1
|
ten Brink T, Damanik F, Rotmans JI, Moroni L. Unraveling and Harnessing the Immune Response at the Cell-Biomaterial Interface for Tissue Engineering Purposes. Adv Healthc Mater 2024; 13:e2301939. [PMID: 38217464 PMCID: PMC11468937 DOI: 10.1002/adhm.202301939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 12/14/2023] [Indexed: 01/15/2024]
Abstract
Biomaterials are defined as "engineered materials" and include a range of natural and synthetic products, designed for their introduction into and interaction with living tissues. Biomaterials are considered prominent tools in regenerative medicine that support the restoration of tissue defects and retain physiologic functionality. Although commonly used in the medical field, these constructs are inherently foreign toward the host and induce an immune response at the material-tissue interface, defined as the foreign body response (FBR). A strong connection between the foreign body response and tissue regeneration is suggested, in which an appropriate amount of immune response and macrophage polarization is necessary to trigger autologous tissue formation. Recent developments in this field have led to the characterization of immunomodulatory traits that optimizes bioactivity, the integration of biomaterials and determines the fate of tissue regeneration. This review addresses a variety of aspects that are involved in steering the inflammatory response, including immune cell interactions, physical characteristics, biochemical cues, and metabolomics. Harnessing the advancing knowledge of the FBR allows for the optimization of biomaterial-based implants, aiming to prevent damage of the implant, improve natural regeneration, and provide the tools for an efficient and successful in vivo implantation.
Collapse
Affiliation(s)
- Tim ten Brink
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Febriyani Damanik
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Joris I. Rotmans
- Department of Internal MedicineLeiden University Medical CenterAlbinusdreef 2Leiden2333ZAThe Netherlands
| | - Lorenzo Moroni
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| |
Collapse
|
2
|
Iqbal MH, Kerdjoudj H, Boulmedais F. Protein-based layer-by-layer films for biomedical applications. Chem Sci 2024; 15:9408-9437. [PMID: 38939139 PMCID: PMC11206333 DOI: 10.1039/d3sc06549a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/03/2024] [Indexed: 06/29/2024] Open
Abstract
The surface engineering of biomaterials is crucial for their successful (bio)integration by the body, i.e. the colonization by the tissue-specific cell, and the prevention of fibrosis and/or bacterial colonization. Performed at room temperature in an aqueous medium, the layer-by-layer (LbL) coating method is based on the alternating deposition of macromolecules. Versatile and simple, this method allows the functionalization of surfaces with proteins, which play a crucial role in several biological mechanisms. Possessing intrinsic properties (cell adhesion, antibacterial, degradable, etc.), protein-based LbL films represent a powerful tool to control bacterial and mammalian cell fate. In this article, after a general introduction to the LbL technique, we will focus on protein-based LbL films addressing different biomedical issues/domains, such as bacterial infection, blood contacting surfaces, mammalian cell adhesion, drug and gene delivery, and bone and neural tissue engineering. We do not consider biosensing applications or electrochemical aspects using specific proteins such as enzymes.
Collapse
Affiliation(s)
- Muhammad Haseeb Iqbal
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, Strasbourg Cedex 2 67034 France
| | | | - Fouzia Boulmedais
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, Strasbourg Cedex 2 67034 France
| |
Collapse
|
3
|
Physical Chemistry Study of Collagen-Based Multilayer Films. Gels 2023; 9:gels9030192. [PMID: 36975641 PMCID: PMC10048292 DOI: 10.3390/gels9030192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/17/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The surface properties of a biomaterial play an important role in cell behavior, e.g., recolonization, proliferation, and migration. Collagen is known to favor wound healing. In this study, collagen (COL)-based layer-by-layer (LbL) films were built using different macromolecules as a partner, i.e., tannic acid (TA), a natural polyphenol known to establish hydrogen bonds with protein, heparin (HEP), an anionic polysaccharide, and poly(sodium 4-styrene sulfonate) (PSS), an anionic synthetic polyelectrolyte. To cover the whole surface of the substrate with a minimal number of deposition steps, several parameters of the film buildup were optimized, such as the pH value of the solutions, the dipping time, and the salt (sodium chloride) concentration. The morphology of the films was characterized by atomic force microscopy. Built at an acidic pH, the stability of COL-based LbL films was studied when in contact with a physiological medium as well as the TA release from COL/TA films. In contrast to COL/PSS and COL/HEP LbL films, COL/TA films showed a good proliferation of human fibroblasts. These results validate the choice of TA and COL as components of LbL films for biomedical coatings.
Collapse
|
4
|
Schirmer U, Ludolph J, Rothe H, Hauptmann N, Behrens C, Bittrich E, Schliephake H, Liefeith K. Tailored Polyelectrolyte Multilayer Systems by Variation of Polyelectrolyte Composition and EDC/NHS Cross-Linking: Physicochemical Characterization and In Vitro Evaluation. NANOMATERIALS 2022; 12:nano12122054. [PMID: 35745395 PMCID: PMC9228333 DOI: 10.3390/nano12122054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/09/2022] [Accepted: 06/12/2022] [Indexed: 12/17/2022]
Abstract
The layer-by-layer (LbL) self-assembly technique is an effective method to immobilize components of the extracellular matrix (ECM) such as collagen and heparin onto, e.g., implant surfaces/medical devices with the aim of forming polyelectrolyte multilayers (PEMs). Increasing evidence even suggests that cross-linking influences the physicochemical character of PEM films since mechanical cues inherent to the substrate may be as important as its chemical nature to influence the cellular behavior. In this study, for the first-time different collagen/heparin films have been prepared and cross-linked with EDC/NHS chemistry. Quartz crystal microbalance, zeta potential analyzer, diffuse reflectance Fourier transform infrared spectroscopy, atomic force microscopy and ellipsometry were used to characterize film growth, stiffness, and topography of different film systems. The analysis of all data proves a nearly linear film growth for all PEM systems, the efficacy of cross-linking and the corresponding changes in the film rigidity after cross-linking and an appropriate surface topography. Furthermore, preliminary cell culture experiments illustrated those cellular processes correlate roughly with the quantity of newly created covalent amide bonds. This allows a precise adjustment of the physicochemical properties of the selected film architecture regarding the desired application and target cells. It could be shown that collagen improves the biocompatibility of heparin containing PEMs and due to their ECM-analogue nature both molecules are ideal candidates intended to be used for any biomedical application with a certain preference to improve the performance of bone implants or bone augmentation strategies.
Collapse
Affiliation(s)
- Uwe Schirmer
- Institute for Bioprocessing and Analytical Measurement Techniques, 37308 Heiligenstadt, Germany; (U.S.); (J.L.); (H.R.); (N.H.)
| | - Johanna Ludolph
- Institute for Bioprocessing and Analytical Measurement Techniques, 37308 Heiligenstadt, Germany; (U.S.); (J.L.); (H.R.); (N.H.)
| | - Holger Rothe
- Institute for Bioprocessing and Analytical Measurement Techniques, 37308 Heiligenstadt, Germany; (U.S.); (J.L.); (H.R.); (N.H.)
| | - Nicole Hauptmann
- Institute for Bioprocessing and Analytical Measurement Techniques, 37308 Heiligenstadt, Germany; (U.S.); (J.L.); (H.R.); (N.H.)
| | - Christina Behrens
- Department of Oral and Maxillofacial Surgery, George-Augusta-University, 37075 Goettingen, Germany; (C.B.); (H.S.)
| | - Eva Bittrich
- Center Macromolecular Structure Analysis, Leibniz Institute of Polymer Research, 01005 Dresden, Germany;
| | - Henning Schliephake
- Department of Oral and Maxillofacial Surgery, George-Augusta-University, 37075 Goettingen, Germany; (C.B.); (H.S.)
| | - Klaus Liefeith
- Institute for Bioprocessing and Analytical Measurement Techniques, 37308 Heiligenstadt, Germany; (U.S.); (J.L.); (H.R.); (N.H.)
- Correspondence: ; Tel.:+49-3606-671500
| |
Collapse
|
5
|
Polyelectrolyte Multilayer Films Based on Natural Polymers: From Fundamentals to Bio-Applications. Polymers (Basel) 2021; 13:polym13142254. [PMID: 34301010 PMCID: PMC8309355 DOI: 10.3390/polym13142254] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 02/06/2023] Open
Abstract
Natural polymers are of great interest in the biomedical field due to their intrinsic properties such as biodegradability, biocompatibility, and non-toxicity. Layer-by-layer (LbL) assembly of natural polymers is a versatile, simple, efficient, reproducible, and flexible bottom-up technique for the development of nanostructured materials in a controlled manner. The multiple morphological and structural advantages of LbL compared to traditional coating methods (i.e., precise control over the thickness and compositions at the nanoscale, simplicity, versatility, suitability, and flexibility to coat surfaces with irregular shapes and sizes), make LbL one of the most useful techniques for building up advanced multilayer polymer structures for application in several fields, e.g., biomedicine, energy, and optics. This review article collects the main advances concerning multilayer assembly of natural polymers employing the most used LbL techniques (i.e., dipping, spray, and spin coating) leading to multilayer polymer structures and the influence of several variables (i.e., pH, molar mass, and method of preparation) in this LbL assembly process. Finally, the employment of these multilayer biopolymer films as platforms for tissue engineering, drug delivery, and thermal therapies will be discussed.
Collapse
|
6
|
Colaço E, Guibert C, Lee J, Maisonhaute E, Brouri D, Dupont-Gillain C, El Kirat K, Demoustier-Champagne S, Landoulsi J. Embedding Collagen in Multilayers for Enzyme-Assisted Mineralization: A Promising Way to Direct Crystallization in Confinement. Biomacromolecules 2021; 22:3460-3473. [PMID: 34232617 DOI: 10.1021/acs.biomac.1c00565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The biogenic calcium phosphate (CaP) crystallization is a process that offers elegant materials design strategies to achieve bioactive and biomechanical challenges. Indeed, many biomimetic approaches have been developed for this process in order to produce mineralized structures with controlled crystallinity and shape. Herein, we propose an advanced biomimetic approach for the design of ordered hybrid mineralized nano-objects with highly anisotropic features. For this purpose, we explore the combination of three key concepts in biomineralization that provide a unique environment to control CaP nucleation and growth: (i) self-assembly and self-organization of biomacromolecules, (ii) enzymatic heterogeneous catalysis, and (iii) mineralization in confinement. We use track-etched templates that display a high density of aligned monodisperse pores so that each nanopore may serve as a miniaturized mineralization bioreactor. We enhance the control of the crystallization in these systems by coassembling type I collagen and enzymes within the nanopores, which allows us to tune the main characteristics of the mineralized nano-objects. Indeed, the synergy between the gradual release of one of the mineral ion precursors by the enzyme and the role of the collagen in the regulation of the mineralization allowed to control their morphology, chemical composition, crystal phase, and mechanical stability. Moreover, we provide clear insight into the prominent role of collagen in the mineralization process in confinement. In the absence of collagen, the fraction of crystalline nano-objects increases to the detriment of amorphous ones when increasing the degree of confinement. By contrast, the presence of collagen-based multilayers disturbs the influence of confinement on the mineralization: platelet-like crystalline hydroxyapatite form, independently of the degree of confinement. This suggests that the incorporation of collagen is an efficient way to supplement the lack of confinement while reinforcing mechanical stability to the highly anisotropic materials. From a bioengineering perspective, this biomineralization-inspired approach opens up new horizons for the design of anisotropic mineralized nano-objects that are highly sought after to develop biomaterials or tend to replicate the complex structure of native mineralized extracellular matrices.
Collapse
Affiliation(s)
- Elodie Colaço
- Laboratoire de Biomécanique and Bioingénierie, CNRS, Université de Technologie de Compiègne, BP 20529, F-60205 Compiègne Cedex, France
| | - Clément Guibert
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, LRS, F-75005 Paris, France
| | - Jihye Lee
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, LRS, F-75005 Paris, France
| | - Emmanuel Maisonhaute
- Sorbonne Université, CNRS, Laboratoire Interfaces et Systèmes Electrochimiques, LISE, F-75005 Paris, France
| | - Dalil Brouri
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, LRS, F-75005 Paris, France
| | - Christine Dupont-Gillain
- Institute of Condensed Matter and Nanosciences, Bio & Soft Matter, Université Catholique de Louvain, Croix du Sud 1 (L7.04.02), 1348, Louvain-la-Neuve, Belgium
| | - Karim El Kirat
- Laboratoire de Biomécanique and Bioingénierie, CNRS, Université de Technologie de Compiègne, BP 20529, F-60205 Compiègne Cedex, France
| | - Sophie Demoustier-Champagne
- Institute of Condensed Matter and Nanosciences, Bio & Soft Matter, Université Catholique de Louvain, Croix du Sud 1 (L7.04.02), 1348, Louvain-la-Neuve, Belgium
| | - Jessem Landoulsi
- Laboratoire de Biomécanique and Bioingénierie, CNRS, Université de Technologie de Compiègne, BP 20529, F-60205 Compiègne Cedex, France.,Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, LRS, F-75005 Paris, France
| |
Collapse
|
7
|
Campbell J, Vikulina AS. Layer-By-Layer Assemblies of Biopolymers: Build-Up, Mechanical Stability and Molecular Dynamics. Polymers (Basel) 2020; 12:E1949. [PMID: 32872246 PMCID: PMC7564420 DOI: 10.3390/polym12091949] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/18/2022] Open
Abstract
Rapid development of versatile layer-by-layer technology has resulted in important breakthroughs in the understanding of the nature of molecular interactions in multilayer assemblies made of polyelectrolytes. Nowadays, polyelectrolyte multilayers (PEM) are considered to be non-equilibrium and highly dynamic structures. High interest in biomedical applications of PEMs has attracted attention to PEMs made of biopolymers. Recent studies suggest that biopolymer dynamics determines the fate and the properties of such PEMs; however, deciphering, predicting and controlling the dynamics of polymers remains a challenge. This review brings together the up-to-date knowledge of the role of molecular dynamics in multilayers assembled from biopolymers. We discuss how molecular dynamics determines the properties of these PEMs from the nano to the macro scale, focusing on its role in PEM formation and non-enzymatic degradation. We summarize the factors allowing the control of molecular dynamics within PEMs, and therefore to tailor polymer multilayers on demand.
Collapse
Affiliation(s)
- Jack Campbell
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK;
| | - Anna S. Vikulina
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Mühlenberg 13, 14476 Potsdam-Golm, Germany
| |
Collapse
|
8
|
vander Straeten A, Lefèvre D, Demoustier-Champagne S, Dupont-Gillain C. Protein-based polyelectrolyte multilayers. Adv Colloid Interface Sci 2020; 280:102161. [PMID: 32416541 DOI: 10.1016/j.cis.2020.102161] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022]
Abstract
The immobilization of proteins to impart specific functions to surfaces is topical for chemical engineering, healthcare and diagnosis. Layer-by-Layer (LbL) self-assembly is one of the most used method to immobilize macromolecules on surfaces. It consists in the alternate adsorption of oppositely charged species, resulting in the formation of a multilayer. This method in principle allows any charged object to be immobilized on any surface, from aqueous solutions. However, when it comes to proteins, the promises of versatility, simplicity and universality that the LbL approach holds are unmet due to the heterogeneity of protein properties. In this review, the literature is analyzed to make a generic approach emerge, with a view to facilitate the LbL assembly of proteins with polyelectrolytes (PEs). In particular, this review aims at guiding the choice of the PE and the building conditions that lead to the successful growth of protein-based multilayered self-assemblies.
Collapse
|
9
|
Iqbal MH, Schroder A, Kerdjoudj H, Njel C, Senger B, Ball V, Meyer F, Boulmedais F. Effect of the Buffer on the Buildup and Stability of Tannic Acid/Collagen Multilayer Films Applied as Antibacterial Coatings. ACS APPLIED MATERIALS & INTERFACES 2020; 12:22601-22612. [PMID: 32374145 DOI: 10.1021/acsami.0c04475] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The deposition of polyelectrolyte multilayers, obtained by the layer-by-layer (LbL) method, is a well-established technology to design biocompatible and antibacterial coatings aimed at preventing implant-associated infections. Several types of LbL films have been reported to exhibit antiadhesive and/or antibacterial (contact-killing or release-killing) properties governed not only by the incorporated compounds but also by their buildup conditions or their postbuildup treatments. Tannic acid (TA), a natural polyphenol, is known to inhibit the growth of several bacterial strains. In this work, we developed TA/collagen (TA/COL) LbL films built in acetate or citrate buffers at pH 4. Surprisingly, the used buffer impacts not only the physicochemical but also the antibacterial properties of the films. When incubated in physiological conditions, both types of TA/COL films released almost the same amount of TA depending on the last layer and showed an antibacterial effect against Staphylococcus aureus only for citrate-built films. Because of their granular topography, TA/COL citrate films exhibited an efficient release-killing effect with no cytotoxicity toward human gingival fibroblasts. Emphasis is put on a comprehensive evaluation of the physicochemical parameters driving the buildup and the antibacterial property of citrate films. Specifically, complexation strengths between TA and COL are different in the presence of the two buffers affecting the LbL deposition. This work constitutes an important step toward the use of polyphenols as an antibacterial agent when incorporated in LbL films.
Collapse
Affiliation(s)
- Muhammad Haseeb Iqbal
- Université de Strasbourg, CNRS, Institut Charles Sadron, UPR 22, 67034 Strasbourg Cedex 2, France
| | - André Schroder
- Université de Strasbourg, CNRS, Institut Charles Sadron, UPR 22, 67034 Strasbourg Cedex 2, France
| | - Halima Kerdjoudj
- Université de Reims Champagne Ardenne, EA, 4691, Biomatériaux et Inflammation en Site Osseux (BIOS), SFR CAP Sante' (FED4231), 51100 Reims, France
- UFR d'Odontologie, Université de Reims Champagne Ardenne, 51100 Reims, France
| | - Christian Njel
- Institute for Applied Materials (IAM) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen, Germany
| | - Bernard Senger
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1121, 67085 Strasbourg Cedex, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 67000 Strasbourg, France
| | - Vincent Ball
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1121, 67085 Strasbourg Cedex, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 67000 Strasbourg, France
| | - Florent Meyer
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1121, 67085 Strasbourg Cedex, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 67000 Strasbourg, France
| | - Fouzia Boulmedais
- Université de Strasbourg, CNRS, Institut Charles Sadron, UPR 22, 67034 Strasbourg Cedex 2, France
| |
Collapse
|
10
|
Lysozyme uptake into pharmaceutical grade fucoidan/chitosan polyelectrolyte multilayers under physiological conditions. J Colloid Interface Sci 2020; 565:555-566. [DOI: 10.1016/j.jcis.2020.01.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/10/2020] [Accepted: 01/12/2020] [Indexed: 01/28/2023]
|
11
|
Madhumitha D, Vaidyanathan V, Dhathathreyan A. Plasticity or elasticity? Relating elastic moduli with secondary structural features of mixed films of polypeptides at air/fluid and fluid/solid interfaces. Biophys Chem 2020; 258:106329. [DOI: 10.1016/j.bpc.2020.106329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/11/2022]
|
12
|
Colaço E, Brouri D, Aissaoui N, Cornette P, Dupres V, Domingos RF, Lambert JF, Maisonhaute E, Kirat KE, Landoulsi J. Hierarchical Collagen–Hydroxyapatite Nanostructures Designed through Layer-by-Layer Assembly of Crystal-Decorated Fibrils. Biomacromolecules 2019; 20:4522-4534. [DOI: 10.1021/acs.biomac.9b01299] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Elodie Colaço
- Laboratoire de Biomécanique & Bioingénierie, CNRS, Université de Technologie de Compiègne, BP 20529, F-60205 Compiègne Cedex, France CNRS 7154, 75205 Paris, Cedex 05, France
| | - Dalil Brouri
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, F-75005 Paris, France
| | - Nesrine Aissaoui
- Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier, 34090 Montpellier, France
| | - Pauline Cornette
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, F-75005 Paris, France
| | - Vincent Dupres
- Cellular Microbiology and Physics of Infections−Lille Center for Infection and Immunity, Institut Pasteur de Lille-CNRS-INSERM U1019-CHRU Lille, University of Lille, Lille, France
| | - Rute F. Domingos
- Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, CNRS, 75205 Paris, Cedex 05, France
| | - Jean-François Lambert
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, F-75005 Paris, France
| | - Emmanuel Maisonhaute
- Sorbonne Université, CNRS, Laboratoire Interfaces et Systèmes Electrochimiques, F-75005 Paris, France
| | - Karim El Kirat
- Laboratoire de Biomécanique & Bioingénierie, CNRS, Université de Technologie de Compiègne, BP 20529, F-60205 Compiègne Cedex, France CNRS 7154, 75205 Paris, Cedex 05, France
| | - Jessem Landoulsi
- Laboratoire de Biomécanique & Bioingénierie, CNRS, Université de Technologie de Compiègne, BP 20529, F-60205 Compiègne Cedex, France CNRS 7154, 75205 Paris, Cedex 05, France
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, F-75005 Paris, France
| |
Collapse
|
13
|
Ishida S, Yoshida T, Terao K. Complex formation of a triple-helical peptide with sodium heparin. Polym J 2019. [DOI: 10.1038/s41428-019-0234-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
14
|
Lefèvre D, Louvegny J, Naudin M, Ferain E, Dupont-Gillain C, Demoustier-Champagne S. Biofunctionalized and self-supported polypyrrole frameworks as nanostructured ECM-like biointerfaces. RSC Adv 2018; 8:22932-22943. [PMID: 35540120 PMCID: PMC9081635 DOI: 10.1039/c8ra00325d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/13/2018] [Indexed: 11/21/2022] Open
Abstract
Hybrid nanobiointerfaces were designed as an original contribution to the challenge of synthesizing nanostructured biomaterials integrating a set of cell fate-determining cues, originally provided to cells by the extracellular matrix (ECM). The produced biointerfaces consist of a stiff framework of intersected polypyrrole (PPy) nanotubes supporting a soft multilayer composed of ECM-derived biomacromolecules: collagen (Col) and hyaluronic acid (HA). PPy frameworks with highly tunable characteristics were synthesized through chemical oxidative polymerization of pyrrole monomers, templated within track-etched polycarbonate (PC) membranes featuring a network of intersected nanopores. PPy interfaces with a porosity of 80%, composed of nanotubes with an average diameter ranging from 40 to 300 nm, intersecting at an angle of 90°, were shown to be self-supported. These rigid PPy nanostructured interfaces were functionalized with a self-assembling (HA/Col) multilayer deposited via a layer-by-layer process. Biofunctionalized and unmodified PPy frameworks were both shown to promote sustained cell adhesion, therefore demonstrating the cytocompatibility of the engineered matrices. Such nanobiointerfaces, combining a mechanically-stable framework of tunable dimensions with a soft biopolymeric multilayer of highly versatile nature, pave the way towards cell-instructive biomaterials able to gather a wide range of cues guiding cell behavior. The developed self-supported structures could be used as a coating or as membranes bridging different tissues. A versatile template-based approach allows for the synthesis of nanostructured biointerfaces, made of core–shell nanotubes, combining bioactivity and mechanical stability.![]()
Collapse
Affiliation(s)
- Damien Lefèvre
- Institute of Condensed Matter and Nanosciences (Bio & Soft Matter)
- Louvain-la-Neuve
- Belgium
| | - Juliette Louvegny
- Institute of Condensed Matter and Nanosciences (Bio & Soft Matter)
- Louvain-la-Neuve
- Belgium
| | - Mathieu Naudin
- Institute of Condensed Matter and Nanosciences (Bio & Soft Matter)
- Louvain-la-Neuve
- Belgium
| | - Etienne Ferain
- Institute of Condensed Matter and Nanosciences (Bio & Soft Matter)
- Louvain-la-Neuve
- Belgium
- It4ip S.A
- Louvain-la-Neuve
| | | | | |
Collapse
|
15
|
Lee HJ, Fernandes-Cunha GM, Putra I, Koh WG, Myung D. Tethering Growth Factors to Collagen Surfaces Using Copper-Free Click Chemistry: Surface Characterization and in Vitro Biological Response. ACS APPLIED MATERIALS & INTERFACES 2017; 9:23389-23399. [PMID: 28598594 DOI: 10.1021/acsami.7b05262] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Surface modifications with tethered growth factors have mainly been applied to synthetic polymeric biomaterials in well-controlled, acellular settings, followed by seeding with cells. The known bio-orthogonality of copper-free click chemistry provides an opportunity to not only use it in vitro to create scaffolds or pro-migratory tracks in the presence of living cells, but also potentially apply it to living tissues directly as a coupling modality in situ. In this study, we studied the chemical coupling of growth factors to collagen using biocompatible copper-free click chemistry and its effect on the enhancement of growth factor activity in vitro. We verified the characteristics of modified epidermal growth factor (EGF) using mass spectrometry and an EGF/EGF receptor binding assay, and evaluated the chemical immobilization of EGF on collagen by copper-free click chemistry using surface X-ray photoelectron spectroscopy (XPS), surface plasmon resonance (SPR) spectroscopy, and enzyme-linked immunosorbent assay (ELISA). We found that the anchoring was noncytotoxic, biocompatible, and rapid. Moreover, the surface-immobilized EGF had significant effects on epithelial cell attachment and proliferation. Our results demonstrate the possibility of copper-free click chemistry as a tool for covalent bonding of growth factors to collagen in the presence of living cells. This approach is a novel and potentially clinically useful application of copper-free click chemistry as a way of anchoring growth factors to collagen and foster epithelial wound healing.
Collapse
Affiliation(s)
- Hyun Jong Lee
- Byers Eye Institute at Stanford University School of Medicine, Palo Alto, California 94303, United States
| | | | - Ilham Putra
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago , Chicago, Illinois 60612, United States
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, Yonsei University , 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - David Myung
- Byers Eye Institute at Stanford University School of Medicine, Palo Alto, California 94303, United States
- VA Palo Alto Health Care System , Palo Alto, California 94304, United States
| |
Collapse
|
16
|
Rodrigues JR, Alves NM, Mano JF. Nacre-inspired nanocomposites produced using layer-by-layer assembly: Design strategies and biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:1263-1273. [DOI: 10.1016/j.msec.2017.02.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/05/2016] [Accepted: 02/10/2017] [Indexed: 02/08/2023]
|
17
|
Choi D, Park J, Heo J, Oh TI, Lee E, Hong J. Multifunctional Collagen and Hyaluronic Acid Multilayer Films on Live Mesenchymal Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:12264-12271. [PMID: 28322547 DOI: 10.1021/acsami.7b00365] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cell encapsulation has been reported to convey cytoprotective effects and to better maintain cell survival. In contrast to other studies, our report shows that the deposition of two major biomacromolecules, collagen type I (Col) and hyaluronic acid (HA), on mesenchymal stem cells (MSCs) does not entirely block the cell plasma membrane surface. Instead, a considerable amount of the surface remained uncovered or only slightly covered, as confirmed by TEM observation and by FACS analysis based on quantitative surface labeling. Despite this structure showing openness and flexibility, the multilayer Col/HA films significantly increased cell survival in the attachment-deprived culture condition. In terms of stem cell characteristics, the MSCs still showed functional cell activity after film deposition, as evidenced by their colony-forming activity and in vitro osteogenic differentiation. The Col/HA multilayer films could provide a cytoprotective effect and induce osteogenic differentiation without deteriorating effect or inhibition of cellular attachment, showing that this technique can be a valuable tool for modulating stem cell activities.
Collapse
Affiliation(s)
- Daheui Choi
- School of Chemical Engineering & Materials Science, College of Engineering, Chung-Ang University , 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Jaeseong Park
- Impedance Imaging Research Center, Kyung Hee University , 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Jiwoong Heo
- School of Chemical Engineering & Materials Science, College of Engineering, Chung-Ang University , 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Tong In Oh
- Impedance Imaging Research Center, Kyung Hee University , 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
- School of Medicine, Kyung Hee University , 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - EunAh Lee
- Impedance Imaging Research Center, Kyung Hee University , 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Jinkee Hong
- School of Chemical Engineering & Materials Science, College of Engineering, Chung-Ang University , 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| |
Collapse
|
18
|
Carretero A, Soares da Costa D, Reis RL, Pashkuleva I. Extracellular matrix-inspired assembly of glycosaminoglycan–collagen fibers. J Mater Chem B 2017; 5:3103-3106. [DOI: 10.1039/c7tb00704c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We report on the fabrication of fibers exclusively from the extracellular matrix components by interfacial complexation without using any crosslinking agent.
Collapse
Affiliation(s)
- A. Carretero
- 3B's Research Group—Biomaterials
- Biodegradables and Biomimetics
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
- 4805-017 Taipas
| | - D. Soares da Costa
- 3B's Research Group—Biomaterials
- Biodegradables and Biomimetics
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
- 4805-017 Taipas
| | - R. L. Reis
- 3B's Research Group—Biomaterials
- Biodegradables and Biomimetics
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
- 4805-017 Taipas
| | - I. Pashkuleva
- 3B's Research Group—Biomaterials
- Biodegradables and Biomimetics
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
- 4805-017 Taipas
| |
Collapse
|
19
|
Mauquoy S, Dupont-Gillain C. Combination of collagen and fibronectin to design biomimetic interfaces: Do these proteins form layer-by-layer assemblies? Colloids Surf B Biointerfaces 2016; 147:54-64. [DOI: 10.1016/j.colsurfb.2016.07.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 07/01/2016] [Accepted: 07/19/2016] [Indexed: 01/10/2023]
|
20
|
Cassin ME, Ford AJ, Orbach SM, Saverot SE, Rajagopalan P. The design of antimicrobial LL37-modified collagen-hyaluronic acid detachable multilayers. Acta Biomater 2016; 40:119-129. [PMID: 27109763 DOI: 10.1016/j.actbio.2016.04.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 04/08/2016] [Accepted: 04/18/2016] [Indexed: 12/31/2022]
Abstract
UNLABELLED The design of antimicrobial membranes and thin films are critical for the design of biomaterials that can combat bacterial contamination. Since the long-term use of conventional antibiotics can result in bacterial resistance, there is a critical need to incorporate natural antimicrobial peptides (AMPs) that not only prevent a wide range of pathogens from causing infections but can also promote many beneficial outcomes in wounded tissues. We report the design and antimicrobial properties of detachable collagen (COL)/hyaluronic acid (HA) polyelectrolyte multilayers (PEMs) modified with LL-37, a naturally occurring human AMP. LL-37 was physically adsorbed and chemically immobilized on the surface of PEMs. The antimicrobial and cytotoxic properties of PEMs were tested with Gram-negative Escherichia coli (E. coli, strain DH10B) and primary rat hepatocytes, respectively. The ability to prevent bacterial adhesion and to neutralize an E. coli layer was investigated as a function of LL-37 concentration. An interesting trend was that even unmodified PEMs exhibited a 40% reduction in bacterial adhesion. When LL-37 was physically adsorbed on PEMs, bacterial adhesion was significantly lower on the surface of the films as well as in the surrounding broth. Immobilizing LL-37 resulted in less than 3% bacterial adhesion on the surface due to the presence of the peptide. LL-37 modified PEMs did not result in any cytotoxicity up to input concentrations of 16μM. More importantly, urea and albumin secretion by hepatocytes were unaffected even at high LL-37 concentrations. The COL/HA PEMs can serve as antimicrobial coatings, biological membranes and as in vitro platforms to investigate pathogen-tissue interactions. STATEMENT OF SIGNIFICANCE Antimicrobial peptides (AMPs) are emerging as an alternative to conventional antibiotics. We report the antimicrobial properties of detachable collagen (COL)/hyaluronic acid (HA) polyelectrolyte multilayers (PEMs) modified with LL-37, a human AMP. The antimicrobial and cytotoxic properties were tested with gram-negative Escherichia coli (E. coli, strain DH10B) and primary rat hepatocytes, respectively. Unmodified PEMs exhibited a 40% reduction in bacterial adhesion. When LL-37 was physically adsorbed on PEMs, the sustained release of the active peptide killed planktonic bacteria. Immobilizing LL-37 resulted in less than 3% bacterial adhesion. LL-37 modified PEMs did not result in cytotoxicity up to input concentrations of 16μM. The COL/HA PEMs can serve as antimicrobial coatings and to investigate pathogen-cell interactions.
Collapse
|
21
|
Silva JM, Reis RL, Mano JF. Biomimetic Extracellular Environment Based on Natural Origin Polyelectrolyte Multilayers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:4308-42. [PMID: 27435905 DOI: 10.1002/smll.201601355] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/15/2016] [Indexed: 05/23/2023]
Abstract
Surface modification of biomaterials is a well-known approach to enable an adequate biointerface between the implant and the surrounding tissue, dictating the initial acceptance or rejection of the implantable device. Since its discovery in early 1990s layer-by-layer (LbL) approaches have become a popular and attractive technique to functionalize the biomaterials surface and also engineering various types of objects such as capsules, hollow tubes, and freestanding membranes in a controllable and versatile manner. Such versatility enables the incorporation of different nanostructured building blocks, including natural biopolymers, which appear as promising biomimetic multilayered systems due to their similarity to human tissues. In this review, the potential of natural origin polymer-based multilayers is highlighted in hopes of a better understanding of the mechanisms behind its use as building blocks of LbL assembly. A deep overview on the recent progresses achieved in the design, fabrication, and applications of natural origin multilayered films is provided. Such films may lead to novel biomimetic approaches for various biomedical applications, such as tissue engineering, regenerative medicine, implantable devices, cell-based biosensors, diagnostic systems, and basic cell biology.
Collapse
Affiliation(s)
- Joana M Silva
- 3Bs Research Group-Biomaterials Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal
| | - Rui L Reis
- 3Bs Research Group-Biomaterials Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal
| | - João F Mano
- 3Bs Research Group-Biomaterials Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal
| |
Collapse
|
22
|
Multilayer Membranes of Glycosaminoglycans and Collagen I Biomaterials Modulate the Function and Microvesicle Release of Endothelial Progenitor Cells. Stem Cells Int 2016; 2016:4796578. [PMID: 27190523 PMCID: PMC4846769 DOI: 10.1155/2016/4796578] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/18/2016] [Accepted: 03/20/2016] [Indexed: 12/20/2022] Open
Abstract
Multilayer composite membrane of biomaterials can increase the function of adipose stem cells or osteoprogenitor cells. Recent evidence indicates endothelial progenitor cells (EPCs) and EPCs released microvesicles (MVs) play important roles in angiogenesis and vascular repair. Here, we investigated the effects of biomaterial multilayer membranes of hyaluronic acid (HA) or chondroitin sulfate (CS) and Collagen I (Col I) on the functions and MVs release of EPCs. Layer-by-layer (LBL) technology was applied to construct the multilayer composite membranes. Four types of the membranes constructed by adsorbing either HA or CS and Col I alternatively with different top layers were studied. The results showed that all four types of multilayer composite membranes could promote EPCs proliferation and migration and inhibit cell senility, apoptosis, and the expression of activated caspase-3. Interestingly, these biomaterials increased the release and the miR-126 level of EPCs-MVs. Moreover, the CS-Col I membrane with CS on the top layer showed the most effects on promoting EPCs proliferation, EPCs-MV release, and miR-126 level in EPCs-MVs. In conclusion, HA/CS and Collagen I composed multilayer composite membranes can promote EPCs functions and release of miR-126 riched EPCs-MVs, which provides a novel strategy for tissue repair treatment.
Collapse
|
23
|
Chaubaroux C, Perrin-Schmitt F, Senger B, Vidal L, Voegel JC, Schaaf P, Haikel Y, Boulmedais F, Lavalle P, Hemmerlé J. Cell Alignment Driven by Mechanically Induced Collagen Fiber Alignment in Collagen/Alginate Coatings. Tissue Eng Part C Methods 2015; 21:881-8. [PMID: 25658028 DOI: 10.1089/ten.tec.2014.0479] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
For many years it has been a major challenge to regenerate damaged tissues using synthetic or natural materials. To favor the healing processes after tendon, cornea, muscle, or brain injuries, aligned collagen-based architectures are of utmost interest. In this study, we define a novel aligned coating based on a collagen/alginate (COL/ALG) multilayer film. The coating exhibiting a nanofibrillar structure is cross-linked with genipin for stability in physiological conditions. By stretching COL/ALG-coated polydimethylsiloxane substrates, we developed a versatile method to align the collagen fibrils of the polymeric coating. Assays on cell morphology and alignment were performed to investigate the properties of these films. Microscopic assessments revealed that cells align with the stretched collagen fibrils of the coating. The degree of alignment is tuned by the stretching rate (i.e., the strain) of the COL/ALG-coated elastic substrate. Such coatings are of great interest for strategies that require aligned nanofibrillar biological material as a substrate for tissue engineering.
Collapse
Affiliation(s)
- Christophe Chaubaroux
- 1 Institut National de la Santé et de la Recherche Médicale , UMR-S 1121, "Biomaterials and Bioengineering", Strasbourg, France .,2 Faculté de Chirurgie Dentaire, Université de Strasbourg , Strasbourg, France
| | - Fabienne Perrin-Schmitt
- 1 Institut National de la Santé et de la Recherche Médicale , UMR-S 1121, "Biomaterials and Bioengineering", Strasbourg, France .,2 Faculté de Chirurgie Dentaire, Université de Strasbourg , Strasbourg, France .,3 LBBM-NHC , CHRU de Strasbourg, Strasbourg, France
| | - Bernard Senger
- 1 Institut National de la Santé et de la Recherche Médicale , UMR-S 1121, "Biomaterials and Bioengineering", Strasbourg, France .,2 Faculté de Chirurgie Dentaire, Université de Strasbourg , Strasbourg, France
| | - Loïc Vidal
- 4 Institut de Science des Matériaux de Mulhouse , IS2M UMR 7361, CNRS - UHA, Mulhouse, France
| | - Jean-Claude Voegel
- 1 Institut National de la Santé et de la Recherche Médicale , UMR-S 1121, "Biomaterials and Bioengineering", Strasbourg, France .,2 Faculté de Chirurgie Dentaire, Université de Strasbourg , Strasbourg, France
| | - Pierre Schaaf
- 1 Institut National de la Santé et de la Recherche Médicale , UMR-S 1121, "Biomaterials and Bioengineering", Strasbourg, France .,2 Faculté de Chirurgie Dentaire, Université de Strasbourg , Strasbourg, France .,5 Institut Charles Sadron , CNRS UPR 22, Université de Strasbourg, Strasbourg, France .,6 Institut Universitaire de France , Paris, France
| | - Youssef Haikel
- 1 Institut National de la Santé et de la Recherche Médicale , UMR-S 1121, "Biomaterials and Bioengineering", Strasbourg, France .,2 Faculté de Chirurgie Dentaire, Université de Strasbourg , Strasbourg, France
| | - Fouzia Boulmedais
- 5 Institut Charles Sadron , CNRS UPR 22, Université de Strasbourg, Strasbourg, France .,7 Institut d'Etudes Avancées, Université de Strasbourg , Strasbourg, France
| | - Philippe Lavalle
- 1 Institut National de la Santé et de la Recherche Médicale , UMR-S 1121, "Biomaterials and Bioengineering", Strasbourg, France .,2 Faculté de Chirurgie Dentaire, Université de Strasbourg , Strasbourg, France
| | - Joseph Hemmerlé
- 1 Institut National de la Santé et de la Recherche Médicale , UMR-S 1121, "Biomaterials and Bioengineering", Strasbourg, France .,2 Faculté de Chirurgie Dentaire, Université de Strasbourg , Strasbourg, France
| |
Collapse
|
24
|
Zhao M, Li L, Zhou C, Heyroth F, Fuhrmann B, Maeder K, Groth T. Improved stability and cell response by intrinsic cross-linking of multilayers from collagen I and oxidized glycosaminoglycans. Biomacromolecules 2014; 15:4272-80. [PMID: 25246006 DOI: 10.1021/bm501286f] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Stability of surface coatings against environmental stress, such as pH, high ionic strength, mechanical forces, and so forth, is crucial for biomedical application of implants. Here, a novel extracellular-matrix-like polyelectrolyte multilayer (PEM) system composed of collagen I (Col I) and oxidized glycosaminoglycans (oGAGs) was stabilized by intrinsic cross-linking due to formation of imine bonds between aldehydes of oxidized chondroitin sulfate (oCS) or hyaluronan (oHA) and amino groups of Col I. It was also found that Col I contributed significantly more to overall mass in CS-Col I than in HA-Col I multilayer systems and fibrillized particularly in the presence of native and oxidized CS. Adhesion and proliferation studies with murine C3H10T1/2 embryonic fibroblasts demonstrated that covalent cross-linking of oGAG with Col I had no adverse effects on cell behavior. By contrast, it was found that cell size and polarization was more pronounced on oGAG-based multilayer systems, which corresponded also to the higher stiffness of cross-linked multilayers as observed by studies with quartz crystal microbalance (QCM). Overall, PEMs prepared from oGAG and Col I give rise to stable PEM constructs due to intrinsic cross-linking that may be useful for making bioactive coatings of implants and tissue engineering scaffolds.
Collapse
Affiliation(s)
- Mingyan Zhao
- Department of Materials Science and Engineering, Jinan University , Guangzhou 510630, China
| | | | | | | | | | | | | |
Collapse
|
25
|
Reducing the Foreign Body Reaction by Surface Modification with Collagen/Hyaluronic Acid Multilayered Films. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/718432] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Biological response against foreign implants often leads to encapsulation, possibly resulting in malfunction of implants devices. The aim of this study was to reduce the foreign body reaction by surface modification of biomaterials through layer-by-layer deposition of type I collagen (COL)/hyaluronic acid (HA) multilayer films. Polydimethylsiloxane (PDMS) samples were coated with alternative COL and HA layers with different layers. We found that the in vitro adhesion, proliferation, and activation of macrophage-like cells were greatly decreased by COL/HA multilayered deposition. The PDMS samples modified with 20 bilayers of COL/HA were implanted in rats for 3 weeks, and the thickness of encapsulation surrounding the samples was decreased by 29–57% compared to the control unmodified PDMS. This study demonstrates the potential of COL/HA multilayer films to reduce foreign body reaction.
Collapse
|
26
|
Investigations on the Secondary Structure of Polypeptide Chains in Polyelectrolyte Multilayers and their Effect on the Adhesion and Spreading of Osteoblasts. Biointerphases 2012; 7:62. [DOI: 10.1007/s13758-012-0062-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 09/24/2012] [Indexed: 11/26/2022] Open
|
27
|
Jin C, Ren LF, Ding HZ, Shi GS, Lin HS, Zhang F. Enhanced attachment, proliferation, and differentiation of human gingival fibroblasts on titanium surface modified with biomolecules. J Biomed Mater Res B Appl Biomater 2012; 100:2167-77. [DOI: 10.1002/jbm.b.32784] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 06/05/2012] [Accepted: 06/28/2012] [Indexed: 01/06/2023]
|
28
|
Chaubaroux C, Vrana E, Debry C, Schaaf P, Senger B, Voegel JC, Haikel Y, Ringwald C, Hemmerlé J, Lavalle P, Boulmedais F. Collagen-based fibrillar multilayer films cross-linked by a natural agent. Biomacromolecules 2012; 13:2128-35. [PMID: 22662909 DOI: 10.1021/bm300529a] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Surface functionalization plays an important role in the design of biomedical implants, especially when layer forming cells, such as endothelial or epithelial cells, are needed. In this study, we define a novel nanoscale surface coating composed of collagen/alginate polyelectrolyte multilayers and cross-linked for stability with genipin. This buildup follows an exponential growth regime versus the number of deposition cycles with a distinct nanofibrillar structure that is not damaged by the cross-linking step. Stability and cell compatibility of the cross-linked coatings were studied with human umbilical vein endothelial cells. The surface coating can be covered by a monolayer of vascular endothelial cells within 5 days. Genipin cross-linking renders the surface more suitable for cell attachment and proliferation compared to glutaraldehyde (more conventional cross-linker) cross-linked surfaces, where cell clumps in dispersed areas were observed. In summary, it is possible with the defined system to build fibrillar structures with a nanoscale control of film thickness, which would be useful for in vivo applications such as inner lining of lumens for vascular and tracheal implants.
Collapse
Affiliation(s)
- Christophe Chaubaroux
- Institut National de la Santé et de la Recherche Médicale , INSERM UMR 977, Biomaterials and Tissue Engineering, Strasbourg, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Gwak SJ, Jung JK, An SS, Kim HJ, Oh JS, Pennant WA, Lee HY, Kong MH, Kim KN, Yoon DH, Ha Y. Chitosan/TPP-hyaluronic acid nanoparticles: a new vehicle for gene delivery to the spinal cord. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 23:1437-50. [PMID: 21781382 DOI: 10.1163/092050611x584090] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Gene delivery offers therapeutic promise for the treatment of neurological diseases and spinal cord injury. Several studies have offered viral vectors as vehicles to deliver therapeutic agents, yet their toxicity and immunogenicity, along with the cost of their large-scale formulation, limits their clinical use. As such, non-viral vectors are attractive in that they offer improved safety profiles compared to viruses. Poly(ethylene imine) (PEI) is one of the most extensively studied non-viral vectors, but its clinical value is limited y its cytotoxicity. Recently, chitosan/DNA complex nanoparticles have een considered as a vector for gene delivery. Here, we demonstrate that DNA nanoparticles made of hyaluronic acid (HA) and chitosan have low cytotoxicity and induce high transgene expression in neural stem cells and organotypic spinal cord slice tissue. Chitosan-TPP/HA nanoparticles were significantly less cytotoxic than PEI at various concentrations. Additionally, chitosan-TPP/HA nanoparticles with pDNA induced higher transgene expression in vitro for a longer duration than PEI in neural stem cells. These results suggest chitosan-TPP/HA nanoparticles may have the potential to serve as an option for gene delivery to the spinal cord.
Collapse
Affiliation(s)
- So-Jung Gwak
- a Spine & Spinal Cord Institute, Department of Neurosurgery, Yonsei University College of Medicine , 120-752, 134 Shinchon-dong , Seodaemoon-gu , Seoul , South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Gribova V, Auzely-Velty R, Picart C. Polyelectrolyte Multilayer Assemblies on Materials Surfaces: From Cell Adhesion to Tissue Engineering. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2012; 24:854-869. [PMID: 25076811 PMCID: PMC4112380 DOI: 10.1021/cm2032459] [Citation(s) in RCA: 231] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Controlling the bulk and surface properties of materials is a real challenge for bioengineers working in the fields of biomaterials, tissue engineering and biophysics. The layer-by-layer (LbL) deposition method, introduced 20 years ago, consists in the alternate adsorption of polyelectrolytes that self-organize on the material's surface, leading to the formation of polyelectrolyte multilayer (PEM) films.1 Because of its simplicity and versatility, the procedure has led to considerable developments of biological applications within the past 5 years. In this review, we focus our attention on the design of PEM films as surface coatings for applications in the field of physical properties that have emerged as being key points in relation to biological processes. The numerous possibilities for adjusting the chemical, physical, and mechanical properties of PEM films have fostered studies on the influence of these parameters on cellular behaviors. Importantly, PEM have emerged as a powerful tool for the immobilization of biomolecules with preserved bioactivity.
Collapse
Affiliation(s)
- Varvara Gribova
- LMGP-MINATEC, Grenoble Institute of Technology, 3 Parvis Louis Néel, 38016 Grenoble, France
- Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS), affiliated with University Joseph Fourier, and member of the Institut de Chimie Moléculaire de Grenoble, France
| | - Rachel Auzely-Velty
- Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS), affiliated with University Joseph Fourier, and member of the Institut de Chimie Moléculaire de Grenoble, France
| | - Catherine Picart
- LMGP-MINATEC, Grenoble Institute of Technology, 3 Parvis Louis Néel, 38016 Grenoble, France
| |
Collapse
|
31
|
Huang Y, Luo Q, Li X, Zhang F, Zhao S. Fabrication and in vitro evaluation of the collagen/hyaluronic acid PEM coating crosslinked with functionalized RGD peptide on titanium. Acta Biomater 2012; 8:866-77. [PMID: 22040683 DOI: 10.1016/j.actbio.2011.10.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 10/13/2011] [Accepted: 10/13/2011] [Indexed: 11/28/2022]
Abstract
Surface modification of titanium (Ti) using biomolecules has attracted much attention recently. In this study, a new strategy has been employed to construct a stable and bioactive coating on Ti. To this end, a derivative of hyaluronic acid (HA), i.e. HA-GRGDSPC-(SH), was synthesized. The disulfide-crosslinked Arg-Gly-Asp (RGD)-containing collagen/hyaluronic acid polyelectrolyte membrane (PEM) coating was then fabricated on Ti through the alternate deposition of collagen and HA-GRGDSPC-(SH) with five assembly cycles and subsequent crosslinking via converting free sulphydryl groups into disulfide linkages (RGD-CHC-Ti group). The assembly processes for PEM coating and the physicochemical properties of the coating were carefully characterized. The stability of PEM coating in phosphate-buffered saline solution could be adjusted by the crosslinking degree, while its degradation behaviors in the presence of glutathione were glutathione concentration dependent. The adhesion and proliferation of MC3T3-E1 cells were significantly enhanced in the RGD-CHC-Ti group. Up-regulated bone specific genes, enhanced alkaline phosphatase activity and osteocalcin production, the increased areas of mineralization were also observed in the RGD-CHC-Ti group. These results indicate that the strategy employed herein may function as an effective way to construct stable, RGD-containing bioactive coatings on Ti.
Collapse
Affiliation(s)
- Ying Huang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital, College of Medicine, Zhejiang University, Hangzhou 310006, People's Republic of China
| | | | | | | | | |
Collapse
|
32
|
Li X, Luo Q, Huang Y, Li X, Zhang F, Zhao S. The responses of preosteoblasts to collagen/hyaluronic acid polyelectrolyte multilayer coating on titanium. POLYM ADVAN TECHNOL 2011. [DOI: 10.1002/pat.1953] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
33
|
Yoo SY, Kobayashi M, Lee PP, Lee SW. Early osteogenic differentiation of mouse preosteoblasts induced by collagen-derived DGEA-peptide on nanofibrous phage tissue matrices. Biomacromolecules 2011; 12:987-96. [PMID: 21344869 DOI: 10.1021/bm1013475] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Specific biochemical and physical cues in tissue extracellular matrices play a critical role in regulating cellular growth processes and their fate. We report initial responses of bone stem cells induced by collagen-derived DGEA-peptides on nanofibrous M13 phage tissue matrices. We constructed genetically engineered M13 phage with DGEA-peptide displayed in high density on the major coat proteins and biomimetic nanofibrous tissue-like matrices in two and three dimensions. We investigated the effects of biochemical cues, specifically DGEA-peptides on preosteoblast (MC3T3) morphologies. The preosteoblasts grown on the top of the DGEA-incorporated phage matrices exhibited significant outgrown morphology with early bone cell marker protein expression. Through soluble peptide competition assays and control experiments, we verified that the observed cellular morphologies and osteogenic protein marker expression were specifically caused by the DGEA-peptides. We confirmed that the outgrown morphologies are linked with the early phase of osteogenic protein expression through mRNA quantification and bone cell protein marker expression. Additionally, we demonstrated that the phage-based tissue matrix systems could work as a good cell culture platform to investigate the specific effect of biochemical cues, which can be tuned precisely at a single amino acid level with little change in other physical and chemical properties of the environment. Our study advances the understanding of osteogenic differentiation and our phage-based tissue matrices have the potential for future bone regeneration therapy and systemic investigation of specific cellular responses to biochemical ligand stimulation.
Collapse
Affiliation(s)
- So Young Yoo
- Bioengineering, University of California, Berkeley, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley Nanoscience and Nanoengineering Institute, Berkeley, California 94720, United States
| | | | | | | |
Collapse
|
34
|
Mhanna RF, Vörös J, Zenobi-Wong M. Layer-by-layer films made from extracellular matrix macromolecules on silicone substrates. Biomacromolecules 2011; 12:609-16. [PMID: 21319812 DOI: 10.1021/bm1012772] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The layer-by-layer (LbL) technique has been widely used to produce nanofilms for biomedical applications. Naturally occurring polymers such as ECM macromolecules are attractive candidates for LbL film preparation. In this study, we assessed the build-up of type I collagen (Col1)/chondroitin sulfate (CS) or Col1/Heparin (HN) on polydimethylsiloxane (PDMS) substrates. The build-up was assessed by quartz crystal microbalance with dissipation (QCM-D) and atomic force microscopy (AFM). Integrin-mediated cell adhesion was assessed by studying the cytoskeletal organization of mammalian primary cells (chondrocytes) seeded on different end layers and number of layers. Data generated from the QCM-D observations showed a consistent build-up of films with more adsorption in the case of Col1/HN. Col1/CS films were stable in media, whereas Col1/HN films were not. AFM analysis showed that the layers were fibrillar in structure for both systems and between 20 and 30 nm thick. The films promoted cell adhesion when compared with tissue culture plastic in serum-free media with cycloheximide. Crosslinking of the films resulted in constrained cell spreading and a ruffled morphology. Finally, beta1 integrin blocking antibodies prevented cell spreading, suggesting that cell adhesion and spreading were mediated mainly by interaction with the collagen fibrils. The ability to construct stable ECM-based films on PDMS has particular relevance in mechanobiology, microfluidics, and other biomedical applications.
Collapse
Affiliation(s)
- Rami F Mhanna
- Institute for Biomedical Engineering, Laboratory of Biosensors and Bioelectronics, ETH Zurich, Switzerland
| | | | | |
Collapse
|
35
|
Martins GV, Merino EG, Mano JF, Alves NM. Crosslink effect and albumin adsorption onto chitosan/alginate multilayered systems: an in situ QCM-D study. Macromol Biosci 2010; 10:1444-55. [PMID: 21125694 DOI: 10.1002/mabi.201000193] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 07/13/2010] [Indexed: 12/12/2022]
Abstract
The adsorption of HSA onto CHI/ALG multilayer assemblies was assessed in situ using QCM-D. It was found that the behavior of HSA on biomaterials surface can be tuned by adjusting parameters of the polyelectrolyte system such as pH, layer number, crosslinker and polymer terminal layer. Our results confirmed the key role of electrostatic interactions during HSA adsorption, since oppositely charged surfaces were more effective in promoting protein adhesion. QCM-D data revealed that crosslinking (CHI/ALG)(5) CHI films allows HSA to become adsorbed in physiological conditions. Our results suggested that the biological potential of biopolymers and the mild conditions of the LbL technique turn these natural nanoassemblies into a suitable choice to be used as pH-sensitive coatings.
Collapse
Affiliation(s)
- Gabriela V Martins
- Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal.
| | | | | | | |
Collapse
|
36
|
Pinto EM, Barsan MM, Brett CMA. Mechanism of Formation and Construction of Self-Assembled Myoglobin/Hyaluronic Acid Multilayer Films: An Electrochemical QCM, Impedance, and AFM Study. J Phys Chem B 2010; 114:15354-61. [DOI: 10.1021/jp107107b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- E. M. Pinto
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, 3004-535 Coimbra, Portugal
| | - M. M. Barsan
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, 3004-535 Coimbra, Portugal
| | - C. M. A. Brett
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
37
|
Miao X, Liu Y, Gao W, Hu N. Layer-by-layer assembly of collagen and electroactive myoglobin. Bioelectrochemistry 2010; 79:187-92. [DOI: 10.1016/j.bioelechem.2010.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 03/02/2010] [Accepted: 03/07/2010] [Indexed: 12/01/2022]
|
38
|
Fresquet M, Jowitt TA, Stephen LA, Ylöstalo J, Briggs MD. Structural and functional investigations of Matrilin-1 A-domains reveal insights into their role in cartilage ECM assembly. J Biol Chem 2010; 285:34048-61. [PMID: 20729554 PMCID: PMC2962504 DOI: 10.1074/jbc.m110.154443] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Matrilin-1 is expressed predominantly in cartilage and co-localizes with matrilin-3 with which it can form hetero-oligomers. We recently described novel structural and functional features of the matrilin-3 A-domain (M3A) and demonstrated that it bound with high affinity to type II and IX collagens. Interactions preferentially occurred in the presence of Zn2+ suggesting that matrilin-3 has acquired a requirement for specific metal ions for activation and/or molecular associations. To understand the interdependence of matrilin-1/-3 hetero-oligomers in extracellular matrix (ECM) interactions, we have extended these studies to include the two matrilin-1 A-domains (i.e. M1A1 and M1A2 respectively). In this study we have identified new characteristics of the matrilin-1 A-domains by describing their glycosylation state and the effect of N-glycan chains on their structure, thermal stability, and protein-protein interactions. Initial characterization revealed that N-glycosylation did not affect secretion of these two proteins, nor did it alter their folding characteristics. However, removal of the glycosylation decreased their thermal stability. We then compared the effect of different cations on binding between both M1A domains and type II and IX collagens and showed that Zn2+ also supports their interactions. Finally, we have demonstrated that both M1A1 domains and biglycan are essential for the association of the type II·VI collagen complex. We predict that a potential role of the matrilin-1/-3 hetero-oligomer might be to increase multivalency, and therefore the ability to connect various ECM components. Differing affinities could act to regulate the integrated network, thus coordinating the organization of the macromolecular structures in the cartilage ECM.
Collapse
Affiliation(s)
- Maryline Fresquet
- Faculty of Life Sciences, Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, United Kingdom
| | | | | | | | | |
Collapse
|
39
|
Aulin C, Johansson E, Wågberg L, Lindström T. Self-organized films from cellulose I Nanofibrils using the layer-by-layer technique. Biomacromolecules 2010; 11:872-82. [PMID: 20196583 DOI: 10.1021/bm100075e] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The possibility of forming self-organized films using only charge-stabilized dispersions of cellulose I nanofibrils with opposite charges is presented, that is, the multilayers were composed solely of anionically and cationically modified microfibrillated cellulose (MFC) with a low degree of substitution. The build-up behavior and the properties of the layer-by-layer (LbL)-constructed films were studied using a quartz crystal microbalance with dissipation (QCM-D) and stagnation point adsorption reflectometry (SPAR). The adsorption behavior of cationic/anionic MFC was compared with that of polyethyleneimine (PEI)/anionic MFC. The water contents of five bilayers of cationic/anionic MFC and PEI/anionic MFC were approximately 70 and 50%, respectively. The MFC surface coverage was studied by atomic force microscopy (AFM) measurements, which clearly showed a more dense fibrillar structure in the five bilayer PEI/anionic MFC than in the five bilayer cationic/anionic MFC. The forces between the cellulose-based multilayers were examined using the AFM colloidal probe technique. The forces on approach were characterized by a combination of electrostatic and steric repulsion. The wet adhesive forces were very long-range and were characterized by multiple adhesive events. Surfaces covered by PEI/anionic MFC multilayers required more energy to be separated than surfaces covered by cationic/anionic MFC multilayers.
Collapse
Affiliation(s)
- Christian Aulin
- BIM Kemi AB, Box 3102, SE-443 03 Stenkullen, Sweden, Department of Fibre and Polymer Technology, School of Chemical Science and Engineering, The Royal Institute of Technology, SE-100 44 Stockholm, Sweden, and Innventia AB, Box 5604, SE-114 86 Stockholm, Sweden.
| | | | | | | |
Collapse
|
40
|
Tan GK, Dinnes DL, Butler LN, Cooper-White JJ. Interactions between meniscal cells and a self assembled biomimetic surface composed of hyaluronic acid, chitosan and meniscal extracellular matrix molecules. Biomaterials 2010; 31:6104-18. [DOI: 10.1016/j.biomaterials.2010.04.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 04/11/2010] [Indexed: 10/19/2022]
|
41
|
Takahashi S, Yamazoe H, Sassa F, Suzuki H, Fukuda J. Preparation of coculture system with three extracellular matrices using capillary force lithography and layer-by-layer deposition. J Biosci Bioeng 2009; 108:544-50. [DOI: 10.1016/j.jbiosc.2009.06.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 06/05/2009] [Accepted: 06/10/2009] [Indexed: 12/20/2022]
|
42
|
Nasti A, Zaki NM, de Leonardis P, Ungphaiboon S, Sansongsak P, Rimoli MG, Tirelli N. Chitosan/TPP and chitosan/TPP-hyaluronic acid nanoparticles: systematic optimisation of the preparative process and preliminary biological evaluation. Pharm Res 2009; 26:1918-30. [PMID: 19507009 DOI: 10.1007/s11095-009-9908-0] [Citation(s) in RCA: 216] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 05/07/2009] [Indexed: 11/24/2022]
Abstract
PURPOSE Chitosan is one of the most sought-after components for designing nanoparticles for drug delivery applications. However, despite the large number of studies, reproducibility is often an issue; generally more attention should be focused on purity and precise characterization of the starting material, as well as on the development of robust preparative procedures. METHODS Using a rational experimental design, we have studied the influence of a number of orthogonal factors (pH, concentrations, ratios of components, different methods of mixing) in the preparation of chitosan/triphosphate (TPP) nanoparticles and in their coating with hyaluronic acid (HA), aiming at the minimisation of size polydispersity, the maximisation of zeta potential and long-term stability, and at the control over average nanoparticle size. RESULTS AND CONCLUSION Three optimised nanoparticles have been developed (two uncoated and one HA-coated) and their toxicity on fibroblasts and macrophages has been evaluated: experiments showed the beneficial character of HA-coating in the reduction of toxicity (IC50 raised from 0.7-0.8 mg/mL to 1.8 mg/mL) and suggested that the uncoated chitosan/TPP nanoparticles had toxic effects following internalisation rather than membrane disruption.
Collapse
Affiliation(s)
- Alessandro Nasti
- School of Pharmacy, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK
| | | | | | | | | | | | | |
Collapse
|
43
|
Landoulsi J, Roy CJ, Dupont-Gillain C, Demoustier-Champagne S. Synthesis of Collagen Nanotubes with Highly Regular Dimensions through Membrane-Templated Layer-by-Layer Assembly. Biomacromolecules 2009; 10:1021-4. [DOI: 10.1021/bm900245h] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jessem Landoulsi
- Unité de Physique et de Chimie des Hauts Polymères (POLY), Université catholique de Louvain, Place Croix du Sud 1, B-1348 Louvain-la-Neuve, Belgium, and Unité de Chimie des Interfaces (CIFA), Université catholique de Louvain, Place Croix du Sud 2/18, B-1348, Louvain-la-Neuve, Belgium
| | - Cécile J. Roy
- Unité de Physique et de Chimie des Hauts Polymères (POLY), Université catholique de Louvain, Place Croix du Sud 1, B-1348 Louvain-la-Neuve, Belgium, and Unité de Chimie des Interfaces (CIFA), Université catholique de Louvain, Place Croix du Sud 2/18, B-1348, Louvain-la-Neuve, Belgium
| | - Christine Dupont-Gillain
- Unité de Physique et de Chimie des Hauts Polymères (POLY), Université catholique de Louvain, Place Croix du Sud 1, B-1348 Louvain-la-Neuve, Belgium, and Unité de Chimie des Interfaces (CIFA), Université catholique de Louvain, Place Croix du Sud 2/18, B-1348, Louvain-la-Neuve, Belgium
| | - Sophie Demoustier-Champagne
- Unité de Physique et de Chimie des Hauts Polymères (POLY), Université catholique de Louvain, Place Croix du Sud 1, B-1348 Louvain-la-Neuve, Belgium, and Unité de Chimie des Interfaces (CIFA), Université catholique de Louvain, Place Croix du Sud 2/18, B-1348, Louvain-la-Neuve, Belgium
| |
Collapse
|
44
|
Peralta S, Habib-Jiwan JL, Jonas AM. Ordered Polyelectrolyte Multilayers: Unidirectional FRET Cascade in Nanocompartmentalized Polyelectrolyte Multilayers. Chemphyschem 2009; 10:137-43. [DOI: 10.1002/cphc.200800443] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
45
|
Park JS, Park K, Woo DG, Yang HN, Chung HM, Park KH. Triple constructs consisting of nanoparticles and microspheres for bone-marrow-derived stromal-cell-delivery microscaffolds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2008; 4:1950-1955. [PMID: 18949790 DOI: 10.1002/smll.200701315] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- Ji Sun Park
- College of Medicine, Pochon CHA University CHA Stem Cell Institute, Kangnam-gu, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
46
|
Aulin C, Varga I, Claesson PM, Wågberg L, Lindström T. Buildup of polyelectrolyte multilayers of polyethyleneimine and microfibrillated cellulose studied by in situ dual-polarization interferometry and quartz crystal microbalance with dissipation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:2509-2518. [PMID: 18278961 DOI: 10.1021/la7032884] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Polyethyleneimine (PEI) and Microfibrillated cellulose (MFC) have been used to buildup polyelectrolyte multilayers (PEM) on silicone oxide and silicone oxynitride surfaces at different pH values and with different electrolyte and polyelectrolyte/colloid concentrations of the components. Consecutive adsorption on these surfaces was studied by in situ dual-polarization interferometry (DPI) and quartz crystal microbalance measurements. The adsorption data obtained from both the techniques showed a steady buildup of multilayers. High pH and electrolyte concentration of the PEI solution was found to be beneficial for achieving a high adsorbed amount of PEI, and hence of MFC, during the buildup of the multilayer. On the other hand, an increase in the electrolyte concentration of the MFC dispersion was found to inhibit the adsorption of MFC onto PEI. The adsorbed amount of MFC was independent of the bulk MFC concentration in the investigated concentration range (15-250 mg/L). Atomic force microscopy measurements were used to image a MFC-treated silicone oxynitride chip from DPI measurements. The surface was found to be almost fully covered by randomly oriented microfibrils after the adsorption of only one bilayer of PEI/MFC. The surface roughness expressed as the rms-roughness over 1 microm2 was calculated to be 4.6 nm (1 bilayer). The adsorbed amount of PEI and MFC and the amount of water entrapped by the individual layers in the multilayer structures were estimated by combining results from the two analytical techniques using the de Feijter formula. These results indicate a total water content of ca. 41% in the PEM.
Collapse
Affiliation(s)
- Christian Aulin
- Department of Fibre and Polymer Technology, School of Chemical Science and Engineering, The Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
47
|
Kujawa P, Schmauch G, Viitala T, Badia A, Winnik FM. Construction of Viscoelastic Biocompatible Films via the Layer-by-Layer Assembly of Hyaluronan and Phosphorylcholine-Modified Chitosan. Biomacromolecules 2007; 8:3169-76. [PMID: 17850111 DOI: 10.1021/bm7006339] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Films of hyaluronan (HA) and a phosphorylcholine-modified chitosan (PC-CH) were constructed by the polyelectrolyte multilayer (PEM) deposition technique and their buildup in 0.15 M NaCl was followed by atomic force microscopy, surface plasmon resonance spectroscopy (SPR), and dissipative quartz crystal microbalance (QCM). The HA/PC-CH films were stable over a wide pH range (3.0-12.0), exhibiting a stronger resistance against alkaline conditions as compared to HA/CH films. The loss and storage moduli, G' and G", of the films throughout the growth of eight bilayer assemblies were derived from an impedance analysis of the QCM data recorded in situ. Both G' and G" values were one order of magnitude lower than the moduli of HA/CH films. The fluid gel-like characteristics of HA/PC-CH multilayers were attributed to their high water content (50 wt %), which was estimated by comparing the surface coverage values derived from SPR and QCM measurements. Given the versatility of the PEM methodology, HA/PC-CH films are attractive tools for developing biocompatible surface coatings of controlled mechanical properties.
Collapse
Affiliation(s)
- Piotr Kujawa
- Faculté de Pharmacie and Département de Chimie, Université de Montréal, C P 6128 Succursale Centre-Ville, Montréal, Quebec, Canada
| | | | | | | | | |
Collapse
|
48
|
Aravind UK, Mathew J, Aravindakumar C. Transport studies of BSA, lysozyme and ovalbumin through chitosan/polystyrene sulfonate multilayer membrane. J Memb Sci 2007. [DOI: 10.1016/j.memsci.2007.04.036] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
49
|
Kang EH, Bu T, Jin P, Sun J, Yang Y, Shen J. Layer-by-layer deposited organic/inorganic hybrid multilayer films containing noncentrosymmetrically orientated azobenzene chromophores. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:7594-601. [PMID: 17555337 DOI: 10.1021/la700749s] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Organic/inorganic hybrid multilayer films with noncentrosymmetrically orientated azobenzene chromophores were fabricated by the sequential deposition of ZrO2 layers by a surface sol-gel process and subsequent layer-by-layer (LbL) adsorption of the nonlinear optical (NLO)-active azobenzene-containing polyanion PAC-azoBNS and poly(diallyldimethylammonium chloride) (PDDA). Noncentrosymmetric orientation of the NLO-active azobenzene chromophores was achieved because of the strong repulsion between the negatively charged ZrO(2) and the sulfonate groups of the azobenzene chromophore in PAC-azoBNS. Regular deposition of ZrO(2)/PAC-azoBNS/PDDA multilayer films was verified by UV-vis absorption spectroscopy and quartz crystal microbalance measurements. Both UV-vis absorption spectroscopy and transmission second harmonic generation (SHG) measurements confirmed the noncentrosymmetric orientation of the azobenzene chromophores in the as-prepared ZrO2/PAC-azoBNS/PDDA multilayer films. The square root of the SHG signal (I(2omega)(1/2)) increases with the increase of the azobenzene graft ratio in PAC-azoBNS as the number of deposition cycles of the ZrO(2)/PAC-azoBNS/PDDA films remains the same, while the second-order susceptibility chi(zzz)(2) of the film decreases with the increase of the azobenzene graft ratio. Furthermore, the present method was successfully extended to realize the noncentrosymmetric orientation of azobenzene chromophores in multilayer films when small organic azobenzene compounds with carboxylic acid and/or hydroxyl groups at one end and sulfonate groups at the other end were used. The present method was characterized by its simplicity and flexibility in film preparation, and it is anticipated to be a facile way to fabricate second-order nonlinear optical film materials.
Collapse
Affiliation(s)
- En-Hua Kang
- Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, P. R. China 130012
| | | | | | | | | | | |
Collapse
|
50
|
Schneider A, Picart C, Senger B, Schaaf P, Voegel JC, Frisch B. Layer-by-layer films from hyaluronan and amine-modified hyaluronan. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:2655-62. [PMID: 17309215 PMCID: PMC2585505 DOI: 10.1021/la062163s] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Hyaluronan is a polysaccharide that is increasingly investigated for its role in cellular adhesion and for the preparation of biomimetic matrices for tissue engineering. Hyaluronan gels are prepared for application as space fillers, whereas hyaluronan films are usually obtained by adsorbing or grafting a single hyaluronan layer onto a biomaterial surface. Here, we examine the possibility to employ the layer-by-layer technique to deposit thin films of cationic-modified hyaluronan (HA+) and hyaluronan (HA) of controlled thicknesses. The buildup conditions are investigated, and growth is compared to that of other polyelectrolyte multilayer films containing either HA as the polyanion or HA+ as the polycation. The films could be formed in a low ionic strength medium but are required to be cross-linked prior to contact with a physiological medium. NIH3T3 fibroblasts were perfectly viable on self-assembled hyaluronan films with, however, a preference for hyaluronan ending films. These findings point out the possibility to tune the thickness of thin hyaluronan films at the nanometer scale. Such architectures could be employed for investigating cell/substrate interactions or for functionalizing biomaterial surfaces.
Collapse
Affiliation(s)
- Aurore Schneider
- Institut National de la Santé et de la Recherche Médicale, INSERM Unité 595, 11 rue Humann, 67085, Strasbourg Cedex, France
- Laboratoire de Chimie Enzymatique et Vectorisation LC01, UMR 7175 CNRS-Université Louis Pasteur, 74 route du Rhin, 67 400 Illkirch, France
| | - Catherine Picart
- Institut National de la Santé et de la Recherche Médicale, INSERM Unité 595, 11 rue Humann, 67085, Strasbourg Cedex, France
- Université de Montpellier 2, CNRS UMR 5539, Place Eugène Bataillon, 34095 Montpellier Cedex 5
| | - Bernard Senger
- Institut National de la Santé et de la Recherche Médicale, INSERM Unité 595, 11 rue Humann, 67085, Strasbourg Cedex, France
- Faculté de Chirurgie Dentaire, Université Louis Pasteur, 1 place de l'Hôpital, 67000 Strasbourg, France
| | - Pierre Schaaf
- Institut Charles Sadron, Centre National de la Recherche Scientifique, Université Louis Pasteur, 6 rue Boussingault, 67083 Strasbourg Cedex, France
| | - Jean-Claude Voegel
- Institut National de la Santé et de la Recherche Médicale, INSERM Unité 595, 11 rue Humann, 67085, Strasbourg Cedex, France
- Faculté de Chirurgie Dentaire, Université Louis Pasteur, 1 place de l'Hôpital, 67000 Strasbourg, France
| | - Benoit Frisch
- Laboratoire de Chimie Enzymatique et Vectorisation LC01, UMR 7175 CNRS-Université Louis Pasteur, 74 route du Rhin, 67 400 Illkirch, France
| |
Collapse
|