1
|
Hailey DR, Kanjilal D, Koulen P. Differential Expression of Mitogen-Activated Protein Kinase Signaling Pathways in the Human Choroid-Retinal Pigment Epithelial Complex Indicates Regional Predisposition to Disease. Int J Mol Sci 2024; 25:10105. [PMID: 39337590 PMCID: PMC11432750 DOI: 10.3390/ijms251810105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
The retina is composed of neuronal layers that include several types of interneurons and photoreceptor cells, and separate underlying retinal pigment epithelium (RPE), Bruch's membrane, and choroid. Different regions of the human retina include the fovea, macula, and periphery, which have unique physiological functions and anatomical features. These regions are also unique in their protein expression, and corresponding cellular and molecular responses to physiological and pathophysiological stimuli. Skeie and Mahajan analyzed regional protein expression in the human choroid-RPE complex. Mitogen-Activated Protein Kinase (MAPK) signaling pathways have been implicated in responses to stimuli such as oxidative stress and inflammation, which are critical factors in retina diseases including age-related macular degeneration. We, therefore, analyzed the Skeie and Mahajan, 2014, dataset for regional differences in the expression of MAPK-related proteins and discussed the potential implications in retinal diseases presenting with regional signs and symptoms. Regional protein expression data from the Skeie and Mahajan, 2014, study were analyzed for members of signaling networks involving MAPK and MAPK-related proteins, categorized by specific MAPK cascades, such as p38, ERK1/2, and JNK1/2, both upstream or downstream of the respective MAPK and MAPK-related proteins. We were able to identify 207 MAPK and MAPK-related proteins, 187 of which belonging to specific MAPK cascades. A total of 31 of these had been identified in the retina with two proteins, DLG2 and FLG downstream, and the other 29 upstream, of MAPK proteins. Our findings provide evidence for potential molecular substrates of retina region-specific disease manifestation and potential new targets for therapeutics development.
Collapse
Affiliation(s)
| | | | - Peter Koulen
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri–Kansas City, Kansas City, MO 64108, USA
| |
Collapse
|
2
|
Needs HI, Glover E, Pereira GC, Witt A, Hübner W, Dodding MP, Henley JM, Collinson I. Rescue of mitochondrial import failure by intercellular organellar transfer. Nat Commun 2024; 15:988. [PMID: 38307874 PMCID: PMC10837123 DOI: 10.1038/s41467-024-45283-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 01/19/2024] [Indexed: 02/04/2024] Open
Abstract
Mitochondria are the powerhouses of eukaryotic cells, composed mostly of nuclear-encoded proteins imported from the cytosol. Thus, problems with the import machinery will disrupt their regenerative capacity and the cell's energy supplies - particularly troublesome for energy-demanding cells of nervous tissue and muscle. Unsurprisingly then, import breakdown is implicated in disease. Here, we explore the consequences of import failure in mammalian cells; wherein, blocking the import machinery impacts mitochondrial ultra-structure and dynamics, but, surprisingly, does not affect import. Our data are consistent with a response involving intercellular mitochondrial transport via tunnelling nanotubes to import healthy mitochondria and jettison those with blocked import sites. These observations support the existence of a widespread mechanism for the rescue of mitochondrial dysfunction.
Collapse
Affiliation(s)
- Hope I Needs
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | - Emily Glover
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | - Gonçalo C Pereira
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
- Nanna Therapeutics, Merrifield Centre, Rosemary Lane, Cambridge, CB1 3LQ, UK
| | - Alina Witt
- Fakultät für Physik, Universität Bielefeld, Bielefeld, Postfach 100131 D-33501, Germany
| | - Wolfgang Hübner
- Fakultät für Physik, Universität Bielefeld, Bielefeld, Postfach 100131 D-33501, Germany
| | - Mark P Dodding
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | - Jeremy M Henley
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK.
| | - Ian Collinson
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
3
|
Liu Y, Song L, Zheng N, Shi J, Wu H, Yang X, Xue N, Chen X, Li Y, Sun C, Chen C, Tang L, Ni X, Wang Y, Shi Y, Guo J, Wang G, Zhang Z, Qin J. A urinary proteomic landscape of COVID-19 progression identifies signaling pathways and therapeutic options. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1866-1880. [PMID: 35290573 PMCID: PMC8922985 DOI: 10.1007/s11427-021-2070-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/24/2022] [Indexed: 02/06/2023]
Abstract
Signaling pathway alterations in COVID-19 of living humans as well as therapeutic targets of the host proteins are not clear. We analyzed 317 urine proteomes, including 86 COVID-19, 55 pneumonia and 176 healthy controls, and identified specific RNA virus detector protein DDX58/RIG-I only in COVID-19 samples. Comparison of the COVID-19 urinary proteomes with controls revealed major pathway alterations in immunity, metabolism and protein localization. Biomarkers that may stratify severe symptoms from moderate ones suggested that macrophage induced inflammation and thrombolysis may play a critical role in worsening the disease. Hyper activation of the TCA cycle is evident and a macrophage enriched enzyme CLYBL is up regulated in COVID-19 patients. As CLYBL converts the immune modulatory TCA cycle metabolite itaconate through the citramalyl-CoA intermediate to acetyl-CoA, an increase in CLYBL may lead to the depletion of itaconate, limiting its anti-inflammatory function. These observations suggest that supplementation of itaconate and inhibition of CLYBL are possible therapeutic options for treating COVID-19, opening an avenue of modulating host defense as a means of combating SARS-CoV-2 viruses.
Collapse
Affiliation(s)
- Yuntao Liu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.,Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, 510120, China
| | - Lan Song
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Nairen Zheng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Jinwen Shi
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Hongxing Wu
- Beijing Pineal Health Management Co. Ltd, Beijing, 102206, China
| | - Xing Yang
- Beijing Pineal Health Management Co. Ltd, Beijing, 102206, China
| | - Nianci Xue
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Xing Chen
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510060, China
| | - Yimin Li
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.,Guangzhou Institute of Respiratory Disease, Guangzhou, 510120, China
| | - Changqing Sun
- Joint Center for Translational Medicine, Tianjin Medical University Baodi Clinical College, Tianjin, 301800, China
| | - Cha Chen
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Lijuan Tang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Xiaotian Ni
- Beijing Pineal Health Management Co. Ltd, Beijing, 102206, China
| | - Yi Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Yaling Shi
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510060, China.
| | - Jianwen Guo
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China. .,Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, 510120, China.
| | - Guangshun Wang
- Joint Center for Translational Medicine, Tianjin Medical University Baodi Clinical College, Tianjin, 301800, China.
| | - Zhongde Zhang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China. .,Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, 510120, China.
| | - Jun Qin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
| |
Collapse
|
4
|
Guo Y, Cai L, Liu X, Ma L, Zhang H, Wang B, Qi Y, Liu J, Diao F, Sha J, Guo X. Single-cell quantitative proteomic analysis of human oocyte maturation revealed high heterogeneity in in vitro matured oocytes. Mol Cell Proteomics 2022; 21:100267. [PMID: 35809850 PMCID: PMC9396076 DOI: 10.1016/j.mcpro.2022.100267] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 12/02/2022] Open
Abstract
Oocyte maturation is pertinent to the success of in vitro maturation (IVM), which is used to overcome female infertility, and produced over 5000 live births worldwide. However, the quality of human IVM oocytes has not been investigated at single-cell proteome level. Here, we quantified 2094 proteins in human oocytes during in vitro and in vivo maturation (IVO) by single-cell proteomic analysis and identified 176 differential proteins between IVO and germinal vesicle oocytes and 45 between IVM and IVO oocytes including maternal effect proteins, with potential contribution to the clinically observed decreased fertilization, implantation, and birth rates using human IVM oocytes. IVM and IVO oocytes showed separate clusters in principal component analysis, with higher inter-cell variability among IVM oocytes, and have little correlation between mRNA and protein changes during maturation. The patients with the most aberrantly expressed proteins in IVM oocytes had the lowest level of estradiol per mature follicle on trigger day. Our data provide a rich resource to evaluate effect of IVM on oocyte quality and study mechanism of oocyte maturation. Single-cell proteomic profiling of human oocytes matured in vitro and in vivo. Low correlation between protein and mRNA levels during human oocyte maturation. In vitro matured (IVM) oocytes exhibit higher heterogeneity at the proteome level. 45 differentially expressed proteins between IVM and in vivo matured (IVO) oocytes.
Collapse
Affiliation(s)
- Yueshuai Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Lingbo Cai
- State Key Laboratory of Reproductive Medicine, Clinical Center for Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiaofei Liu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Long Ma
- State Key Laboratory of Reproductive Medicine, Clinical Center for Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hao Zhang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Bing Wang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China; School of Medicine, Southeast University, Nanjing 210009, China
| | - Yaling Qi
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Jiayin Liu
- State Key Laboratory of Reproductive Medicine, Clinical Center for Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Feiyang Diao
- State Key Laboratory of Reproductive Medicine, Clinical Center for Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Jiahao Sha
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China.
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
5
|
Integrated Analysis to Study the Relationship between Tumor-Associated Selenoproteins: Focus on Prostate Cancer. Int J Mol Sci 2020; 21:ijms21186694. [PMID: 32933107 PMCID: PMC7555134 DOI: 10.3390/ijms21186694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/07/2020] [Accepted: 09/11/2020] [Indexed: 11/16/2022] Open
Abstract
Selenoproteins are proteins that contain selenium within selenocysteine residues. To date, twenty-five mammalian selenoproteins have been identified; however, the functions of nearly half of these selenoproteins are unknown. Although alterations in selenoprotein expression and function have been suggested to play a role in cancer development and progression, few detailed studies have been carried out in this field. Network analyses and data mining of publicly available datasets on gene expression levels in different cancers, and the correlations with patient outcome, represent important tools to study the correlation between selenoproteins and other proteins present in the human interactome, and to determine whether altered selenoprotein expression is cancer type-specific, and/or correlated with cancer patient prognosis. Therefore, in the present study, we used bioinformatics approaches to (i) build up the network of interactions between twenty-five selenoproteins and identify the most inter-correlated proteins/genes, which are named HUB nodes; and (ii) analyze the correlation between selenoprotein gene expression and patient outcome in ten solid tumors. Then, considering the need to confirm by experimental approaches the correlations suggested by the bioinformatics analyses, we decided to evaluate the gene expression levels of the twenty-five selenoproteins and six HUB nodes in androgen receptor-positive (22RV1 and LNCaP) and androgen receptor-negative (DU145 and PC3) cell lines, compared to human nontransformed, and differentiated, prostate epithelial cells (EPN) by RT-qPCR analysis. This analysis confirmed that the combined evaluation of some selenoproteins and HUB nodes could have prognostic value and may improve patient outcome predictions.
Collapse
|
6
|
Sackmann C, Hallbeck M. Oligomeric amyloid-β induces early and widespread changes to the proteome in human iPSC-derived neurons. Sci Rep 2020; 10:6538. [PMID: 32300132 PMCID: PMC7162932 DOI: 10.1038/s41598-020-63398-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/23/2020] [Indexed: 01/05/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia globally and is characterized by aberrant accumulations of amyloid-beta (Aβ) and tau proteins. Oligomeric forms of these proteins are believed to be most relevant to disease progression, with oligomeric amyloid-β (oAβ) particularly implicated in AD. oAβ pathology spreads among interconnected brain regions, but how oAβ induces pathology in these previously unaffected neurons requires further study. Here, we use well characterized iPSC-derived human neurons to study the early changes to the proteome and phosphoproteome after 24 h exposure to oAβ 1-42. Using nLC-MS/MS and label-free quantification, we identified several proteins that are differentially regulated in response to acute oAβ challenge. At this early timepoint, oAβ induced the decrease of TDP-43, heterogeneous nuclear ribonucleoproteins (hnRNPs), and coatomer complex I (COPI) proteins. Conversely, increases were observed in 20 S proteasome subunits and vesicle associated proteins VAMP1/2, as well as the differential phosphorylation of tau at serine 208. These changes show that there are widespread alterations to the neuronal proteome within 24 h of oAβ uptake, including proteins previously not shown to be related to neurodegeneration. This study provides new targets for the further study of early mediators of AD pathogenesis.
Collapse
Affiliation(s)
- Christopher Sackmann
- Department of Clinical Pathology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Martin Hallbeck
- Department of Clinical Pathology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
| |
Collapse
|
7
|
Wang B, Li J, Li X, Ou Y. Identifying prognosis and metastasis-associated genes associated with Ewing sarcoma by weighted gene co-expression network analysis. Oncol Lett 2019; 18:3527-3536. [PMID: 31516570 PMCID: PMC6732955 DOI: 10.3892/ol.2019.10681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/25/2019] [Indexed: 02/06/2023] Open
Abstract
Ewing sarcoma (ES) is a highly malignant pediatric tumor with a low survival rate and a high rate of metastasis. However, there have been limited reports on the exploration of new biomarkers of ES. Therefore, the aim of the present study was to identify the potential hub genes associated with overall vital survival (OVS) and metastasis in ES. Traditional methods for identifying differentially expressed genes lack the in-depth information of mechanistic studies. In this study, a weighted co-expression network for ES was constructed through weighted gene co-expression network analysis to identify co-expression modules associated with clinical phenotypes. The hub genes in the metastasis- and OVS-related co-expression modules were extracted, and the association between the hub genes and patient OVS was verified in another independent Gene Expression Omnibus dataset. Functional annotations and protein-protein interaction analysis of co-expression modules were also used to understand the potential regulatory mechanisms. The results of the functional enrichment analysis revealed that the OVS-associated module was mainly enriched in the cell cycle and immune response, and the metastasis-associated module was enriched in metabolism. A total of four genes (proteasome subunit α4, L1 cell adhesion molecule, serine/threonine kinase receptor-associated protein and cytotoxic T-lymphocyte-associated protein 4) in the OVS-related module and two genes (calcium voltage-gated channel auxiliary subunit γ2 and γ-aminobutyric acid type B receptor subunit 2) in the metastasis-related module were selected as hub genes. Further research on the hub genes identified in the present study may contribute to the understanding of the mechanism of ES metastasis and progression.
Collapse
Affiliation(s)
- Ben Wang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Jie Li
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Xin Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Yunsheng Ou
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| |
Collapse
|
8
|
Braccia C, Tomati V, Caci E, Pedemonte N, Armirotti A. SWATH label-free proteomics for cystic fibrosis research. J Cyst Fibros 2018; 18:501-506. [PMID: 30348611 DOI: 10.1016/j.jcf.2018.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 01/05/2023]
Abstract
BACKGROUND Label-free proteomics is a powerful tool for biological investigation. The SWATH protocol, relying on the Pan Human ion library, currently represents the state-of-the-art methodology for this kind of analysis. We recently discovered that this tool is not perfectly suitable for proteomics research in the CF field, as it lacks assays for several proteins crucial for the CF biology, including CFTR. METHODS We extensively investigated the proteome of a very popular model for in vitro research on CF, CFBE41o-, and we used the corresponding data to improve the power of SWATH proteomics for CF investigation. We then used this improved tool to explore in depth the proteome of primary bronchial epithelial (BE) cells deriving from four CF individuals compared with that of four corresponding non-CF controls. By means of advanced bioinformatics tools, we outlined the presence of a number of protein networks being significantly altered by CF. RESULTS Our analysis on patients' BE cells identified 154 proteins dysregulated by the CF pathology (94 upregulated and 60 downregulated). Some known CFTR interactors are present among them, but our analysis also revealed the alteration of other proteins not previously known to be related with CF. CONCLUSIONS The present work outlines the power of SWATH label free proteomics applied to CF research.
Collapse
Affiliation(s)
- Clarissa Braccia
- D3Pharmachemistry, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; Dipartimento di Chimica, Università degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Valeria Tomati
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy
| | - Emanuela Caci
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy
| | - Nicoletta Pedemonte
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy
| | - Andrea Armirotti
- Analytical Chemistry Lab, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| |
Collapse
|
9
|
Egeler EL, Urner LM, Rakhit R, Liu CW, Wandless TJ. Ligand-switchable substrates for a ubiquitin-proteasome system. J Biol Chem 2011; 286:31328-36. [PMID: 21768107 DOI: 10.1074/jbc.m111.264101] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cellular maintenance of protein homeostasis is essential for normal cellular function. The ubiquitin-proteasome system (UPS) plays a central role in processing cellular proteins destined for degradation, but little is currently known about how misfolded cytosolic proteins are recognized by protein quality control machinery and targeted to the UPS for degradation in mammalian cells. Destabilizing domains (DDs) are small protein domains that are unstable and degraded in the absence of ligand, but whose stability is rescued by binding to a high affinity cell-permeable ligand. In the work presented here, we investigate the biophysical properties and cellular fates of a panel of FKBP12 mutants displaying a range of stabilities when expressed in mammalian cells. Our findings correlate observed cellular instability to both the propensity of the protein domain to unfold in vitro and the extent of ubiquitination of the protein in the non-permissive (ligand-free) state. We propose a model in which removal of stabilizing ligand causes the DD to unfold and be rapidly ubiquitinated by the UPS for degradation at the proteasome. The conditional nature of DD stability allows a rapid and non-perturbing switch from stable protein to unstable UPS substrate unlike other methods currently used to interrogate protein quality control, providing tunable control of degradation rates.
Collapse
Affiliation(s)
- Emily L Egeler
- Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, USA
| | | | | | | | | |
Collapse
|
10
|
Chen M, Zhao L, Sun YL, Cui SX, Zhang LF, Yang B, Wang J, Kuang TY, Huang F. Proteomic analysis of hydrogen photoproduction in sulfur-deprived Chlamydomonas cells. J Proteome Res 2010; 9:3854-66. [PMID: 20509623 DOI: 10.1021/pr100076c] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The green alga Chlamydomonas reinhardtii is a model organism to study H(2) metabolism in photosynthetic eukaryotes. To understand the molecular mechanism of H(2) metabolism, we used 2-DE coupled with MALDI-TOF and MALDI-TOF/TOF-MS to investigate proteomic changes of Chlamydomonas cells that undergo sulfur-depleted H(2) photoproduction process. In this report, we obtained 2-D PAGE soluble protein profiles of Chlamydomonas at three time points representing different phases leading to H(2) production. We found over 105 Coomassie-stained protein spots, corresponding to 82 unique gene products, changed in abundance throughout the process. Major changes included photosynthetic machinery, protein biosynthetic apparatus, molecular chaperones, and 20S proteasomal components. A number of proteins related to sulfate, nitrogen and acetate assimilation, and antioxidative reactions were also changed significantly. Other proteins showing alteration during the sulfur-depleted H(2) photoproduction process were proteins involved in cell wall and flagella metabolisms. In addition, among these differentially expressed proteins, 11 were found to be predicted proteins without functional annotation in the Chlamydomonas genome database. The results of this proteomic analysis provide new insight into molecular basis of H(2) photoproduction in Chlamydomonas under sulfur depletion.
Collapse
Affiliation(s)
- Mei Chen
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
The p53 tumor suppressor plays a pivotal role in multicellular organism by enforcing benefits of the organism over those of an individual cell. The task of p53 is to control the integrity and correctness of all processes in each individual cell and in the organism as a whole. Information about the state of ongoing events in the cell is gathered through multiple signaling pathways that convey signals modifying activities of p53. Changes in the activities depend on the character of damages or deviations from optimum in processes, and the activity of p53 changes depending on the degree of the aberration, which results in either stimulation of repair processes and protective mechanisms, or the cessation of further cell divisions and the induction of programmed cell death. The strategy of p53 ensures genetic identity of cells and prevents the selection of abnormal cells. By accomplishing these strategic tasks, p53 may use a wide spectrum of activities, such as its ability to function as a transcription factor, by inducing or repressing different genes, or as an enzyme, by acting as an exonuclease during DNA reparation, or as an adaptor or a regulatory protein, intervening into functions of numerous signaling pathways. Loss of function of the p53 gene occurs in virtually every case of cancer, and deficiency in p53 is an unavoidable prerequisite to the development of malignancies. The functions of p53 play substantial roles in many other pathologies as well as in the aging process. This review is focused on strategies of the p53 gene, demonstrating individual mechanisms underlying its functions.
Collapse
Affiliation(s)
- P M Chumakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| |
Collapse
|
12
|
Chaperone function in organic co-solvents: experimental characterization and modeling of a hyperthermophilic chaperone subunit from Methanocaldococcus jannaschii. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1784:368-78. [PMID: 18154740 DOI: 10.1016/j.bbapap.2007.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2007] [Revised: 10/25/2007] [Accepted: 11/16/2007] [Indexed: 11/21/2022]
Abstract
Molecular chaperones play a central role in maintaining protein structure within a cell. Previously, we determined that the gene encoding a molecular chaperone, a thermosome, from the hyperthermophilic archaeon Methanocaldococcus jannaschii is upregulated upon lethal heat shock. We have recombinantly expressed this thermosome (rTHS) and show here that it is both stable and fully functional in aqueous solutions containing water-miscible organic co-solvents. Based on circular dichroism the secondary structure of rTHS was not affected by one-hour exposures to a variety of co-solvents including 30% v/v acetonitrile (ACN) and 50% methanol (MeOH). By contrast, the secondary structure of a mesophilic homologue, GroEL/GroES (GroE), was substantially disrupted. rTHS reduced the aggregation of ovalbumin and citrate synthase in 30% ACN, assisted refolding of citrate synthase upon solvent-inactivation, and stabilized citrate synthase and glutamate dehydrogenase in the direct presence of co-solvents. Apparent total turnover numbers of these enzymes in denaturing solutions increased by up to 2.5-fold in the presence of rTHS. Mechanistic models are proposed to help ascertain specific conditions that could enhance or limit organic solvent-induced chaperone activity. These models suggest that thermodynamic stability and the reversibility of enzyme unfolding play key roles in the effectiveness of enzyme recovery by rTHS.
Collapse
|
13
|
Eisenlohr LC, Huang L, Golovina TN. Rethinking peptide supply to MHC class I molecules. Nat Rev Immunol 2007; 7:403-10. [PMID: 17457346 DOI: 10.1038/nri2077] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The notion that peptides bound to MHC class I molecules are derived mainly from newly synthesized proteins that are defective, and are therefore targeted for immediate degradation, has gained wide acceptance. This model, still entirely hypothetical, has strong intuitive appeal and is consistent with some experimental results, but it is strained by other findings, as well as by established and emerging concepts in protein quality control. While not discounting defectiveness as a driving force for the processing of some proteins, we propose that MHC-class-I-restricted epitopes are derived mainly from nascent proteins that are accessed by the degradation machinery prior to any assessment of fitness, and we outline one way in which this could be accomplished.
Collapse
Affiliation(s)
- Laurence C Eisenlohr
- Laurence C. Eisenlohr, Lan Huang and Tania N. Golovina are at the Thomas Jefferson University, Jefferson Medical College, Department of Microbiology and Immunology, Philadelphia, Philadelphia 19107, USA
| | | | | |
Collapse
|
14
|
Donohoe TJ, Sintim HO, Sisangia L, Ace KW, Guyo PM, Cowley A, Harling JD. Utility of the Ammonia-Free Birch Reduction of Electron-Deficient Pyrroles: Total Synthesis of the 20S Proteasome Inhibitor,clasto-Lactacystin β-Lactone. Chemistry 2005; 11:4227-38. [PMID: 15864801 DOI: 10.1002/chem.200401119] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A new synthesis of the 20S proteasome inhibitor clasto-lactacystin beta-lactone is described. Our route to this important natural product involves the partial reduction of an electron deficient pyrrole as a key step. By judicious choice of enolate counterion, we were able to exert complete control over the stereoselectivity of the reduction/aldol reaction. Early attempts to complete the synthesis by using a C-4 methyl substituted pyrrole are described in full, together with our attempts to promote regioselective elimination of a tertiary alcohol. The lessons learnt from this first approach led us to develop another, and ultimately successful, route that introduced the C-4 methyl group at a late stage in the synthesis. Our successful route is then described and this contains several highly stereoselective steps including a cis-dihydroxylation and an enolate methylation. The final synthesis proceeds in just 13 steps and in 15 % overall yield making it an extremely efficient route to this valuable compound.
Collapse
Affiliation(s)
- Timothy J Donohoe
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, UK
| | | | | | | | | | | | | |
Collapse
|