1
|
Di Cera E, Mohammed BM, Pelc LA, Stojanovski BM. Cryo-EM structures of coagulation factors. Res Pract Thromb Haemost 2022; 6:e12830. [PMID: 36349261 PMCID: PMC9630041 DOI: 10.1002/rth2.12830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/08/2022] [Accepted: 09/22/2022] [Indexed: 11/05/2022] Open
Abstract
A State of the Art lecture titled "Cryo-EM structures of coagulation factors" was presented at the ISTH Congress in 2022. Cryogenic electron microscopy (cryo-EM) is a revolutionary technique capable of solving the structure of high molecular weight proteins and their complexes, unlike nuclear magnetic resonance (NMR), and under conditions not biased by crystal contacts, unlike X-ray crystallography. These features are particularly relevant to the analysis of coagulation factors that are too big for NMR and often recalcitrant to X-ray investigation. Using cryo-EM, we have solved the structures of coagulation factors V and Va, prothrombinase on nanodiscs, and the prothrombin-prothrombinase complex. These structures have advanced basic knowledge in the field of thrombosis and hemostasis, especially on the function of factor V and the molecular mechanism for prothrombin activation, and set the stage for exciting new lines of investigation. Finally, we summarize relevant new data on this topic presented during the 2022 ISTH Congress.
Collapse
Affiliation(s)
- Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular BiologySaint Louis University School of MedicineSt. LouisMissouriUSA
| | - Bassem M. Mohammed
- Edward A. Doisy Department of Biochemistry and Molecular BiologySaint Louis University School of MedicineSt. LouisMissouriUSA
| | - Leslie A. Pelc
- Edward A. Doisy Department of Biochemistry and Molecular BiologySaint Louis University School of MedicineSt. LouisMissouriUSA
| | - Bosko M. Stojanovski
- Edward A. Doisy Department of Biochemistry and Molecular BiologySaint Louis University School of MedicineSt. LouisMissouriUSA
| |
Collapse
|
2
|
Ruben EA, Summers B, Rau MJ, Fitzpatrick JAJ, Di Cera E. Cryo-EM structure of the prothrombin-prothrombinase complex. Blood 2022; 139:3463-3473. [PMID: 35427420 PMCID: PMC9203702 DOI: 10.1182/blood.2022015807] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/30/2022] [Indexed: 11/23/2022] Open
Abstract
The intrinsic and extrinsic pathways of the coagulation cascade converge to a common step where the prothrombinase complex, comprising the enzyme factor Xa (fXa), the cofactor fVa, Ca2+ and phospholipids, activates the zymogen prothrombin to the protease thrombin. The reaction entails cleavage at 2 sites, R271 and R320, generating the intermediates prethrombin 2 and meizothrombin, respectively. The molecular basis of these interactions that are central to hemostasis remains elusive. We solved 2 cryogenic electron microscopy (cryo-EM) structures of the fVa-fXa complex, 1 free on nanodiscs at 5.3-Å resolution and the other bound to prothrombin at near atomic 4.1-Å resolution. In the prothrombin-fVa-fXa complex, the Gla domains of fXa and prothrombin align on a plane with the C1 and C2 domains of fVa for interaction with membranes. Prothrombin and fXa emerge from this plane in curved conformations that bring their protease domains in contact with each other against the A2 domain of fVa. The 672ESTVMATRKMHDRLEPEDEE691 segment of the A2 domain closes on the protease domain of fXa like a lid to fix orientation of the active site. The 696YDYQNRL702 segment binds to prothrombin and establishes the pathway of activation by sequestering R271 against D697 and directing R320 toward the active site of fXa. The cryo-EM structure provides a molecular view of prothrombin activation along the meizothrombin pathway and suggests a mechanism for cleavage at the alternative R271 site. The findings advance our basic knowledge of a key step of coagulation and bear broad relevance to other interactions in the blood.
Collapse
Affiliation(s)
- Eliza A Ruben
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO
| | | | | | - James A J Fitzpatrick
- Washington University Center for Cellular Imaging
- Department of Cell Biology and Physiology, and
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO; and
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO
| |
Collapse
|
3
|
Nagaya S, Akiyama M, Murakami M, Sekiya A, Asakura H, Morishita E. Congenital coagulation factor X deficiency: Genetic analysis of five patients and functional characterization of mutant factor X proteins. Haemophilia 2018; 24:774-785. [DOI: 10.1111/hae.13606] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 11/27/2022]
Affiliation(s)
- Satomi Nagaya
- Asanogawa General Hospital; Kanazawa Ishikawa Japan
- Department of Clinical Laboratory Science; Kanazawa University Graduate School of Medical Science; Kanazawa Ishikawa Japan
| | - Masashi Akiyama
- Department of Molecular Pathogenesis; National Cerebral and Cardiovascular Center Research Institute; Osaka Japan
| | - Morika Murakami
- Department of Clinical Laboratory Science; Kanazawa University Graduate School of Medical Science; Kanazawa Ishikawa Japan
| | - Akiko Sekiya
- Department of Clinical Laboratory Science; Kanazawa University Graduate School of Medical Science; Kanazawa Ishikawa Japan
| | - Hidesaku Asakura
- Department of Hematology; Kanazawa University Hospital; Kanazawa Ishikawa Japan
| | - Eriko Morishita
- Department of Clinical Laboratory Science; Kanazawa University Graduate School of Medical Science; Kanazawa Ishikawa Japan
- Department of Hematology; Kanazawa University Hospital; Kanazawa Ishikawa Japan
| |
Collapse
|
4
|
Kapoor K, McGill N, Peterson CB, Meyers HV, Blackburn MN, Baudry J. Discovery of Novel Nonactive Site Inhibitors of the Prothrombinase Enzyme Complex. J Chem Inf Model 2016; 56:535-47. [PMID: 26848511 DOI: 10.1021/acs.jcim.5b00596] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The risk of serious bleeding is a major liability of anticoagulant drugs that are active-site competitive inhibitors targeting the Factor Xa (FXa) prothrombin (PT) binding site. The present work identifies several new classes of small molecule anticoagulants that can act as nonactive site inhibitors of the prothrombinase (PTase) complex composed of FXa and Factor Va (FVa). These new classes of anticoagulants were identified, using a novel agnostic computational approach to identify previously unrecognized binding pockets at the FXa-FVa interface. From about three million docking calculations of 281,128 compounds in a conformational ensemble of FXa heavy chains identified by molecular dynamics (MD) simulations, 97 compounds and their structural analogues were selected for experimental validation, through a series of inhibition assays. The compound selection was based on their predicted binding affinities to FXa and their ability to successfully bind to multiple protein conformations while showing selectivity for particular binding sites at the FXa/FVa interface. From these, thirty-one (31) compounds were experimentally identified as nonactive site inhibitors. Concentration-based assays further identified 10 compounds represented by four small-molecule families of inhibitors that achieve dose-independent partial inhibition of PTase activity in a nonactive site-dependent and self-limiting mechanism. Several compounds were identified for their ability to bind to protein conformations only seen during MD, highlighting the importance of accounting for protein flexibility in structure-based drug discovery approaches.
Collapse
Affiliation(s)
- Karan Kapoor
- UT/ORNL Program in Genome Science and Technology, Knoxville, Tennessee 37830, United States.,UT/ORNL Center for Molecular Biophysics, Oak Ridge, Tennessee 37830, United States
| | - Nicole McGill
- Shifa Biomedical, One Great Valley Parkway, Suite 8, Malvern, Pennsylvania 19355, United States
| | - Cynthia B Peterson
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Harold V Meyers
- Shifa Biomedical, One Great Valley Parkway, Suite 8, Malvern, Pennsylvania 19355, United States
| | - Michael N Blackburn
- Shifa Biomedical, One Great Valley Parkway, Suite 8, Malvern, Pennsylvania 19355, United States
| | - Jerome Baudry
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee , Knoxville, Tennessee 37996, United States.,UT/ORNL Center for Molecular Biophysics, Oak Ridge, Tennessee 37830, United States
| |
Collapse
|
5
|
Abdel-Azeim S, Oliva R, Chermak E, De Cristofaro R, Cavallo L. Molecular Dynamics Characterization of Five Pathogenic Factor X Mutants Associated with Decreased Catalytic Activity. Biochemistry 2014; 53:6992-7001. [DOI: 10.1021/bi500770p] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Safwat Abdel-Azeim
- Kaust
Catalysis Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Romina Oliva
- Department
of Sciences and Technologies, University “Parthenope” of Naples, Centro Direzionale Isola C4, 80133 Naples, Italy
| | - Edrisse Chermak
- Kaust
Catalysis Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Raimondo De Cristofaro
- Hemostasis
Research Centre, Institute of Internal Medicine and Geriatrics, Catholic University School of Medicine, Rome, Italy
| | - Luigi Cavallo
- Kaust
Catalysis Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Dipartimento
di Chimica e Biologia, University of Salerno, Via Papa Giovanni Paolo II, I-84084 Fisciano, Italy
| |
Collapse
|
6
|
Liang Q, Chen Q, Ding Q, Wu F, Wang X, Xi X, Wang H. Six novel missense mutations causing factor X deficiency and application of thrombin generation test. Thromb Res 2013; 131:554-9. [DOI: 10.1016/j.thromres.2013.04.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 04/15/2013] [Accepted: 04/15/2013] [Indexed: 11/30/2022]
|
7
|
Majumder R, Koklic T, Rezaie AR, Lentz BR. Phosphatidylserine-induced factor Xa dimerization and binding to factor Va are competing processes in solution. Biochemistry 2013; 52:143-51. [PMID: 23214401 PMCID: PMC3544317 DOI: 10.1021/bi301239z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A soluble, short chain phosphatidylserine, 1,2-dicaproyl-sn-glycero-3-phospho-l-serine (C6PS), binds to discrete sites on FXa, FVa, and prothrombin to alter their conformations, to promote FXa dimerization (K(d) ~ 14 nM), and to enhance both the catalytic activity of FXa and the cofactor activity of FVa. In the presence of calcium, C6PS binds to two sites on FXa, one in the epidermal growth factor-like (EGF) domain and one in the catalytic domain; the latter interaction is sensitive to Na(+) binding and probably represents a protein recognition site. Here we ask whether dimerization of FXa and its binding to FVa in the presence of C6PS are competitive processes. We monitored FXa activity at 5, 20, and 50 nM FXa while titrating with FVa in the presence of 400 μM C6PS and 3 or 5 mM Ca(2+) to show that the apparent K(d) of FVa-FXa interaction increased with an increase in FXa concentration at 5 mM Ca(2+), but the K(d) was only slightly affected at 3 mM Ca(2+). A mixture of 50 nM FXa and 50 nM FVa in the presence of 400 μM C6PS yielded both Xa homodimers and Xa·Va heterodimers, but no FXa dimers bound to FVa. A mutant FXa (R165A) that has reduced prothrombinase activity showed both weakened dimerization (K(d) ~ 147 nM) and weakened FVa binding (apparent K(d) values of 58, 92, and 128 nM for 5, 20, and 50 nM R165A FXa, respectively). Native gel electrophoresis showed that the GLA-EGF(NC) fragment of FXa (lacking the catalytic domain) neither dimerized nor formed a complex with FVa in the presence of 400 μM C6PS and 5 mM Ca(2+). Our results demonstrate that the dimerization site and FVa-binding site are both located in the catalytic domain of FXa and that these sites are linked thermodynamically.
Collapse
Affiliation(s)
- Rinku Majumder
- Department of Biochemistry and Biophysics and Program in Molecular & Cellular Biophysics, CB # 7260, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7260
| | - Tilen Koklic
- Laboratory of Biophysics (EPR center), Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Alireza R. Rezaie
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO-63104
| | - Barry R. Lentz
- Department of Biochemistry and Biophysics and Program in Molecular & Cellular Biophysics, CB # 7260, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7260
| |
Collapse
|
8
|
|
9
|
Characterization of a human coagulation factor Xa-binding site on Viperidae snake venom phospholipases A2 by affinity binding studies and molecular bioinformatics. BMC STRUCTURAL BIOLOGY 2007; 7:82. [PMID: 18062812 PMCID: PMC2248580 DOI: 10.1186/1472-6807-7-82] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Accepted: 12/06/2007] [Indexed: 11/20/2022]
Abstract
Background The snake venom group IIA secreted phospholipases A2 (SVPLA2), present in the Viperidae snake family exhibit a wide range of toxic and pharmacological effects. They exert their different functions by catalyzing the hydrolysis of phospholipids (PL) at the membrane/water interface and by highly specific direct binding to: (i) presynaptic membrane-bound or intracellular receptors; (ii) natural PLA2-inhibitors from snake serum; and (iii) coagulation factors present in human blood. Results Using surface plasmon resonance (SPR) protein-protein interaction measurements and an in vitro biological test of inhibition of prothrombinase activity, we identify a number of Viperidae venom SVPLA2s that inhibit blood coagulation through direct binding to human blood coagulation factor Xa (FXa) via a non-catalytic, PL-independent mechanism. We classify the SVPLA2s in four groups, depending on the strength of their binding. Molecular electrostatic potentials calculated at the surface of 3D homology-modeling models show a correlation with inhibition of prothrombinase activity. In addition, molecular docking simulations between SVPLA2 and FXa guided by the experimental data identify the potential FXa binding site on the SVPLA2s. This site is composed of the following regions: helices A and B, the Ca2+ loop, the helix C-β-wing loop, and the C-terminal fragment. Some of the SVPLA2 binding site residues belong also to the interfacial binding site (IBS). The interface in FXa involves both, the light and heavy chains. Conclusion We have experimentally identified several strong FXa-binding SVPLA2s that disrupt the function of the coagulation cascade by interacting with FXa by the non-catalytic PL-independent mechanism. By theoretical methods we mapped the interaction sites on both, the SVPLA2s and FXa. Our findings may lead to the design of novel, non-competitive FXa inhibitors.
Collapse
|
10
|
Levigne S, Thiec F, Cherel G, Irving JA, Fribourg C, Christophe OD. Role of the alpha-helix 163-170 in factor Xa catalytic activity. J Biol Chem 2007; 282:31569-79. [PMID: 17726015 DOI: 10.1074/jbc.m704837200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Factor Xa (FXa) is a key protease of the coagulation pathway whose activity is known to be in part modulated by binding to factor Va (FVa) and sodium ions. Previous investigations have established that solvent-exposed, charged residues of the FXa alpha-helix 163-170 (h163-170), Arg(165) and Lys(169), participate in its binding to FVa. In the present study we aimed to investigate the role of the other residues of h163-170 in the catalytic functions of the enzyme. FX derivatives were constructed in which point mutations were made or parts of h163-170 were substituted with the corresponding region of either FVIIa or FIXa. Purified FXa derivatives were compared with wild-type FXa. Kinetic studies in the absence of FVa revealed that, compared with wild-type FXa, key functional parameters (catalytic activity toward prothrombin and tripeptidyl substrates and non-enzymatic interaction of a probe with the S1 site) were diminished by mutations in the NH(2)-terminal portion of h163-170. The defective amidolytic activity of these FXa derivatives appears to result from their impaired interaction with Na(+) because using a higher Na(+) concentration partially restored normal catalytic parameters. Furthermore, kinetic measurements with tripeptidyl substrates or prothrombin indicated that assembly of these FXa derivatives with an excess of FVa in the prothrombinase complex improves their low catalytic efficiency. These data indicate that residues in the NH(2)-terminal portion of the FVa-binding h163-170 are energetically linked to the S1 site and Na(+)-binding site of the protease and that residues Val(163) and Ser(167) play a key role in this interaction.
Collapse
Affiliation(s)
- Stéphanie Levigne
- INSERM U770 and Université Paris-Sud, F-94276, Le Kremlin-Bicêtre, France
| | | | | | | | | | | |
Collapse
|
11
|
Autin L, Steen M, Dahlbäck B, Villoutreix BO. Proposed structural models of the prothrombinase (FXa-FVa) complex. Proteins 2006; 63:440-50. [PMID: 16437549 DOI: 10.1002/prot.20848] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Activated coagulation factor V (FVa) functions as a cofactor to factor Xa (FXa) in the conversion of prothrombin (PT) to thrombin. This essential procoagulant reaction, despite being the subject of extensive investigation, is not fully understood structurally and functionally. To elucidate the structure of the FXa-FVa complex, we have performed protein:protein (Pr:Pr) docking simulation with the pseudo-Brownian Pr:Pr docking ICM package and with the shape-complementarity Pr:Pr docking program PPD. The docking runs were carried out using a new model of full-length human FVa and the X-ray structure of human FXa. Five representative models of the FXa-FVa complex were in overall agreement with some of the available experimental data, but only one model was found to be consistent with almost all of the reported experimental results. The use of hybrid docking approach (theoretical plus experimental) is definitively important to study such large macromolecular complexes. The FXa-FVa model we have created will be instrumental for further investigation of this macromolecular system and will guide future site directed mutagenesis experiments.
Collapse
|
12
|
Wang WB, Fu QH, Zhou RF, Wu WM, Ding QL, Hu YQ, Wang XF, Wang HL, Wang ZY. Molecular characterization of two novel mutations causing factor X deficiency in a Chinese pedigree. Haemophilia 2005; 11:31-7. [PMID: 15660986 DOI: 10.1111/j.1365-2516.2005.01063.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Factor X (FX) deficiency is a rare bleeding disorder inherited as an autosomal recessive trait. In this study, we investigated the molecular basis of FX deficiency in a Chinese pedigree. The proposita showed a markedly prolonged activated partial thromboplastin time and a mild prolongation of prothrombin time. The levels of FX antigen and FX activity were 58.6% and 2.5%, respectively. Molecular analysis revealed that the proposita was compound heterozygous for two novel mutations: IVS1 + 1G > A and G1185A (Arg347His). The aberrant transcripts from the IVS1 + 1G > A mutant allele were not detected by analyzing the splicing pattern of ectopic transcripts in leukocytes of the patient with nested polymerase chain reaction after reverse transcription. We thus hypothesize that the mRNA molecules originating from the IVS1 + 1G > A mutation were rapidly destroyed in vivo. Site-directed mutagenesis of FX cDNA was used to introduce FXG1185A mutation, and wild-type as well as mutant FX proteins were expressed by transient transfection in HEK 293 cells. Normal FX antigen levels both in the conditioned media of cells expressing the mutant and in cell lysates were detected by an enzyme-linked immunoadsorbent assay. Evaluation of wild-type and mutant coagulant activity demonstrated that the FX molecules carrying the Arg347His mutation have dramatically decreased activity.
Collapse
Affiliation(s)
- W-B Wang
- Division of Thrombosis and Hemostasis, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Second Medical University, Shanghai, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Bianchini EP, Pike RN, Le Bonniec BF. The Elusive Role of the Potential Factor X Cation-binding Exosite-1 in Substrate and Inhibitor Interactions. J Biol Chem 2004; 279:3671-9. [PMID: 14583605 DOI: 10.1074/jbc.m309691200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A number of studies suggest that blood-clotting factor X (FX) uses secondary site(s) to interact (as a substrate) with its activators. Numerous pieces of evidence also imply that, within prothrombinase (as an enzyme), activated FX (FXa) uses exosite(s) for cofactor Va and/or prothrombin recognition. Similarly, FXa exosite(s) seem to govern interaction with inhibitors. An obvious difference between FXa and thrombin resides within a region called exosite-1: positively charged in thrombin and clearly of opposite polarity in FXa. To investigate the role of this potential cation-binding exosite, we prepared a series of mutants within loops 34-40 and 70-80 of FX. Overall, the mutations induced relatively subtle, non-synergistic modulation. The potential exosite was dispensable for FX activation and is unlikely to constitute a critical region for factor Va binding, albeit it is clearly important for prothrombin activation. Our data also implicate loop 34-40 of FXa in the interaction with the tissue factor pathway inhibitor, in prevention of plasminogen activator inhibitor-1 binding, and in tempering inhibition by heparin-activated antithrombin. Compared with FX, mutants with reduced electrostatic potential potentiated thrombin production in FX-depleted plasma, whereas mutants with inverted electrostatic potential impeded clotting. Despite the definite consequences observed, disruption of the potential cation-binding exosite of FX had rather weak effects, far from what would be expected if this region was as crucial as in thrombin.
Collapse
Affiliation(s)
- Elsa P Bianchini
- INSERM U428, Faculté de Pharmacie, Université Paris V, 75270 Paris Cedex 06, France
| | | | | |
Collapse
|
14
|
Abstract
This article addresses the role of platelet membrane phosphatidylserine (PS) in regulating the production of thrombin, the central regulatory molecule of blood coagulation. PS is normally located on the cytoplasmic face of the resting platelet membrane but appears on the plasma-oriented surface of discrete membrane vesicles that derive from activated platelets. Thrombin, the central molecule of coagulation, is produced from prothrombin by a complex ("prothrombinase") between factor Xa and its protein cofactor (factor V(a)) that forms on platelet-derived membranes. This complex enhances the rate of activation of prothrombin to thrombin by roughly 150,000 fold relative to factor X(a) in solution. It is widely accepted that the negatively charged surface of PS-containing platelet-derived membranes is at least partly responsible for this rate enhancement, although there is not universal agreement on mechanism by which this occurs. Our efforts have led to an alternative view, namely that PS molecules bind to discrete regulatory sites on both factors X(a) and V(a) and allosterically alter their proteolytic and cofactor activities. In this view, exposure of PS on the surface of activated platelet vesicles is a key regulatory event in blood coagulation, and PS serves as a second messenger in this regulatory process. This article reviews our knowledge of the prothrombinase reaction and summarizes recent evidence leading to this alternative viewpoint. This viewpoint suggests a key role for PS both in normal hemostasis and in thrombotic disease.
Collapse
Affiliation(s)
- Barry R Lentz
- Department of Biochemistry & Biophysics, CB7260, University of North Carolina at Chapel Hill, USA.
| |
Collapse
|
15
|
Thiec F, Cherel G, Christophe OD. Role of the Gla and first epidermal growth factor-like domains of factor X in the prothrombinase and tissue factor-factor VIIa complexes. J Biol Chem 2003; 278:10393-9. [PMID: 12529356 DOI: 10.1074/jbc.m212144200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Factor X (FX) has high structure homology with other proteins of blood coagulation such as factor IX (FIX) and factor VII (FVII). These proteins present at their amino-terminal extremity a gamma-carboxyglutamic acid containing domain (Gla domain), followed by two epidermal growth factor-like (EGF1 and EGF2) domains, an activation peptide, and a serine protease domain. After vascular damage, the tissue factor-FVIIa (TF-FVIIa) complex activates both FX and FIX. FXa interacts stoichiometrically with tissue pathway inhibitor (TFPI), regulating TF-FVIIa activity by forming the TF-FVIIa-TFPI-FXa quaternary complex. Conversely, FXa boosts coagulation by its association with its cofactor, factor Va (FVa). To investigate the contribution of the Gla and EGF1 domains of FX in these complexes, FX chimeras were produced in which FIX Gla and EGF1 domains substituted the corresponding domains of FX. The affinity of the two chimeras, FX/FIX(Gla) and FX/FIX(EGF1), for the TF-FVIIa complex was markedly reduced compared with that of wild-type-FX (wt-FX) independently of the presence of phospholipids. Furthermore, the association rate constants of preformed FX/FIX(Gla)-TFPI and FX/FIX(EGF1)-TFPI complexes with TF-FVIIa were, respectively, 10- and 5-fold slower than that of wt-FXa-TFPI complex. Finally, the apparent affinity of FVa was 2-fold higher for the chimeras than for wt-FX in the presence of phospholipids and equal in their absence. These data demonstrate that FX Gla and EGF1 domains contain residues, which interact with TF-FVIIa exosites contributing to the formation of the TF-FVIIa-FX and TF-FVIIa-TFPI-FXa complexes. On the opposite, FXa Gla and EGF1 domains are not directly involved in FVa binding.
Collapse
Affiliation(s)
- Fabrice Thiec
- INSERM U143, Hôpital Bicêtre, 94276 Le Kremlin-Bicêtre Cedex, France
| | | | | |
Collapse
|
16
|
Reyda S, Sohn C, Klebe G, Rall K, Ullmann D, Jakubke HD, Stubbs MT. Reconstructing the binding site of factor Xa in trypsin reveals ligand-induced structural plasticity. J Mol Biol 2003; 325:963-77. [PMID: 12527302 DOI: 10.1016/s0022-2836(02)01337-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In order to investigate issues of selectivity and specificity in protein-ligand interactions, we have undertaken the reconstruction of the binding pocket of human factor Xa in the structurally related rat trypsin by site-directed mutagenesis. Three sequential regions (the "99"-, the "175"- and the "190"- loops) were selected as representing the major structural differences between the ligand binding sites of the two enzymes. Wild-type rat trypsin and variants X99rT and X(99/175/190)rT were expressed in yeast, and analysed for their interaction with factor Xa and trypsin inhibitors. For most of the inhibitors studied, progressive loop replacement at the trypsin surface resulted in inhibitory profiles akin to factor Xa. Crystals of the variants were obtained in the presence of benzamidine (3), and could be soaked with the highly specific factor Xa inhibitor (1). Binding of the latter to X99rT results in a series of structural adaptations to the ligand, including the establishment of an "aromatic box" characteristic of factor Xa. In X(99/175/190)rT, introduction of the 175-loop results in a surprising re-orientation of the "intermediate helix", otherwise common to trypsin and factor Xa. The re-orientation is accompanied by an isomerisation of the Cys168-Cys182 disulphide bond, and burial of the critical Phe174 side-chain. In the presence of (1), a major re-organisation of the binding site takes place to yield a geometry identical to that of factor Xa. In all, binding of (1) to trypsin and its variants results in significant structural rearrangements, inducing a binding surface strongly reminiscent of factor Xa, against which the inhibitor was optimised. The structural data reveal a plasticity of the intermediate helix, which has been implicated in the functional cofactor dependency of many trypsin-like serine proteinases. This approach of grafting loops onto scaffolds of known related structures may serve to bridge the gap between structural genomics and drug design.
Collapse
Affiliation(s)
- Sabine Reyda
- Institut für Pharmazeutische Chemie der Philipps-Universität Marburg, Marbacher Weg 6, D35032, Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
17
|
Steen M, Villoutreix BO, Norstrøm EA, Yamazaki T, Dahlbäck B. Defining the factor Xa-binding site on factor Va by site-directed glycosylation. J Biol Chem 2002; 277:50022-9. [PMID: 12384508 DOI: 10.1074/jbc.m205609200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activated Factor V (FVa) functions as a membrane-bound cofactor to the enzyme Factor Xa (FXa) in the conversion of prothrombin to thrombin, increasing the catalytic efficiency of FXa by several orders of magnitude. To map regions on FVa that are important for binding of FXa, site-directed mutagenesis resulting in novel potential glycosylation sites on FV was used as strategy. The consensus sequence for N-linked glycosylation was introduced at sites, which according to a computer model of the A domains of FVa, were located at the surface of FV. In total, thirteen different regions on the FVa surface were probed, including sites that are homologous to FIXa-binding sites on FVIIIa. The interaction between the FVa variants and FXa and prothrombin were studied in a functional prothrombin activation assay, as well as in a direct binding assay between FVa and FXa. In both assays, the four mutants carrying a carbohydrate side chain at positions 467, 511, 652, or 1683 displayed attenuated FXa binding, whereas the prothrombin affinity was unaffected. The affinity toward FXa could be restored when the mutants were expressed in the presence of tunicamycin to inhibit glycosylation, indicating the lost FXa affinity to be caused by the added carbohydrates. The results suggested regions surrounding residues 467, 511, 652, and 1683 in FVa to be important for FXa binding. This indicates that the enzyme:cofactor assembly of the prothrombinase and the tenase complexes are homologous and provide a useful platform for further investigation of specific structural elements involved in the FVa.FXa complex assembly.
Collapse
Affiliation(s)
- Mårten Steen
- Department of Clinical Chemistry, Division of Laboratory Medicine, Lund University, The Wallenberg Laboratory, Malmö General Hospital, Malmö SE-205 02, Sweden
| | | | | | | | | |
Collapse
|
18
|
Steen M, Dahlbäck B. Thrombin-mediated proteolysis of factor V resulting in gradual B-domain release and exposure of the factor Xa-binding site. J Biol Chem 2002; 277:38424-30. [PMID: 12163491 DOI: 10.1074/jbc.m204972200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To investigate the relationship between the individual thrombin cleavages in factor V (FV) and the generation of activated factor X (FXa) cofactor activity, recombinant FV mutants having the cleavage sites eliminated separately or in combination were used. After thrombin incubation, the ability of the FV variants to bind FXa and support prothrombin activation was tested. The interaction between FVa and FXa on the surface of phospholipid was investigated with a direct binding assay as well as in a functional prothrombin activation assay. FV mutated at all cleavage sites functioned poorly as FXa cofactor in prothrombin activation, the apparent K(d) for FXa being approximately 10 nm. Fully activated wild type FVa, yielded an apparent K(d) of around 0.2 nm. The Arg(709) and Arg(1018) cleavages occurred at low thrombin concentrations and decreased the K(d) for FXa binding 5- and 3-fold, respectively. The Arg(1545) cleavage, being less sensitive to thrombin, decreased the K(d) for FXa binding approximately 20-fold. The K(m) for prothrombin was the same for all FV variants, demonstrating B-domain dissociation to result in exposure of binding site for FXa but not for prothrombin. In conclusion, we demonstrate FV activation to be associated with the stepwise release of the B-domain, which results in a gradual exposure of the FXa-binding site.
Collapse
Affiliation(s)
- Mårten Steen
- Department of Laboratory Medicine, Division of Clinical Chemistry, Lund University, The Wallenberg Laboratory, University Hospital, Malmö, SE-205 02 Malmö, Sweden
| | | |
Collapse
|
19
|
Camire RM. Prothrombinase assembly and S1 site occupation restore the catalytic activity of FXa impaired by mutation at the sodium-binding site. J Biol Chem 2002; 277:37863-70. [PMID: 12149252 DOI: 10.1074/jbc.m203692200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two loop segments (183-189 and 221-225) in the protease domain of factor Xa contribute to the formation of a Na(+)-binding site. Studies with factor Xa indicate that binding of a single Na(+) ion to this site influences its activity by altering the S1 specificity site, and substitution of Tyr(225) with Pro diminishes sensitivity to Na(+). Using full-length factor Xa(Y225P), the allosteric relationship between the Na(+) site and other structural determinants in factor Xa and prothrombinase was investigated. Direct binding and kinetic measurements with probes that target the S1 specificity pocket indicate that assembly of the mutant in prothrombinase corrected the impaired binding of these probes observed with free factor Xa(Y225P). This appears to result from the apparent allosteric linkage between the factor Va, S1, and Na(+)-binding sites, since binding of the cofactor to membrane-bound factor Xa(Y225P) enhances binding at the S1 site and vice versa. Additional studies revealed that the internal salt bridge (Ile(16)-Asp(194)) of factor Xa(Y225P) is partially destabilized, a process that is reversible upon occupation of the S1 site. The data establish that alterations at the factor Xa Na(+)-binding site shift the zymogen-protease equilibrium to a more zymogen-like state, and as a consequence binding of S1-directed probes and factor Va are adversely affected. Therefore, the zymogen-like characteristics of factor Xa(Y225P) have allowed for the apparent allosteric linkage between the S1, factor Va, and Na(+) sites to become evident and has provided insight into the structural transitions which accompany the conversion of factor X to factor Xa.
Collapse
Affiliation(s)
- Rodney M Camire
- Joseph Stokes, Jr. Research Institute, Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
20
|
Chan CWY, Chan MWC, Liu M, Fung L, Cole EH, Leibowitz JL, Marsden PA, Clark DA, Levy GA. Kinetic analysis of a unique direct prothrombinase, fgl2, and identification of a serine residue critical for the prothrombinase activity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:5170-7. [PMID: 11994472 DOI: 10.4049/jimmunol.168.10.5170] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
fgl2 prothrombinase, by its ability to generate thrombin, has been shown to be pivotal to the pathogenesis of viral-induced hepatitis, cytokine-induced fetal loss syndrome, and xeno- and allograft rejection. In this study, the molecular basis of fgl2 prothrombinase activity was examined in detail. Purified fgl2 protein generated in a baculovirus expression system had no measurable prothrombinase activity, whereas the activity was restored when the purified protein was reconstituted into phosphatidyl-L-serine-containing vesicles. Reconstituted fgl2 catalyzed the cleavage of human prothrombin to thrombin with kinetics consistent with a first order reaction, with an apparent V(max) value of 6 mol/min/mol fgl2 and an apparent K(m) value for prothrombin of 8.3 microM. The catalytic activity was totally dependent on calcium, and factor Va (500 nM) enhanced the catalytic efficiency of fgl2 by increasing the apparent V(max) value to 3670 mol/min/mol fgl2 and decreasing the apparent K(m) value for prothrombin to 7.2 microM. By a combination of site-directed mutagenesis and production of truncated proteins, it was clearly shown that residue Ser(89) was critical for the prothrombinase activity of fgl2. Furthermore, fgl2 prothrombinase activity was not inhibited by antithrombin III, soybean trypsin inhibitor, 4-aminobenzamidine, aprotinin, or phenylmethylsulfonyl fluoride, whereas diisopropylfluorophosphate completely abrogated the activity. In this work we provide direct evidence that fgl2 cleaves prothrombin to thrombin consistent with serine protease activity and requires calcium, phospholipids, and factor Va for its full activity.
Collapse
Affiliation(s)
- Camie W Y Chan
- Multi Organ Transplant Program, Toronto General Hospital and University of Toronto, 621 University Avenue 10th Floor, Room 116, Toronto, Ontario M5G 2C4, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Considerable data now support the hypothesis that platelets actively regulate the propagation of coagulation by (1) expressing specific, high-affinity receptors for coagulation proteases, zymogens, and cofactors; (2) protecting the bound coagulation enzymes from inactivation/inhibition; (3) restricting coagulant activity to the site of vascular injury; and (4) amplifying the initiating stimulus to lead to explosive thrombin generation. Thrombin generation is sustained at the site of vascular injury by the recruitment of circulating monocytes and neutrophils to the growing thrombus via the interaction of PSGL-1, which is constitutively expressed by leukocytes, with P-selectin, which is expressed by activated platelets. Unique among cells, monocytes can provide the appropriate membrane surface for the assembly and function of all the coagulation complexes required for tissue factor-initiated thrombin production. More studies are required to further delineate the roles of neutrophils and lymphocytes in the procoagulant response. This review will discuss the recent investigations and controversies regarding the various mechanisms by which platelets and leukocytes function in, and regulate, thrombin generation.
Collapse
Affiliation(s)
- B A Bouchard
- Department of Biochemistry, University of Vermont, College of Medicine, Burlington, Vermont 05405-0068, USA.
| | | |
Collapse
|
22
|
Grundy JE, Lavigne N, Hirama T, MacKenzie CR, Pryzdial EL. Binding of Plasminogen and Tissue Plasminogen Activator to Plasmin-Modulated Factor X and Factor Xa. Biochemistry 2001; 40:6293-302. [PMID: 11371191 DOI: 10.1021/bi002209v] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Previous work in our laboratory has suggested that the fibrinolytic enzyme plasmin (Pn) inactivates coagulation factors X (FX) and Xa (FXa) in the presence of Ca(2+) and anionic phospholipid (aPL), producing fragments which bind plasminogen (Pg) and accelerate tissue plasminogen activator (t-PA). Our goals here were to determine if the Pn-mediated fragments of FX or FXa remain associated, whether they directly bind t-PA, and to quantify their interaction with Pg. Binding to aPL, benzamidine-Sepharose, or the active-site inhibitor dansyl-Glu-Gly-Arg-chloromethyl ketone demonstrated that Pn cleavage yielded noncovalent heterodimers of a fragment containing the aPL-binding domain (FXgamma(47) or FXagamma(33)) and a 13-kDa fragment (FXgamma(13) or FXagamma(13)). Both ligand blotting and surface plasmon resonance (SPR) showed that Pn-cleaved FX and FXa bound t-PA directly when Pn-treatment was effected in the presence of aPL and Ca(2+). Using SPR, apparent K(d) values of 1-3 microM and 0.3-0.4 microM were measured directly and by competition for the FXgamma(47/13)-Pg and FXagamma(33/13)-Pg interactions, respectively. For the first time, Pg-binding to a receptor was shown to be Ca(2+) enhanced, although primarily mediated by C-terminal lysine residues. Mathematical modeling of kinetic data suggesting two Pg per FXgamma(47/13) or FXagamma(33/13) was consistent with our conclusion that each subunit of FXgamma(47/13) or FXagamma(33/13) contains a C-terminal lysine. Earlier X-ray structures show that these Lys residues are distal from each other and the membrane, supporting the model where each interacts with a separate Pg. t-PA acceleration by FXgamma(47/13) or FXagamma(33/13) may therefore involve simultaneous presentation of two substrate molecules.
Collapse
Affiliation(s)
- J E Grundy
- R&D Department, Canadian Blood Services, 1800 Alta Vista Drive, Ottawa, Ontario, Canada K1G 4J5
| | | | | | | | | |
Collapse
|
23
|
Anderson JA, Fredenburgh JC, Stafford AR, Guo YS, Hirsh J, Ghazarossian V, Weitz JI. Hypersulfated low molecular weight heparin with reduced affinity for antithrombin acts as an anticoagulant by inhibiting intrinsic tenase and prothrombinase. J Biol Chem 2001; 276:9755-61. [PMID: 11134031 DOI: 10.1074/jbc.m010048200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In buffer systems, heparin and low molecular weight heparin (LMWH) directly inhibit the intrinsic factor X-activating complex (intrinsic tenase) but have no effect on the prothrombin-activating complex (prothrombinase). Although chemical modification of LMWH, to lower its affinity for antithrombin (LA-LMWH) has no effect on its ability to inhibit intrinsic tenase, N-desulfation of LMWH reduces its activity 12-fold. To further explore the role of sulfation, hypersulfated LA-LMWH was synthesized (sLA-LMWH). sLA-LMWH is not only a 32-fold more potent inhibitor of intrinsic tenase than LA-LMWH; it also acquires prothrombinase inhibitory activity. A direct correlation between the extent of sulfation of LA-LMWH and its inhibitory activity against intrinsic tenase and prothrombinase is observed. In plasma-based assays of tenase and prothrombinase, sLA-LMWH produces similar prolongation of clotting times in plasma depleted of antithrombin and/or heparin cofactor II as it does in control plasma. In contrast, heparin has no effect in antithrombin-depleted plasma. When the effect of sLA-LMWH on various components of tenase and prothrombinase was examined, its inhibitory activity was found to be cofactor-dependent (factors Va and VIIIa) and phospholipid-independent. These studies reveal that sLA-LMWH acts as a potent antithrombin-independent inhibitor of coagulation by attenuating intrinsic tenase and prothrombinase.
Collapse
Affiliation(s)
- J A Anderson
- Hamilton Civic Hospitals Research Centre and Department of Medicine, McMaster University, Hamilton, Ontario L8V 1C3, Canada
| | | | | | | | | | | | | |
Collapse
|
24
|
Rudolph AE, Porche-Sorbet R, Miletich JP. Definition of a factor Va binding site in factor Xa. J Biol Chem 2001; 276:5123-8. [PMID: 11087737 DOI: 10.1074/jbc.m006961200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We reported previously that residue 347 in activated fX (fXa) contributes to binding of the cofactor, factor Va (fVa) (Rudolph, A. E., Porche-Sorbet, R. and Miletich, J. P. (2000) Biochemistry 39, 2861-2867). Four additional residues that participate in fVa binding have now been identified by mutagenesis. All five resulting fX species, fX(R306A), fX(E310N), fX(R347N), fX(K351A), and fX(K414A), are activated and inhibited normally. However, the rate of inhibition by antithrombin III in the presence of submaximal concentrations of heparin is reduced for all the enzymes. In the absence of fVa, all of the enzymes bind and activate prothrombin similarly except fXa(E310N), which has a reduced apparent affinity ( approximately 3-fold) for prothrombin compared with wild type fXa (fXa(WT)). In the absence of phospholipid, fVa enhances the catalytic activity of fXa(WT) significantly, but the response of the variant enzymes was greatly diminished. On addition of 100 nm PC:PS (3:1) vesicles, fVa enhanced fXa(WT), fXa(R306A), and fXa(E310N) similarly, whereas fXa(R347N), fXa(K351A), and fXa(K414A) demonstrated near-normal catalytic activity but reduced apparent affinity for fVa under these conditions. All enzymes function similarly to fXa(WT) on activated platelets, which provide saturating fVa on an ideal surface. Loss of binding affinity for fVa as a result of the substitutions in residues Arg-347, Lys-351, and Lys-414 was verified by a competition binding assay. Thus, Arg-347, Lys-351, and Lys-414 are likely part of a core fVa binding site, whereas Arg-306 and Glu-310 serve a less critical role.
Collapse
Affiliation(s)
- A E Rudolph
- Departments of Pathology and Medicine, Division of Laboratory Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | |
Collapse
|
25
|
Underwood MC, Zhong D, Mathur A, Heyduk T, Bajaj SP. Thermodynamic linkage between the S1 site, the Na+ site, and the Ca2+ site in the protease domain of human coagulation factor xa. Studies on catalytic efficiency and inhibitor binding. J Biol Chem 2000; 275:36876-84. [PMID: 10973949 DOI: 10.1074/jbc.m001386200] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The serine protease domain of factor Xa (FXa) contains a sodium as well as a calcium-binding site. Here, we investigated the functional significance of these two cation-binding sites and their thermodynamic links to the S1 site. Kinetic data reveal that Na(+) binds to the substrate bound FXa with K(d) approximately 39 mm in the absence and approximately 9.5 mm in the presence of Ca(2+). Sodium-bound FXa (sodium-Xa) has approximately 18-fold increased catalytic efficiency ( approximately 4.5-fold decrease in K(m) and approximately 4-fold increase in k(cat)) in hydrolyzing S-2222 (benzoyl-Ile-Glu-Gly-Arg-p-nitroanilide), and Ca(2+) further increases this k(cat) approximately 1.4-fold. Ca(2+) binds to the protease domain of substrate bound FXa with K(d) approximately 705 microm in the absence and approximately 175 microm in the presence of Na(+). Ca(2+) binding to the protease domain of FXa (Xa-calcium) has no effect on the K(m) but increases the k(cat) approximately 4-fold in hydrolyzing S-2222, and Na(+) further increases this k(cat) approximately 1.4-fold. In agreement with the K(m) data, sodium-Xa has approximately 5-fold increased affinity in its interaction with p-aminobenzamidine (S1 site probe) and approximately 4-fold increased rate in binding to the two-domain tissue factor pathway inhibitor; Ca(2+) (+/-Na(+)) has no effect on these interactions. Antithrombin binds to Xa-calcium with a approximately 4-fold faster rate, to sodium-Xa with a approximately 24-fold faster rate and to sodium-Xa-calcium with a approximately 28-fold faster rate. Thus, Ca(2+) and Na(+) together increase the catalytic efficiency of FXa approximately 28-fold. Na(+) enhances Ca(2+) binding, and Ca(2+) enhances Na(+) binding. Further, Na(+) enhances S1 site occupancy, and S1 site occupancy enhances Na(+) binding. Therefore, Na(+) site is thermodynamically linked to the S1 site as well as to the protease domain Ca(2+) site, whereas Ca(2+) site is only linked to the Na(+) site. The significance of these findings is that during physiologic coagulation, most of the FXa formed will exist as sodium-Xa-calcium, which has maximum biologic activity.
Collapse
Affiliation(s)
- M C Underwood
- Department of Biochemistry and Molecular Biology and the Departments of Medicine and Pathology, St. Louis University School of Medicine, St. Louis, Missouri 63104, USA
| | | | | | | | | |
Collapse
|