 dependence and higher avidity for CD4 than those from peripheral isolates, and we have also observed increased fusogenicity and reduced sensitivity to the fusion inhibitor T-1249. Due to the genetic differences between brain and spleen env from one individual throughout gp120 and in gp41's heptad repeat 2 (HR2), we investigated the viral determinants for the phenotypic differences by performing functional studies with chimeric and mutant Env. Results Chimeric Env showed that the V1/V2-C2-V3 region in brain's gp120 determines the low CD4 dependence and high avidity for CD4, as well as macrophage tropism and reduced sensitivity to the small molecule BMS-378806. Changes in brain gp41's HR2 region did not contribute to the increased fusogenicity or to the reduced sensitivity to T-1249, since a T-1249-based peptide containing residues found in brain's but not in spleen's HR2 had similar potency than T-1249 and interacted similarly with an immobilized heptad repeat 1-derived peptide in surface plasmon resonance analysis. However, the increased fusogenicity and reduced T-1249 sensitivity of brain and certain chimeric Env mostly correlated with the low CD4 dependence and high avidity for CD4 determined by brain's V1-V3 region. Remarkably, most but not all of these low CD4-dependent, macrophage tropic envelopes glycoproteins also had increased sensitivity to the novel allosteric entry inhibitor HNG-105. The gp120's C2 region asparagine 283 (N283) has been previously associated with macrophage tropism, brain infection, lower CD4 dependence and higher CD4 affinity. Therefore, we introduced the N283T mutation into an env clone from a brain-derived isolate and into a brain tissue-derived env clone, and the T283N change into a spleen-derived env from the same individual; however, we found that their phenotypes were not affected. Conclusion We have identified that the V1-V3 region of a brain-derived envelope glycoprotein seems to play a crucial role in determining not only the low CD4 dependence and increased macrophage tropism, but also the augmented fusogenicity and reduced sensitivity to T-1249 and BMS-378806. By contrast, increased sensitivity to HNG-105 mostly correlated with low CD4 dependence and macrophage tropism but was not determined by the presence of the brain's V1-V3 region, confirming that viral determinants of phenotypic changes in brain-derived envelope glycoproteins are likely complex and context-dependent.
Collapse
|
26
|
Monitoring early fusion dynamics of human immunodeficiency virus type 1 at single-molecule resolution. J Virol 2008; 82:7022-33. [PMID: 18480458 DOI: 10.1128/jvi.00053-08] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fusion of human immunodeficiency virus type 1 (HIV-1) to host cells is a dynamic process governed by the interaction between glycoproteins on the viral envelope and the major receptor, CD4, and coreceptor on the surface of the cell. How these receptors organize at the virion-cell interface to promote a fusion-competent site is not well understood. Using single-molecule force spectroscopy, we map the tensile strengths, lifetimes, and energy barriers of individual intermolecular bonds between CCR5-tropic HIV-1 gp120 and its receptors CD4 and CCR5 or CXCR4 as a function of the interaction time with the cell. According to the Bell model, at short times of contact between cell and virion, the gp120-CD4 bond is able to withstand forces up to 35 pN and has an initial lifetime of 0.27 s and an intermolecular length of interaction of 0.34 nm. The initial bond also has an energy barrier of 6.7 k(B)T (where k(B) is Boltzmann's constant and T is absolute temperature). However, within 0.3 s, individual gp120-CD4 bonds undergo rapid destabilization accompanied by a shortened lifetime and a lowered tensile strength. This destabilization is significantly enhanced by the coreceptor CCR5, not by CXCR4 or fusion inhibitors, which suggests that it is directly related to a conformational change in the gp120-CD4 bond. These measurements highlight the instability and low tensile strength of gp120-receptor bonds, uncover a synergistic role for CCR5 in the progression of the gp120-CD4 bond, and suggest that the cell-virus adhesion complex is functionally arranged about a long-lived gp120-coreceptor bond.
Collapse
|
27
|
Monde K, Maeda Y, Tanaka Y, Harada S, Yusa K. Gp120 V3-dependent impairment of R5 HIV-1 infectivity due to virion-incorporated CCR5. J Biol Chem 2007; 282:36923-32. [PMID: 17971448 DOI: 10.1074/jbc.m705298200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Entry of R5 human immunodeficiency virus type 1 (HIV-1) into target cells requires sequential interactions of the envelope glycoprotein gp120 with the receptor CD4 and the coreceptor CCR5. We investigated replication of 45 R5 viral clones derived from the HIV-1JR-FLan library carrying 0-10 random amino acid substitutions in the gp120 V3 loop. It was found that 6.7% (3/45) of the viruses revealed >or=10-fold replication suppression in PM1/CCR5 cells expressing high levels of CCR5 compared with PM1 cells expressing low levels of CCR5. In HIV-1V3L#08, suppression of replication was not associated with entry events and viral production but with a marked decrease in infectivity of nascent progeny virus. HIV-1V3L#08, generated from infected PM1/CCR5 cells, was 98% immunoprecipitated by anti-CCR5 monoclonal antibody T21/8, whereas the other infectious viruses were only partially precipitated, suggesting that incorporation of larger amounts of CCR5 into the virions caused impairment of viral infectivity in HIV-1V3L#08. The results demonstrate the implications of an alternative influence of CCR5 on HIV-1 replication.
Collapse
Affiliation(s)
- Kazuaki Monde
- Department of Medical Virology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto 860-8556, Japan
| | | | | | | | | |
Collapse
|
28
|
Binz HK, Plückthun A. Engineered proteins as specific binding reagents. Curr Opin Biotechnol 2007; 16:459-69. [PMID: 16005204 DOI: 10.1016/j.copbio.2005.06.005] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Revised: 06/10/2005] [Accepted: 06/24/2005] [Indexed: 11/20/2022]
Abstract
Over the past 30 years, monoclonal antibodies have become the standard binding proteins and currently find applications in research, diagnostics and therapy. Yet, monoclonal antibodies now face strong competition from synthetic antibody libraries in combination with powerful library selection technologies. More recently, an increased understanding of other natural binding proteins together with advances in protein engineering, selection and evolution technologies has also triggered the exploration of numerous other protein architectures for the generation of designed binding molecules. Valuable protein-binding scaffolds have been obtained and represent promising alternatives to antibodies for biotechnological and, potentially, clinical applications.
Collapse
Affiliation(s)
- H Kaspar Binz
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | |
Collapse
|
29
|
McFadden K, Cocklin S, Gopi H, Baxter S, Ajith S, Mahmood N, Shattock R, Chaiken I. A recombinant allosteric lectin antagonist of HIV-1 envelope gp120 interactions. Proteins 2007; 67:617-29. [PMID: 17348010 DOI: 10.1002/prot.21295] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The first, critical stage of HIV-1 infection is fusion of viral and host cellular membranes initiated by a viral envelope glycoprotein gp120. We evaluated the potential to form a chimeric protein entry inhibitor that combines the action of two gp120-targeting molecules, an allosteric peptide inhibitor 12p1 and a higher affinity carbohydrate-binding protein cyanovirin (CVN). In initial mixing experiments, we demonstrated that the inhibitors do not interfere with each other and instead show functional synergy in inhibiting viral cell infection. Based on this, we created a chimera, termed L5, with 12p1 fused to the C-terminal domain of CVN through a linker of five penta-peptide repeats. L5 revealed the same broad specificity as CVN for gp120 from a variety of clades and tropisms. By comparison to CVN, the L5 chimera exhibited substantially increased inhibition of gp120 binding to receptor CD4, coreceptor surrogate mAb 17b and gp120 antibody F105. These binding inhibition effects by the chimera reflected both the high affinity of the CVN domain and the allosteric action of the 12p1 domain. The results open up the possibility to form high potency chimeras, as well as noncovalent mixtures, as leads for HIV-1 envelope antagonism that can overcome potency limits and potential virus mutational resistance for either 12p1 or CVN alone.
Collapse
Affiliation(s)
- Karyn McFadden
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Prabakaran P, Dimitrov AS, Fouts TR, Dimitrov DS. Structure and function of the HIV envelope glycoprotein as entry mediator, vaccine immunogen, and target for inhibitors. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2007; 55:33-97. [PMID: 17586312 PMCID: PMC7111665 DOI: 10.1016/s1054-3589(07)55002-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This chapter discusses the advances of the envelope glycoprotein (Env) structure as related to the interactions of conserved Env structures with receptor molecules and antibodies with implications for the design of vaccine immunogens and inhibitors. The human immunodeficiency virus (HIV) Env binds to cell surface–associated receptor (CD4) and coreceptor (CCR5 or CXCR4) by one of its two non-covalently associated subunits, gp120. The induced conformational changes activate the other subunit (gp41), which causes the fusion of the viral with the plasma cell membranes resulting in the delivery of the viral genome into the cell and the initiation of the infection cycle. As the only HIV protein exposed to the environment, the Env is also a major immunogen to which neutralizing antibodies are directed and a target that is relatively easy to access by inhibitors. A fundamental problem in the development of effective vaccines and inhibitors against HIV is the rapid generation of alterations at high levels of expression during long chronic infection and the resulting significant heterogeneity of the Env. The preservation of the Env function as an entry mediator and limitations on size and expression impose restrictions on its variability and lead to the existence of conserved structures.
Collapse
Affiliation(s)
- Ponraj Prabakaran
- Protein Interactions Group, CCRNP, CCR, NCI-Frederick, NIH Frederick, MD 21702, USA
| | | | | | | |
Collapse
|
31
|
Dey AK, David KB, Klasse PJ, Moore JP. Specific amino acids in the N-terminus of the gp41 ectodomain contribute to the stabilization of a soluble, cleaved gp140 envelope glycoprotein from human immunodeficiency virus type 1. Virology 2006; 360:199-208. [PMID: 17092531 PMCID: PMC1857345 DOI: 10.1016/j.virol.2006.09.046] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 09/15/2006] [Accepted: 09/29/2006] [Indexed: 12/30/2022]
Abstract
The HIV-1 envelope glycoprotein is expressed on the viral membrane as a trimeric complex, formed by three gp120 surface glycoproteins non-covalently associated with three membrane-anchored gp41 subunits. The labile nature of the association between gp120 and gp41 hinders the expression of soluble, fully cleaved, trimeric gp140 proteins for structural and immunization studies. Disruption of the primary cleavage site within gp160 allows the production of stable gp140 trimers, but cleavage-defective trimers are antigenically dissimilar from their cleaved counterparts. Soluble, stabilized, proteolytically cleaved, trimeric gp140 proteins can be generated by engineering an intermolecular disulfide bond between gp120 and gp41 (SOS), combined with a single residue change, I559P, within gp41 (SOSIP). We have found that SOSIP gp140 proteins based on the subtype A HIV-1 strain KNH1144 form particularly homogenous trimers compared to a prototypic strain (JR-FL, subtype B). We now show that the determinants of this enhanced stability are located in the N-terminal region of KNH11144 gp41 and that, when substituted into heterologous Env sequences (e.g., JR-FL and Ba-L) they have a similarly beneficial effect on trimer stability. The stabilized trimers retain the epitopes for several neutralizing antibodies (b12, 2G12, 2F5 and 4E10) and the CD4-IgG2 molecule, suggesting that the overall antigenic structure of the gp140 protein has not been adversely impaired by the trimer-stabilizing substitutions. The ability to increase the stability of gp140 trimers might be useful for neutralizing antibody-based vaccine strategies based on the use of this type of immunogen.
Collapse
Affiliation(s)
| | | | | | - John P. Moore
- *Corresponding author. Department of Microbiology and Immunology, Weill Medical College of Cornell University, 1300 York Avenue, Room W-805, New York, NY 10021. Phone (212) 746 4463; Fax. (212) 746 8340;
| |
Collapse
|
32
|
Schön A, Madani N, Klein JC, Hubicki A, Ng D, Yang X, Smith AB, Sodroski J, Freire E. Thermodynamics of binding of a low-molecular-weight CD4 mimetic to HIV-1 gp120. Biochemistry 2006; 45:10973-80. [PMID: 16953583 PMCID: PMC2504686 DOI: 10.1021/bi061193r] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
NBD-556 and the chemically and structurally similar NBD-557 are two low-molecular weight compounds that reportedly block the interaction between the HIV-1 envelope glycoprotein gp120 and its receptor, CD4. NBD-556 binds to gp120 with a binding affinity of 2.7 x 10(5) M(-1) (K(d) = 3.7 muM) in a process characterized by a large favorable change in enthalpy partially compensated by a large unfavorable entropy change, a thermodynamic signature similar to that observed for binding of sCD4 to gp120. NBD-556 binding is associated with a large structuring of the gp120 molecule, as also demonstrated by CD spectroscopy. NBD-556, like CD4, activates the binding of gp120 to the HIV-1 coreceptor, CCR5, and to the 17b monoclonal antibody, which recognizes the coreceptor binding site of gp120. NBD-556 stimulates HIV-1 infection of CD4-negative, CCR5-expressing cells. The thermodynamic signature of the binding of NBD-556 to gp120 is very different from that of another viral entry inhibitor, BMS-378806. Whereas NBD-556 binds gp120 with a large favorable enthalpy and compensating unfavorable entropy changes, BMS-378806 does so with a small binding enthalpy change in a mostly entropy-driven process. NBD-556 is a competitive inhibitor of sCD4 and elicits a similar structuring of the coreceptor binding site, whereas BMS-378806 does not compete with sCD4 and does not induce coreceptor binding. These studies demonstrate that low-molecular-weight compounds can induce conformational changes in the HIV-1 gp120 glycoprotein similar to those observed upon CD4 binding, revealing distinct strategies for inhibiting the function of the HIV-1 gp120 envelope glycoprotein. Furthermore, competitive and noncompetitive compounds have characteristic thermodynamic signatures that can be used to guide the design of more potent and effective viral entry inhibitors.
Collapse
Affiliation(s)
- Arne Schön
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218
| | - Navid Madani
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| | - Jeffrey C. Klein
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218
| | - Amy Hubicki
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| | - Danny Ng
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Xinzhen Yang
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| | - Amos B. Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Joseph Sodroski
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| | - Ernesto Freire
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218
- All correspondence should be addressed to E. Freire, Department of Biology, The Johns Hopkins University, Baltimore, MD 21218; Phone (410) 516−7743; Fax (410) 516−6469; e-mail
| |
Collapse
|
33
|
Wang S, Pal R, Mascola JR, Chou THW, Mboudjeka I, Shen S, Liu Q, Whitney S, Keen T, Nair BC, Kalyanaraman VS, Markham P, Lu S. Polyvalent HIV-1 Env vaccine formulations delivered by the DNA priming plus protein boosting approach are effective in generating neutralizing antibodies against primary human immunodeficiency virus type 1 isolates from subtypes A, B, C, D and E. Virology 2006; 350:34-47. [PMID: 16616287 DOI: 10.1016/j.virol.2006.02.032] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Revised: 01/20/2006] [Accepted: 02/09/2006] [Indexed: 10/24/2022]
Abstract
A major challenge in developing an HIV-1 vaccine is to identify immunogens and their delivery methods that can elicit broad neutralizing antibodies against primary isolates of different genetic subtypes. Recently, we demonstrated that priming with DNA vaccines expressing primary HIV-1 envelope glycoprotein (Env) followed by recombinant Env protein boosting was successful in generating positive neutralizing antibody responses against a clade B primary HIV-1 isolate, JR-FL, that was not easily neutralized. In the current study, we examined whether the DNA priming plus recombinant protein boosting approach delivering a polyvalent primary Env formulation was able to generate neutralizing antibodies against primary HIV-1 viral isolates from various genetic subtypes. New Zealand White rabbits were first immunized with DNA vaccines expressing one, three or eight primary HIV-1 gp120 antigens delivered by a gene gun followed by recombinant gp120 protein boosting. Neutralizing antibody responses were examined by two independently executed neutralization assays: the first one was a single round infection neutralization assay against a panel of 10 primary HIV-1 isolates of subtypes A, B, C and E and the second one used the PhenoSense assay against a panel of 12 pseudovirues expressing primary HIV-1 Env antigens from subtypes A, B, C, D and E as well as 2 pseudoviruses expressing the Env antigens from MN and NL4-3 viruses. Rabbit sera immunized with the DNA priming plus protein boosting approach, but not DNA vaccine alone or Env protein alone, were capable of neutralizing 7 of 10 viruses in the first assay and 12 of 14 viruses in the second assay. More importantly, sera immunized with the polyvalent Env antigens were able to neutralize a significantly higher percentage of viruses than the sera immunized with the monovalent antigens. Our results suggest that DNA priming followed by recombinant Env protein boosting can be used to deliver polyvalent Env-antigen-based HIV-1 vaccines to elicit neutralizing antibody responses against viruses with diverse genetic sequence variations.
Collapse
Affiliation(s)
- Shixia Wang
- Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, Lazare Research Building, Worcester, MA 01605, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lim KI, Yin J. Dynamic tradeoffs in the raft-mediated entry of human immunodeficiency virus type 1 into cells. Biotechnol Bioeng 2006; 93:246-57. [PMID: 16136590 DOI: 10.1002/bit.20680] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
To initiate an infection human immunodeficiency virus type 1 (HIV-1) particles must first bind to receptors on the surface of their host cells, a process that eventually leads to fusion of viral and cellular membranes and release of the viral genome into the cytoplasm. Understanding the molecular mechanisms of these processes may enable the development of new anti-HIV strategies. Disagreement currently prevails on the role in virus entry of microdomains within the cellular plasma membrane known as lipid rafts. Experiments have suggested that lipid rafts, in their interactions with cellular receptors and viral particles, either promote or have minimal effect on viral entry. Here we develop a dynamic model for HIV-1 entry that enables us to identify and quantitatively assess tradeoffs that can arise from the clustering of receptors in rafts. Specifically, receptor clustering can be detrimental to the initiation of viral infection by reducing the probability that a virus particle finds its primary receptor, CD4. However, receptor clustering can also enable a virus particle, once bound, to rapidly form multivalent interactions with receptors and co-receptors that are required for virus-cell membrane fusion. We show how the resolution of such tradeoffs hinges on the level and spatial distribution of receptors and co-receptors on the cell surface, and we discuss implications of these effects for the design of therapeutics that inhibit HIV-1 entry.
Collapse
Affiliation(s)
- Kwang-il Lim
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706-1607, USA
| | | |
Collapse
|
35
|
Pastore C, Nedellec R, Ramos A, Pontow S, Ratner L, Mosier DE. Human immunodeficiency virus type 1 coreceptor switching: V1/V2 gain-of-fitness mutations compensate for V3 loss-of-fitness mutations. J Virol 2006; 80:750-8. [PMID: 16378977 PMCID: PMC1346864 DOI: 10.1128/jvi.80.2.750-758.2006] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) entry into target cells is mediated by the virus envelope binding to CD4 and the conformationally altered envelope subsequently binding to one of two chemokine receptors. HIV-1 envelope glycoprotein (gp120) has five variable loops, of which three (V1/V2 and V3) influence the binding of either CCR5 or CXCR4, the two primary coreceptors for virus entry. Minimal sequence changes in V3 are sufficient for changing coreceptor use from CCR5 to CXCR4 in some HIV-1 isolates, but more commonly additional mutations in V1/V2 are observed during coreceptor switching. We have modeled coreceptor switching by introducing most possible combinations of mutations in the variable loops that distinguish a previously identified group of CCR5- and CXCR4-using viruses. We found that V3 mutations entail high risk, ranging from major loss of entry fitness to lethality. Mutations in or near V1/V2 were able to compensate for the deleterious V3 mutations and may need to precede V3 mutations to permit virus survival. V1/V2 mutations in the absence of V3 mutations often increased the capacity of virus to utilize CCR5 but were unable to confer CXCR4 use. V3 mutations were thus necessary but not sufficient for coreceptor switching, and V1/V2 mutations were necessary for virus survival. HIV-1 envelope sequence evolution from CCR5 to CXCR4 use is constrained by relatively frequent lethal mutations, deep fitness valleys, and requirements to make the right amino acid substitution in the right place at the right time.
Collapse
Affiliation(s)
- C Pastore
- The Scripps Research Institute, Dept. of Immunology, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
36
|
Wilkinson RA, Piscitelli C, Teintze M, Cavacini LA, Posner MR, Lawrence CM. Structure of the Fab fragment of F105, a broadly reactive anti-human immunodeficiency virus (HIV) antibody that recognizes the CD4 binding site of HIV type 1 gp120. J Virol 2005; 79:13060-9. [PMID: 16189008 PMCID: PMC1235812 DOI: 10.1128/jvi.79.20.13060-13069.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We have determined the crystal structure of the Fab fragment from F105, a broadly reactive human antibody with limited potency that recognizes the CD4 binding site of gp120. The structure reveals an extended CDR H3 loop with a phenylalanine residue at the apex and shows a striking pattern of serine and tyrosine residues. Modeling the interaction between gp120 and F105 suggests that the phenylalanine may recognize the binding pocket of gp120 used by Phe(43) of CD4 and that numerous tyrosine and serine residues form hydrogen bonds with the main chain atoms of gp120. A comparison of the F105 structure to that of immunoglobulin G1 b12, a much more potent and broadly neutralizing antibody with an overlapping epitope, suggests similarities that contribute to the broad recognition of human immunodeficiency virus by both antibodies. While the putative epitope for F105 shows significant overlap with that predicted for b12, it appears to differ from the b12 epitope in extending across the interface between the inner and outer domains of gp120. In contrast, the CDR loops of b12 appear to interact predominantly with the outer domain of gp120. The difference between the predicted epitopes for b12 and F105 suggests that the unique potency of b12 may arise from its ability to avoid the interface between the inner and outer domains of gp120.
Collapse
Affiliation(s)
- Royce A Wilkinson
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, 59717, USA
| | | | | | | | | | | |
Collapse
|
37
|
Martín-García J, Cocklin S, Chaiken IM, González-Scarano F. Interaction with CD4 and antibodies to CD4-induced epitopes of the envelope gp120 from a microglial cell-adapted human immunodeficiency virus type 1 isolate. J Virol 2005; 79:6703-13. [PMID: 15890908 PMCID: PMC1112147 DOI: 10.1128/jvi.79.11.6703-6713.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously showed that the envelope glycoprotein from an in vitro microglia-adapted human immunodeficiency virus type 1 isolate (HIV-1(Bori-15)) is able to use lower levels of CD4 for infection and demonstrates greater exposure of the CD4-induced epitope recognized by the 17b monoclonal antibody than the envelope of its parental, peripheral isolate (HIV-1(Bori)). We investigated whether these phenotypic changes were related to a different interaction of their soluble monomeric gp120 proteins with CD4 or 17b. Equilibrium binding analyses showed no difference between Bori and Bori-15 gp120s. However, kinetic analysis of surface plasmon resonance-based, real-time binding experiments showed that while both proteins have similar association rates, Bori-15 gp120 has a statistically significant, 3-fold-lower dissociation rate from immobilized CD4 than Bori and a statistically significant, 14-fold-lower dissociation rate from 17b than Bori in the absence of soluble CD4. In addition, using the sensitivity to inhibition by anti-CD4 antibodies as a surrogate for CD4:trimeric envelope interaction, we found that Bori-15 envelope-pseudotyped viruses were significantly less sensitive than Bori pseudotypes, with four- to sixfold-higher 50% inhibitory concentration values for the three anti-CD4 antibodies tested. These differences, though small, suggest that adaptation to microglia correlates with the generation of a gp120 that forms a more stable interaction with CD4. Nonetheless, the observation of limited binding changes leaves open the possibility that HIV-1 adaptation to microglia and HIV-associated dementia may be related not only to diminished CD4 dependence but also to changes in other molecular factors involved in the infection process.
Collapse
Affiliation(s)
- Julio Martín-García
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6146, USA.
| | | | | | | |
Collapse
|
38
|
Delos SE, Godby JA, White JM. Receptor-induced conformational changes in the SU subunit of the avian sarcoma/leukosis virus A envelope protein: implications for fusion activation. J Virol 2005; 79:3488-99. [PMID: 15731243 PMCID: PMC1075726 DOI: 10.1128/jvi.79.6.3488-3499.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The avian sarcoma/leukosis virus (ASLV) is activated for fusion by a two-step mechanism. For ASLV subgroup A (ASLV-A), association with its receptor (Tva) at neutral pH converts virions to a form that can bind target membranes and, in some assays, induce the lipid-mixing stage of fusion. Low pH is necessary to complete the fusion reaction. ASLV-A env (EnvA) exists on the viral surface as a trimer of heterodimers consisting of receptor binding (SU-A) and fusion-mediating (TM-A) subunits. As the receptor binding and fusion-mediating functions reside in separate subunits, we hypothesize that SU-A and TM-A are conformationally coupled. To begin to understand the effect of the binding of a soluble 47-residue domain of the receptor (sTva) on this coupling and the subsequent function of low pH, we prepared recombinant proteins representing full-length SU-A and a nested set of deletion mutant proteins. Full-length SU-A binds sTva with high affinity, but even small deletions at either the N or the C terminus severely impair sTva binding. We have purified the full-length SU-A subunit and characterized its interactions with sTva and the subsequent effect of low pH on the complex. sTva binds SU-A with an apparent KD of 3 pM. Complex formation occludes hydrophobic surfaces and tryptophan residues and leads to a partial loss of alpha-helical structure in SU-A. Low pH does not alter the off rate for the complex, further alter the secondary structure of SU-A, or induce measurable changes in tryptophan environment. The implications of these findings for fusion are discussed.
Collapse
Affiliation(s)
- Sue E Delos
- Department of Cell Biology, UVA Health System, School of Medicine, P.O. Box 800732, Charlottesville, VA 22908-0732, USA.
| | | | | |
Collapse
|
39
|
|
40
|
Kim TG, Gruber A, Langridge WHR. HIV-1 gp120 V3 cholera toxin B subunit fusion gene expression in transgenic potato. Protein Expr Purif 2004; 37:196-202. [PMID: 15294298 DOI: 10.1016/j.pep.2004.04.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Revised: 04/16/2004] [Indexed: 11/26/2022]
Abstract
A cDNA fragment encoding the V3 loop of human immunodeficiency virus type-1 (HIV-1) envelope glycoprotein gp120 was fused to the cholera toxin B subunit gene (CTB-gp120) and transferred into Solanum tuberosum cells by Agrobacterium tumefaciens-mediated transformation. The CTB-gp120 fusion gene was detected in genomic DNA from transformed potato leaves by PCR DNA amplification. Synthesis and assembly of the CTB-gp120 fusion protein into oligomeric structures of pentamer size was detected in transformed tuber extracts by immunoblot analysis. The binding of CTB-gp120 fusion protein pentamers to intestinal epithelial cell membrane glycolipid receptors was quantified by GM1-ganglioside enzyme-linked immunosorbent assay (GM1-ELISA). The ELISA results indicated that CTB-gp120 fusion protein made up 0.002-0.004% of the total soluble tuber protein. Synthesis of CTB-gp120 monomers and their assembly into biologically active oligomers in transformed potato tuber tissues demonstrates for the first time the expression of HIV-1 gp120 in plants and emphasizes the feasibility of using edible plant-based vaccination for protection against HIV-1 infection.
Collapse
Affiliation(s)
- Tae-Geum Kim
- Center for Molecular Biology and Gene Therapy, Department of Biochemistry and Microbiology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | | | | |
Collapse
|
41
|
Kensinger RD, Catalone BJ, Krebs FC, Wigdahl B, Schengrund CL. Novel polysulfated galactose-derivatized dendrimers as binding antagonists of human immunodeficiency virus type 1 infection. Antimicrob Agents Chemother 2004; 48:1614-23. [PMID: 15105112 PMCID: PMC400553 DOI: 10.1128/aac.48.5.1614-1623.2004] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Evidence indicates that galactosyl ceramide (GalCer) and its 3'-sulfated derivative, sulfatide (SGalCer), may act as alternate coreceptors for human immunodeficiency virus type 1 (HIV-1) in CD4(-) cells. Glycosphingolipids (GSLs) may also be necessary for fusion of HIV-1 and host cell membranes. Using an enzyme-linked immunosorbent assay to determine which GSL was the best ligand for both recombinant and virus-associated gp120, we found that SGalCer was the best ligand for each rgp120 and HIV-1 isolate tested. Therefore, novel multivalent glycodendrimers, which mimic the carbohydrate clustering reportedly found in lipid rafts, were synthesized based on the carbohydrate moiety of SGalCer. Here we describe the synthesis of a polysulfated galactose functionalized, fifth generation DAB dendrimer (PS Gal 64mer), containing on average two sulfate groups per galactose residue. Its ability to inhibit HIV-1 infection of cultured indicator cells was compared to that of dextran sulfate (DxS), a known, potent, binding inhibitor of HIV-1. The results indicate that the PS Gal 64mer inhibited infection by the HIV-1 isolates tested as well as DxS.
Collapse
Affiliation(s)
- Richard D Kensinger
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | |
Collapse
|
42
|
Borkow G, Lara HH, Lapidot A. Mutations in gp41 and gp120 of HIV-1 isolates resistant to hexa-arginine neomycin B conjugate. Biochem Biophys Res Commun 2004; 312:1047-52. [PMID: 14651977 DOI: 10.1016/j.bbrc.2003.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aminoglycoside-arginine conjugates (AACs) inhibit HIV-1 replication and act as Tat antagonists. AACs compete with monoclonal antibody binding to CXCR4, compete with SDF-1alpha and HIV-1 gp120 cellular uptake, indicating that they interfere with initial steps of HIV-1 infection. We here present the selection of HIV-1 isolates resistant to hexa-arginine neomycin B conjugate (NeoR6), the most potent anti-HIV-1 AAC. We found in the NeoR6-resistant isolates the following mutations in gp120: I339T in the C3 region, S372L in the V4 region, and Q395K in the C4 region; and in gp41: S668R and F672Y in the 'heptad repeat' 2 (HR2) region. These findings strongly suggest that NeoR6 obstructs HIV-1 replication by interfering with the fusion step, dependent on both conformational changes in gp120 following CD4 and CXCR4 interaction, as well as by conformational changes in gp41 induced by HR1 and HR2 interaction. The AACs may thus represent a novel family of fusion inhibitors.
Collapse
Affiliation(s)
- Gadi Borkow
- Department of Organic Chemistry, The Weizmann Institute of Science, 76100, Rehovot, Israel
| | | | | |
Collapse
|
43
|
Yu X, Wang QY, Guo Y, Dolmer K, Young JAT, Gettins PGW, Rong L. Kinetic analysis of binding interaction between the subgroup A Rous sarcoma virus glycoprotein SU and its cognate receptor Tva: calcium is not required for ligand binding. J Virol 2003; 77:7517-26. [PMID: 12805452 PMCID: PMC164812 DOI: 10.1128/jvi.77.13.7517-7526.2003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tva is the receptor for subgroup A Rous sarcoma virus, and it contains a single LDL-A module which is the site of virus interaction. In this study, we expressed the entire extracellular region of Tva (referred to as Ecto-Tva) as a GST fusion protein and characterized its refolding properties. We demonstrated that the correct folding of the Ecto-Tva protein, like that of the Tva LDL-A module, is calcium dependent. We used the IAsys system to measure the kinetics of binding between the surface (SU) subunit of the viral glycoprotein and Tva in real time. We found that the Ecto-Tva protein and the Tva LDL-A module displayed similar affinities for SU, providing direct evidence that the LDL-A module of Tva is the only viral interaction domain of the receptor. Furthermore, misfolded Tva proteins displayed lower binding affinities to SU, largely due to a decrease in their association rates, suggesting that a high association rate between SU and Tva is crucial for efficient virus-host interaction. Furthermore, we found that calcium did not influence the overall binding affinity between Tva and SU. These results indicate that, although calcium is important in facilitating correct folding of the LDL-A module of Tva, it is not essential for ligand binding. Thus, these results may have broad implications for the mechanism of protein folding and ligand recognition of the LDL receptor and other members of the LDL receptor superfamily.
Collapse
Affiliation(s)
- Xuemei Yu
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Affiliation(s)
- Donald J Winzor
- Department of Biochemistry, School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
45
|
Bagnarelli P, Fiorelli L, Vecchi M, Monachetti A, Menzo S, Clementi M. Analysis of the functional relationship between V3 loop and gp120 context with regard to human immunodeficiency virus coreceptor usage using naturally selected sequences and different viral backbones. Virology 2003; 307:328-40. [PMID: 12667802 DOI: 10.1016/s0042-6822(02)00077-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) gp120 V3 loop plays a predominant role in chemokine receptor usage; however, other linear and nonlinear gp120 domains are involved in this step of the HIV-1 replication cycle. At present, the functional relationship between V3 and these domains with regard to coreceptor usage is unclear. To gain insights into the nature of this relationship in naturally selected viral variants, we developed a recombinant strategy based on two different gp120 backbones derived from CXCR4 (X4)- and CCR5 (R5)-tropic viral strains, respectively. Using this recombinant model system, we evaluated the phenotype patterns conferred to chimeric viruses by exogenous V3 loops from reference molecular clones and samples from infected subjects. In 13 of 17 recombinants (76%), a comparable phenotype was observed independently of the gp120 backbone, whereas in a minority of the recombinant viruses (4/17, 24%) viral infectivity depended on the gp120 context. No case of differential tropism using identical V3 sequence in the two gp120 contexts was observed. Site-directed mutagenesis experiments were performed to evaluate the phenotypic impact of specific V3 motifs. The data indicate that while the interaction of HIV-1 with chemokine receptors is driven by V3 loop and influenced by its evolutionary potential, the gp120 context plays a role in influencing the replication competence of the variants, suggesting that compensatory mutations occurring at sites other than V3 are necessary in some cases.
Collapse
|
46
|
Abstract
The application of surface plasmon resonance (SPR)-based optical biosensors has contributed extensively to our understanding of functional aspects of HIV. SPR biosensors allow the analysis of real-time interactions of any biomolecule, be it protein, nucleic acid, lipid, carbohydrate or small molecule, without the need for intrinsic or extrinsic probes. As such, the technology has been used to analyze molecular interactions associated with every aspect of the viral life cycle, from basic studies of binding events occurring during docking, replication, budding and maturation to applied research related to vaccine and inhibitory drug development. Along the way, SPR biosensors have provided a unique and detailed view into the inner workings of HIV.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, School of Medicine, Medical Drive, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
47
|
Dey B, Del Castillo CS, Berger EA. Neutralization of human immunodeficiency virus type 1 by sCD4-17b, a single-chain chimeric protein, based on sequential interaction of gp120 with CD4 and coreceptor. J Virol 2003; 77:2859-65. [PMID: 12584309 PMCID: PMC149752 DOI: 10.1128/jvi.77.5.2859-2865.2003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We designed a novel single-chain chimeric protein, designated sCD4-17b, for neutralization of human immunodeficiency virus type 1 (HIV-1). The recombinant protein contains domains 1 and 2 of soluble CD4 (sCD4), connected via a flexible polypeptide linker to a single-chain variable region construct of 17b, a human monoclonal antibody that targets a conserved CD4-induced epitope on gp120 overlapping the coreceptor binding region. We hypothesized that the sCD4 moiety would bind gp120 and expose the 17b epitope; the 17b moiety would then bind, thereby blocking coreceptor interaction and neutralizing infection. The sCD4-17b protein, expressed by a recombinant vaccinia virus, potently neutralized a prototypic R5 clade B primary isolate, with a 50% inhibitory concentration of 3.2 nM (0.16 microg/ml) and >95% neutralization at 32 nM (1.6 microg/ml). The individual components (sCD4 and 17b, singly or in combination) had minimal effects at these concentrations, demonstrating that the activity of sCD4-17b reflected the ability of a single chimeric molecule to bind gp120 simultaneously via two independent moieties. sCD4-17b was highly potent compared to the previously characterized broadly cross-reactive neutralizing monoclonal antibodies IgGb12, 2G12, and 2F5. Multiple primary isolates were neutralized, including two previously described as antibody resistant. Neutralization occurred for both R5 and X4 strains and was not restricted to clade B. However, several primary isolates were insensitive over the concentration range tested, despite the known presence of binding sites for both CD4 and 17b. sCD4-17b has potential utility for passive immunization against HIV-1 in several contexts, including maternal transmission, postexposure prophylaxis, and sexual transmission (topical microbicide).
Collapse
Affiliation(s)
- Barna Dey
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
48
|
Martin L, Stricher F, Missé D, Sironi F, Pugnière M, Barthe P, Prado-Gotor R, Freulon I, Magne X, Roumestand C, Ménez A, Lusso P, Veas F, Vita C. Rational design of a CD4 mimic that inhibits HIV-1 entry and exposes cryptic neutralization epitopes. Nat Biotechnol 2003; 21:71-6. [PMID: 12483221 DOI: 10.1038/nbt768] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2002] [Accepted: 11/04/2002] [Indexed: 11/09/2022]
Abstract
The conserved surfaces of the human immunodeficiency virus (HIV)-1 envelope involved in receptor binding represent potential targets for the development of entry inhibitors and neutralizing antibodies. Using structural information on a CD4-gp120-17b antibody complex, we have designed a 27-amino acid CD4 mimic, CD4M33, that presents optimal interactions with gp120 and binds to viral particles and diverse HIV-1 envelopes with CD4-like affinity. This mini-CD4 inhibits infection of both immortalized and primary cells by HIV-1, including primary patient isolates that are generally resistant to inhibition by soluble CD4. Furthermore, CD4M33 possesses functional properties of CD4, including the ability to unmask conserved neutralization epitopes of gp120 that are cryptic on the unbound glycoprotein. CD4M33 is a prototype of inhibitors of HIV-1 entry and, in complex with envelope proteins, a potential component of vaccine formulations, or a molecular target in phage display technology to develop broad-spectrum neutralizing antibodies.
Collapse
Affiliation(s)
- Loïc Martin
- Department of Protein Engineering and Research, CEA Saclay, 91191 Gif-sur-Yvette, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Smith AB, Savinov SN, Manjappara UV, Chaiken IM. Peptide-small molecule hybrids via orthogonal deprotection-chemoselective conjugation to cysteine-anchored scaffolds. A model study. Org Lett 2002; 4:4041-4. [PMID: 12423081 DOI: 10.1021/ol026736d] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The feasibility of an orthogonal deprotection-conjugation protocol, holding the promise of libraries of functionally diverse chemical probes attached to cysteine-anchored peptide scaffolds, has been explored with a model system. The necessary tools for assembly of the hybrid libraries have been prepared and the tandem procedure optimized. S-alkylation and S-sulfenylation are featured as the chemoselective ligation reactions. [reaction: see text]
Collapse
Affiliation(s)
- Amos B Smith
- Department of Chemistry and Department of Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
50
|
Devesa F, Chams V, Dinadayala P, Stella A, Ragas A, Auboiroux H, Stegmann T, Poquet Y. Functional reconstitution of the HIV receptors CCR5 and CD4 in liposomes. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:5163-74. [PMID: 12392548 DOI: 10.1046/j.1432-1033.2002.03213.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Reconstitution of membrane proteins allows their study in a membrane environment that can be manipulated at will. Because membrane proteins have diverse biophysical properties, reconstitution methods have so far been developed for individual proteins on an ad hoc basis. We developed a postinsertion reconstitution method for CCR5, a G protein coupled receptor, with seven transmembrane alpha helices and small ecto- and endodomains. A His6-tagged version of CCR5 was expressed in mammalian cells, purified using the detergent N-dodecyl-beta-d-maltoside (DDM) and reconstituted into preformed liposomal membranes saturated with DDM, removing the detergent with hydrophobic polystyrene beads. We then attempted to incorporate CD4, a protein with a single transmembrane helix and a large hydrophilic ectodomain into liposomal membranes, together with CCR5. Surprisingly, reconstitution of this protein was also achieved by the method. Both proteins were found to be present together in individual liposomes. The reconstituted CCR5 was recognized by several monoclonal antibodies, recognized its natural ligand, and CD4 bound a soluble form of gp120, a subunit of the HIV fusion protein that uses CD4 as a receptor. Moreover, cells expressing the entire fusion protein of HIV bound to the liposomes, indicating that the proteins were intact and that most of them were oriented right side out. Thus, functional coreconstitution of two widely different proteins can be achieved by this method, suggesting that it might be useful for other proteins.
Collapse
Affiliation(s)
- François Devesa
- Institut de Pharmacologie et de Biologie Structurale; CNRS UMR 5089, Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|