1
|
Cholesterol Efflux: Does It Contribute to Aortic Stiffening? J Cardiovasc Dev Dis 2018; 5:jcdd5020023. [PMID: 29724005 PMCID: PMC6023341 DOI: 10.3390/jcdd5020023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 04/20/2018] [Accepted: 04/25/2018] [Indexed: 12/12/2022] Open
Abstract
Aortic stiffness during cardiac contraction is defined by the rigidity of the aorta and the elastic resistance to deformation. Recent studies suggest that aortic stiffness may be associated with changes in cholesterol efflux in endothelial cells. This alteration in cholesterol efflux may directly affect endothelial function, extracellular matrix composition, and vascular smooth muscle cell function and behavior. These pathological changes favor an aortic stiffness phenotype. Among all of the proteins participating in the cholesterol efflux process, ATP binding cassette transporter A1 (ABCA1) appears to be the main contributor to arterial stiffness changes in terms of structural and cellular function. ABCA1 is also associated with vascular inflammation mediators implicated in aortic stiffness. The goal of this mini review is to provide a conceptual hypothesis of the recent advancements in the understanding of ABCA1 in cholesterol efflux and its role and association in the development of aortic stiffness, with a particular emphasis on the potential mechanisms and pathways involved.
Collapse
|
2
|
Lian F, Wu HC, Sun ZG, Guo Y, Shi L, Xue MY. Effects of Liuwei Dihuang Granule (六味地黄颗粒) on the outcomes of in vitro fertilization pre-embryo transfer in infertility women with Kidney-yin deficiency syndrome and the proteome expressions in the follicular fluid. Chin J Integr Med 2014; 20:503-9. [DOI: 10.1007/s11655-014-1712-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Indexed: 10/25/2022]
|
3
|
Martínez-Beamonte R, Lou-Bonafonte JM, Martínez-Gracia MV, Osada J. Sphingomyelin in high-density lipoproteins: structural role and biological function. Int J Mol Sci 2013; 14:7716-41. [PMID: 23571495 PMCID: PMC3645712 DOI: 10.3390/ijms14047716] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 03/20/2013] [Accepted: 03/29/2013] [Indexed: 11/16/2022] Open
Abstract
High-density lipoprotein (HDL) levels are an inverse risk factor for cardiovascular diseases, and sphingomyelin (SM) is the second most abundant phospholipid component and the major sphingolipid in HDL. Considering the marked presence of SM, the present review has focused on the current knowledge about this phospholipid by addressing its variable distribution among HDL lipoparticles, how they acquire this phospholipid, and the important role that SM plays in regulating their fluidity and cholesterol efflux from different cells. In addition, plasma enzymes involved in HDL metabolism such as lecithin-cholesterol acyltransferase or phospholipid transfer protein are inhibited by HDL SM content. Likewise, HDL SM levels are influenced by dietary maneuvers (source of protein or fat), drugs (statins or diuretics) and modified in diseases such as diabetes, renal failure or Niemann-Pick disease. Furthermore, increased levels of HDL SM have been shown to be an inverse risk factor for coronary heart disease. The complexity of SM species, described using new lipidomic methodologies, and their distribution in different HDL particles under many experimental conditions are promising avenues for further research in the future.
Collapse
Affiliation(s)
- Roberto Martínez-Beamonte
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza E-50013, Spain; E-Mail:
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid E-28029, Spain; E-Mails: (J.M.L.-B.); (M.V.M.-G.)
| | - Jose M. Lou-Bonafonte
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid E-28029, Spain; E-Mails: (J.M.L.-B.); (M.V.M.-G.)
- Departamento de Farmacología y Fisiología, Facultad de Ciencias de la Salud y del Deporte, Universidad de Zaragoza, Huesca E-22002, Spain
| | - María V. Martínez-Gracia
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid E-28029, Spain; E-Mails: (J.M.L.-B.); (M.V.M.-G.)
| | - Jesús Osada
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza E-50013, Spain; E-Mail:
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid E-28029, Spain; E-Mails: (J.M.L.-B.); (M.V.M.-G.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +34-976-761-644; Fax: +34-976-761-612
| |
Collapse
|
4
|
McNeal CJ, Chatterjee S, Hou J, Worthy LS, Larner CD, Macfarlane RD, Alaupovic P, Brocia RW. Human HDL containing a novel apoC-I isoform induces smooth muscle cell apoptosis. Cardiovasc Res 2013; 98:83-93. [PMID: 23354389 DOI: 10.1093/cvr/cvt014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
AIMS We discovered that some adults with coronary heart disease (CHD) have a high density lipoprotein (HDL) subclass which induces human aortic smooth muscle cell (ASMC) apoptosis in vitro. The purpose of this investigation was to determine what properties differentiate apoptotic and non-apoptotic HDL subclasses in adults with and without CHD. METHODS AND RESULTS Density gradient ultracentrifugation was used to measure the particle density distribution and to isolate two HDL subclass fractions, HDL2 and HDL3, from 21 individuals, including 12 without CHD. The HDL fractions were incubated with ASMCs for 24 h; apoptosis was quantitated relative to C2-ceramide and tumour necrosis factor-alpha (TNF-α). The observed effect of some HDL subclasses on apoptosis was ∼6-fold greater than TNF-α and ∼16-fold greater than the cell medium. We observed that apoptotic HDL was (i) predominately associated with the HDL2 subclass; (ii) almost exclusively found in individuals with a higher apoC-I serum level and a novel, higher molecular weight isoform of apoC-I; and (iii) more common in adults with CHD, the majority of whom had high (>60 mg/dL) HDL-C levels. CONCLUSIONS Some HDL subclasses enriched in a novel isoform of apoC-I induce extensive ASMC apoptosis in vitro. Individuals with this apoptotic HDL phenotype generally have higher apoC-I and HDL-C levels consistent with an inhibitory effect of apoC-I on cholesteryl ester transfer protein activity. The association of this phenotype with processes that can promote plaque rupture may explain a source of CHD risk not accounted for by the classical risk factors.
Collapse
Affiliation(s)
- Catherine J McNeal
- Department of Internal Medicine and Department of Pediatrics, Scott & White Healthcare, Temple, TX 76508, USA.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Allahverdian S, Pannu PS, Francis GA. Contribution of monocyte-derived macrophages and smooth muscle cells to arterial foam cell formation. Cardiovasc Res 2012; 95:165-72. [PMID: 22345306 DOI: 10.1093/cvr/cvs094] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Smooth muscle cells (SMCs) are the main cell type in intimal thickenings and some stages of human atherosclerosis. Like monocyte-derived macrophages, SMCs accumulate excess lipids and contribute to the total intimal foam cell population. In contrast, apolipoprotein (Apo)E-deficient and LDL receptor-deficient mice develop atherosclerotic lesions that are macrophage- as opposed to SMC-rich. The lesser contribution of SMCs to lesion development in these mouse models has distracted attention away from the importance of SMC cholesterol homeostasis in the artery wall. Intimal SMCs accumulate excess amounts of cholesteryl esters when compared with medial layer SMCs, possibly explained by reduced ATP-binding cassette transporter A1 expression and ApoA-I binding to intimal-type SMCs. The aim of this review is to compare the relative contribution of monocyte-derived macrophages and SMCs to human vs. mouse atherosclerosis, and describe what is known about lipid uptake and removal mechanisms contributing to arterial macrophage and SMC foam cell formation. An increased understanding of the contribution of these cell types to lesion development will help to delineate their relative importance in atherogenesis and as potential therapeutic targets.
Collapse
Affiliation(s)
- Sima Allahverdian
- Department of Medicine, UBC James Hogg Research Centre, Providence Heart + Lung Institute at St Paul's Hospital, Room 166, Burrard Building, 1081 Burrard Street, Vancouver, BC, Canada V6Z 1Y6
| | | | | |
Collapse
|
6
|
Allahverdian S, Francis GA. Cholesterol Homeostasis and High-Density Lipoprotein Formation in Arterial Smooth Muscle Cells. Trends Cardiovasc Med 2010; 20:96-102. [DOI: 10.1016/j.tcm.2010.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/31/2010] [Indexed: 01/24/2023]
|
7
|
Abstract
Liver plays a vital role in the production and catabolism of plasma lipoproteins. It depends on the integrity of cellular function of liver, which ensures homeostasis of lipid and lipoprotein metabolism. When liver cancer occurs these processes are impaired and high-density lipoproteins are changed.
Collapse
Affiliation(s)
- Jing-Ting Jiang
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Suzhou University, Changzhou 213003, Jiangsu Province, China.
| | | | | |
Collapse
|
8
|
Waddington EI, Boadu E, Francis GA. Cholesterol and phospholipid efflux from cultured cells. Methods 2005; 36:196-206. [PMID: 15905101 DOI: 10.1016/j.ymeth.2004.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Revised: 12/21/2004] [Accepted: 12/21/2004] [Indexed: 10/25/2022] Open
Abstract
The removal of phospholipids and cholesterol from tissues is the major mechanism mediating the initial assembly of high density lipoproteins (HDL), as well as being the main reason HDL are thought to protect against atherosclerosis. Investigations of the mechanisms of HDL assembly and testing of novel HDL-raising agents typically involve assays to determine phospholipid and/or cholesterol removal or "efflux" from cultured cells. The purpose of this chapter is to describe experimental protocols that can be used in the determination of cholesterol and phospholipid efflux from cultured cells by HDL apolipoproteins for the formation of new HDL particles, and the testing of novel HDL-raising therapies in vitro. A protocol is also provided for determining the size and nature of HDL particles formed in cell-conditioned medium using two-dimensional gel electrophoresis.
Collapse
Affiliation(s)
- Emma I Waddington
- CIHR Group on Molecular and Cell Biology of Lipids, Departments of Medicine and Biochemistry, University of Alberta, Edmonton, Alta., Canada T6G 2S2
| | | | | |
Collapse
|
9
|
Rhainds D, Brissette L. The role of scavenger receptor class B type I (SR-BI) in lipid trafficking. defining the rules for lipid traders. Int J Biochem Cell Biol 2004; 36:39-77. [PMID: 14592533 DOI: 10.1016/s1357-2725(03)00173-0] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The scavenger receptor class B type I (SR-BI) is a 509-amino acid, 82 kDa glycoprotein, with two cytoplasmic C- and N-terminal domains separated by a large extracellular domain. The aim of this review is to define the role of SR-BI as a lipoprotein receptor responsible for selective uptake of cholesteryl esters (CE) from high density lipoprotein (HDL) and low density lipoprotein (LDL) and free cholesterol (FC) efflux to lipoprotein acceptors. These activities depend on lipoprotein binding to its extracellular domain and subsequent lipid exchange at the plasma membrane. CE selective uptake supplies cholesterol to liver and steroidogenic tissues, for biliary cholesterol secretion and steroid hormone synthesis. Genetically modified mice have confirmed SR-BI's major role in tissue cholesterol uptake and in reverse cholesterol transport, i.e. cholesterol turnover. Accordingly, cellular cholesterol level, estrogens and trophic hormones regulate SR-BI expression by both transcriptional and post-transcriptional mechanisms. Importantly, mouse SR-BI overexpression has both corrective and preventive effects on atherosclerosis. Human SR-BI has very similar tissue distribution, binding properties and lipid transfer activities compared to rodent SR-BI. However, human plasma has most of its cholesterol in LDL. Thus, there is considerable interest to develop anti-atherogenic strategies involving human SR-BI-mediated increases in reverse cholesterol transport through HDL and/or LDL.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Biological Transport, Active
- CD36 Antigens
- Cell Membrane/chemistry
- Cell Membrane/genetics
- Cell Membrane/metabolism
- Cell Membrane/physiology
- Humans
- Lipid Metabolism
- Lipoproteins/metabolism
- Models, Biological
- Promoter Regions, Genetic
- Protein Structure, Tertiary
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/physiology
- Receptors, Scavenger
- Scavenger Receptors, Class B
- Tissue Distribution
Collapse
Affiliation(s)
- David Rhainds
- Département des Sciences Biologiques, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montreal, Que., Canada H3C 3P8.
| | | |
Collapse
|
10
|
Sahoo D, Trischuk TC, Chan T, Drover VAB, Ho S, Chimini G, Agellon LB, Agnihotri R, Francis GA, Lehner R. ABCA1-dependent lipid efflux to apolipoprotein A-I mediates HDL particle formation and decreases VLDL secretion from murine hepatocytes. J Lipid Res 2004; 45:1122-31. [PMID: 14993246 DOI: 10.1194/jlr.m300529-jlr200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
High levels of expression of the ATP binding cassette transporter A1 (ABCA1) in the liver and the need to over- or underexpress hepatic ABCA1 to impact plasma HDL levels in mice suggest a major role of the liver in HDL formation and in determining circulating HDL levels. Cultured murine hepatocytes were used to examine the role of hepatic ABCA1 in mediating the lipidation of apolipoprotein A-I (apoA-I) for HDL particle formation. Exogenous apoA-I stimulated cholesterol efflux to the medium from wild-type hepatocytes, but not from ABCA1-deficient (abca1(-/-)) hepatocytes. ApoA-I induced the formation of new HDL particles and enhanced the lipidation of endogenously secreted murine apoA-I in ABCA1-expressing but not abca1(-/-) hepatocytes. ABCA1-dependent cholesterol mobilization to apoA-I increased new cholesterol synthesis, indicating depletion of the regulatory pool of hepatocyte cholesterol during HDL formation. Secretion of triacylglycerol and apoB was decreased following apoA-I incubation with ABCA1-expressing but not abca1(-/-) hepatocytes. These results support a major role for hepatocyte ABCA1 in generating a critical pool of HDL precursor particles that enhance further HDL generation and passive cholesterol mobilization in the periphery. The results also suggest that diversion of hepatocyte cholesterol into the "reverse" cholesterol transport pathway diminishes cholesterol availability for apoB-containing lipoprotein secretion by the liver.
Collapse
Affiliation(s)
- Daisy Sahoo
- Departments of Pediatrics, CIHR Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Macdonald DL, Terry TL, Agellon LB, Nation PN, Francis GA. Administration of tyrosyl radical-oxidized HDL inhibits the development of atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2003; 23:1583-8. [PMID: 12855483 DOI: 10.1161/01.atv.0000085840.67498.00] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Tyrosyl radical-oxidized HDL (tyrHDL) increases the ability of cells to donate cholesterol to apolipoprotein (apo) A-I for HDL particle formation. We tested whether treatment with tyrHDL raises endogenous HDL cholesterol levels and decreases atherosclerosis development in apoE-deficient mice. METHODS AND RESULTS Tyrosyl radical oxidation of mouse HDL induced formation of apoAI-AII heterodimers and enhanced the ability of mouse HDL to deplete cultured fibroblasts of their regulatory pool of cholesterol. 125I-labeled HDL and tyrHDL delivered intraperitoneally were cleared at similar rates from plasma of chow-fed apoE-deficient mice. ApoE-deficient mice injected intraperitoneally twice weekly with 150 microg tyrHDL from age 10 to 18 weeks showed a maximum 2.3-fold increase in endogenous HDL cholesterol levels, which fell toward the end of the treatment period. tyrHDL treatment resulted in 37% less aortic lesion development than in control HDL-treated mice (P<0.001) and 67% less than in saline-injected animals (P<0.001). CONCLUSIONS Administration of tyrHDL for 8 weeks resulted in significantly less atherosclerosis development in apoE-deficient mice than injection of HDL or saline. Molecules increasing mobilization of cellular cholesterol to apoAI for HDL particle formation would be expected to decrease atherosclerosis without necessarily causing sustained increases in circulating HDL cholesterol levels.
Collapse
Affiliation(s)
- Dawn L Macdonald
- CIHR Group on Molecular and Cell Biology of Lipids and Departments of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
12
|
Hannuksela ML, Liisanantti MK, Savolainen MJ. Effect of alcohol on lipids and lipoproteins in relation to atherosclerosis. Crit Rev Clin Lab Sci 2002; 39:225-83. [PMID: 12120782 DOI: 10.1080/10408360290795529] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Several studies indicate that light-to-moderate alcohol consumption is associated with a low prevalence of coronary heart disease. An increase in high-density lipoprotein (HDL) cholesterol is associated with alcohol intake and appears to account for approximately half of alcohol's cardioprotective effect. In addition to changes in the concentration and composition of lipoproteins, alcohol consumption may alter the activities of plasma proteins and enzymes involved in lipoprotein metabolism: cholesteryl ester transfer protein, phospholipid transfer protein, lecithin:cholesterol acyltransferase, lipoprotein lipase, hepatic lipase, paraoxonase-1 and phospholipases. Alcohol intake also results in modifications of lipoprotein particles: low sialic acid content in apolipoprotein components of lipoprotein particles (e.g., HDL apo E and apo J) and acetaldehyde modification of apolipoproteins. In addition, "abnormal" lipids, phosphatidylethanol, and fatty acid ethyl esters formed in the presence of ethanol are associated with lipoproteins in plasma. The effects of lipoproteins on the vascular wall cells (endothelial cells, smooth muscle cells, and monocyte/macrophages) may be modulated by ethanol and the alterations further enhanced by modified lipids. The present review discusses the effects of alcohol on lipoproteins in cholesterol transport, as well as the novel effects of lipoproteins on vascular wall cells.
Collapse
Affiliation(s)
- Minna L Hannuksela
- Department of Internal Medicine, Biocenter Oulu, University of Oulu, Finland
| | | | | |
Collapse
|
13
|
Husemann J, Silverstein SC. Expression of scavenger receptor class B, type I, by astrocytes and vascular smooth muscle cells in normal adult mouse and human brain and in Alzheimer's disease brain. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 158:825-32. [PMID: 11238031 PMCID: PMC1850374 DOI: 10.1016/s0002-9440(10)64030-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/01/2000] [Indexed: 11/18/2022]
Abstract
In Alzheimer's disease (AD), fibrillar beta-amyloid protein (fAbeta) accumulates in the walls of cerebral vessels associated with vascular smooth muscle cells (SMCs), endothelium, and pericytes, and with microglia and astrocytes in plaques in the brain parenchyma. Scavenger receptor class A (SR-A) and class B, type I (SR-BI) mediate binding and ingestion of fAbeta by cultured human fetal microglia, microglia from newborn mice, and by cultured SMCs. Our findings that SR-BI participates in the adhesion of cultured microglia from newborn SR-A knock-out mice to fAbeta-coated surfaces, and that microglia secrete reactive oxygen species when they adhere to these surfaces prompted us to explore expression of SR-BI in vivo. We report here that astrocytes and SMCs in normal adult mouse and human brains and in AD brains express SR-BI. In contrast, microglia in normal adult mouse and human brains and in AD brains do not express SR-BI. These findings indicate that SR-BI may mediate interactions between astrocytes or SMCs and fAbeta, but not of microglia and fAbeta, in AD, and that expression of SR-BI by rodent microglia is developmentally regulated. They suggest that SR-BI expression also is developmentally regulated in human microglia.
Collapse
Affiliation(s)
- J Husemann
- Columbia University, College of Physicians and Surgeons, Department of Physiology and Cellular Biophysics, 630 West 168th Street, New York, NY 10032, USA.
| | | |
Collapse
|
14
|
von Eckardstein A, Nofer JR, Assmann G. High density lipoproteins and arteriosclerosis. Role of cholesterol efflux and reverse cholesterol transport. Arterioscler Thromb Vasc Biol 2001; 21:13-27. [PMID: 11145929 DOI: 10.1161/01.atv.21.1.13] [Citation(s) in RCA: 472] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
High density lipoprotein (HDL) cholesterol is an important risk factor for coronary heart disease, and HDL exerts various potentially antiatherogenic properties, including the mediation of reverse transport of cholesterol from cells of the arterial wall to the liver and steroidogenic organs. Enhancement of cholesterol efflux and of reverse cholesterol transport (RCT) is considered an important target for antiatherosclerotic drug therapy. Levels and composition of HDL subclasses in plasma are regulated by many factors, including apolipoproteins, lipolytic enzymes, lipid transfer proteins, receptors, and cellular transporters. In vitro experiments as well as genetic family and population studies and investigation of transgenic animal models have revealed that HDL cholesterol plasma levels do not necessarily reflect the efficacy and antiatherogenicity of RCT. Instead, the concentration of HDL subclasses, the mobilization of cellular lipids for efflux, and the kinetics of HDL metabolism are important determinants of RCT and the risk of atherosclerosis.
Collapse
Affiliation(s)
- A von Eckardstein
- Institut für Klinische Chemie und Laboratoriumsmedizin, Zentrallaboratorium, Westfälische Wilhelms-Universität Münster, Germany.
| | | | | |
Collapse
|
15
|
Bortnick AE, Rothblat GH, Stoudt G, Hoppe KL, Royer LJ, McNeish J, Francone OL. The correlation of ATP-binding cassette 1 mRNA levels with cholesterol efflux from various cell lines. J Biol Chem 2000; 275:28634-40. [PMID: 10893411 DOI: 10.1074/jbc.m003407200] [Citation(s) in RCA: 250] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Studies show that lipid-free apoA-I stimulates release of cholesterol and phospholipid from fibroblasts and macrophages. ATP-binding cassette 1 (ABC1) is implicated in this release and has been identified as the genetic defect in Tangier disease, evidence that ABC1 is critical to the biogenesis of high density lipoprotein. We quantified levels of ABC1 mRNA, protein, and cholesterol efflux from J774 mouse macrophages +/- exposure to a cAMP analog. Up-regulating ABC1 mRNA correlated to increased cholesterol efflux in a dose- and time-dependent manner. mRNA levels rose after 15 min of exposure while protein levels rose after 1 h, with increased efflux 2-4 h post-treatment. In contrast to cells from wild-type mice, peritoneal macrophages from the Abc1 -/- mouse showed a lower level of basal efflux and no increase with cAMP treatment. The stimulation of efflux exhibits specificity for apoA-I, high density lipoprotein, and other apolipoproteins as cholesterol acceptors, but not for small unilamellar vesicles, bile acid micelles, or cyclodextrin. We have studied a number of cell types and found that while other cell lines express ABC1 constitutively, only J774 and elicited mouse macrophages show a substantial increase of mRNA and efflux with cAMP treatment. ApoA-I-stimulated efflux was detected from the majority of cell lines examined, independent of treatment.
Collapse
Affiliation(s)
- A E Bortnick
- MCP Hahnemann University, Department of Biochemistry, Philadelphia, Pennsylvania 19129, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
A low level of high-density lipoprotein (HDL) cholesterol is an important risk factor for coronary heart disease. Levels of HDL cholesterol and composition of HDL subclasses in plasma are regulated by many factors, including apolipoproteins, lipolytic enzymes, lipid transfer proteins, receptors, and cellular transporters. Reverse transport of cholesterol from cells of the arterial wall to the liver is an important mechanism by which HDL exerts its anti-atherogenic properties. Enhancement of reverse cholesterol transport is considered as a potential target for anti-atherosclerotic drug therapy. It is suggested, however, that the serum level of HDL cholesterol does not necessarily reflect the efficacy of reverse cholesterol transport.
Collapse
Affiliation(s)
- A von Eckardstein
- Institut für Klinische Chemie und Laboratoriumsmedizin, Zentrallaboratorium, Westfälische Wilhelms-Universität Münster, Germany.
| | | | | |
Collapse
|
17
|
Abstract
Lipid-poor apolipoproteins remove cellular cholesterol and phospholipids by an active transport pathway controlled by an ATP binding cassette transporter called ABCA1 (formerly ABC1). Mutations in ABCA1 cause Tangier disease, a severe HDL deficiency syndrome characterized by a rapid turnover of plasma apolipoprotein A-I, accumulation of sterol in tissue macrophages, and prevalent atherosclerosis. This implies that lipidation of apolipoprotein A-I by the ABCA1 pathway is required for generating HDL particles and clearing sterol from macrophages. Thus, the ABCA1 pathway has become an important therapeutic target for mobilizing excess cholesterol from tissue macrophages and protecting against atherosclerosis.
Collapse
Affiliation(s)
- J F Oram
- Department of Medicine, University of Washington, Seattle 98195, USA.
| | | |
Collapse
|