1
|
Fatma I, Sharma V, Thakur RC, Kumar A. Current trends in protein-surfactant interactions: A review. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
2
|
Jackson TW, Scheibly CM, Polera ME, Belcher SM. Rapid Characterization of Human Serum Albumin Binding for Per- and Polyfluoroalkyl Substances Using Differential Scanning Fluorimetry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12291-12301. [PMID: 34495656 PMCID: PMC8651256 DOI: 10.1021/acs.est.1c01200] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a diverse class of synthetic chemicals that accumulate in the environment. Many proteins, including the primary human serum transport protein albumin (HSA), bind PFAS. The predictive power of physiologically based pharmacokinetic modeling approaches is currently limited by a lack of experimental data defining albumin-binding properties for most PFAS. A novel thermal denaturation assay was optimized to evaluate changes in the thermal stability of HSA in the presence of increasing concentrations of known ligands and a structurally diverse set of PFAS. Assay performance was initially evaluated for fatty acids and HSA-binding drugs ibuprofen and warfarin. Concentration-response relationships were determined and dissociation constants (Kd) for each compound were calculated using regression analysis of the dose-dependent changes in HSA melting temperature. Estimated Kd values for HSA binding of octanoic acid, decanoic acid, hexadecenoic acid, ibuprofen, and warfarin agreed with established values. The binding affinities for 24 PFAS that included perfluoroalkyl carboxylic acids (C4-C12), perfluoroalkyl sulfonic acids (C4-C8), mono- and polyether perfluoroalkyl ether acids, and polyfluoroalkyl fluorotelomer substances were determined. These results demonstrate the utility of this differential scanning fluorimetry assay as a rapid high-throughput approach for determining the relative protein-binding properties and identification of chemical structures involved in binding for large numbers of structurally diverse PFAS.
Collapse
Affiliation(s)
- Thomas W Jackson
- Center for Human Health and The Environment Department of Biological Sciences, North Carolina State University, 127 David Clark Labs Campus, P.O. Box 7617, Raleigh, North Carolina 27695, United States
| | - Chris M Scheibly
- Center for Human Health and The Environment Department of Biological Sciences, North Carolina State University, 127 David Clark Labs Campus, P.O. Box 7617, Raleigh, North Carolina 27695, United States
| | - M E Polera
- Center for Human Health and The Environment Department of Biological Sciences, North Carolina State University, 127 David Clark Labs Campus, P.O. Box 7617, Raleigh, North Carolina 27695, United States
| | - Scott M Belcher
- Center for Human Health and The Environment Department of Biological Sciences, North Carolina State University, 127 David Clark Labs Campus, P.O. Box 7617, Raleigh, North Carolina 27695, United States
| |
Collapse
|
3
|
Rial R, González-Durruthy M, Liu Z, Ruso JM. Advanced Materials Based on Nanosized Hydroxyapatite. Molecules 2021; 26:3190. [PMID: 34073479 PMCID: PMC8198166 DOI: 10.3390/molecules26113190] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 02/02/2023] Open
Abstract
The development of new materials based on hydroxyapatite has undergone a great evolution in recent decades due to technological advances and development of computational techniques. The focus of this review is the various attempts to improve new hydroxyapatite-based materials. First, we comment on the most used processing routes, highlighting their advantages and disadvantages. We will now focus on other routes, less common due to their specificity and/or recent development. We also include a block dedicated to the impact of computational techniques in the development of these new systems, including: QSAR, DFT, Finite Elements of Machine Learning. In the following part we focus on the most innovative applications of these materials, ranging from medicine to new disciplines such as catalysis, environment, filtration, or energy. The review concludes with an outlook for possible new research directions.
Collapse
Affiliation(s)
- Ramón Rial
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (R.R.); (M.G.-D.)
| | - Michael González-Durruthy
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (R.R.); (M.G.-D.)
| | - Zhen Liu
- Department of Physics and Engineering, Frostburg State University, Frostburg, MD 21532, USA;
| | - Juan M. Ruso
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (R.R.); (M.G.-D.)
| |
Collapse
|
4
|
Rial R, Liu Z, Ruso JM. Soft Actuated Hybrid Hydrogel with Bioinspired Complexity to Control Mechanical Flexure Behavior for Tissue Engineering. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1302. [PMID: 32635193 PMCID: PMC7407768 DOI: 10.3390/nano10071302] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 01/16/2023]
Abstract
Hydrogels exhibit excellent properties that enable them as nanostructured scaffolds for soft tissue engineering. However, single-component hydrogels have significant limitations due to the low versatility of the single component. To achieve this goal, we have designed and characterized different multi-component hydrogels composed of gelatin, alginate, hydroxyapatite, and a protein (BSA and fibrinogen). First, we describe the surface morphology of the samples and the main characteristics of the physiological interplay by using fourier transform infrared (FT-IR), and confocal Raman microscopy. Then, their degradation and swelling were studied and mechanical properties were determined by rheology measurements. Experimental data were carefully collected and quantitatively analyzed by developing specific approaches and different theoretical models to determining the most important parameters. Finally, we determine how the nanoscale of the system influences its macroscopic properties and characterize the extent to which degree each component maintains its own functionality, demonstrating that with the optimal components, in the right proportion, multifunctional hydrogels can be developed.
Collapse
Affiliation(s)
- Ramón Rial
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Zhen Liu
- Department of Physics and Engineering, Frostburg State University, Frostburg, MD 21532, USA;
| | - Juan M. Ruso
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| |
Collapse
|
5
|
Shi Y, Wang J, Cai Y. A Highly Selective Extraction Approach for Per- and Polyfluoroalkyl Substances Based on Protein Affinity. Anal Chem 2020; 92:8675-8679. [DOI: 10.1021/acs.analchem.0c00458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yali Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China
| | - Juan Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| |
Collapse
|
6
|
Lu Z, Wang L, Xie H, Lei Q, Fang W, Lu X. Structural transitions of ovalbumin/κ-carrageenan complexes under the effects of pH and composition. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2020.110733] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Allendorf F, Berger U, Goss KU, Ulrich N. Partition coefficients of four perfluoroalkyl acid alternatives between bovine serum albumin (BSA) and water in comparison to ten classical perfluoroalkyl acids. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:1852-1863. [PMID: 31475719 DOI: 10.1039/c9em00290a] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Perfluoroalkyl acids (PFAAs) are persistent, ubiquitous environmental contaminants and their long-chain representatives are bioaccumulative. The phase-out of these compounds (e.g. PFOA and PFOS) shifted the production to alternatives. However, little is known about the bioaccumulative behaviour of the alternatives, which are still highly fluorinated. PFAAs are predominantly detected in blood, where they bind to the transport protein serum albumin. This sorption can be described by the albumin/water partition coefficient. It is unclear whether the partition coefficients of the alternatives are lower than or in the same range as those of classical PFAAs. We determined albumin/water partition coefficients for seven perfluoroalkyl carboxylates, three perfluoroalkane sulfonates and four alternatives by dialysis experiments in a physiologically representative system. Quantification was done by LC-MS/MS and a mass balance approach. Logarithmic albumin/water partition coefficients for PFAAs range from 2.8 to 4.8 [Lwater kgalbumin-1] and increase with increasing chain length. Perfluorinated sulfonates sorb more strongly than their carboxylate counterparts. The albumin/water partition coefficients for the alternatives (HFPO-DA, DONA, 9Cl-PF3ONS and PFECHS) are in the same range as for classical PFAAs. Structural modifications such as the introduction of ether groups into the chain do not reduce sorption to albumin, whereas the chlorine atom in 9Cl-PF3ONS seems to even increase the sorption to albumin. We further investigated whether the sorption strength could be affected in the presence of medium- or long-chain fatty acids. Binding competition between medium-chain fatty acids and PFAAs appeared to be possible. However, the presence of physiologically more relevant long-chain fatty acids should not alter the albumin/water partition coefficients of PFAAs.
Collapse
Affiliation(s)
- Flora Allendorf
- Department of Analytical Environmental Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, D-04318 Leipzig, Germany.
| | - Urs Berger
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, D-04318 Leipzig, Germany
| | - Kai-Uwe Goss
- Department of Analytical Environmental Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, D-04318 Leipzig, Germany. and Institute of Chemistry, University of Halle-Wittenberg, Kurt-Mothes-Strasse 2, D-06120 Halle, Germany
| | - Nadin Ulrich
- Department of Analytical Environmental Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, D-04318 Leipzig, Germany.
| |
Collapse
|
8
|
Characterization of the binding of per- and poly-fluorinated substances to proteins: A methodological review. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.05.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Srivastava R, Alam MS. Effect of pH and surfactant on the protein: A perspective from theory and experiments. Int J Biol Macromol 2018; 107:1519-1527. [DOI: 10.1016/j.ijbiomac.2017.10.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/04/2017] [Accepted: 10/04/2017] [Indexed: 11/16/2022]
|
10
|
Investigation of the interaction between FTO and 3-substituted 2-aminochromones by spectroscopy and molecular modeling. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1873-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
11
|
Zhang L, Ren T, Tian X, Wang Z, Yu W, Wang R, Chang J. Investigation of the Interaction between 1,3-Diazaheterocyclic Compounds and the Fat Mass and Obesity-Associated Protein by Fluorescence Spectroscopy and Molecular Modeling. J Fluoresc 2016; 27:369-378. [DOI: 10.1007/s10895-016-1965-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 10/19/2016] [Indexed: 11/28/2022]
|
12
|
Influence of the Ring Size on the Binding Ability of FTO Investigated by Fluorescence Spectroscopy. J Fluoresc 2015; 25:1655-61. [DOI: 10.1007/s10895-015-1652-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/09/2015] [Indexed: 10/23/2022]
|
13
|
Surfactant-Amino Acid and Surfactant-Surfactant Interactions in Aqueous Medium: a Review. Appl Biochem Biotechnol 2015; 176:2077-106. [PMID: 26160314 DOI: 10.1007/s12010-015-1712-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 06/09/2015] [Indexed: 10/23/2022]
Abstract
An overview of surfactant-amino acid interactions mainly in aqueous medium has been discussed. Main emphasis has been on the solution thermodynamics and solute-solvent interactions. Almost all available data on the topic has been presented in a lucid and simple way. Conventional surfactants have been discussed as amphiphiles forming micelles and amino acids as additives and their effect on the various physicochemical properties of these conventional surfactants. Surfactant-surfactant interactions in aqueous medium, various mixed surfactant models, are also highlighted to assess their interactions in aqueous medium. Finally, their applied part has been taken into consideration to interpret their possible uses.
Collapse
|
14
|
Hierrezuelo JM, Carnero Ruiz C. Exploring the affinity binding of alkylmaltoside surfactants to bovine serum albumin and their effect on the protein stability: A spectroscopic approach. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 53:156-65. [PMID: 26042703 DOI: 10.1016/j.msec.2015.04.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/23/2015] [Accepted: 04/21/2015] [Indexed: 12/18/2022]
Abstract
Steady-state and time-resolved fluorescence together with circular dichroism (CD) spectroscopic studies was performed to examine the interactions between bovine serum albumin (BSA) and two alkylmaltoside surfactants, i.e. n-decyl-β-D-maltoside (β-C10G2) and n-dodecyl-β-D-maltoside (β-C12G2), having identical structures but different tail lengths. Changes in the intrinsic fluorescence of BSA from static as well as dynamic measurements revealed a weak protein-surfactant interaction and gave the corresponding binding curves, suggesting that the binding mechanism of surfactants to protein is essentially cooperative in nature. The behavior of both surfactants is similar, so that the differences detected were attributed to the more hydrophobic nature of β-C12G2, which favors the adsorption of micelle-like aggregates onto the protein surface. These observations were substantially demonstrated by data derived from synchronous, three-dimensional and anisotropy fluorescence experiments. Changes in the secondary structure of the protein induced by the interaction with surfactants were analyzed by CD to determine the contents of α-helix and β-strand. It was noted that whereas the addition of β-C10G2 appears to stabilize the secondary structure of the protein, β-C12G2 causes a marginal denaturation of BSA for a protein:surfactant molar ratio as high as 1 to 100.
Collapse
Affiliation(s)
- J M Hierrezuelo
- Department of Applied Physics II, Engineering School, University of Malaga, 29071 Malaga, Spain
| | - C Carnero Ruiz
- Department of Applied Physics II, Engineering School, University of Malaga, 29071 Malaga, Spain.
| |
Collapse
|
15
|
Dasmandal S, Kundu A, Rudra S, Mahapatra A. Binding interaction of an anionic amino acid surfactant with bovine serum albumin: physicochemical and spectroscopic investigations combined with molecular docking study. RSC Adv 2015. [DOI: 10.1039/c5ra17254c] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Exploration of binding interaction between anionic amino acid surfactant and BSA.
Collapse
Affiliation(s)
| | - Arjama Kundu
- Department of Chemistry
- Jadavpur University
- Kolkata 700 032
- India
| | - Suparna Rudra
- Department of Chemistry
- Jadavpur University
- Kolkata 700 032
- India
| | | |
Collapse
|
16
|
Xia X, Dai Z, Rabearisoa AH, Zhao P, Jiang X. Comparing humic substance and protein compound effects on the bioaccumulation of perfluoroalkyl substances by Daphnia magna in water. CHEMOSPHERE 2015; 119:978-986. [PMID: 25303657 DOI: 10.1016/j.chemosphere.2014.09.034] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 09/05/2014] [Accepted: 09/08/2014] [Indexed: 06/04/2023]
Abstract
The influence of humic substances and protein compounds on the bioaccumulation of six types of perfluoroalkyl substances (PFASs) in Daphnia magna was compared. The humic substances included humic acid (HA) and fulvic acid (FA), the protein compounds included chicken egg albumin (albumin) and peptone, and the PFASs included perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid, perfluoroundecanoic acid, and perfluorododecanoic acid. Four concentrations (0, 1, 10, and 20 mg L(-1)) of the four dissolved organic matter (DOM) types were investigated. At the 1 mg L(-1) level, HA and albumin enhanced all tested PFAS bioaccumulation, whereas FA and peptone only enhanced the bioaccumulation of shorter-chain PFASs (PFOS, PFOA, and PFNA). However, all four DOM types decreased all tested PFAS bioaccumulation at the 20 mg L(-1) level, and the decreasing ratios of bioaccumulation factors caused by FA, HA, albumin, and peptone were 1-49%, 23-77%, 17-58%, and 8-56%, respectively compared with those without DOM. This is because DOM not only reduced the bioavailable concentrations and uptake rates of PFASs but also lowered the elimination rates of PFASs in D. magna, and these opposite effects would change with different DOM types and concentrations. Although the partition coefficients (L kg(-1)) of PFASs between HA and water (10(4.21)-10(4.98)) were much lower than those between albumin and water (10(4.92)-10(5.86)), their effects on PFAS bioaccumulation were comparable. This study suggests that although PFASs are a type of proteinophilic compounds, humic substances also have important effects on their bioavailability and bioaccumulation in aquatic organisms.
Collapse
Affiliation(s)
- Xinghui Xia
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China.
| | - Zhineng Dai
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China
| | - Andry Harinaina Rabearisoa
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China
| | - Pujun Zhao
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China
| | - Xiaoman Jiang
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China
| |
Collapse
|
17
|
Still M, Schlummer M, Gruber L, Fiedler D, Wolz G. Impact of industrial production and packaging processes on the concentration of per- and polyfluorinated compounds in milk and dairy products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:9052-9062. [PMID: 24000959 DOI: 10.1021/jf4020137] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Perfluorinated alkylated compounds (PFAA) have been identified in milk and dairy products at sub ppb levels, however, knowledge on the impact of industrial milk processing on PFAA levels is rare. This study examined industrial milk processing first by analytical screening of products of a cooperating dairy, which varied in kind and number of processing steps. Second, amounts of PFAA in raw milk, cream, skim milk, butter milk, and butter were mass balanced in industrial production. For migration testing, unpacked butter was sampled from the production and exposed to original packaging at 5 °C for 45 days. Screening identified dairy products with high fat contents to bear higher loads of PFAA. The mass balance of butter production revealed a significant impact of phase separation processes on concentrations in fat rich and aqueous phases. Storage of butter in packaging coated with a fluorinated polymer increased butter levels of both PFAA and FTOH.
Collapse
Affiliation(s)
- Mona Still
- Department of Product Safety and Analysis, Fraunhofer Institute Process Engineering and Packaging (IVV) , Giggenhauser Strasse 35, D-85354 Freising, Germany
| | | | | | | | | |
Collapse
|
18
|
Tong HF, Lin DQ, Gao D, Yuan XM, Yao SJ. Caprylate as the albumin-selective modifier to improve IgG purification with hydrophobic charge-induction chromatography. J Chromatogr A 2013; 1285:88-96. [DOI: 10.1016/j.chroma.2013.02.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 02/04/2013] [Accepted: 02/07/2013] [Indexed: 10/27/2022]
|
19
|
Bischel HN, Macmanus-Spencer LA, Zhang C, Luthy RG. Strong associations of short-chain perfluoroalkyl acids with serum albumin and investigation of binding mechanisms. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2011; 30:2423-30. [PMID: 21842491 DOI: 10.1002/etc.647] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Revised: 05/09/2011] [Accepted: 07/23/2011] [Indexed: 05/22/2023]
Abstract
Interactions of perfluoroalkyl acids (PFAAs) with tissue and serum proteins likely contribute to their tissue distribution and bioaccumulation patterns. Protein-water distribution coefficients (K(PW) ) based on ligand associations with bovine serum albumin (BSA) as a model protein were recently proposed as biologically relevant parameters to describe the environmental behavior of PFAAs, yet empirical data on such protein binding behavior are limited. In the present study, associations of perfluoroalkyl carboxylates (PFCAs) with two to 12 carbons (C₂-C₁₂) and perfluoroalkyl sulfonates with four to eight carbons (C₄, C₆, and C₈) with BSA are evaluated at low PFAA:albumin mole ratios and various solution conditions using equilibrium dialysis, nanoelectrospray ionization mass spectrometry, and fluorescence spectroscopy. Log K(PW) values for C₄ to C₁₂ PFAAs range from 3.3 to 4.3. Affinity for BSA increases with PFAA hydrophobicity but decreases from the C₈ to C₁₂ PFCAs, likely due to steric hindrances associated with longer and more rigid perfluoroalkyl chains. The C₄-sulfonate exhibits increased affinity relative to the equivalent chain-length PFCA. Fluorescence titrations support evidence that an observed dependence of PFAA-BSA binding on pH is attributable to conformational changes in the protein. Association constants determined for perfluorobutanesulfonate and perfluoropentanoate with BSA are on the order of those for long-chain PFAAs (K(a) ∼10⁶/M), suggesting that physiological implications of strong binding to albumin may be important for short-chain PFAAs.
Collapse
Affiliation(s)
- Heather N Bischel
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California, USA
| | | | | | | |
Collapse
|
20
|
Holstein MA, Parimal S, McCallum SA, Cramer SM. Mobile phase modifier effects in multimodal cation exchange chromatography. Biotechnol Bioeng 2011; 109:176-86. [DOI: 10.1002/bit.23318] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 08/01/2011] [Accepted: 08/17/2011] [Indexed: 11/11/2022]
|
21
|
Hebert PC, MacManus-Spencer LA. Development of a fluorescence model for the binding of medium- to long-chain perfluoroalkyl acids to human serum albumin through a mechanistic evaluation of spectroscopic evidence. Anal Chem 2010; 82:6463-71. [PMID: 20590160 DOI: 10.1021/ac100721e] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A novel model for measuring the strength of perfluoroalkyl acid (PFAA) binding to human serum albumin (HSA) by use of the protein's native fluorescence is described. The model is derived from published properties of HSA and its interactions with other surfactants; it is consistent with these properties and experimental observations. The model's validity has been tested with both medium- to long-chain PFAAs (perfluoroheptanoate, perfluorooctanoate, perfluorononanoate, perfluorodecanoate, perfluoroundecanoate, perfluorohexanesulfonate, and perfluorooctanesulfonate) and short-chain PFAAs (perfluorohexanoate and perfluorobutanesulfonate). These experiments confirm the model as a valid description for the binding of medium- to long-chain PFAAs to HSA. Results indicate at least 2-3 PFAAs bind to each protein with affinity on the order of 10(4) M(-1). These binding strengths exhibit a dependence on protein concentration. Measured PFAA binding constants are approximately 10% of those values reported for fatty acids of similar chain length; correcting for protein concentration suggests the binding strengths may be as low as 2-3% of the corresponding fatty acids' affinities. Like fatty acids, the carboxylate PFAAs exhibit a trend of generally increasing binding strength with increased chain length. The model does not appear valid for the binding of short-chain PFAAs to HSA. Hill binding coefficients, fluorescence intensity measurements, and wavelengths of maximum emission suggest short-chain PFAAs associate with HSA differently and fail to promote the same conformational changes in the protein's tertiary structure as the medium- to long-chain PFAAs.
Collapse
Affiliation(s)
- Paul C Hebert
- Department of Chemistry, Union College, Schenectady, New York 12308, USA
| | | |
Collapse
|
22
|
Bischel HN, Macmanus-Spencer LA, Luthy RG. Noncovalent interactions of long-chain perfluoroalkyl acids with serum albumin. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:5263-9. [PMID: 20540534 DOI: 10.1021/es101334s] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Preferential distribution of long-chain perfluoroalkyl acids (PFAAs) in the liver, kidney, and blood of organisms highlights the importance of PFAA-protein interactions in PFAA tissue distribution patterns. A serum protein association constant may be a useful parameter to characterize the bioaccumulative potential and in vivo bioavailability of PFAAs. In this work, association constants (K(a)) and binding stoichiometries for PFAA-albumin complexes are quantified over a wide range of PFAA:albumin mole ratios. Primary association constants for perfluorooctanoate (PFOA) or perfluorononanoate (PFNA) with the model protein bovine serum albumin (BSA) determined via equilibrium dialysis are on the order of 10(6) M(-1) with one to three primary binding sites. PFNA was greater than 99.9% bound to BSA or human serum albumin (HSA) at a physiological PFAA:albumin mole ratio (<10(-3)), corresponding to a high protein-water distribution coefficient (log K(PW) > 4). Nanoelectrospray ionization mass spectrometry (nanoESI-MS) data reveal PFAA-BSA complexes with up to eight occupied binding sites at a 4:1 PFAA:albumin mole ratio. Association constants estimated by nanoESI-MS are on the order of 10(5) M(-1) for PFOA and PFNA and 10(4) M(-1) for perfluorodecanoate and perfluorooctanesulfonate. The results reported here suggest binding through specific high affinity interactions at low PFAA:albumin mole ratios.
Collapse
Affiliation(s)
- Heather N Bischel
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, USA
| | | | | |
Collapse
|
23
|
MacManus-Spencer LA, Tse ML, Hebert PC, Bischel HN, Luthy RG. Binding of perfluorocarboxylates to serum albumin: a comparison of analytical methods. Anal Chem 2010; 82:974-81. [PMID: 20039637 DOI: 10.1021/ac902238u] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Perfluorochemicals are globally pervasive contaminants that are persistent, bioaccumulative, and toxic. Perfluorocarboxylic acids (PFCAs) with 8-13 carbons accumulate in the liver and blood of aquatic organisms; PFCA-protein interactions may explain this accumulation pattern. Here, the interactions between PFCAs with 8-11 carbons and serum albumin are examined using three experimental approaches: surface tension titrations, (19)F NMR spectroscopy, and fluorescence spectroscopy. Surface tension titrations indicate complex formation at high (mM) PFCA concentrations. Secondary association constants ranging from 10(2) to 10(4) M(-1) were determined from (19)F NMR titrations at high PFCA:albumin mole ratios. Fluorescence measurements indicate that PFCA-albumin interactions alter the protein conformation at low PFCA:albumin mole ratios (up to 5:1) and suggest two binding classes with association constants around 10(5) and 10(2) M(-1). While (19)F NMR and fluorescence provide both qualitative and quantitative information about PFCA-albumin interactions, surface tension provides only qualitative information. Limitations associated with instrumentation and methods require high PFCA concentrations in both surface tension and (19)F NMR experiments; in contrast, fluorescence allows for analysis of a wider range of PFCA concentrations and PFCA:albumin mole ratios. Results from this study indicate that fluorescence, though an indirect method, offers a more comprehensive picture of the nature of PFCA-albumin interactions.
Collapse
|
24
|
Contamination of food by fluorinated surfactants – Distribution in emulsions and impact on the interfacial protein behaviour. Food Hydrocoll 2009. [DOI: 10.1016/j.foodhyd.2008.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Lu RC, Cao AN, Lai LH, Xiao JX. Protein–surfactant interaction: Differences between fluorinated and hydrogenated surfactants. Colloids Surf B Biointerfaces 2008; 64:98-103. [DOI: 10.1016/j.colsurfb.2008.01.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 01/08/2008] [Accepted: 01/11/2008] [Indexed: 10/22/2022]
|
26
|
Effect of solvation on the structure conformation of human serum albumin in aqueous–alcohol mixed solvents. Chem Phys 2007. [DOI: 10.1016/j.chemphys.2007.07.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Ruiz CC, Hierrezuelo JM, Aguiar J, Peula-García JM. Physicochemical Studies on the Interaction between N-Decanoyl-N-methylglucamide and Bovine Serum Albumin. Biomacromolecules 2007; 8:2497-503. [PMID: 17630693 DOI: 10.1021/bm0704121] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The protein-surfactant system constituted by bovine serum albumin (BSA) and N-decanoyl-N-methylglucamide (MEGA-10) has been studied by using surface tension, steady-state fluorescence, and dynamic light scattering measurements. It was found that the presence of protein delays the surfactant aggregation, which was interpreted as a sign of binding between surfactant and protein. Binding studies were carried out by two different methods. First, a treatment based on surface tension measurements was used to obtain information on the number of surfactant molecules bound per protein molecule under saturation conditions. Second, the binding curve for the BSA/MEGA-10 system was determined by examining the behavior of the intrinsic BSA fluorescence upon the surfactant addition. Both approaches indicate that the binding process is essentially cooperative in nature. The results of the aggregation numbers of MEGA-10 micelles, as well as those of resonance energy transfer from tryptophan residues to 8-anilinonaphthalene-1-sulfonate, corroborate the formation of micelle-like aggregates of surfactants, smaller than the free micelles, adsorbed on the protein surface. The dynamic light scattering results were not conclusive, in the sense that it was not possible to discriminate between protein-surfactant complexes and free micelles. However, the overall results suggest the formation of "pearl necklace" complexes in equilibrium with the free micelles of the surfactant.
Collapse
Affiliation(s)
- C Carnero Ruiz
- Grupo de Fluidos Estructurados y Sistemas Anfifílicos, Departamento de Física Aplicada II, Escuela Universitaria Politécnica, Universidad de Málaga, Campus de El Ejido, 29013 Málaga, Spain.
| | | | | | | |
Collapse
|
28
|
Wu D, Xu G, Sun Y, Zhang H, Mao H, Feng Y. Interaction between Proteins and Cationic Gemini Surfactant. Biomacromolecules 2007; 8:708-12. [PMID: 17291096 DOI: 10.1021/bm061033v] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Surface tension, fluorescence, and circular dichroism (CD) methods have been used to investigate the interaction between cationic gemini surfactant 1,2-ethane bis(dimethyldodecylammonium bromide) (C12C2C12) and proteins including bovine serum albumin (BSA) and gelatin. Surface tension measurements show that the complexes of gelatin--C12C2C12 form more easily than that of BSA--C12C2C12. Addition of C12C2C12 has a different effect not only on the polarity of the microenvironment in BSA and gelatin systems but also on their fluorescence spectra. It can be seen from far-UV CD spectra that the alpha-helical network of BSA is disrupted and its content decreases from 41.7% to 27.6% while the random coil content of gelatin increases from 53.0% to 55.9% with increasing C12C2C12 concentration. The results from near-UV CD spectra show that the binding of C12C2C12 induces changes of the microenvironment around the aromatic amino acid residues and disulfide bonds of BSA at high C12C2C12 concentrations.
Collapse
Affiliation(s)
- Dan Wu
- Key Laboratory of Colloid & Interface Chemistry, Shandong University, Education Ministry, Jinan 250100, PR China
| | | | | | | | | | | |
Collapse
|