1
|
Maity M, Pramanik U, Hathwar VR, Brandao P, Mukherjee S, Maity S, Maity R, Maity T, Chandra Samanta B. Biophysical insights into the binding capability of Cu(II) schiff base complex with BSA protein and cytotoxicity studies against SiHa. Heliyon 2022; 8:e11345. [DOI: 10.1016/j.heliyon.2022.e11345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/19/2022] [Accepted: 10/26/2022] [Indexed: 11/05/2022] Open
|
2
|
Loh D, Reiter RJ. Melatonin: Regulation of Prion Protein Phase Separation in Cancer Multidrug Resistance. Molecules 2022; 27:705. [PMID: 35163973 PMCID: PMC8839844 DOI: 10.3390/molecules27030705] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
The unique ability to adapt and thrive in inhospitable, stressful tumor microenvironments (TME) also renders cancer cells resistant to traditional chemotherapeutic treatments and/or novel pharmaceuticals. Cancer cells exhibit extensive metabolic alterations involving hypoxia, accelerated glycolysis, oxidative stress, and increased extracellular ATP that may activate ancient, conserved prion adaptive response strategies that exacerbate multidrug resistance (MDR) by exploiting cellular stress to increase cancer metastatic potential and stemness, balance proliferation and differentiation, and amplify resistance to apoptosis. The regulation of prions in MDR is further complicated by important, putative physiological functions of ligand-binding and signal transduction. Melatonin is capable of both enhancing physiological functions and inhibiting oncogenic properties of prion proteins. Through regulation of phase separation of the prion N-terminal domain which targets and interacts with lipid rafts, melatonin may prevent conformational changes that can result in aggregation and/or conversion to pathological, infectious isoforms. As a cancer therapy adjuvant, melatonin could modulate TME oxidative stress levels and hypoxia, reverse pH gradient changes, reduce lipid peroxidation, and protect lipid raft compositions to suppress prion-mediated, non-Mendelian, heritable, but often reversible epigenetic adaptations that facilitate cancer heterogeneity, stemness, metastasis, and drug resistance. This review examines some of the mechanisms that may balance physiological and pathological effects of prions and prion-like proteins achieved through the synergistic use of melatonin to ameliorate MDR, which remains a challenge in cancer treatment.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
3
|
Synthesis, crystal structure, DNA interaction, DFT analysis and molecular docking studies of copper(ii) complexes with 1-methyl-l-tryptophan and phenanthroline units. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
4
|
Proniewicz E, Małuch I, Kudelski A, Prahl A. Adsorption of (Phe-h 5)/(Phe-d 5)-substituted peptides from neurotensin family on the nanostructured surfaces of Ag and Cu: SERS studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 242:118748. [PMID: 32721658 DOI: 10.1016/j.saa.2020.118748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/09/2020] [Accepted: 07/15/2020] [Indexed: 05/25/2023]
Abstract
This work describes an application of Raman (RS) and surface-enhanced Raman scattering (SERS) to characterize the selective adsorption of two peptides belonging to the neurotensin family peptides, such as kinetensin (KN) and xenopsin-related peptide 2 (XP-2) that are known to stimulate the growth of human tumors. To perform a reliable analysis of SERS spectra, the L-Phe residue (at position 8 or 1 in the amino acid sequence of these peptides) was replaced with L-Phe-d5 (five protons of L-phenylalanine ring substituted by deuterium). Native and (Phe-d5)-isotopically labeled peptides were deposited on electrochemically nanostructured surfaces of Ag (AgORC) and Cu (CuORC) from an aqueous solution (H2O). To determine the share of amide bonds in the interaction with the metallic substrate, SERS spectra of peptides adsorbed on AgORC from heavy water (D2O) were measured. Also, to determine the effect of the C-end on the SERS spectrum, measurements were made for the KN analog in which the C-terminal L-leucine was removed ([desLeu9]KN). Based on the analyses of the spectral profiles, in the spectral range of 600-1650 cm-1, specific conclusions have been drawn regarding specific aromatic ring···metal interactions and changes in the interaction during substrate change.
Collapse
Affiliation(s)
- E Proniewicz
- Faculty of Foundry Engineering, AGH University of Science and Technology, 30-059 Krakow, Poland.
| | - I Małuch
- Department of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - A Kudelski
- Faculty of Chemistry, University of Warsaw, ul. Pasteur 1, 02-093 Warsaw, Poland
| | - A Prahl
- Department of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| |
Collapse
|
5
|
Synthesis, characterization, DNA binding and cytotoxicity studies of two novel Cu(II)-2-(2′-pyridyl) quinoxaline complexes. J Inorg Biochem 2020; 208:111077. [DOI: 10.1016/j.jinorgbio.2020.111077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 03/13/2020] [Accepted: 03/19/2020] [Indexed: 01/01/2023]
|
6
|
Ternary Cu(II) complexes: synthesis, structural elucidation, and biological studies (DNA binding, cleavage, antibacterial, cytotoxicity). RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04140-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Kim YC, Won SY, Jeong BH. Absence of single nucleotide polymorphisms (SNPs) in the open reading frame (ORF) of the prion protein gene (PRNP) in a large sampling of various chicken breeds. BMC Genomics 2019; 20:922. [PMID: 31795947 PMCID: PMC6892216 DOI: 10.1186/s12864-019-6315-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/20/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Prion diseases are zoonotic diseases with a broad infection spectrum among mammalian hosts and are caused by the misfolded prion protein (PrPSc) derived from the normal prion protein (PrPC), which encodes the prion protein gene (PRNP). Currently, although several prion disease-resistant animals have been reported, a high dose of prion agent inoculation triggers prion disease infection in these disease-resistant animals. However, in chickens, natural prion disease-infected cases have not been reported, and experimental challenges with prion agents have failed to cause infection. Unlike other prion disease-resistant animals, chickens have shown perfect resistance to prion disease thus far. Thus, investigation of the chicken PRNP gene could improve for understanding the mechanism of perfect prion-disease resistance. Here, we investigated the genetic characteristics of the open reading frame (ORF) of the chicken PRNP gene in a large sampling of various chicken breeds. RESULTS We found only tandem repeat deletion polymorphisms of the chicken PRNP ORF in the 4 chicken breeds including 106 Dekalb White, 100 Ross, 98 Ogolgye and 100 Korean native chickens. In addition, the distribution of chicken insertion/deletion polymorphisms was significantly different among the 4 chicken breeds. Finally, we found significant differences in the number of PRNP SNPs between prion disease-susceptible species and prion disease-resistant species. Notably, chickens lack SNPs in the ORF of the prion protein. CONCLUSION In this study, we found that the absence of SNPs in the chicken PRNP ORF is a notable feature of animals with perfect resistant to prion disease.
Collapse
Affiliation(s)
- Yong-Chan Kim
- Korea Zoonosis Research Institute, Chonbuk National University, 820-120 Hana-ro, Iksan, Jeonbuk, 54531, Republic of Korea
- Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Sae-Young Won
- Korea Zoonosis Research Institute, Chonbuk National University, 820-120 Hana-ro, Iksan, Jeonbuk, 54531, Republic of Korea
- Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Byung-Hoon Jeong
- Korea Zoonosis Research Institute, Chonbuk National University, 820-120 Hana-ro, Iksan, Jeonbuk, 54531, Republic of Korea.
- Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea.
| |
Collapse
|
8
|
Ternary Copper(II) and Nickel(II) chelates of 2,2′-Bipyridyl and glycine: X-ray structures, kinetics, DNA binding and cleavage activities. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.126911] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Kouadri A, El Khatib M, Cormenier J, Chauvet S, Zeinyeh W, El Khoury M, Macari L, Richaud P, Coraux C, Michaud-Soret I, Alfaidy N, Benharouga M. Involvement of the Prion Protein in the Protection of the Human Bronchial Epithelial Barrier Against Oxidative Stress. Antioxid Redox Signal 2019; 31:59-74. [PMID: 30569742 DOI: 10.1089/ars.2018.7500] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Aim: Bronchial epithelium acts as a defensive barrier against inhaled pollutants and microorganisms. This barrier is often compromised in inflammatory airway diseases that are characterized by excessive oxidative stress responses, leading to bronchial epithelial shedding, barrier failure, and increased bronchial epithelium permeability. Among proteins expressed in the junctional barrier and participating to the regulation of the response to oxidative and to environmental stresses is the cellular prion protein (PrPC). However, the role of PrPC is still unknown in the bronchial epithelium. Herein, we investigated the cellular mechanisms by which PrPC protein participates into the junctional complexes formation, regulation, and oxidative protection in human bronchial epithelium. Results: Both PrPC messenger RNA and mature protein were expressed in human epithelial bronchial cells. PrPC was localized in the apical domain and became lateral, at high degree of cell polarization, where it colocalized and interacted with adherens (E-cadherin/γ-catenin) and desmosomal (desmoglein/desmoplakin) junctional proteins. No interaction was detected with tight junction proteins. Disruption of such interactions induced the loss of the epithelial barrier. Moreover, we demonstrated that PrPC protection against copper-associated oxidative stress was involved in multiple processes, including the stability of adherens and desmosomal junctional proteins. Innovation: PrPC is a pivotal protein in the protection against oxidative stress that is associated with the degradation of adherens and desmosomal junctional proteins. Conclusion: Altogether, these results demonstrate that the loss of the integrity of the epithelial barrier by oxidative stress is attenuated by the activation of PrPC expression, where deregulation might be associated with respiratory diseases.
Collapse
Affiliation(s)
- Amal Kouadri
- 1 University of Grenoble Alpes, CNRS, UMR 5249, CEA, BIG, CBM, Grenoble, France
| | - Mariam El Khatib
- 1 University of Grenoble Alpes, CNRS, UMR 5249, CEA, BIG, CBM, Grenoble, France
| | - Johanna Cormenier
- 1 University of Grenoble Alpes, CNRS, UMR 5249, CEA, BIG, CBM, Grenoble, France
| | - Sylvain Chauvet
- 1 University of Grenoble Alpes, CNRS, UMR 5249, CEA, BIG, CBM, Grenoble, France
| | - Wael Zeinyeh
- 1 University of Grenoble Alpes, CNRS, UMR 5249, CEA, BIG, CBM, Grenoble, France
| | - Micheline El Khoury
- 1 University of Grenoble Alpes, CNRS, UMR 5249, CEA, BIG, CBM, Grenoble, France
| | - Laurence Macari
- 1 University of Grenoble Alpes, CNRS, UMR 5249, CEA, BIG, CBM, Grenoble, France
| | - Pierre Richaud
- 2 University of Aix-Marseille, CNRS, CEA, Institute of Bisosciences and Biotechnologies of Aix Marseille (BIAM), UMR 7265, CEA Cadarache, Saint-Paul-lez Durance, France
| | - Christelle Coraux
- 3 National Institute of Health and Medical Research (INSERM), UMR-S 903, Reims, France
| | | | - Nadia Alfaidy
- 4 University of Grenoble Alpes, INSERM U1036, CEA, BIG, BCI, Grenoble, France
| | - Mohamed Benharouga
- 1 University of Grenoble Alpes, CNRS, UMR 5249, CEA, BIG, CBM, Grenoble, France
| |
Collapse
|
10
|
Chen K, Li W, Wang J, Wang W. Binding of Copper Ions with Octapeptide Region in Prion Protein: Simulations with Charge Transfer Model. J Phys Chem B 2019; 123:5216-5228. [PMID: 31242743 DOI: 10.1021/acs.jpcb.9b02457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Copper ions are important cofactors of many metalloproteins. The binding dynamics of proteins to the copper ion is important for biological functions but is less understood at the microscopic level. What are the key factors determining the recognition and the stabilization of the copper ion during the binding? Our work investigates the binding dynamics of the copper ion with a simple system (the N-terminus of PrP) using simulation methods. To precisely characterize the protein?ion interaction, we build up an effective copper?peptide force field based on quantum chemistry calculations. In our model, the effects of charge transfer, protonation/deprotonation, and induced polarization are considered. With this force field, we successfully characterize the local structures and the complex interactions of the octapeptide around the copper ion. Furthermore, using an enhanced sampling method, the binding/unbinding processes of the copper ion with the octapeptide are simulated. Free-energy landscapes are generated in consequence, and multiple binding pathways are characterized. It is observed that various native ligands contribute differently to the binding processes. Some residues are related to the capture of the ion (behaving like ?arm?s), and some others contribute to the stabilization of the coordination structure (acting like ?core?s). These different interactions induce various pathways. Besides, a nonnative binding ligand is determined, and it has essential contributions and modulations to the binding pathways. With all these results, the picture of copper?octapeptide binding is outlined. These features are believed to happen in many ion?peptide interactions, such as the cooperative stabilization between the coordinations with neighboring backbone nitrogens and an auxiliary intermediate coordination with the neighboring oxygen from the N-terminal direction. We believe that our studies are valuable to understand the complicated ion?peptide binding processes.
Collapse
Affiliation(s)
- Ke Chen
- National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, and School of Physics , Nanjing University , Nanjing 210093 , P.R. China
| | - Wenfei Li
- National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, and School of Physics , Nanjing University , Nanjing 210093 , P.R. China
| | - Jun Wang
- National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, and School of Physics , Nanjing University , Nanjing 210093 , P.R. China
| | - Wei Wang
- National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, and School of Physics , Nanjing University , Nanjing 210093 , P.R. China
| |
Collapse
|
11
|
Martial B, Lefèvre T, Auger M. Understanding amyloid fibril formation using protein fragments: structural investigations via vibrational spectroscopy and solid-state NMR. Biophys Rev 2018; 10:1133-1149. [PMID: 29855812 PMCID: PMC6082320 DOI: 10.1007/s12551-018-0427-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/17/2018] [Indexed: 12/11/2022] Open
Abstract
It is well established that amyloid proteins play a primary role in neurodegenerative diseases. Alzheimer's, Parkinson's, type II diabetes, and Creutzfeldt-Jakob's diseases are part of a wider family encompassing more than 50 human pathologies related to aggregation of proteins. Although this field of research is thoroughly investigated, several aspects of fibrillization remain misunderstood, which in turn slows down, or even impedes, advances in treating and curing amyloidoses. To solve this problem, several research groups have chosen to focus on short fragments of amyloid proteins, sequences that have been found to be of great importance for the amyloid formation process. Studying short peptides allows bypassing the complexity of working with full-length proteins and may provide important information relative to critical segments of amyloid proteins. To this end, efficient biophysical tools are required. In this review, we focus on two essential types of spectroscopic techniques, i.e., vibrational spectroscopy and its derivatives (conventional Raman scattering, deep-UV resonance Raman (DUVRR), Raman optical activity (ROA), surface-enhanced Raman spectroscopy (SERS), tip-enhanced Raman spectroscopy (TERS), infrared (IR) absorption spectroscopy, vibrational circular dichroism (VCD)) and solid-state nuclear magnetic resonance (ssNMR). These techniques revealed powerful to provide a better atomic and molecular comprehension of the amyloidogenic process and fibril structure. This review aims at underlining the information that these techniques can provide and at highlighting their strengths and weaknesses when studying amyloid fragments. Meaningful examples from the literature are provided for each technique, and their complementarity is stressed for the kinetic and structural characterization of amyloid fibril formation.
Collapse
Affiliation(s)
- Benjamin Martial
- Department of Chemistry, Regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines (PROTEO), Centre de recherche sur les matériaux avancés (CERMA), Centre québécois sur les matériaux fonctionnels (CQMF), Université Laval, Québec, QC, G1V 0A6, Canada
| | - Thierry Lefèvre
- Department of Chemistry, Regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines (PROTEO), Centre de recherche sur les matériaux avancés (CERMA), Centre québécois sur les matériaux fonctionnels (CQMF), Université Laval, Québec, QC, G1V 0A6, Canada
| | - Michèle Auger
- Department of Chemistry, Regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines (PROTEO), Centre de recherche sur les matériaux avancés (CERMA), Centre québécois sur les matériaux fonctionnels (CQMF), Université Laval, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
12
|
Kim YC, Jeong MJ, Jeong BH. The first report of genetic variations in the chicken prion protein gene. Prion 2018; 12:197-203. [PMID: 29966485 DOI: 10.1080/19336896.2018.1471922] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Abnormal structural changes of the prion protein (PrP) are the cause of prion disease in a wide range of mammals. However, spontaneous infected cases have not been reported in chicken. Genetic variations of the prion protein gene (PRNP) may impact susceptibility to prion disease but have not been investigated thus far. Because an investigation of the chicken PRNP can improve the understanding of characteristics related to resistance to prion disease, research on the chicken PRNP is highly desirable. In this study, we investigated the genetic characteristics of the chicken PRNP gene. For this, we performed direct sequencing in 106 Dekalb White chickens and analyzed the genotype and allele frequencies of chicken PRNP gene. We found two insertion and deletion polymorphisms in the chicken PRNP: c.163_180delAACCCAGGGTACCCCCAT and c.268_269insC. The former is a U2 hexapeptide deletion polymorphism. Of the 106 samples, 13 (12.26%) were insertion homozygotes, 89 (83.96%) were heterozygotes, and 4 (3.77%) were deletion homozygotes in c.163_180delAACCCAGGGTACCCCCAT. In the c.268_269insC polymorphism, 102 (96.23%) were deletion homozygotes, and 4 (3.77%) were heterozygotes. Insertion homozygotes of c.268_269insC were not detected. Two polymorphisms were in perfect linkage disequilibrium (LD) with a D' value of 1.0, and three haplotypes were identified. Furthermore, PROVEAN evaluates 163_180delAACCCAGGGTACCCCCAT as 'deleterious' with a score of - 13.173. Furthermore, single nucleotide polymorphisms (SNPs) in the open reading frame (ORF) of the PRNP gene were not found in the chicken. To the best of our knowledge, this was the first report on the genetic variations of the chicken PRNP gene.
Collapse
Affiliation(s)
- Yong-Chan Kim
- a Korea Zoonosis Research Institute , Chonbuk National University , Iksan , Jeonbuk , Republic of Korea.,b Department of Bioactive Material Sciences , Chonbuk National University , Jeonju , Jeonbuk , Republic of Korea
| | - Min-Ju Jeong
- a Korea Zoonosis Research Institute , Chonbuk National University , Iksan , Jeonbuk , Republic of Korea.,b Department of Bioactive Material Sciences , Chonbuk National University , Jeonju , Jeonbuk , Republic of Korea
| | - Byung-Hoon Jeong
- a Korea Zoonosis Research Institute , Chonbuk National University , Iksan , Jeonbuk , Republic of Korea.,b Department of Bioactive Material Sciences , Chonbuk National University , Jeonju , Jeonbuk , Republic of Korea
| |
Collapse
|
13
|
Devitt G, Howard K, Mudher A, Mahajan S. Raman Spectroscopy: An Emerging Tool in Neurodegenerative Disease Research and Diagnosis. ACS Chem Neurosci 2018; 9:404-420. [PMID: 29308873 DOI: 10.1021/acschemneuro.7b00413] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The pathogenesis underlining many neurodegenerative diseases remains incompletely understood. The lack of effective biomarkers and disease preventative medicine demands the development of new techniques to efficiently probe the mechanisms of disease and to detect early biomarkers predictive of disease onset. Raman spectroscopy is an established technique that allows the label-free fingerprinting and imaging of molecules based on their chemical constitution and structure. While analysis of isolated biological molecules has been widespread in the chemical community, applications of Raman spectroscopy to study clinically relevant biological species, disease pathogenesis, and diagnosis have been rapidly increasing since the past decade. The growing number of biomedical applications has shown the potential of Raman spectroscopy for detection of novel biomarkers that could enable the rapid and accurate screening of disease susceptibility and onset. Here we provide an overview of Raman spectroscopy and related techniques and their application to neurodegenerative diseases. We further discuss their potential utility in research, biomarker detection, and diagnosis. Challenges to routine use of Raman spectroscopy in the context of neuroscience research are also presented.
Collapse
|
14
|
Won AR, Kim R, Jung MJ, Kim SK, Lee YA. Dependence of the base sequence on the [Cu(2,2′-bipyridine)2(NO3)](NO3)-induced oxidative DNA cleavage probed by linear dichroism. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.10.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Viqueira J, Durán ML, García-Vázquez JA, Castro J, Platas-Iglesias C, Esteban-Gómez D, Alzuet-Piña G, Moldes A, Nascimento OR. Modulating the DNA cleavage ability of copper(ii) Schiff bases through ternary complex formation. NEW J CHEM 2018. [DOI: 10.1039/c8nj03292k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Copper(ii) Schiff-bases were electrochemically synthesized and characterized. The presence of co-ligands such as 2,2′-bpy or phen in the metal coordination environment increases the DNA cleavage efficiency.
Collapse
Affiliation(s)
- Joaquín Viqueira
- Departamento de Química Inorgánica
- Campus Vida
- Universidad de Santiago de Compostela
- 15782 Santiago de Compostela
- Spain
| | - María L. Durán
- Departamento de Química Inorgánica
- Campus Vida
- Universidad de Santiago de Compostela
- 15782 Santiago de Compostela
- Spain
| | - José A. García-Vázquez
- Departamento de Química Inorgánica
- Campus Vida
- Universidad de Santiago de Compostela
- 15782 Santiago de Compostela
- Spain
| | - Jesús Castro
- Departamento de Química Inorgánica
- Facultade de Química
- Edificio de Ciencias Experimentais
- Universidade de Vigo
- 36310 Vigo
| | - Carlos Platas-Iglesias
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química
- Universidade da Coruña
- Campus da Zapateira
- 15008 A Coruña
- Spain
| | - David Esteban-Gómez
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química
- Universidade da Coruña
- Campus da Zapateira
- 15008 A Coruña
- Spain
| | - Gloria Alzuet-Piña
- Departament de Química Inorgànica
- Facultat de Farmàcia
- Universitat de València
- 46100 Burjassot
- Spain
| | - Angeles Moldes
- Departament de Química Inorgànica
- Facultat de Farmàcia
- Universitat de València
- 46100 Burjassot
- Spain
| | - Otaciro R. Nascimento
- Instituto de Física de Sao Carlos
- Universidade de Sao Paulo
- 13560-250 Sao Carlos
- Brazil
| |
Collapse
|
16
|
Lavanya M, Jagadeesh M, Haribabu J, Karvembu R, Rashmi H, Uma Maheswari Devi P, Varada Reddy A. Synthesis, crystal structure, DNA binding and antitumor studies of β-diketonate complexes of divalent copper, zinc and palladium. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.08.056] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Copper, nickel and zinc complexes of 3-acetyl coumarin thiosemicarbazone: Synthesis, characterization and in vitro evaluation of cytotoxicity and DNA/protein binding properties. Polyhedron 2017. [DOI: 10.1016/j.poly.2017.06.044] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Gao E, Ding Y, Sun N, Zhang S, Qiu X, Zhan Y, Zhu M. Synthesis, characterization, DNA interaction, apoptosis and molecular docking of Cu(II) and Mn(II) complexes with endo
-norbornene-cis
-5,6-dicarboxylic acid. Appl Organomet Chem 2016. [DOI: 10.1002/aoc.3575] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Enjun Gao
- International Key Laboratory of Liaoning Inorganic Molecule-Based Chemicals and Department of Coordination Chemistry; Shenyang University of Chemical Technology; Shenyang 110142 China
| | - Yuqing Ding
- International Key Laboratory of Liaoning Inorganic Molecule-Based Chemicals and Department of Coordination Chemistry; Shenyang University of Chemical Technology; Shenyang 110142 China
| | - Na Sun
- International Key Laboratory of Liaoning Inorganic Molecule-Based Chemicals and Department of Coordination Chemistry; Shenyang University of Chemical Technology; Shenyang 110142 China
| | - Shaozhong Zhang
- International Key Laboratory of Liaoning Inorganic Molecule-Based Chemicals and Department of Coordination Chemistry; Shenyang University of Chemical Technology; Shenyang 110142 China
| | - Xue Qiu
- International Key Laboratory of Liaoning Inorganic Molecule-Based Chemicals and Department of Coordination Chemistry; Shenyang University of Chemical Technology; Shenyang 110142 China
| | - Yang Zhan
- International Key Laboratory of Liaoning Inorganic Molecule-Based Chemicals and Department of Coordination Chemistry; Shenyang University of Chemical Technology; Shenyang 110142 China
| | - Mingchang Zhu
- International Key Laboratory of Liaoning Inorganic Molecule-Based Chemicals and Department of Coordination Chemistry; Shenyang University of Chemical Technology; Shenyang 110142 China
| |
Collapse
|
19
|
Abdelkarim AT, El-Sherif AA. Potentiometric, Thermodynamics and Coordination Properties for Binary and Mixed Ligand Complexes of Copper(II) with Imidazole-4-acetic Acid and Tryptophan or Phenylalanine Aromatic Amino Acids. J SOLUTION CHEM 2016. [DOI: 10.1007/s10953-016-0464-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Muralisankar M, Bhuvanesh NSP, Sreekanth A. Synthesis, X-ray crystal structure, DNA/protein binding and DNA cleavage studies of novel copper(ii) complexes of N-substituted isatin thiosemicarbazone ligands. NEW J CHEM 2016. [DOI: 10.1039/c5nj02806j] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Copper(ii) complexes containing isatin thiosemicarbozone ligands have been synthesized and evaluated for its biological applications like DNA/protein binding and DNA cleavage studies.
Collapse
Affiliation(s)
| | | | - Anandaram Sreekanth
- Department of Chemistry
- National Institute of Technology
- Tiruchirappalli-620 015
- India
| |
Collapse
|
21
|
Dhivya R, Jaividhya P, Riyasdeen A, Palaniandavar M, Mathan G, Akbarsha MA. In vitro antiproliferative and apoptosis-inducing properties of a mononuclear copper(II) complex with dppz ligand, in two genotypically different breast cancer cell lines. Biometals 2015; 28:929-43. [PMID: 26335033 DOI: 10.1007/s10534-015-9877-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 08/05/2015] [Indexed: 02/02/2023]
Abstract
In the background that there is concerted effort to discover newer metal-based cancer chemotherapeutic agents that could overcome the limitations in cisplatin and that copper, a biocompatible and redox-active metal, offers potential as alternative to cisplatin, the present study was undertaken to investigate the in vitro anti-proliferative properties of the mononuclear copper(II)complex [Cu(L)(diimine)] + where LH = 2-[(2-dimethylaminoethylimino)methyl]phenol and diimine = dipyrido[3,2-a:2',3'-c]phenazine (dppz) using breast cancer cell lines MCF-7 (ER(+ve) and p53(WT)) and MDA-MB-231(ER(-ve) and p53(mutant)) when cisplatin was used as positive control. The complex affected the viability of both the cell lines in dose-as well as duration-dependent manner as revealed in the MTT assay. The 24 and 48 h IC50 of the complex were several times lesser than those of cisplatin, and within this huge difference the efficacy of the complex was much superior with MCF-7 cell compared to MDA-MB-231 cell. The cell death was preferentially apoptosis, though necrosis also occurred to a certain extent. These inferences were substantiated by AO/EB fluorescent staining, Hoechst staining, assessment of mitochondrial transmembrane potential, comet assay for DNA damage, DCFH assay for reactive oxygen species (ROS) generation and Western blot of apoptosis-related proteins. Thus, the copper(II) dppz complex under investigation is much more efficient than cisplatin in affecting viability of the breast cancer cells. The underlying mechanism appears to be DNA damage-primed (in view of the known intercalation mode of binding of the complex with DNA) and ROS-associated mitochondria-mediated intrinsic apoptosis to a great extent but necrosis also has a role to a certain extent, which may also be a PARP-mediated cell death independent of apoptosis. Within the purview of this conclusion, the results indicate that the ER and/or p53 genotypes have a bearing on the efficacy of the complex as a cytotoxic agent since the response in the ER(-ve) and p53(mutant) MDA-MB-231 cell was not so prominent as in ER(+ve) and p53(WT) MCF-7 cell. Taken together, the complex has been shown to be a potential DNA damaging agent and, in the light of the superiority of the complex over cisplatin, we are further investigating the possibility of targeted nano-delivery of the complex to the tumor cells. When tested on a normal cell, 3T3, Cu(II)dppz was found to affect its viability but at concentrations very high compared to those for the breast cancer cells. Yet, this is a cause of concern and, therefore, we are working out a strategy for targeted delivery of this complex to the cancer cells only.
Collapse
Affiliation(s)
- Rajakumar Dhivya
- Department of Biomedical Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
- Mahatma Gandhi-Doerenkamp Center for Alternatives to Use of Animals in Life Science Education, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Paramasivam Jaividhya
- School of Chemistry, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Anvarbatcha Riyasdeen
- Research Center, Prince Sultan Military Medical City, Riyadh, Kingdom of Saudi Arabia
| | | | - Ganeshan Mathan
- Department of Biomedical Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India.
| | - Mohammad Abdulkader Akbarsha
- Mahatma Gandhi-Doerenkamp Center for Alternatives to Use of Animals in Life Science Education, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India.
- Department of Food Sciences and Nutrition, College of Food Sciences and Agriculture, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia.
| |
Collapse
|
22
|
Jayamani A, Sengottuvelan N, Kang SK, Kim YI. Mono- and binuclear copper(II) complexes of the bipyridine ligand: Structural, electrochemical and biological studies. Polyhedron 2015. [DOI: 10.1016/j.poly.2015.05.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
23
|
Blane A, Fanucchi S. Effect of pH on the Structure and DNA Binding of the FOXP2 Forkhead Domain. Biochemistry 2015; 54:4001-7. [DOI: 10.1021/acs.biochem.5b00155] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Ashleigh Blane
- Protein Structure-Function
Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Sylvia Fanucchi
- Protein Structure-Function
Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg 2050, South Africa
| |
Collapse
|
24
|
Matulaitienė I, Pociūtė E, Kuodis Z, Eicher-Lorka O, Niaura G. Interaction of 4-imidazolemethanol with a copper electrode revealed by isotope-edited SERS and theoretical modeling. Phys Chem Chem Phys 2015; 17:16483-93. [PMID: 26050758 DOI: 10.1039/c5cp01290b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Adsorption of 4-imidazolemethanol (ImMeOH) on a copper electrode has been investigated by in situ isotope-edited (H/D and (63)Cu/(65)Cu) surface enhanced Raman spectroscopy (SERS) in aqueous solutions at physiological pH (7.0) in a potential window from -0.500 to -1.100 V. Theoretical modeling by DFT calculations at the B3LYP/6-311++G(d,p) level for light atoms and LANL2DZ with ECP for copper atoms have been employed for the interpretation of experimental data. The copper surface was modeled by a cluster of 6 atoms. It was found that the imidazole ring adopts Tautomer-I form in the adsorbed state and coordinates with the Cu surface through the N3 atom. Linear potential-dependence of ν(C4=C5) mode with the slope of (15 ± 1) cm(-1) V(-1) was experimentally observed. The imidazole ring mode near 1492 cm(-1) primarily due to ν(C2-N3) + β(C2H) vibration has also showed a considerable decrease in frequency at more negative electrode potentials with the slope of (9 ± 2) cm(-1) V(-1). Both modes can be used as sensitive probes for analysis of interaction of the imidazole ring with the metal surface. In agreement with experimental data theoretical modeling has predicted higher stability of surface bound Tautomer-I compared with Tautomer-II. The formation of a covalent bond between the metal and adsorbate was experimentally evidenced by metal isotopic ((63)Cu/(65)Cu) frequency shift of ν(Cu-N) mode at 222 cm(-1), combined with theoretical modeling of the surface complex.
Collapse
Affiliation(s)
- Ieva Matulaitienė
- Department of Organic Chemistry, Center for Physical Sciences and Technology, A. Gostauto 9, Vilnius LT-01108, Lithuania.
| | | | | | | | | |
Collapse
|
25
|
Swami BL, Ikram S. Synthesis of a new Schiff-base complex based on Cu and its inference in PVC-based membrane as an electroactive material. ASIA-PAC J CHEM ENG 2015. [DOI: 10.1002/apj.1880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Babu Lal Swami
- Department of Chemistry; Jamia Millia Islamia (Central University); New Delhi 110025 India
| | - Saiqa Ikram
- Department of Chemistry; Jamia Millia Islamia (Central University); New Delhi 110025 India
| |
Collapse
|
26
|
Brunk E, Rothlisberger U. Mixed Quantum Mechanical/Molecular Mechanical Molecular Dynamics Simulations of Biological Systems in Ground and Electronically Excited States. Chem Rev 2015; 115:6217-63. [PMID: 25880693 DOI: 10.1021/cr500628b] [Citation(s) in RCA: 329] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Elizabeth Brunk
- †Laboratory of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.,‡Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California 94618, United States
| | - Ursula Rothlisberger
- †Laboratory of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.,§National Competence Center of Research (NCCR) MARVEL-Materials' Revolution: Computational Design and Discovery of Novel Materials, 1015 Lausanne, Switzerland
| |
Collapse
|
27
|
Sakudo A, Onodera T. Prion protein (PrP) gene-knockout cell lines: insight into functions of the PrP. Front Cell Dev Biol 2015; 2:75. [PMID: 25642423 PMCID: PMC4295555 DOI: 10.3389/fcell.2014.00075] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/22/2014] [Indexed: 11/13/2022] Open
Abstract
Elucidation of prion protein (PrP) functions is crucial to fully understand prion diseases. A major approach to studying PrP functions is the use of PrP gene-knockout (Prnp (-/-)) mice. So far, six types of Prnp (-/-) mice have been generated, demonstrating the promiscuous functions of PrP. Recently, other PrP family members, such as Doppel and Shadoo, have been found. However, information obtained from comparative studies of structural and functional analyses of these PrP family proteins do not fully reveal PrP functions. Recently, varieties of Prnp (-/-) cell lines established from Prnp (-/-) mice have contributed to the analysis of PrP functions. In this mini-review, we focus on Prnp (-/-) cell lines and summarize currently available Prnp (-/-) cell lines and their characterizations. In addition, we introduce the recent advances in the methodology of cell line generation with knockout or knockdown of the PrP gene. We also discuss how these cell lines have provided valuable insights into PrP functions and show future perspectives.
Collapse
Affiliation(s)
- Akikazu Sakudo
- Laboratory of Biometabolic Chemistry, Faculty of Medicine, School of Health Sciences, University of the Ryukyus Nishihara, Japan
| | - Takashi Onodera
- Research Center for Food Safety, School of Agricultural and Life Sciences, University of Tokyo Tokyo, Japan
| |
Collapse
|
28
|
Jeyalakshmi K, Arun Y, Bhuvanesh NSP, Perumal PT, Sreekanth A, Karvembu R. DNA/protein binding, DNA cleavage, cytotoxicity, superoxide radical scavenging and molecular docking studies of copper(ii) complexes containing N-benzyl-N′-aryl-N′′-benzoylguanidine ligands. Inorg Chem Front 2015. [DOI: 10.1039/c4qi00234b] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Copper(ii) complexes containing trisubstituted guanidine ligands were prepared, characterized and evaluated for their biological applications.
Collapse
Affiliation(s)
| | - Yuvaraj Arun
- Organic Chemistry Division
- CSIR-Central Leather Research Institute
- Chennai 600020
- India
| | | | | | - Anandaram Sreekanth
- Department of Chemistry
- National Institute of Technology
- Tiruchirappalli 620015
- India
| | - Ramasamy Karvembu
- Department of Chemistry
- National Institute of Technology
- Tiruchirappalli 620015
- India
| |
Collapse
|
29
|
Molecular dynamic studies of amyloid-beta interactions with curcumin and Cu2+ ions. CHEMICAL PAPERS 2015. [DOI: 10.1515/chempap-2015-0134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractAmyloid-beta (Aβ) peptide readily forms aggregates that are associated with Alzheimer’s disease. Transition metals play a key role in this process. Recently, it has been shown that curcumin (CUA), a polyphenolic phytochemical, inhibits the aggregation of Aβ peptide. However, interactions of Aβ peptide with metal ions or CUA are not entirely clear. In this work, molecular dynamics (MD) simulations were carried out to clear the nature of interactions between the 42-residue Aβ peptide (Aβ-42) and Cu
Collapse
|
30
|
Vyas KM, Jadeja R, Patel D, Devkar R, Gupta VK. Effect of ligand substitution in pyrazolone based binary and ternary Cu(II) complexes on DNA binding, protein binding and anti-cancer activity on A549 lung carcinoma cell lines. Polyhedron 2014. [DOI: 10.1016/j.poly.2013.12.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Kojima A, Konishi M, Akizawa T. Prion fragment peptides are digested with membrane type matrix metalloproteinases and acquire enzyme resistance through Cu²⁺-binding. Biomolecules 2014; 4:510-26. [PMID: 24970228 PMCID: PMC4101495 DOI: 10.3390/biom4020510] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/02/2014] [Accepted: 04/11/2014] [Indexed: 11/16/2022] Open
Abstract
Prions are the cause of neurodegenerative disease in humans and other mammals. The structural conversion of the prion protein (PrP) from a normal cellular protein (PrPC) to a protease-resistant isoform (PrPSc) is thought to relate to Cu2+ binding to histidine residues. In this study, we focused on the membrane-type matrix metalloproteinases (MT-MMPs) such as MT1-MMP and MT3-MMP, which are expressed in the brain as PrPC-degrading proteases. We synthesized 21 prion fragment peptides. Each purified peptide was individually incubated with recombinant MT1-MMP or MT3-MMP in the presence or absence of Cu2+ and the cleavage sites determined by LC-ESI-MS analysis. Recombinant MMP-7 and human serum (HS) were also tested as control. hPrP61-90, from the octapeptide-repeat region, was cleaved by HS but not by the MMPs tested here. On the other hand, hPrP92-168 from the central region was cleaved by MT1-MMP and MT3-MMP at various sites. These cleavages were inhibited by treatment with Cu2+. The C-terminal peptides had higher resistance than the central region. The data obtained from this study suggest that MT-MMPs expressed in the brain might possess PrPC-degrading activity.
Collapse
Affiliation(s)
- Aya Kojima
- Analytical Chemistry, Pharmaceutical Science, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan.
| | - Motomi Konishi
- Analytical Chemistry, Pharmaceutical Science, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan.
| | - Toshifumi Akizawa
- Analytical Chemistry, Pharmaceutical Science, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan.
| |
Collapse
|
32
|
Stabilities of the Ternary Complexes of Copper(II) with Substituted 1,10-Phenanthrolines and Some Amino Acids in Aqueous Solution. J SOLUTION CHEM 2014. [DOI: 10.1007/s10953-014-0157-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Choudhary M, Patel R, Rawat S. Synthesis, electrochemical, structural, spectroscopic and biological activities of mixed ligand copper (II) complexes with 2-{[(Z)-(5-bromo-2-hydroxyphenyl)methylidene]amino}benzoic acid and nitrogenous bases. J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2013.12.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
The clearance of misfolded proteins in neurodegenerative diseases by zinc metalloproteases: An inorganic perspective. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2013.10.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
35
|
Gurumoorthy P, Mahendiran D, Prabhu D, Arulvasu C, Rahiman AK. Magneto-structural correlation, antioxidant, DNA interaction and growth inhibition activities of new chloro-bridged phenolate complexes. RSC Adv 2014. [DOI: 10.1039/c4ra06941b] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The consistent stability constants as well as antioxidant, DNA interaction and cytotoxicity efficacy of chloro-bridged complexes have been established.
Collapse
Affiliation(s)
- Perumal Gurumoorthy
- Post-Graduate and Research Department of Chemistry
- The New College (Autonomous)
- Chennai-600 014, India
| | - Dharmasivam Mahendiran
- Post-Graduate and Research Department of Chemistry
- The New College (Autonomous)
- Chennai-600 014, India
| | - Durai Prabhu
- Department of Zoology
- University of Madras
- Chennai-600 025, India
| | | | - Aziz Kalilur Rahiman
- Post-Graduate and Research Department of Chemistry
- The New College (Autonomous)
- Chennai-600 014, India
| |
Collapse
|
36
|
Jeyalakshmi K, Selvakumaran N, Bhuvanesh NSP, Sreekanth A, Karvembu R. DNA/protein binding and cytotoxicity studies of copper(ii) complexes containing N,N′,N′′-trisubstituted guanidine ligands. RSC Adv 2014. [DOI: 10.1039/c4ra01459f] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
37
|
Sundaravadivel E, Vedavalli S, Kandaswamy M, Varghese B, Madankumar P. DNA/BSA binding, DNA cleavage and electrochemical properties of new multidentate copper(ii) complexes. RSC Adv 2014. [DOI: 10.1039/c4ra03554b] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new series of multidentate copper(ii) complexes [Cu(L1−5)](ClO4) (1–5) were synthesized and characterized for their DNA/BSA binding, DNA cleavage, cytotoxic properties and antimicrobial activities.
Collapse
Affiliation(s)
| | - Sairaj Vedavalli
- Department of Inorganic Chemistry
- University of Madras
- Chennai 600 025, India
| | | | - Babu Varghese
- Sophisticated Analytical Instruments Facility
- Indian Institute of Technology
- Chennai 600 036, India
| | | |
Collapse
|
38
|
Lee DC, Sakudo A, Kim CK, Nishimura T, Saeki K, Matsumoto Y, Yokoyama T, Chen SG, Itohara S, Onodera T. Fusion of Doppel to Octapeptide Repeat and N-Terminal Half of Hydrophobic Region of Prion Protein Confers Resistance to Serum Deprivation. Microbiol Immunol 2013; 50:203-9. [PMID: 16547418 DOI: 10.1111/j.1348-0421.2006.tb03787.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Our previous studies have shown an essential role played by the octapeptide repeat region (OR) and the N-terminal half of hydrophobic region (HR) in the anti-apoptotic activity of prion protein (PrP). As PrP-like protein Doppel (Dpl), which structurally resembles an N-terminally truncated PrP, did not show any anti-apoptotic activity, we examined apoptosis of HpL3-4 cells expressing Dpl fused to various lengths of the N-terminal region of PrP to investigate whether the PrP/Dpl fusion proteins retain anti-apoptotic function. HpL3-4 cells expressing Dpl fused to PrP(1-124) with the OR and N-terminal half of HR of PrP showed anti-apoptotic function, whereas Dpl fused to PrP(1-95) with OR did not rescue cells from apoptotic cell death induced by serum deprivation. These results indicate that the OR and N-terminal half of HR of PrP retains anti-apoptotic activity similar to full-length PrP.
Collapse
Affiliation(s)
- Deug-chan Lee
- Department of Molecular Immunology, School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Onodera T, Sakudo A, Wu G, Saeki K. Bovine Spongiform Encephalopathy in Japan: History and Recent Studies on Oxidative Stress in Prion Diseases. Microbiol Immunol 2013; 50:565-78. [PMID: 16924141 DOI: 10.1111/j.1348-0421.2006.tb03831.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
With the respect to BSE and vCJD, compliance with the following three rules should strictly be observed: (i) Identification and destruction of all clinically affected cattle; (ii) destruction of all mammalian proteins used in feeding ruminant livestock; and (iii) destruction of all high-risk tissues for use in human consumption. Scrapie in sheep has been documented in the 18th century in the United Kingdom. Through studies of brain-to-brain transmission in the same species in 1935, Cuille et al. successfully isolated the culprit protein from the sheep brain. To transmit said protein from an animal to another, intracerebral inoculation was much more efficient than intraperitoneal or oral route in certain species; i.e. the hamster and mouse. Since discovery of the more efficacious infection route, studies and development of prion research have undergone 4 developmental phases. Phase I depicted discoveries of the pathological features of Creutzfeldt-Jakob disease (CJD) and scrapie with typical lesions of spongiform encephalopathy, while Phase II revealed individual-to-individual (or cross-species) transmissions of CJD, kuru and scrapie in animals. Phases I and II suggested the possible participation of a slow virus in the infection process. In Phase III, Prusiner et al. proposed the 'prion' theory in 1982, followed by the milestone development of the transgenic or gene-targeted mouse in prion research in Phase IV. By strain-typing of prions, CJD has been classified as type 2 or 4 by Parchi et al. and Wadsworth as type-2 or -4 and type-1 or -2, respectively. Wadsworth type 1 is detected in the cerebellum, while Wadsworth type 2 was detected in the prefrontal cortex of 10% of sporadic CJD patients. In 1999, Puoti et al. have reported the co-existence of two types of PrP(res) in a same patient. These reports indicated that PrP(res)-typing is a quantitative rather than a qualitative process, and the relationship between the molecular type and the prion strain is rather complex. In fact, previous findings of Truchot have correlated type-1 distribution with synaptic deposits, and type-2 with arrangement of diffuse deposits in neurons. Although the normal function of PrP(C) has not been fully understood, recent studies have shown that PrP(C) plays a role in copper metabolism, signal transduction, neuroprotection and cell maturation. Further search of PrP(C)-interacting molecules and detailed studies using Prnp(-/-) mice and various type of Prnp(-/-) cell lines under various conditions are the prerequisites in elucidating PrP functions. In the pathogenesis of prion diseases, present results support the hypothesis that 'loss-of-function' of PrP(C) decreases resistance to oxidative stress, and 'gain-of-function' of PrP(Sc) increases oxidative stress. The mechanisms of (i) the 'loss-of-function' of PrP(C) in enhanced susceptibility to oxidative stress and (ii) the 'gain-of-function' of PrP(Sc) in generation of oxidative stress remain to be elucidated, although their mechanisms of action, at least in part, involve the decrease and increase in SOD activity, respectively.
Collapse
Affiliation(s)
- Takashi Onodera
- Department of Molecular Immunology, School of Agricultural and Life Sciences, University of Tokyo
| | | | | | | |
Collapse
|
40
|
McDonald A, Pushie MJ, Millhauser GL, George GN. New insights into metal interactions with the prion protein: EXAFS analysis and structure calculations of copper binding to a single octarepeat from the prion protein. J Phys Chem B 2013; 117:13822-41. [PMID: 24102071 PMCID: PMC3890359 DOI: 10.1021/jp408239h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Copper coordination to the prion protein (PrP) has garnered considerable interest for almost 20 years, due in part to the possibility that this interaction may be part of the normal function of PrP. The most characterized form of copper binding to PrP has been Cu(2+) interaction with the conserved tandem repeats in the N-terminal domain of PrP, termed the octarepeats, with many studies focusing on single and multiple repeats of PHGGGWGQ. Extended X-ray absorption fine structure (EXAFS) spectroscopy has been used in several previous instances to characterize the solution structure of Cu(2+) binding into the peptide backbone in the HGGG portion of the octarepeats. All previous EXAFS studies, however, have benefitted from crystallographic structure information for [Cu(II) (Ac-HGGGW-NH2)(-2H)] but have not conclusively demonstrated that the complex EXAFS spectrum represents the same coordination environment for Cu(2+) bound to the peptide backbone. Density functional structure calculations as well as full multiple scattering EXAFS curve fitting analysis are brought to bear on the predominant coordination mode for Cu(2+) with the Ac-PHGGGWGQ-NH2 peptide at physiological pH, under high Cu(2+) occupancy conditions. In addition to the structure calculations, which provide a thermodynamic link to structural information, methods are also presented for extensive deconvolution of the EXAFS spectrum. We demonstrate how the EXAFS data can be analyzed to extract the maximum structural information and arrive at a structural model that is significantly improved over previous EXAFS characterizations. The EXAFS spectrum for the chemically reduced form of copper binding to the Ac-PHGGGWGQ-NH2 peptide is presented, which is best modeled as a linear two-coordinate species with a single His imidazole ligand and a water molecule. The extent of in situ photoreduction of the copper center during standard data collection is also presented, and EXAFS curve fitting of the photoreduced species reveals an intermediate structure that is similar to the Cu(2+) form with reduced coordination number.
Collapse
Affiliation(s)
- Alex McDonald
- Department of Geological Sciences, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5E2, Canada
| | | | | | | |
Collapse
|
41
|
Martic S, Rains MK, Kraatz HB. Probing copper/tau protein interactions electrochemically. Anal Biochem 2013; 442:130-7. [DOI: 10.1016/j.ab.2013.07.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 07/05/2013] [Accepted: 07/09/2013] [Indexed: 01/08/2023]
|
42
|
Mononuclear copper(II) complexes with a tetradentate pyrazole based ligand: Syntheses, structures, DNA binding study and antimicrobial activity. Polyhedron 2013. [DOI: 10.1016/j.poly.2013.06.051] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
43
|
Fujimaki N, Kitamura F, Takeuchi H. Pro-oxidant copper-binding mode of the Apo form of ALS-linked SOD1 mutant H43R denatured at physiological temperature. Biochemistry 2013; 52:5184-94. [PMID: 23837654 DOI: 10.1021/bi400370w] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mutation of Cu,Zn-superoxide dismutase (SOD1), a major antioxidant enzyme, is associated with amyotrophic lateral sclerosis (ALS). In a previous study, we showed that the metal-depleted apo form of an ALS-linked mutant, H43R, undergoes denaturation at physiological temperature (37 °C) in 90 min and acquires pro-oxidant activity in the presence of Cu(2+) and H2O2. In this study, we have examined the Cu(2+)-binding mode of denatured apo-H43R by circular dichroism (CD), fluorescent oxidation, UV Raman spectroscopy, and photooxidation. CD spectroscopy indicates that denatured apo-H43R loses native β-barrel structure and the binding of Cu(2+) to the denatured apo form induces local refolding. Fluorescent-oxidation assays in the absence and presence of Cu(2+) chelators show that denatured apo-H43R contains two Cu(2+)-binding sites with higher and lower Cu(2+) affinities and with pro-oxidant activities in the reverse order. UV Raman spectroscopy gives evidence that His residues are bound to Cu(2+) mainly through the imidazole Nτ atom at the higher-affinity site and through the Nπ atom at the lower-affinity site, sharing one His residue with each other. The Cu(2+)-binding mode of denatured apo-H43R is analogous to but different from the Cu,Zn-binding mode of the native holo form. Photooxidation experiments confirm the involvement of His residues in the pro-oxidant activity. Taken together, it is suggested that the binding of Cu(2+) induces the local refolding of denatured apo-H43R to create toxic catalytic centers that convert the enzyme from antioxidant to pro-oxidant, leading to the pathogenesis of ALS. His residues are essential for both Cu(2+)-binding and pro-oxidant activities.
Collapse
Affiliation(s)
- Nobuhiro Fujimaki
- Graduate School of Pharmaceutical Sciences, Tohoku University , Aobayama, Sendai 980-8578, Japan
| | | | | |
Collapse
|
44
|
Swayampakula M, Baral PK, Aguzzi A, Kav NNV, James MNG. The crystal structure of an octapeptide repeat of the prion protein in complex with a Fab fragment of the POM2 antibody. Protein Sci 2013; 22:893-903. [PMID: 23629842 DOI: 10.1002/pro.2270] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/18/2013] [Accepted: 04/22/2013] [Indexed: 11/09/2022]
Abstract
Prion diseases are progressive, infectious neurodegenerative disorders caused primarily by the misfolding of the cellular prion protein (PrP(c)) into an insoluble, protease-resistant, aggregated isoform termed PrP(sc). In native conditions, PrP(c) has a structured C-terminal domain and a highly flexible N-terminal domain. A part of this N-terminal domain consists of 4-5 repeats of an unusual glycine-rich, eight amino acids long peptide known as the octapeptide repeat (OR) domain. In this article, we successfully report the first crystal structure of an OR of PrP(c) bound to the Fab fragment of the POM2 antibody. The structure was solved at a resolution of 2.3 Å by molecular replacement. Although several studies have previously predicted a β-turn-like structure of the unbound ORs, our structure shows an extended conformation of the OR when bound to a molecule of the POM2 Fab indicating that the bound Fab disrupts any putative native β turn conformation of the ORs. Encouraging results from several recent studies have shown that administering small molecule ligands or antibodies targeting the OR domain of PrP result in arresting the progress of peripheral prion infections both in ex vivo and in in vivo models. This makes the structural study of the interactions of POM2 Fab with the OR domain very important as it would help us to design smaller and tighter binding OR ligands.
Collapse
Affiliation(s)
- Mridula Swayampakula
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | | | | | | | | |
Collapse
|
45
|
Synthesis, characterization and in vitro DNA binding and cleavage studies of Cu(II)/Zn(II) dipeptide complexes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 121:75-85. [DOI: 10.1016/j.jphotobiol.2012.12.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 11/29/2012] [Accepted: 12/19/2012] [Indexed: 11/20/2022]
|
46
|
Sarkar A, Paital AR, Khan RA, Arjmand F, Bertolasi V, Mathonière C, Clérac R, Ray D. Ligand dependent self-assembly of hydroxido-bridged dicopper units templated by sodium ion. Dalton Trans 2013; 42:12495-506. [DOI: 10.1039/c3dt51095f] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Efficient DNA cleavage mediated by mononuclear mixed ligand copper(II) phenolate complexes: The role of co-ligand planarity on DNA binding and cleavage and anticancer activity. J Inorg Biochem 2012; 114:94-105. [DOI: 10.1016/j.jinorgbio.2012.04.018] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 04/26/2012] [Accepted: 04/26/2012] [Indexed: 11/21/2022]
|
48
|
Loganathan R, Ramakrishnan S, Suresh E, Riyasdeen A, Akbarsha MA, Palaniandavar M. Mixed ligand copper(II) complexes of N,N-bis(benzimidazol-2-ylmethyl)amine (BBA) with diimine co-ligands: efficient chemical nuclease and protease activities and cytotoxicity. Inorg Chem 2012; 51:5512-32. [PMID: 22559171 DOI: 10.1021/ic2017177] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A series of mononuclear mixed ligand copper(II) complexes [Cu(bba)(diimine)](ClO(4))(2)1-4, where bba is N,N-bis(benzimidazol-2-ylmethyl)amine and diimine is 2,2'-bipyridine (bpy) (1), 1,10-phenanthroline (phen) (2), 5,6-dimethyl-1,10-phenanthroline (5,6-dmp) (3), or dipyrido[3,2-d:2',3'-f]quinoxaline (dpq) (4), have been isolated and characterized by analytical and spectral methods. The coordination geometry around copper(II) in 2 is described as square pyramidal with the two benzimidazole nitrogen atoms of the primary ligand bba and the two nitrogen atoms of phen (2) co-ligand constituting the equatorial plane and the amine nitrogen atom of bba occupying the apical position. In contrast, the two benzimidazole nitrogen atoms and the amine nitrogen atom of bba ligand and one of the two nitrogen atoms of 5,6-dmp constitute the equatorial plane of the trigonal bipyramidal distorted square based pyramidal (TBDSBP) coordination geometry of 3 with the other nitrogen atom of 5,6-dmp occupying the apical position. The structures of 1-4 have been optimized by using the density functional theory (DFT) method at the B3LYP/6-31G(d,p) level. Absorption spectral titrations with Calf Thymus (CT) DNA reveal that the intrinsic DNA binding affinity of the complexes depends upon the diimine co-ligand, dpq (4) > 5,6-dmp (3) > phen (2) > bpy (1). The DNA binding affinity of 4 is higher than 2 revealing that the π-stacking interaction of the dpq ring in between the DNA base pairs with the two bzim moieties of the bba ligand stacked along the DNA surface is more intimate than that of phen. The complex 3 is bound to DNA more strongly than 1 and 2 through strong hydrophobic interaction of the methyl groups on 5,6-positions of the phen ring in the DNA grooves. The extent of the decrease in relative emission intensities of DNA-bound ethidium bromide (EB) upon adding the complexes parallels the trend in DNA binding affinities. The large enhancement in relative viscosity of DNA upon binding to 3 and 4 supports the DNA binding modes proposed. Interestingly, the 5,6-dmp complex 3 is selective in exhibiting a positive induced CD band (ICD) upon binding to DNA suggesting that it induces a B to A conformational change. In contrast, 2 and 4 show induced CD responses indicating their involvement in strong DNA binding. Interestingly, only the dpq complex 4, which displays the strongest DNA binding affinity and is efficient in cleaving DNA in the absence of an activator with a rate constant of 5.8 ± 0.1 h(-1), which is higher than the uncatalyzed rate of DNA cleavage. All the complexes exhibit oxidative DNA cleavage ability, which varies as 4 > 2 > 3 > 1 (ascorbic acid) and 3 > 2 > 4 > 1 (H(2)O(2)). Also, the complexes cleave the protein bovine serum albumin in the presence of H(2)O(2) as an activator with the cleavage ability varying in the order 3 > 4 > 2 > 1. The highest efficiency of 3 to cleave both DNA and protein in the presence of H(2)O(2) is consistent with its strong hydrophobic interaction with the biopolymers. The IC(50) values of 1-4 against cervical cancer cell lines (SiHa) are almost equal to that of cisplatin, indicating that they have the potential to act as effective anticancer drugs in a time-dependent manner. The morphological assessment data obtained by using acridine orange/ethidium bromide (AO/EB) and Hoechst 33258 staining reveal that 3 induces apoptosis much more effectively than the other complexes. Also, the alkaline single-cell gel electrophoresis study (comet assay) suggests that the same complex induces DNA fragmentation more efficiently than others.
Collapse
Affiliation(s)
- Rangasamy Loganathan
- Centre for Bioinorganic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India
| | | | | | | | | | | |
Collapse
|
49
|
Patel MN, Joshi HN, Patel CR. DNA interaction, in vitro antimicrobial and SOD-like activity of copper(II) complexes with norfloxacin and terpyridines. J Organomet Chem 2012. [DOI: 10.1016/j.jorganchem.2011.11.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
50
|
Structural characterization of Cu2+, Ni2+ and Zn2+ binding sites of model peptides associated with neurodegenerative diseases. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2011.07.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|