1
|
Aerts A, Vovchenko M, Elahi SA, Viñuelas RC, De Maeseneer T, Purino M, Hoogenboom R, Van Oosterwyck H, Jonkers I, Cardinaels R, Smet M. A Spontaneous In Situ Thiol-Ene Crosslinking Hydrogel with Thermo-Responsive Mechanical Properties. Polymers (Basel) 2024; 16:1264. [PMID: 38732733 PMCID: PMC11085619 DOI: 10.3390/polym16091264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
The thermo-responsive behavior of Poly(N-isopropylacrylamide) makes it an ideal candidate to easily embed cells and allows the polymer mixture to be injected. However, P(NiPAAm) hydrogels possess minor mechanical properties. To increase the mechanical properties, a covalent bond is introduced into the P(NIPAAm) network through a biocompatible thiol-ene click-reaction by mixing two polymer solutions. Co-polymers with variable thiol or acrylate groups to thermo-responsive co-monomer ratios, ranging from 1% to 10%, were synthesized. Precise control of the crosslink density allowed customization of the hydrogel's mechanical properties to match different tissue stiffness levels. Increasing the temperature of the hydrogel above its transition temperature of 31 °C induced the formation of additional physical interactions. These additional interactions both further increased the stiffness of the material and impacted its relaxation behavior. The developed optimized hydrogels reach stiffnesses more than ten times higher compared to the state of the art using similar polymers. Furthermore, when adding cells to the precursor polymer solutions, homogeneous thermo-responsive hydrogels with good cell viability were created upon mixing. In future work, the influence of the mechanical micro-environment on the cell's behavior can be studied in vitro in a continuous manner by changing the incubation temperature.
Collapse
Affiliation(s)
- Andreas Aerts
- Laboratory of Organic Material Synthesis, Polymer Chemistry and Materials, Department of Chemistry, KU Leuven, Celestijnenlaan 200f, P.O. Box 2404, 3001 Leuven, Belgium;
| | - Maxim Vovchenko
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Celestijnenlaan 300C, P.O. Box 2419, 3001 Leuven, Belgium
- Laboratory for Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, P.O. Box 2416, 3001 Leuven, Belgium
| | - Seyed Ali Elahi
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Celestijnenlaan 300C, P.O. Box 2419, 3001 Leuven, Belgium
- Human Movement Biomechanics Research Group, Department of Movement Sciences, KU Leuven Tervuursevest 101, P.O. Box 1501, 3001 Leuven, Belgium
| | - Rocío Castro Viñuelas
- Human Movement Biomechanics Research Group, Department of Movement Sciences, KU Leuven Tervuursevest 101, P.O. Box 1501, 3001 Leuven, Belgium
- Laboratory for Tissue Homeostasis and Disease, Department of Development and Regeneration, KU Leuven, Herestraat 49, P.O. Box 813, 3000 Leuven, Belgium
| | - Tess De Maeseneer
- Rheology and Technology, Soft Matter, Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200J, P.O. Box 2424, 3001 Leuven, Belgium
| | - Martin Purino
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry, UGent, Krijgslaan 281, Building S4, 9000 Ghent, Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry, UGent, Krijgslaan 281, Building S4, 9000 Ghent, Belgium
| | - Hans Van Oosterwyck
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Celestijnenlaan 300C, P.O. Box 2419, 3001 Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Herestraat 49, P.O. Box 813, 3000 Leuven, Belgium
| | - Ilse Jonkers
- Human Movement Biomechanics Research Group, Department of Movement Sciences, KU Leuven Tervuursevest 101, P.O. Box 1501, 3001 Leuven, Belgium
| | - Ruth Cardinaels
- Rheology and Technology, Soft Matter, Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200J, P.O. Box 2424, 3001 Leuven, Belgium
| | - Mario Smet
- Laboratory of Organic Material Synthesis, Polymer Chemistry and Materials, Department of Chemistry, KU Leuven, Celestijnenlaan 200f, P.O. Box 2404, 3001 Leuven, Belgium;
| |
Collapse
|
2
|
Haroon B, Sohail M, Minhas MU, Mahmood A, Hussain Z, Ahmed Shah S, Khan S, Abbasi M, Kashif MUR. Nano-residronate loaded κ-carrageenan-based injectable hydrogels for bone tissue regeneration. Int J Biol Macromol 2023; 251:126380. [PMID: 37595715 DOI: 10.1016/j.ijbiomac.2023.126380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/10/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
Bone tissue possesses intrinsic regenerative capabilities to address deformities; however, its ability to repair defects caused by severe fractures, tumor resections, osteoporosis, joint arthroplasties, and surgical reconsiderations can be hindered. To address this limitation, bone tissue engineering has emerged as a promising approach for bone repair and regeneration, particularly for large-scale bone defects. In this study, an injectable hydrogel based on kappa-carrageenan-co-N-isopropyl acrylamide (κC-co-NIPAAM) was synthesized using free radical polymerization and the antisolvent evaporation technique. The κC-co-NIPAAM hydrogel's cross-linked structure was confirmed using Fourier transform infrared spectra (FTIR) and nuclear magnetic resonance (1H NMR). The hydrogel's thermal stability and morphological behavior were assessed using thermogravimetric analysis (TGA) and scanning electron microscopy (SEM), respectively. Swelling and in vitro drug release studies were conducted at varying pH and temperatures, with minimal swelling and release observed at low pH (1.2) and 25 °C, while maximum swelling and release occurred at pH 7.4 and 37oC. Cytocompatibility analysis revealed that the κC-co-NIPAAM hydrogels were biocompatible, and hematoxylin and eosin (H&E) staining demonstrated their potential for tissue regeneration and enhanced bone repair compared to other experimental groups. Notably, digital x-ray examination using an in vivo bone defect model showed that the κC-co-NIPAAM hydrogel significantly improved bone regeneration, making it a promising candidate for bone defects.
Collapse
Affiliation(s)
- Bilal Haroon
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan
| | - Muhammad Sohail
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan; Faculty of Pharmacy, Cyprus International University, Nicosia 99258, North Cyprus.
| | | | - Arshad Mahmood
- Collage of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates; AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Zahid Hussain
- Department of Pharmaceutics & Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Syed Ahmed Shah
- Department of Biosystems and Soft Matters, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland; Faculty of Pharmacy, Superior University, Lahore, Pakistan
| | - Shahzeb Khan
- Center of Pharmaceutical Engineering Science (CPES), School of Pharmacy and Biomedical Science, University of Bradford, BD7,1DP, United Kingdom
| | - Mudassir Abbasi
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan
| | | |
Collapse
|
3
|
Pal A, Blanzy J, Gómez KJR, Preul MC, Vernon BL. Liquid Embolic Agents for Endovascular Embolization: A Review. Gels 2023; 9:gels9050378. [PMID: 37232970 DOI: 10.3390/gels9050378] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/11/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023] Open
Abstract
Endovascular embolization (EE) has been used for the treatment of blood vessel abnormalities, including aneurysms, AVMs, tumors, etc. The aim of this process is to occlude the affected vessel using biocompatible embolic agents. Two types of embolic agents, solid and liquid, are used for endovascular embolization. Liquid embolic agents are usually injectable and delivered into the vascular malformation sites using a catheter guided by X-ray imaging (i.e., angiography). After injection, the liquid embolic agent transforms into a solid implant in situ based on a variety of mechanisms, including polymerization, precipitation, and cross-linking, through ionic or thermal process. Until now, several polymers have been designed successfully for the development of liquid embolic agents. Both natural and synthetic polymers have been used for this purpose. In this review, we discuss embolization procedures with liquid embolic agents in different clinical applications, as well as in pre-clinical research studies.
Collapse
Affiliation(s)
- Amrita Pal
- Center for Interventional Biomaterials, School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Jeffrey Blanzy
- Center for Interventional Biomaterials, School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Karime Jocelyn Rosas Gómez
- Center for Interventional Biomaterials, School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Mark C Preul
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Brent L Vernon
- Center for Interventional Biomaterials, School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
4
|
Emerging Polymer Materials in Trackable Endovascular Embolization and Cell Delivery: From Hype to Hope. Biomimetics (Basel) 2022; 7:biomimetics7020077. [PMID: 35735593 PMCID: PMC9221114 DOI: 10.3390/biomimetics7020077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023] Open
Abstract
Minimally invasive endovascular embolization is a widely used clinical technique used for the occlusion of blood vessels to treat various diseases. Different occlusive agents ranging from gelatin foam to synthetic polymers such as poly(vinyl alcohol) (PVA) have been commercially used for embolization. However, these agents have some drawbacks, such as undesired toxicity and unintended and uncontrolled occlusion. To overcome these issues, several polymer-based embolic systems are under investigation including biocompatible and biodegradable microspheres, gelling liquid embolic with controlled occlusive features, and trackable microspheres with enhanced safety profiles. This review aims to summarize recent advances in current and emerging polymeric materials as embolization agents with varying material architectures. Furthermore, this review also explores the potential of combining injectable embolic agents and cell therapy to achieve more effective embolization with the promise of outstanding results in treating various devastating diseases. Finally, limitations and challenges in developing next-generation multifunctional embolic agents are discussed to promote advancement in this emerging field.
Collapse
|
5
|
Overstreet DJ, Lee EJ, Pal A, Vernon BL. In situ crosslinking temperature-responsive hydrogels with improved delivery, swelling, and elasticity for endovascular embolization. J Biomed Mater Res B Appl Biomater 2022; 110:1911-1921. [PMID: 35262274 DOI: 10.1002/jbm.b.35048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 02/02/2022] [Accepted: 02/22/2022] [Indexed: 11/11/2022]
Abstract
Endovascular embolization of cerebral aneurysms is a common approach for reducing the risk of often-fatal hemorrhage. However, currently available materials used to occlude these aneurysms provide incomplete filling (coils) or require a complicated, time-consuming delivery procedure (solvent-exchange precipitating polymers). The objective of this work was to develop an easily deliverable in situ forming hydrogel that can occlude the entire volume of an aneurysm. The hydrogel is formed by mixing a solution of a temperature-responsive polymer containing pendent thiol groups (poly(NIPAAm-co-cysteamine) or poly(NIPAAm-co-cysteamine-co-JAAm)) with a solution of poly(ethylene glycol) diacrylate (PEGDA). Incorporation of hydrophilic grafts of polyetheramine acrylamide (JAAm) in the temperature-responsive polymer caused weaker physical crosslinking, facilitated faster and more complete chemical crosslinking, and increased gel swelling. One formulation (30 wt % PNCJ20 + PEGDA) could be delivered for over 220 s after mixing, formed a strong and elastic hydrogel (G' > 6000 Pa) within 30 min and once set, maintained its shape and volume in a model aneurysm under flow. This gel represents a promising candidate water-based material utilizing both physical and chemical crosslinking that warrants further investigation as an embolic agent for saccular aneurysms.
Collapse
Affiliation(s)
- Derek J Overstreet
- School of Biological and Health Systems Engineering, Center for Interventional Biomaterials, Arizona State University, Tempe, Arizona, USA
| | - Elizabeth J Lee
- School of Biological and Health Systems Engineering, Center for Interventional Biomaterials, Arizona State University, Tempe, Arizona, USA
| | - Amrita Pal
- School of Biological and Health Systems Engineering, Center for Interventional Biomaterials, Arizona State University, Tempe, Arizona, USA
| | - Brent L Vernon
- School of Biological and Health Systems Engineering, Center for Interventional Biomaterials, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
6
|
Ijaz U, Sohail M, Usman Minhas M, Khan S, Hussain Z, Kazi M, Ahmed Shah S, Mahmood A, Maniruzzaman M. Biofunctional Hyaluronic Acid/κ-Carrageenan Injectable Hydrogels for Improved Drug Delivery and Wound Healing. Polymers (Basel) 2022; 14:376. [PMID: 35160366 PMCID: PMC8840380 DOI: 10.3390/polym14030376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 01/24/2023] Open
Abstract
The in situ injectable hydrogel system offers a widespread range of biomedical applications in prompt chronic wound treatment and management, as it provides self-healing, maintains a moist wound microenvironment, and offers good antibacterial properties. This study aimed to develop and evaluate biopolymer-based thermoreversible injectable hydrogels for effective wound-healing applications and the controlled drug delivery of meropenem. The injectable hydrogel was developed using the solvent casting method and evaluated for structural changes using proton nuclear magnetic resonance, Fourier transforms infrared spectroscopy, thermogravimetric analysis, and scanning electron microscopy. The results indicated the self-assembly of hyaluronic acid and kappa-carrageenan and the thermal stability of the fabricated injectable hydrogel with tunable gelation properties. The viscosity assessment indicated the in-situ gelling ability and injectability of the hydrogels at various temperatures. The fabricated hydrogel was loaded with meropenem, and the drug release from the hydrogel in phosphate buffer saline (PBS) with a pH of 7.4 was 96.12%, and the simulated wound fluid with a pH of 6.8 was observed to be at 94.73% at 24 h, which corresponds to the sustained delivery of meropenem. Antibacterial studies on P. aeruginosa, S. aureus, and E. coli with meropenem-laden hydrogel showed higher zones of inhibition. The in vivo studies in Sprague Dawley (SD) rats presented accelerated healing with the drug-loaded injectable hydrogel, while 90% wound closure with the unloaded injectable hydrogel, 70% in the positive control group (SC drug), and 60% in the negative control group was observed (normal saline) after fourteen days. In vivo wound closure analysis confirmed that the developed polymeric hydrogel has synergistic wound-healing potential.
Collapse
Affiliation(s)
- Uzma Ijaz
- Department of Pharmacy, Abbottabad Campus, COMSATS University Islamabad, Abbottabad 22010, Pakistan; (U.I.); (S.A.S.)
| | - Muhammad Sohail
- Department of Pharmacy, Abbottabad Campus, COMSATS University Islamabad, Abbottabad 22010, Pakistan; (U.I.); (S.A.S.)
| | | | - Shahzeb Khan
- Department of Pharmacy, University of Malakand, Chakdara 18800, Pakistan;
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Zahid Hussain
- Department of Pharmaceutics & Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Research Institute for Medical and Health Sciences (SIMHR), University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Syed Ahmed Shah
- Department of Pharmacy, Abbottabad Campus, COMSATS University Islamabad, Abbottabad 22010, Pakistan; (U.I.); (S.A.S.)
- Department of Pharmaceutical Sciences, The Superior University, Lahore 54600, Pakistan
| | - Arshad Mahmood
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates;
| | - Mohammed Maniruzzaman
- Division of Molecular Pharmaceutics and Drug Delivery, Department of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA;
| |
Collapse
|
7
|
Lu D, Chen M, Yu L, Chen Z, Guo H, Zhang Y, Han Z, Xu T, Wang H, Zhou X, Zhou Z, Teng G. Smart-Polypeptide-Coated Mesoporous Fe 3O 4 Nanoparticles: Non-Interventional Target-Embolization/Thermal Ablation and Multimodal Imaging Combination Theranostics for Solid Tumors. NANO LETTERS 2021; 21:10267-10278. [PMID: 34878286 DOI: 10.1021/acs.nanolett.1c03340] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Tumor theranostics hold great potential for personalized medicine in the future, and transcatheter arterial embolization (TAE) is an important clinical treatment for unresectable or hypervascular tumors. In order to break the limitation, simplify the procedure of TAE, and achieve ideal combinatorial theranostic capability, here, a kind of triblock-polypeptide-coated perfluoropentane-loaded mesoporous Fe3O4 nanocomposites (PFP-m-Fe3O4@PGTTCs) were prepared for non-interventional target-embolization, magnetic hyperthermia, and multimodal imaging combination theranostics of solid tumors. The results of systematic animal experiments by H22-tumor-bearing mice and VX2-tumor-bearing rabbits in vivo indicated that PFP-m-Fe3O4@PGTTC-6.3 has specific tumor accumulation and embolization effects. The tumors' growth has been inhibited and the tumors disappeared 4 weeks and ≤15 days post-injection with embolization and magnetic hyperthermia combination therapy, respectively. The results also showed an excellent effect of magnetic resonance/ultrasound/SPECT multimodal imaging. This pH-responsive non-interventional embolization combinatorial theranostics system provides a novel embolization and multifunctional theranostic candidate for solid tumors.
Collapse
Affiliation(s)
- Dedai Lu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Mingshu Chen
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Lili Yu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Zhengpeng Chen
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Hongyun Guo
- Institute of Gansu Medical Science Research, Gansu Provincial Cancer Hospital, Lanzhou, 730050, China
| | - Yongdong Zhang
- Institute of Gansu Medical Science Research, Gansu Provincial Cancer Hospital, Lanzhou, 730050, China
| | - Zhiming Han
- Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Tingting Xu
- Zhongda Hospital Southeast University, Jiangsu Key Laboratory of Molecular Imaging and Function Imaging, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Haijun Wang
- Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Xing Zhou
- Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Zubang Zhou
- Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Gaojun Teng
- Zhongda Hospital Southeast University, Jiangsu Key Laboratory of Molecular Imaging and Function Imaging, School of Medicine, Southeast University, Nanjing, 210009, China
| |
Collapse
|
8
|
Kim S, Nowicki KW, Gross BA, Wagner WR. Injectable hydrogels for vascular embolization and cell delivery: The potential for advances in cerebral aneurysm treatment. Biomaterials 2021; 277:121109. [PMID: 34530233 DOI: 10.1016/j.biomaterials.2021.121109] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 12/11/2022]
Abstract
Cerebral aneurysms are vascular lesions caused by the biomechanical failure of the vessel wall due to hemodynamic stress and inflammation. Aneurysmal rupture results in subarachnoid hemorrhage often leading to death or disability. Current treatment options include open surgery and minimally invasive endovascular options aimed at secluding the aneurysm from the circulation. Cerebral aneurysm embolization with appropriate materials is a therapeutic approach to prevent rupture and the resultant clinical sequelae. Metallic platinum coils are a typical, practical option to embolize cerebral aneurysms. However, the development of an alternative treatment modality is of interest because of poor occlusion permanence, coil migration, and coil compaction. Moreover, minimizing the implanted foreign materials during therapy is of importance not just to patients, but also to clinicians in the event an open surgical approach has to be pursued in the future. Polymeric injectable hydrogels have been investigated for transcatheter embolization and cell therapy with the potential for permanent aneurysm repair. This review focuses on how the combination of injectable embolic biomaterials and cell therapy may achieve minimally invasive remodeling of a degenerated cerebral artery with promise for superior outcomes in treatment of this devastating disease.
Collapse
Affiliation(s)
- Seungil Kim
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kamil W Nowicki
- Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bradley A Gross
- Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - William R Wagner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
9
|
Zhan Y, Fu W, Xing Y, Ma X, Chen C. Advances in versatile anti-swelling polymer hydrogels. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112208. [PMID: 34225860 DOI: 10.1016/j.msec.2021.112208] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 12/20/2022]
Abstract
Swelling is ubiquitous for traditional as-prepared hydrogels, but is unfavorable in many situations, especially biomedical applications, such as tissue engineering, internal wound closure, soft actuating and bioelectronics, and so forth. As the swelling of a hydrogel usually leads to a volume expansion, which not only deteriorates the mechanical property of the hydrogel but can bring about undesirable oppression on the surrounding tissues when applied in vivo. In contrast, anti-swelling hydrogels hardly alter their volume when applied in aqueous environment, therefore reserving the original mechanical performance and size-stability and facilitating their potential application. In the past decade, with the development of advanced hydrogels, quite a number of anti-swelling hydrogels with versatile functions have been developed by researchers to meet the practical applications well, through integrating anti-swelling property with certain performance or functionality, such as high strength, self-healing, injectability, adhesiveness, antiseptics, etc. However, there has not been a general summary with regard to these hydrogels. To promote the construction of anti-swelling hydrogels with desirable functionalities in the future, this review generalizes and analyzes the tactics employed so far in the design and manufacture of anti-swelling hydrogels, starting from the viewpoint of classical swelling theories. The review will provide a relatively comprehensive understanding of anti-swelling hydrogels and clues to researchers interested in this kind of materials to develop more advanced ones suitable for practical application.
Collapse
Affiliation(s)
- Yiwei Zhan
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China
| | - Wenjiao Fu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, PR China.
| | - Yacheng Xing
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China.
| | - Xiaomei Ma
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, PR China.
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, PR China.
| |
Collapse
|
10
|
Kumar A, Nutan B, Jewrajka SK. Modulation of Properties through Covalent Bond Induced Formation of Strong Ion Pairing between Polyelectrolytes in Injectable Conetwork Hydrogels. ACS APPLIED BIO MATERIALS 2021; 4:3374-3387. [PMID: 35014422 DOI: 10.1021/acsabm.0c01673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In situ simultaneous formation of both covalent linkages and ion pair is challenging yet necessary to control the biological properties of a hydrogel. We report that the generation of covalent linkages (+N-C) facilitates the simultaneous formation of ion pairs between polyelectrolytes (PEs) in a hydrogel network. Co-injection of tertiary amine functional macromolecules and reactive poly(ethylene glycol) (PEG) containing negatively charged PE leads to the formation of hydrogel conetworks consisting of covalent junctions and ion pairs. Our design is based on the gradual appearance of +N-C junctions followed by formation of ion pairs. This strategy provides an easy access to hydrogel networks bearing a predetermined proportion of ion pair and covalent cross-linking junction. The proportion of ion pair could be varied by introducing a precalculated proportion of mono- and difunctional reactive PEG in the hydrogel system. The topology of the prepolymer and the hydrogel could be modulated (graft) during hydrogel formation. This approach is applicable to obtain covalent/ionic, covalent bond induced purely ionic, and purely covalent hydrogels of several macromolecular entities. The effect of ion pairing in the hydrogels is strongly reflected in the modulus, strain bearing, degradation, free volume, swelling, and drug release properties. The hydrogels exhibit microscopic recovery of modulus after application of high amplitude strain depending on the prepolymer concentration (chain entanglement) and nature of hydrogel network. The hydrogels are hemocompatible, and the covalent/ionic hydrogels show a slower release of methotrexate than that of the purely covalent hydrogel. This work provides an understanding for the in situ construction and manipulation of biological properties of hydrogels through the covalent bond induced formation of a strong ion pair.
Collapse
Affiliation(s)
- Avinash Kumar
- Membrane Science and Separation Technology Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G.B. Marg, Bhavnagar, Gujarat 364002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bhingaradiya Nutan
- Membrane Science and Separation Technology Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G.B. Marg, Bhavnagar, Gujarat 364002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Suresh K Jewrajka
- Membrane Science and Separation Technology Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G.B. Marg, Bhavnagar, Gujarat 364002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
11
|
Yang R, Ren Y, Maingard J, Thijs V, Le DVA, Kok HK, Lee MJ, Hirsch JA, Chandra RV, Brooks DM, Asadi H. The 100 most cited articles in the endovascular treatment of brain arteriovenous malformations. Brain Circ 2021; 7:49-64. [PMID: 34189347 PMCID: PMC8191531 DOI: 10.4103/bc.bc_46_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/20/2020] [Accepted: 01/15/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The literature base for endovascular treatment of brain arteriovenous malformations (BAVMs) has grown exponentially in recent decades. Bibliometric analysis has been used to identify impactful articles in other medical specialties. The aim of this citation analysis was to identify and characterize the top 100 most cited articles in the field of endovascular BAVM treatment. METHODS The top-cited papers were identified by searching selected keywords ("endovascular treatment," "interventional treatment," "brain arteriovenous malformation," "emboliz(s)ation") on the Web of Science platform. The top 100 articles were ranked according to their number of citations. Each article was further evaluated to obtain predefined characteristics including citation(s) per year, year of publication, authorship, journal-title and impact factor, article topics, article type, and level of evidence. RESULTS The top 100 most cited articles for endovascular BAVM treatment were published between 1960 and 2014. The total number of citations for these articles ranged from 56 to 471 (median 85.5). Most articles (76%) were published between 1990 and 2009 in three journals (56%), originated in the USA (52%) followed by France (16%). The most common topic related to embolization agents and the majority of articles constituted level IV or V evidence. CONCLUSIONS This study provides a comprehensive overview of the most cited articles in the field of endovascular BAVM treatment. Our analysis recognizes key contributions from authors and institutions in the field and leads to a better understanding of the evidentiary framework for BAVM treatment.
Collapse
Affiliation(s)
- Runlin Yang
- Department of Radiology, Austin Hospital, Australia
| | - Yifan Ren
- Interventional Radiology Service, Department of Radiology, Austin Hospital, Australia
| | - Julian Maingard
- Interventional Radiology Service, Department of Radiology, Austin Hospital, Australia
- Interventional Neuroradiology Service, Department of Radiology, Austin Hospital, Australia
- School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Australia
| | - Vincent Thijs
- Stroke Division, The Florey Institute of Neuroscience and Mental Health, Monash University, Melbourne, Australia
| | - Dustin Viet Anh Le
- Interventional Neuroradiology Service, Monash Health, Monash University, Melbourne, Australia
| | - Hong Kuan Kok
- Department of Interventional Radiology, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Michael J Lee
- Department of Interventional Radiology, Beaumont Hospital and Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Joshua A Hirsch
- Interventional Neuroradiology Service, Massachusetts General Hospital, Boston, USA
| | - Ronil V Chandra
- Stroke Division, The Florey Institute of Neuroscience and Mental Health, Monash University, Melbourne, Australia
| | - Duncan Mark Brooks
- Interventional Radiology Service, Department of Radiology, Austin Hospital, Australia
- Stroke Division, The Florey Institute of Neuroscience and Mental Health, Monash University, Melbourne, Australia
| | - Hamed Asadi
- Interventional Neuroradiology Service, Department of Radiology, Austin Hospital, Australia
- School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Australia
| |
Collapse
|
12
|
Lu D, Wang J, Li Y, Zhang Y, Yu L, Xu T, Guo H, Zhang Y, Wang X, Wang X, Teng G, Lei Z. Tumor Noninvasive and Target Embolization Therapy Platform by Intravenous Injection Based on Acidic Microenvironment-Responsive Hyperbranched Poly(amino acid)s. ACS CENTRAL SCIENCE 2020; 6:1977-1986. [PMID: 33274275 PMCID: PMC7706070 DOI: 10.1021/acscentsci.0c00506] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Indexed: 05/05/2023]
Abstract
Transcatheter arterial embolization (TAE) has been widely applied in treatments of unresectable or hypervascular tumors, but the procedure of TAE is complicated possibly brings inherent risks. Here, inspired by pH-responsive drug delivery systems, a new method of noninvasive and target embolization therapy by intravenous injection was developed. This method is based on a type of acidic microenvironment-responsive hyperbranched poly(amino acid) (HPTTG) to avoid using catheterization and real-time image guidance angiography, simplifying the procedure, elevating compliance and general applicability of embolization therapy. The pH value of the sol-to-gel phase transition with decreasing pH of HPTTG was controlled by adjusting the ratio of acidic amino acids in copolymers. The results of the tumor-bearing animal experiment indicate that the HPTTG have an excellent target and embolic ability; they accumulate the most at the tumor site in 8 h postinjection. Blood vessels of the tumors were occluded, and the tumors were inhibited and necrotized in about 20 days. Therefore, it is expected that HPTTG not only can be used as novel embolic materials for efficient noninvasive embolization therapy of many solid tumors but also can be used as a multifunctional platform for combined theranostics, for example, combination with controlled release, thermal ablation, multimodal imaging, synergistic therapy, etc.
Collapse
Affiliation(s)
- Dedai Lu
- Key
Laboratory of Eco-Functional Polymer Materials of the Ministry of
Education, Key Laboratory of Eco-Environmental Polymer Materials of
Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Jiachen Wang
- Key
Laboratory of Eco-Functional Polymer Materials of the Ministry of
Education, Key Laboratory of Eco-Environmental Polymer Materials of
Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yunfei Li
- Key
Laboratory of Eco-Functional Polymer Materials of the Ministry of
Education, Key Laboratory of Eco-Environmental Polymer Materials of
Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yongyong Zhang
- Key
Laboratory of Eco-Functional Polymer Materials of the Ministry of
Education, Key Laboratory of Eco-Environmental Polymer Materials of
Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Lili Yu
- Key
Laboratory of Eco-Functional Polymer Materials of the Ministry of
Education, Key Laboratory of Eco-Environmental Polymer Materials of
Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Tingting Xu
- Jiangsu
Key Laboratory of Molecular Imaging and Function Imaging, Department
of Radiology, Zhongda Hospital Southeast
University, School of Medicine, Southeast University, Nanjing 210009, China
| | - Hongyun Guo
- Institute
of Gansu Medical Science Research, Gansu
Provincial Cancer Hospital, Lanzhou 730050, China
| | - Yongdong Zhang
- Institute
of Gansu Medical Science Research, Gansu
Provincial Cancer Hospital, Lanzhou 730050, China
| | - Xingdong Wang
- Institute
of Gansu Medical Science Research, Gansu
Provincial Cancer Hospital, Lanzhou 730050, China
| | - Xiaoqi Wang
- Institute
of Gansu Medical Science Research, Gansu
Provincial Cancer Hospital, Lanzhou 730050, China
| | - Gaojun Teng
- Jiangsu
Key Laboratory of Molecular Imaging and Function Imaging, Department
of Radiology, Zhongda Hospital Southeast
University, School of Medicine, Southeast University, Nanjing 210009, China
| | - Ziqiang Lei
- Key
Laboratory of Eco-Functional Polymer Materials of the Ministry of
Education, Key Laboratory of Eco-Environmental Polymer Materials of
Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
13
|
Park SJ, Akimoto J, Sakakibara N, Kobatake E, Ito Y. Thermally Induced Switch of Coupling Reaction Using the Morphological Change of a Thermoresponsive Polymer on a Reactive Heteroarmed Nanoparticle. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49165-49173. [PMID: 32991144 DOI: 10.1021/acsami.0c12875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Control of the cross-linking reaction is imperative when developing a sophisticated in situ forming hydrogel in the body. In this study, a heteroarmed thermoresponsive (TR) nanoparticle was designed to investigate the mechanism of controlling reactivity of the functional groups introduced into the nanoparticles. The coupling reaction was suppressed/proceeded by utilizing temperature-induced morphological changes of the TR polymer. The heteroarmed TR nanoparticle was prepared by the coassembly of amphiphilic block copolymers possessing both a TR segment and hydrophilic segment with reactive functional groups of succinimide. The longer TR chain on the nanoparticle covered the succinimide group and suppressed the reaction with the primary amine on the external nanoparticle. In contrast, the coupling reaction was promoted at a high temperature to create the chemical cross-linking structure between the nanoparticles because of the exposure of the succinimide group on the surface of the particle as a consequence of the morphological change of the TR polymer. In addition, the thermally controlled chemical reaction modulated initiation of the gelation using a highly concentrated nanoparticle solution. The heteroarmed TR nanoparticle offers great practical advantages for clinical uses, such as embolization agents, through precise control of the reaction.
Collapse
Affiliation(s)
- So Jung Park
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8502, Japan
| | - Jun Akimoto
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Naoki Sakakibara
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Faculty of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Cardiovascular Surgery, Edogawa Hospital, 2-24-18 Higashikoiwa, Edogawa-ku, Tokyo 133-0052. Japan
| | - Eiry Kobatake
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8502, Japan
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
14
|
Affiliation(s)
- Matthew L. Bedell
- Department of Bioengineering, Rice University, 6500 South Main Street, Houston, Texas 77030, United States
| | - Adam M. Navara
- Department of Bioengineering, Rice University, 6500 South Main Street, Houston, Texas 77030, United States
| | - Yingying Du
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
- Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shengmin Zhang
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
- Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Antonios G. Mikos
- Department of Bioengineering, Rice University, 6500 South Main Street, Houston, Texas 77030, United States
| |
Collapse
|
15
|
Pal A, Smith CI, Palade J, Nagaraju S, Alarcon-Benedetto BA, Kilbourne J, Rawls A, Wilson-Rawls J, Vernon BL, Nikkhah M. Poly(N-isopropylacrylamide)-based dual-crosslinking biohybrid injectable hydrogels for vascularization. Acta Biomater 2020; 107:138-151. [PMID: 32126310 DOI: 10.1016/j.actbio.2020.02.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/20/2020] [Accepted: 02/26/2020] [Indexed: 12/17/2022]
Abstract
Injectable hydrogels provide a powerful and non-invasive approach for numerous applications in cell transplantation, growth factor delivery, tissue regeneration and so forth. The properties of injectable hydrogels should be well-tuned for specific applications, where their overall design should ensure biocompatibility, non-toxicity, robust mechanical properties, and most importantly the ability to promote vascularization and integration with the host tissue/organ. Among these criteria, vascularization remains a key design element in the development of functional therapeutic hydrogels for successful translation into clinical settings. To that end, there is still a critical need for the development of the next generation of injectable hydrogels with precisely tuned biophysical and biochemical properties which could simultaneously promote tissue vascularization. In this work, we developed a temperature responsive, dual-crosslinking, biohybrid hydrogels, modified with a vasculogenic peptide for applications in regenerative medicine, specifically tissue vascularization. The synthesized hydrogels consisted of poly(N-isopropylacrylamide)-based copolymer, functionalized gelation and angiogenic VEGF-mimetic QK peptide with enhanced shear-thinning and injectability properties. QK peptide is a VEGF-mimetic vasculogenic peptide which binds to VEGF receptors and activates intercellular pathway for vascularization. Apart from the presence of QK peptide, the mechanical properties of the hydrogels were precisely tuned by altering the polymer concentration, enabling successful assembly and endothelial cell network formation. Extended in vitro studies demonstrated successful encapsulation and homogeneous distribution of endothelial cells within the three-dimensional (3D) environment of the hydrogel matrix with significantly enhanced vascularization in presence of the QK peptide as early as 3 days of culture. A small, preliminary in vivo study in mice showed a trend of increased blood vessel formation in hydrogels that incorporated the QK peptide. Overall, our study presents the design and characterization of injectable, dual-crosslinking and vasculogenic hydrogels with controlled properties which could be utilized for numerous applications in regenerative medicine, minimally invasive cell and drug delivery as well as fundamental studies on tissue vascularization and angiogenesis. STATEMENT OF SIGNIFICANCE: In this work, we synthesized a new class of temperature responsive, dual-crosslinking, biohybrid injectable hydrogels with enhanced vascularization properties for broad applications in regenerative medicine and minimally invasive cell/drug delivery. The developed hydrogels properly accommodated 3D culture, assembly and network formation of endothelial cells, as evidenced by in vitro and in vivo studies.
Collapse
Affiliation(s)
- Amrita Pal
- School of Biological and Health Systems Engineering (SBHSE), Arizona State University, Tempe, AZ 85287, USA
| | - Cameron I Smith
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Joanna Palade
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Supriya Nagaraju
- School of Biological and Health Systems Engineering (SBHSE), Arizona State University, Tempe, AZ 85287, USA
| | - Byron A Alarcon-Benedetto
- School of Biological and Health Systems Engineering (SBHSE), Arizona State University, Tempe, AZ 85287, USA
| | - Jacquelyn Kilbourne
- Department of Animal Care Technologies, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Alan Rawls
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | | | - Brent L Vernon
- School of Biological and Health Systems Engineering (SBHSE), Arizona State University, Tempe, AZ 85287, USA.
| | - Mehdi Nikkhah
- School of Biological and Health Systems Engineering (SBHSE), Arizona State University, Tempe, AZ 85287, USA; Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| |
Collapse
|
16
|
Yu W, Xue B, Zhu Z, Shen Z, Qin M, Wang W, Cao Y. Strong and Injectable Hydrogels Based on Multivalent Metal Ion-Peptide Cross-linking. Chem Res Chin Univ 2020. [DOI: 10.1007/s40242-020-9100-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Nazir R, Parida D, Guex AG, Rentsch D, Zarei A, Gooneie A, Salmeia KA, Yar KM, Alihosseini F, Sadeghpour A, Gaan S. Structurally Tunable pH-responsive Phosphine Oxide Based Gels by Facile Synthesis Strategy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:7639-7649. [PMID: 31972075 DOI: 10.1021/acsami.9b22808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Design and synthesis of nanostructured responsive gels have attracted increasing attention, particularly in the biomedical domain. Polymer chain configurations and nanodomain sizes within the network can be used to steer their functions as drug carriers. Here, a catalyst-free facile one-step synthesis strategy is reported for the design of pH-responsive gels and controlled structures in nanoscale. Transparent and impurity free gels were directly synthesized from trivinylphosphine oxide (TVPO) and cyclic secondary diamine monomers via Michael addition polymerization under mild conditions. NMR analysis confirmed the consumption of all TVPO and the absence of side products, thereby eliminating post purification steps. The small-angle X-ray scattering (SAXS) elucidates the nanoscale structural features in gels, that is, it demonstrates the presence of collapsed nanodomains within gel networks and it was possible to tune the size of these domains by varying the amine monomers and the nature of the solvent. The fabricated gels demonstrate structure tunability via solvent-polymer interactions and pH specific drug release behavior. Three different anionic dyes (acid blue 80, acid blue 90, and fluorescein) of varying size and chemistry were incorporated into the hydrogel as model drugs and their release behavior was studied. Compared to acidic pH, a higher and faster release of acid blue 80 and fluorescein was observed at pH 10, possibly because of their increased solubility in alkaline pH. In addition, their release in phosphate buffered saline (PBS) and simulated body fluid (SBF) matrix was positively influenced by the ionic interaction with positively charged metal ions. In the case of hydrogel containing acid blue 90 a very low drug release (<1%) was observed, which is due to the reaction of its accessible free amino group with the vinyl groups of the TVPO. In vitro evaluation of the prepared hydrogel using human dermal fibroblasts indicates no cytotoxic effects, warranting further research for biomedical applications. Our strategy of such gel synthesis lays the basis for the design of other gel-based functional materials.
Collapse
Affiliation(s)
- Rashid Nazir
- Laboratory of Advanced Fibers , Empa, Swiss Federal Laboratories for Materials Science and Technology , Lerchenfeldstrasse 5 , CH-9014 St. Gallen , Switzerland
| | - Dambarudhar Parida
- Laboratory of Advanced Fibers , Empa, Swiss Federal Laboratories for Materials Science and Technology , Lerchenfeldstrasse 5 , CH-9014 St. Gallen , Switzerland
| | - Anne Géraldine Guex
- Laboratory for Biointerfaces and Laboratory for Biomimetic Membranes and Textiles , Empa, Swiss Federal Laboratories for Materials Science and Technology , Lerchenfeldstrasse 5 , CH-9014 St. Gallen , Switzerland
| | - Daniel Rentsch
- Laboratory for Functional Polymers , Empa, Swiss Federal Laboratories for Materials Science and Technology , Überlandstrasse 129 , 8600 Dübendorf , Switzerland
| | - Afsaneh Zarei
- Department of Textile Engineering , Isfahan University of Technology , Isfahan , 84156-83111 , Iran
| | - Ali Gooneie
- Laboratory of Advanced Fibers , Empa, Swiss Federal Laboratories for Materials Science and Technology , Lerchenfeldstrasse 5 , CH-9014 St. Gallen , Switzerland
| | - Khalifah A Salmeia
- Laboratory of Advanced Fibers , Empa, Swiss Federal Laboratories for Materials Science and Technology , Lerchenfeldstrasse 5 , CH-9014 St. Gallen , Switzerland
| | - Kevin M Yar
- Laboratory of Advanced Fibers , Empa, Swiss Federal Laboratories for Materials Science and Technology , Lerchenfeldstrasse 5 , CH-9014 St. Gallen , Switzerland
| | - Farzaneh Alihosseini
- Department of Textile Engineering , Isfahan University of Technology , Isfahan , 84156-83111 , Iran
| | - Amin Sadeghpour
- Center for X-Ray Analytics , Empa, Swiss Federal Laboratories for Materials Science and Technology , Lerchenfeldstrasse 5 , CH-9014 St. Gallen , Switzerland
| | - Sabyasachi Gaan
- Laboratory of Advanced Fibers , Empa, Swiss Federal Laboratories for Materials Science and Technology , Lerchenfeldstrasse 5 , CH-9014 St. Gallen , Switzerland
| |
Collapse
|
18
|
Mavlyanova R, Yang R, Tao T, Aquib M, Kesse S, Maviah MBJ, Boakye‐Yiadom KO, Farooq MA, Wang B. Injectable hydrogels for targeted delivering of therapeutic molecules for tissue engineering and disease treatment. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4763] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Rukhshona Mavlyanova
- Department of Pharmaceutics, School of PharmacyChina Pharmaceutical University Nanjing China
| | - Rufeng Yang
- Department of Pharmaceutics, School of PharmacyChina Pharmaceutical University Nanjing China
| | - Tao Tao
- Nanjing Chenxiang Pharmaceutical Research Co Ltd Nanjing China
| | - Md Aquib
- Department of Pharmaceutics, School of PharmacyChina Pharmaceutical University Nanjing China
| | - Samuel Kesse
- Department of Pharmaceutics, School of PharmacyChina Pharmaceutical University Nanjing China
| | | | - Kofi Oti Boakye‐Yiadom
- Department of Pharmaceutics, School of PharmacyChina Pharmaceutical University Nanjing China
| | - Muhammad Asim Farooq
- Department of Pharmaceutics, School of PharmacyChina Pharmaceutical University Nanjing China
| | - Bo Wang
- Department of Pharmaceutics, School of PharmacyChina Pharmaceutical University Nanjing China
| |
Collapse
|
19
|
Hu J, Albadawi H, Oklu R, Chong BW, Deipolyi AR, Sheth RA, Khademhosseini A. Advances in Biomaterials and Technologies for Vascular Embolization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901071. [PMID: 31168915 PMCID: PMC7014563 DOI: 10.1002/adma.201901071] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/24/2019] [Indexed: 05/03/2023]
Abstract
Minimally invasive transcatheter embolization is a common nonsurgical procedure in interventional radiology used for the deliberate occlusion of blood vessels for the treatment of diseased or injured vasculature. A wide variety of embolic agents including metallic coils, calibrated microspheres, and liquids are available for clinical practice. Additionally, advances in biomaterials, such as shape-memory foams, biodegradable polymers, and in situ gelling solutions have led to the development of novel preclinical embolic agents. The aim here is to provide a comprehensive overview of current and emerging technologies in endovascular embolization with respect to devices, materials, mechanisms, and design guidelines. Limitations and challenges in embolic materials are also discussed to promote advancement in the field.
Collapse
Affiliation(s)
- Jingjie Hu
- Division of Vascular & Interventional Radiology, Minimally Invasive Therapeutics Laboratory, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Hassan Albadawi
- Division of Vascular & Interventional Radiology, Minimally Invasive Therapeutics Laboratory, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Rahmi Oklu
- Division of Vascular & Interventional Radiology, Minimally Invasive Therapeutics Laboratory, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Brian W Chong
- Departments of Radiology and Neurological Surgery, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Amy R. Deipolyi
- Department of Interventional Radiology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical Center, 1275 York Avenue, New York, New York 10065, USA
| | - Rahul A. Sheth
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Ali Khademhosseini
- Department of Bioengineering, Department of Radiological Sciences, Department of Chemical and Biomolecular Engineering, Center for Minimally Invasive Therapeutics, California Nanosystems Institute, University of California, 410 Westwood Plaza, Los Angeles, California 90095, USA
| |
Collapse
|
20
|
Chitosan based thermosensitive injectable hydrogels for controlled delivery of loxoprofen: development, characterization and in-vivo evaluation. Int J Biol Macromol 2019; 129:233-245. [DOI: 10.1016/j.ijbiomac.2019.02.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/05/2019] [Accepted: 02/05/2019] [Indexed: 12/14/2022]
|
21
|
Pal A, Vernon BL, Nikkhah M. Therapeutic neovascularization promoted by injectable hydrogels. Bioact Mater 2018; 3:389-400. [PMID: 30003178 PMCID: PMC6038261 DOI: 10.1016/j.bioactmat.2018.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/27/2018] [Accepted: 05/02/2018] [Indexed: 12/11/2022] Open
Abstract
The aim of therapeutic neovascularization is to repair ischemic tissues via formation of new blood vessels by delivery of angiogenic growth factors, stem cells or expansion of pre-existing cells. For efficient neovascularization, controlled release of growth factors is particularly necessary since bolus injection of molecules generally lead to a poor outcome due to inadequate retention within the injured site. In this regard, injectable hydrogels, made of natural, synthetic or hybrid biomaterials, have become a promising solution for efficient delivery of angiogenic factors or stem and progenitor cells for in situ tissue repair, regeneration and neovascularization. This review article will broadly discuss the state-of-the-art in the development of injectable hydrogels from natural and synthetic precursors, and their applications in ischemic tissue repair and wound healing. We will cover a wide range of in vitro and in vivo studies in testing the functionalities of the engineered injectable hydrogels in promoting tissue repair and neovascularization. We will also discuss some of the injectable hydrogels that exhibit self-healing properties by promoting neovascularization without the presence of angiogenic factors.
Collapse
Affiliation(s)
| | - Brent L. Vernon
- School of Biological and Health Systems Engineering, Arizona State University, Arizona 85281, USA
| | - Mehdi Nikkhah
- School of Biological and Health Systems Engineering, Arizona State University, Arizona 85281, USA
| |
Collapse
|
22
|
Chandel AKS, Nutan B, Raval IH, Jewrajka SK. Self-Assembly of Partially Alkylated Dextran-graft-poly[(2-dimethylamino)ethyl methacrylate] Copolymer Facilitating Hydrophobic/Hydrophilic Drug Delivery and Improving Conetwork Hydrogel Properties. Biomacromolecules 2018; 19:1142-1153. [DOI: 10.1021/acs.biomac.8b00015] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Arvind K. Singh Chandel
- Membrane Science and Separation Technology Division, Academy of Scientific and Innovative Research, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat 364002, India
| | - Bhingaradiya Nutan
- Membrane Science and Separation Technology Division, Academy of Scientific and Innovative Research, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat 364002, India
| | - Ishan H. Raval
- Membrane Science and Separation Technology Division, Academy of Scientific and Innovative Research, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat 364002, India
| | - Suresh K. Jewrajka
- Membrane Science and Separation Technology Division, Academy of Scientific and Innovative Research, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat 364002, India
| |
Collapse
|
23
|
Korchia L, Lapinte V, Travelet C, Borsali R, Robin JJ, Bouilhac C. UV-responsive amphiphilic graft copolymers based on coumarin and polyoxazoline. SOFT MATTER 2017; 13:4507-4519. [PMID: 28584886 DOI: 10.1039/c7sm00682a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A series of amphiphilic photo-responsive heterografted copolymers have been successfully synthesized. The random copolymers were composed of a methacrylate backbone, with various compositions of hydrophilic oligomeric 2-methyl-2-oxazoline side chains (OMOx) and hydrophobic long alkyl chains terminated by a coumarin moiety (Cm). Using dynamic (DLS) and static light scattering (SLS), and transmission electron microscopy (TEM), their self-assembling behavior was studied in water using the nanoprecipitation method. Depending on the system, one, two or three particle size distributions co-exist in solution. However, DLS measurements showed that monomodal and slightly polydisperse self-assemblies were obtained with the more hydrophobic copolymers (i.e., 85% of hydrophobic monomers with a long alkyl chain terminated by a coumarin moiety (MCm) per molecule) with hydrodynamic diameters ranging from ca. 130 to 300 nm. Morphological information on these self-assembly structures was obtained using SLS: a Gaussian behavior has thus been evidenced. Finally, these heterografted copolymers were illuminated using UV light at λ = 350 nm inducing photo-crosslinking of the coumarin units. The influence of UV illumination on the thus-formed nanoparticles was investigated by carrying out complementarily DLS-measurements and UV spectroscopy.
Collapse
Affiliation(s)
- Laetitia Korchia
- Institut Charles Gerhardt, UMR 5253 CNRS/UM/ENSCM, Ingénierie et Architectures Macromoléculaires, Université Montpellier, CC1702, Place Eugène Bataillon, F-34095 Montpellier Cedex 5, France.
| | | | | | | | | | | |
Collapse
|
24
|
Singh Chandel AK, Kannan D, Nutan B, Singh S, Jewrajka SK. Dually crosslinked injectable hydrogels of poly(ethylene glycol) and poly[(2-dimethylamino)ethyl methacrylate]-b-poly(N-isopropyl acrylamide) as a wound healing promoter. J Mater Chem B 2017; 5:4955-4965. [DOI: 10.1039/c7tb00848a] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PEG-based dually crosslinked injectable hydrogels have been developed through extremely simple chemistry which avoids use of small molecular weight crosslinker, formation of by-products and involved low heat change. The hydrogels are useful for wound healing and soft tissue regeneration.
Collapse
Affiliation(s)
- Arvind K. Singh Chandel
- Reverse Osmosis Membrane Division
- academy of Scientific and Innovative Research
- CSIR-Central Salt and Marine Chemicals Research Institute G. B. Marg
- Bhavnagar
- India
| | - Deepika Kannan
- Department of Life Science
- Shiv Nadar University
- India
- Special Centre for Molecular Medicine
- Jawaharlal Nehru University
| | - Bhingaradiya Nutan
- Reverse Osmosis Membrane Division
- academy of Scientific and Innovative Research
- CSIR-Central Salt and Marine Chemicals Research Institute G. B. Marg
- Bhavnagar
- India
| | - Shailja Singh
- Department of Life Science
- Shiv Nadar University
- India
- Special Centre for Molecular Medicine
- Jawaharlal Nehru University
| | - Suresh K. Jewrajka
- Reverse Osmosis Membrane Division
- academy of Scientific and Innovative Research
- CSIR-Central Salt and Marine Chemicals Research Institute G. B. Marg
- Bhavnagar
- India
| |
Collapse
|
25
|
Venault A, Hsu KJ, Yeh LC, Chinnathambi A, Ho HT, Chang Y. Surface charge-bias impact of amine-contained pseudozwitterionic biointerfaces on the human blood compatibility. Colloids Surf B Biointerfaces 2016; 151:372-383. [PMID: 28063289 DOI: 10.1016/j.colsurfb.2016.12.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/26/2016] [Accepted: 12/28/2016] [Indexed: 12/22/2022]
Abstract
This work discusses the impact of the charge bias and the hydrophilicity on the human blood compatibility of pseudozwitterionic biomaterial gels. Four series of hydrogels were prepared, all containing negatively-charged 3-sulfopropyl methacrylate (SA), and either acrylamide, N-isopropylacrylamide, 2-dimethylaminoethyl methacrylate (DMAEMA) or [2-(methacryloyloxy)ethyl]trimethylammonium (TMA), to form SnAm, SnNm, SnDm or SnTm hydrogels, respectively. An XPS analysis proved that the polymerization was well controlled from the initial monomer ratios. All gels present high surface hydrophilicity, but varying bulk hydration, depending on the nature/content of the comonomer, and on the immersion medium. The most negative interfaces (pure SA, S7A3, S5A5) showed significant fibrinogen adsorption, ascribed to the interactions of the αC domains of the protein with the gels, then correlated to considerable platelet adhesion; but low leukocyte/erythrocyte attachments were measured. Positive gels (excess of DMAEMA or TMA) are not hemocompatible. They mediate protein adsorption and the adhesion of human blood cells, through electrostatic attractive interactions. The neutral interfaces (zeta potential between -10mV and +10mV) are blood-inert only if they present a high surface and bulk hydrophilicity. Overall, this study presents a map of the hemocompatible behavior of hydrogels as a function of their surface charge-bias, essential to the design of blood-contacting devices.
Collapse
Affiliation(s)
- Antoine Venault
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chung-Li, Taoyuan 320, Taiwan.
| | - Ko-Jen Hsu
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chung-Li, Taoyuan 320, Taiwan
| | - Lu-Chen Yeh
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chung-Li, Taoyuan 320, Taiwan
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Hsin-Tsung Ho
- Laboratory Medicine, Mackay Memorial Hospital, Taipei 104, Taiwan
| | - Yung Chang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chung-Li, Taoyuan 320, Taiwan.
| |
Collapse
|
26
|
Liu R, Zhang P, Dai H. Synthesis of magnetic particles with well-defined living polymeric chains via combination of RAFT polymerization and thiol-ene click chemistry. JOURNAL OF POLYMER RESEARCH 2016. [DOI: 10.1007/s10965-016-1113-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
27
|
Li H, Wu T. A diffuse-interface modeling for liquid solution-solid gel phase transition of physical hydrogel with nonlinear deformation. Electrophoresis 2016; 37:2699-2709. [PMID: 27422498 DOI: 10.1002/elps.201600117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/13/2016] [Accepted: 06/02/2016] [Indexed: 11/06/2022]
Abstract
A diffuse-interface model is presented in this paper for simulation of the evolution of phase transition between the liquid solution and solid gel states for physical hydrogel with nonlinear deformation. The present domain covers the gel and solution states as well as a diffuse interface between them. They are indicated by the crosslink density in such a way that the solution phase is identified as the state when the crosslink density is small, while the gel as the state if the crosslink density becomes large. In this work, a novel order parameter is thus defined as the crosslink density, which is homogeneous in each distinct phase and smoothly varies over the interface from one phase to another. In this model, the constitutive equations, imposed on the two distinct phases and the interface, are formulated by the second law of thermodynamics, which are in the same form as those derived by a different approach. The present constitutive equations include a novel Ginzburg-Landau type of free energy with a double-well profile, which accounts for the effect of crosslink density. The present governing equations include the equilibrium of forces, the conservations of mass and energy, and an additional kinetic equation imposed for phase transition, in which nonlinear deformation is considered. The equilibrium state is investigated numerically, where two stable phases are observed in the free energy profile. As case studies, a spherically symmetrical solution-gel phase transition is simulated numerically for analysis of the phase transition of physical hydrogel.
Collapse
Affiliation(s)
- Hua Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore.
| | - Tao Wu
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
28
|
Navaei A, Truong D, Heffernan J, Cutts J, Brafman D, Sirianni RW, Vernon B, Nikkhah M. PNIPAAm-based biohybrid injectable hydrogel for cardiac tissue engineering. Acta Biomater 2016; 32:10-23. [PMID: 26689467 DOI: 10.1016/j.actbio.2015.12.019] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/03/2015] [Accepted: 12/11/2015] [Indexed: 10/22/2022]
Abstract
Injectable biomaterials offer a non-invasive approach to deliver cells into the myocardial infarct region to maintain a high level of cell retention and viability and initiate the regeneration process. However, previously developed injectable matrices often suffer from low bioactivity or poor mechanical properties. To address this need, we introduced a biohybrid temperature-responsive poly(N-isopropylacrylamide) PNIPAAm-Gelatin-based injectable hydrogel with excellent bioactivity as well as mechanical robustness for cardiac tissue engineering. A unique feature of our work was that we performed extensive in vitro biological analyses to assess the functionalities of cardiomyocytes (CMs) alone and in co-culture with cardiac fibroblasts (CFs) (2:1 ratio) within the hydrogel matrix. The synthesized hydrogel exhibited viscoelastic behavior (storage modulus: 1260 Pa) and necessary water content (75%) to properly accommodate the cardiac cells. The encapsulated cells demonstrated a high level of cell survival (90% for co-culture condition, day 7) and spreading throughout the hydrogel matrix in both culture conditions. A dense network of stained F-actin fibers (∼ 6 × 10(4) μm(2) area coverage, co-culture condition) illustrated the formation of an intact and three dimensional (3D) cell-embedded matrix. Furthermore, immunostaining and gene expression analyses revealed mature phenotypic characteristics of cardiac cells. Notably, the co-culture group exhibited superior structural organization and cell-cell coupling, as well as beating behavior (average ∼ 45 beats per min, co-culture condition, day 7). The outcome of this study is envisioned to open a new avenue for extensive in vitro characterization of injectable matrices embedded with 3D mono- and co-culture of cardiac cells prior to in vivo experiments. STATEMENT OF SIGNIFICANCE In this work, we synthesized a new class of biohybrid temperature-responsive poly(N-isopropylacrylamide) PNIPAAm-Gelatin-based injectable hydrogel with suitable bioactivity and mechanical properties for cardiac tissue engineering. A significant aspect of our work was that we performed extensive in vitro biological analyses to assess the functionality of cardiomyocytes alone and in co-culture with cardiac fibroblasts encapsulated within the 3D hydrogel matrix.
Collapse
|
29
|
Shi X, Gao H, Dai F, Feng X, Liu W. A thermoresponsive supramolecular copolymer hydrogel for the embolization of kidney arteries. Biomater Sci 2016; 4:1673-1681. [PMID: 27709136 DOI: 10.1039/c6bm00597g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A thermoresponsive supramolecular p(N-acryloyl glycinamide-co-acrylamide) (PNAGA-PAAm) copolymer hydrogel was developed for the embolization of renal arteries in rabbits.
Collapse
Affiliation(s)
- Xiaohuan Shi
- School of Materials Science and Engineering
- Tianjin Key Laboratory of Composite and Functional Materials
- Tianjin University
- Tianjin
- China
| | - Haijun Gao
- Tianjin First Center Hospital
- Tianjin
- China
| | - Fengying Dai
- School of Materials Science and Engineering
- Key Laboratory of Advanced Textile Composites
- Ministry of Education
- Institute of Textile Composites
- Tianjin Polytechnic University
| | | | - Wenguang Liu
- School of Materials Science and Engineering
- Tianjin Key Laboratory of Composite and Functional Materials
- Tianjin University
- Tianjin
- China
| |
Collapse
|
30
|
Dubbini A, Censi R, Butini ME, Sabbieti MG, Agas D, Vermonden T, Di Martino P. Injectable hyaluronic acid/PEG-p(HPMAm-lac)-based hydrogels dually cross-linked by thermal gelling and Michael addition. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.07.036] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
31
|
He L, Szopinski D, Wu Y, Luinstra GA, Theato P. Toward Self-Healing Hydrogels Using One-Pot Thiol-Ene Click and Borax-Diol Chemistry. ACS Macro Lett 2015; 4:673-678. [PMID: 35596485 DOI: 10.1021/acsmacrolett.5b00336] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Intrinsic self-healing soft materials such as hydrogels are especially promising for a variety of medical applications. Multistep preparation of starting functional polymer precursors and the expensive stock materials such as tetra-polyethylene glycol are one of the factors that limit the wider use of self-healing hydrogels. Herein, we reported a facile one-pot approach to prepare PEG based self-healing hydrogels from inexpensive commercially available components: polyethylene glycol diacrylate and dithiothreitol. For the first time, borax was used as the catalyst for a thiol-ene Michael-type polyaddition of PEG gels. Borax as the catalyst is quite efficient, allowing rapid gelation (from 40 s to 2 min) under ambient conditions and at room temperature. Essentially, as one catalyst, borax induces the formation of two classes of bonds, covalent thioether and transient boronate ester bonds, were formed at the same time. The storage modulus of the afforded PEG gel (87.5% water) reached up to 104 Pa, making the mechanical performance comparable with permanently cross-linked PEG gels. Additionally, the dynamic nature of the boronate ester linkages imparts the gel with self-healing properties, and the obtained gels can be healed within 30 min without external stimulus. Further, the transparent hydrogel is pH and thermal responsive. We believe that the manifold impacts of borax can open a new route to prepare hydrogels with intriguing properties, which find potential application as gel sealant, biosensors, or regenerative medicines.
Collapse
Affiliation(s)
- Lirong He
- Institute
for Technical and
Macromolecular Chemistry, University of Hamburg Bundesstrasse
45, D-20146 Hamburg, Germany
| | - Daniel Szopinski
- Institute
for Technical and
Macromolecular Chemistry, University of Hamburg Bundesstrasse
45, D-20146 Hamburg, Germany
| | - Yang Wu
- Institute
for Technical and
Macromolecular Chemistry, University of Hamburg Bundesstrasse
45, D-20146 Hamburg, Germany
| | - Gerrit A. Luinstra
- Institute
for Technical and
Macromolecular Chemistry, University of Hamburg Bundesstrasse
45, D-20146 Hamburg, Germany
| | - Patrick Theato
- Institute
for Technical and
Macromolecular Chemistry, University of Hamburg Bundesstrasse
45, D-20146 Hamburg, Germany
| |
Collapse
|
32
|
Heffernan JM, Overstreet DJ, Srinivasan S, Le LD, Vernon BL, Sirianni RW. Temperature responsive hydrogels enable transient three-dimensional tumor cultures via rapid cell recovery. J Biomed Mater Res A 2015; 104:17-25. [PMID: 26123863 DOI: 10.1002/jbm.a.35534] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/02/2015] [Accepted: 06/26/2015] [Indexed: 11/09/2022]
Abstract
Recovery of live cells from three-dimensional (3D) culture would improve analysis of cell behaviors in tissue engineered microenvironments. In this work, we developed a temperature responsive hydrogel to enable transient 3D culture of human glioblastoma (GBM) cells. N-isopropylacrylamide was copolymerized with hydrophilic grafts and functionalized with the cell adhesion peptide RGD to yield the novel copolymer poly(N-isopropylacrylamide-co-Jeffamine(®) M-1000 acrylamide-co-hydroxyethylmethacrylate-RGD), or PNJ-RGD. This copolymer reversibly gels in aqueous solutions when heated under normal cell culture conditions (37°C). Moreover, these gels redissolve within 70 s when cooled to room temperature without the addition of any agents to degrade the synthetic scaffold, thereby enabling rapid recollection of viable cells after 3D culture. We tested the efficiency of cell recovery following extended 3D culture and were able to recover more than 50% of viable GBM cells after up to 7 days in culture. These data demonstrate the utility of physically crosslinked PNJ-RGD hydrogels as a platform for culture and recollection of cells in 3D.
Collapse
Affiliation(s)
- John M Heffernan
- Barrow Brain Tumor Research Center, Barrow Neurological Institute, 350 W. Thomas Road, Neuroscience Research Center 441, Phoenix, Arizona, 85013.,School of Biological and Health Systems Engineering, Arizona State University, PO Box 879709, Tempe, Arizona, 85287
| | - Derek J Overstreet
- Barrow Brain Tumor Research Center, Barrow Neurological Institute, 350 W. Thomas Road, Neuroscience Research Center 441, Phoenix, Arizona, 85013
| | - Sanjay Srinivasan
- Barrow Brain Tumor Research Center, Barrow Neurological Institute, 350 W. Thomas Road, Neuroscience Research Center 441, Phoenix, Arizona, 85013.,School of Biological and Health Systems Engineering, Arizona State University, PO Box 879709, Tempe, Arizona, 85287
| | - Long D Le
- School of Biological and Health Systems Engineering, Arizona State University, PO Box 879709, Tempe, Arizona, 85287
| | - Brent L Vernon
- School of Biological and Health Systems Engineering, Arizona State University, PO Box 879709, Tempe, Arizona, 85287
| | - Rachael W Sirianni
- Barrow Brain Tumor Research Center, Barrow Neurological Institute, 350 W. Thomas Road, Neuroscience Research Center 441, Phoenix, Arizona, 85013.,School of Biological and Health Systems Engineering, Arizona State University, PO Box 879709, Tempe, Arizona, 85287
| |
Collapse
|
33
|
Kilcup N, Tonkopi E, Abraham RJ, Boyd D, Kehoe S. Composition-property relationships for radiopaque composite materials: pre-loaded drug-eluting beads for transarterial chemoembolization. J Biomater Appl 2015; 30:93-103. [PMID: 25690386 DOI: 10.1177/0885328215572196] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The purpose of this study was to synthesize and optimize intrinsically radiopaque composite embolic microspheres for sustained release of doxorubicin in drug-eluting bead transarterial chemoembolization. Using a design of experiments approach, 12 radiopaque composites composed of polylactic-co-glycolic acid and a radiopaque glass (ORP5) were screened over a range of compositions and examined for radiopacity (computed tomography) and density. In vitro cell viability was determined using an extract assay derived from each composition against the human hepatocellular carcinoma cell line, HepG2. Mathematical models based on a D-Optimal response surface methodology were used to determine the preferred radiopaque composite. The resulting radiopaque composite was validated and subsequently loaded with doxorubicin between 0 and 1.4% (wt% of polylactic-co-glycolic acid) to yield radiopaque composite drug-eluting beads. Thereafter, the radiopaque composite drug-eluting beads were subjected to an elution study (up to 168 h) to determine doxorubicin release profiles (UV-Vis spectroscopy) and in vitro cell viability. Radiopaque composites evaluated for screening purposes had densities between 1.28 and 1.67 g.cm(-3), radiopacity ranged between 211 and 1450HU and cell viabilities between 91 and 106% were observed. The optimized radiopaque composite comprised 23 wt% polylactic-co-glycolic acid and 60 wt% ORP5 with a corresponding density of 1.63 ± 0.001 g.cm(-3), radiopacity at 1930 ± 44HU and cell viability of 89 ± 7.6%. Radiopaque composite drug-eluting beads provided sustained doxorubicin release over 168 h. In conclusion, the mathematical models allowed for the identification and synthesis of a unique radiopaque composite. The optimized radiopaque composite had similar density and cell viability to commercially available embolic microspheres. It was possible to preload doxorubicin into radiopaque composite drug-eluting beads, such that sustained release was possible under simulated physiological conditions.
Collapse
Affiliation(s)
- Nancy Kilcup
- School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada
| | - Elena Tonkopi
- Department of Diagnostic Imaging and Interventional Radiology, QE II Health Sciences Centre, Halifax, NS, Canada
| | - Robert J Abraham
- School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada Department of Diagnostic Imaging and Interventional Radiology, QE II Health Sciences Centre, Halifax, NS, Canada ABK Biomedical Inc., Halifax, NS, Canada
| | - Daniel Boyd
- School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada Department of Diagnostic Imaging and Interventional Radiology, QE II Health Sciences Centre, Halifax, NS, Canada Department of Applied Oral Sciences, Dalhousie University, Halifax, NS, Canada ABK Biomedical Inc., Halifax, NS, Canada
| | - Sharon Kehoe
- Department of Applied Oral Sciences, Dalhousie University, Halifax, NS, Canada ABK Biomedical Inc., Halifax, NS, Canada
| |
Collapse
|
34
|
Zhou C, Qian S, Zhang A, Xu L, Zhu J, Cheng Z, Kang ET, Yao F, Fu GD. A well-defined amphiphilic polymer co-network from precise control of the end-functional groups of linear RAFT polymers. RSC Adv 2014. [DOI: 10.1039/c3ra47939k] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
35
|
Bae KH, Wang LS, Kurisawa M. Injectable biodegradable hydrogels: progress and challenges. J Mater Chem B 2013; 1:5371-5388. [PMID: 32261243 DOI: 10.1039/c3tb20940g] [Citation(s) in RCA: 201] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Over the past decades, injectable hydrogels have emerged as promising biomaterials because of their biocompatibility, excellent permeability, minimal invasion, and easy integration into surgical procedures. These systems provide an effective and convenient way to administer a wide variety of bioactive agents such as proteins, genes, and even living cells. Additionally, they can be designed to be degradable and eventually cleared from the body after completing their missions. Given their unique characteristics, injectable biodegradable hydrogels have been actively explored as drug reservoir systems for sustained release of bioactive agents and temporary extracellular matrices for tissue engineering. This review provides an overview of state-of-the-art strategies towards constructing a rational design of injectable biodegradable hydrogels for protein drug delivery and tissue engineering. We also discuss the use of injectable hydrogels for gene delivery systems and biomedical adhesives.
Collapse
Affiliation(s)
- Ki Hyun Bae
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos #04-01, Singapore 138669.
| | | | | |
Collapse
|
36
|
Lee BH, Beart HH, Cheng V, McLemore R, Robb SA, Cui Z, Dovigi A, Vernon BL. In vitro and in vivo demonstration of physically and chemically in situ gelling NIPAAm-based copolymer system. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2013; 24:1575-88. [PMID: 23848449 DOI: 10.1080/09205063.2013.781939] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Poly(NIPAAm-co-hydroxyethylmethacarylate (HEMA)) acrylate and poly(NIPAAm-co-cysteine ethyl ester (CysOEt)) were synthesized and characterized by GPC(gel permeation chromatography), rheology, NMR (nuclear magnetic resonance), and Ellman's method. Upon mixing of these materials in aqueous solution, they formed gels immediately at body temperature owing to temperature-driven physical gelling, and gradually cured by chemical cross-linking through Michael-type addition reactions between thiols and acrylates. The rate of nucleophilic attack in the Michael-type addition reaction was shown to be highly dependent on the mole ratio of thiol to acrylate at neutral pH. Physical and chemical gelation improved the mechanical properties of the materials compared to purely physical gels. In vitro and in vivo results revealed that chemical and physical gels formed stiffer less viscoelastic materials compared to purely physical gels. Physical and chemical gel systems using thermosensitive polymer with acrylates and thermosensitive polymer with thiols showed minimum toxicity.
Collapse
Affiliation(s)
- Bae Hoon Lee
- The Harrington Department of Bioengineering , Center for Interventional Biomaterials, Arizona State University, ECG 334, Tempe, AZ 85287-9709, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Wu L, Zhou H, Sun HJ, Zhao Y, Yang X, Cheng SZD, Yang G. Thermoresponsive Bacterial Cellulose Whisker/Poly(NIPAM-co-BMA) Nanogel Complexes: Synthesis, Characterization, and Biological Evaluation. Biomacromolecules 2013; 14:1078-84. [DOI: 10.1021/bm3019664] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Lei Wu
- National Engineering Research
Center for Nano-Medicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan,
430074, China
| | - Hui Zhou
- National Engineering Research
Center for Nano-Medicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan,
430074, China
| | - Hao-Jan Sun
- College of
Polymer Science and
Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Yanbing Zhao
- National Engineering Research
Center for Nano-Medicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan,
430074, China
| | - Xiangliang Yang
- National Engineering Research
Center for Nano-Medicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan,
430074, China
| | - Stephen Z. D. Cheng
- College of
Polymer Science and
Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Guang Yang
- National Engineering Research
Center for Nano-Medicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan,
430074, China
| |
Collapse
|
38
|
|
39
|
Overstreet DJ, Huynh R, Jarbo K, McLemore RY, Vernon BL. In situ forming, resorbable graft copolymer hydrogels providing controlled drug release. J Biomed Mater Res A 2012; 101:1437-46. [PMID: 23114985 DOI: 10.1002/jbm.a.34443] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 07/30/2012] [Accepted: 08/28/2012] [Indexed: 11/09/2022]
Abstract
In situ forming hydrogels are promising drug delivery vehicles due to their ease of delivery as liquids and their ability to be used in sites with irregular geometries. In this work, we report on in situ forming, resorbable hydrogels based on N-isopropylacrylamide (NIPAAm) as a fluid-like controlled release gel. These gels are the first resorbable NIPAAm-based gels providing controlled release without relying on affinity between the drug and device. Therefore, these gels provide a more flexible delivery system which can be used to deliver any drug at a controlled rate. The polymers contain repeat units of NIPAAm with (R)-α-Acryloyloxy-β,β-dimethyl-γ-butyrolactone (DBLA) and varying amounts of hydrophilic Jeffamine® M-1000 acrylamide (JAAm) grafts. The graft copolymer architecture allows the water content of the hydrogels to be tuned over a wide range while keeping the initial gelation temperature below body temperature. Incorporation of JAAm in the polymers led to greater water content, faster gel degradation, and reduced burst release. Sustained release of the antimicrobial drugs cefazolin and vancomycin (over about 5 and 7 days, respectively) was observed from gels containing an intermediate amount of grafts which combined reduced phase separation with a degradation time of 40 days. The degradation byproducts of one hydrogel formulation were cytocompatible to NIH 3T3 fibroblasts at concentrations up to 2.5 wt %. This class of terpolymer hydrogels is a promising local delivery system for a wide variety of drugs, particularly for applications involving irregular geometries such as implant interfaces.
Collapse
Affiliation(s)
- Derek J Overstreet
- Center for Interventional Biomaterials, School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287-9709, USA
| | | | | | | | | |
Collapse
|
40
|
|
41
|
Bearat HH, Lee BH, Vernon BL. Comparison of properties between NIPAAm-based simultaneously physically and chemically gelling polymer systems for use in vivo. Acta Biomater 2012; 8:3629-42. [PMID: 22705635 DOI: 10.1016/j.actbio.2012.06.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/02/2012] [Accepted: 06/07/2012] [Indexed: 11/17/2022]
Abstract
In this work, a comparison between two different physical-chemical gels, poly(NIPAAm-co-cysteamine) with poly(NIPAAm-co-cysteamine-vinylsulfone) and poly(NIPAAm-co-cysteamine) with poly(NIPAAm-co-HEMA-acrylate), is made. These hydrogels undergo gelation via dual mechanisms: temperature sensitivity (physical gelation) and chemical crosslinking (chemical gelation). The advantages of using both gelation mechanisms are to reduce the creep experienced by purely physical gels and to increase the elastic modulus of purely chemical gels. Here, the physical-chemical gels were synthesized and characterized for their chemical, structural, thermal, mechanical and morphological properties. The gels were also tested for their gelation kinetics, swelling, degradation and cytotoxicity. The copolymers were successfully synthesized and their phase transition temperatures fall in a feasible range (29-34°C) for use in vivo. With rheology, it was shown that use of simultaneous physical and chemical gelation resulted in improved properties, with increased elastic moduli and reduced frequency dependence. The rates of reaction of thiols to vinyls differ between the two systems, demonstrating a greater effect of chemical gelation in one gelling system over the other, due to the faster rate of thiols consumed into reaction. The morphology of the gels proved to be quite different when analyzed by scanning electron microscopy, showing differences in swelling behaviors. Cell studies illustrated good growth of cells exposed to the gels. Both hydrogels, although possessing slight differences, demonstrate the capability of being injected in vivo for use as embolic agents for occlusion of aneurysms.
Collapse
Affiliation(s)
- Hanin H Bearat
- The School of Biological and Health Systems Engineering, Center for Interventional Biomaterials, ECG 334, Arizona State University, Tempe, AZ 85287-9709, USA
| | | | | |
Collapse
|
42
|
Al-Abboodi A, Fu J, Doran PM, Chan PP. Three-dimensional nanocharacterization of porous hydrogel with ion and electron beams. Biotechnol Bioeng 2012; 110:318-26. [DOI: 10.1002/bit.24612] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 07/08/2012] [Accepted: 07/10/2012] [Indexed: 11/07/2022]
|
43
|
Cho E, Lee JS, Webb K. Formulation and characterization of poloxamine-based hydrogels as tissue sealants. Acta Biomater 2012; 8:2223-32. [PMID: 22406506 DOI: 10.1016/j.actbio.2012.03.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 02/22/2012] [Accepted: 03/01/2012] [Indexed: 11/28/2022]
Abstract
In situ cross linkable polyethylene glycol (PEG)-based polymers play an increasing role in surgical practice as sealants that provide a barrier to fluid/gas leakage and adhesion formation. This study investigated the gelation behavior and physical properties of hydrogels formed from homogeneous and blended solutions of two acrylated poloxamines (Tetronics® T1107 and T904) of various molecular weights and hydrophilic/lipophilic balances relative to a PEG control. Hydrogels were formed by reverse thermal gelation at physiological temperature (T1107-containing formulations) and covalent crosslinking by Michael-type addition with dithiothreitol. All poloxamine-based hydrogels exhibited thermosensitive behavior and achieved significantly reduced swelling, increased tensile properties and increased tissue bond strength relative to the PEG hydrogel at physiological temperature. Swelling and tensile properties of all poloxamine-based hydrogels were significantly greater at 37°C relative to 4°C, suggesting that their improved physical properties derive from cooperative crosslinking by both noncovalent and covalent mechanisms. Poloxamine-based hydrogels were cytocompatible and underwent hydrolytic degradation over 2-5weeks, depending on their T1107/T904 composition. In conclusion, select poloxamine-based hydrogels possess a number of properties potentially beneficial to tissue sealant applications, including a substantial increase in viscosity between room/physiological temperatures, resistance to cell adhesion and maintenance of a stable volume during equilibration.
Collapse
Affiliation(s)
- Eunhee Cho
- Department of Bioengineering, Micro-Environmental Engineering Laboratory, Clemson University, Clemson, SC 29634, USA
| | | | | |
Collapse
|
44
|
Ekenseair AK, Boere KWM, Tzouanas SN, Vo TN, Kasper FK, Mikos AG. Synthesis and characterization of thermally and chemically gelling injectable hydrogels for tissue engineering. Biomacromolecules 2012; 13:1908-15. [PMID: 22554407 DOI: 10.1021/bm300429e] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Novel, injectable hydrogels were developed that solidify through a physical and chemical dual-gelation mechanism upon preparation and elevation of temperature to 37 °C. A thermogelling, poly(N-isopropylacrylamide)-based macromer with pendant epoxy rings and a hydrolytically degradable polyamidoamine-based diamine cross-linker were synthesized, characterized, and combined to produce in situ forming hydrogel constructs. Network formation through the epoxy-amine reaction was shown to be rapid and facile, and the progressive incorporation of the hydrophilic polyamidoamine cross-linker into the hydrogel was shown to mitigate the often problematic tendency of thermogelling materials to undergo significant postformation gel syneresis. The results suggest that this novel class of injectable hydrogels may be attractive substrates for tissue engineering applications due to the synthetic versatility of the component materials and beneficial hydrogel gelation kinetics and stability.
Collapse
Affiliation(s)
- Adam K Ekenseair
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | | | | | | | | | | |
Collapse
|
45
|
Wang LS, Du C, Chung JE, Kurisawa M. Enzymatically cross-linked gelatin-phenol hydrogels with a broader stiffness range for osteogenic differentiation of human mesenchymal stem cells. Acta Biomater 2012; 8:1826-37. [PMID: 22343003 DOI: 10.1016/j.actbio.2012.02.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 01/23/2012] [Accepted: 02/01/2012] [Indexed: 02/06/2023]
Abstract
An injectable hydrogel system, composed of gelatin-hydroxyphenylpropionic acid (Gtn-HPA) conjugates chemically cross-linked by an enzyme-mediated oxidation reaction, has been designed as a biodegradable scaffold for tissue engineering. In light of the role of substrate stiffness on cell differentiation, we herein report a newly improved Gtn hydrogel system with a broader range of stiffness control that uses Gtn-HPA-tyramine (Gtn-HPA-Tyr) conjugates to stimulate the osteogenic differentiation of human mesenchymal stem cells (hMSCs). The Gtn-HPA-Tyr conjugate was successfully synthesized through a further conjugation of Tyr to Gtn-HPA conjugate by means of a general carbodiimide/active ester-mediated coupling reaction. Proton nuclear magnetic resonance and UV-visible measurements showed a higher total phenol content in the Gtn-HPA-Tyr conjugate than that content in the Gtn-HPA conjugate. The Gtn-HPA-Tyr hydrogels were formed by the oxidative coupling of phenol moieties catalyzed by hydrogen peroxide (H(2)O(2)) and horseradish peroxidase (HRP). Rheological studies revealed that a broader range of storage modulus (G') of Gtn-HPA-Tyr hydrogel (600-26,800 Pa) was achieved using different concentrations of H(2)O(2), while the G' of the predecessor Gtn-HPA hydrogels was limited to the range of 1000 to 13,500 Pa. The hMSCs on Gtn-HPA-Tyr hydrogel with G' greater than 20,000 showed significantly up-regulated expressions of osteocalcin and runt-related transcription factor 2 (RUNX2) on both the gene and protein level, with the presence of alkaline phosphatase, and the evidence of calcium accumulation. These studies with the Gtn-HPA-Tyr hydrogel with G' greater than 20,000 collectively suggest the stimulation of the hMSCs into osteogenic differentiation, while these same observations were not found with the Gtn-HPA hydrogel with a G' of 13,500.
Collapse
|
46
|
Jeong SY, Moon HJ, Park MH, Joo MK, Jeong B. Molecular captain: A light-sensitive linker molecule in poly(ethylene glycol)-poly(L-alanine)-poly(ethylene glycol) triblock copolymer directs molecular nano-assembly, conformation, and sol-gel transition. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/pola.26104] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
47
|
|
48
|
Bearat HH, Lee BH, Valdez J, Vernon BL. Synthesis, Characterization and Properties of a Physically and Chemically Gelling Polymer System Using Poly(NIPAAm-co-HEMA-acrylate) and Poly(NIPAAm-co-cysteamine). JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 22:1299-318. [DOI: 10.1163/092050610x504774] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Hanin H. Bearat
- a The School of Biological and Health Systems Engineering, Center for Interventional Biomaterials, ECG 334, Arizona State University, Tempe, AZ 85287-9709, USA
| | - Bae Hoon Lee
- b The School of Biological and Health Systems Engineering, Center for Interventional Biomaterials, ECG 334, Arizona State University, Tempe, AZ 85287-9709, USA
| | - Jorge Valdez
- c The School of Biological and Health Systems Engineering, Center for Interventional Biomaterials, ECG 334, Arizona State University, Tempe, AZ 85287-9709, USA
| | - Brent L. Vernon
- d The School of Biological and Health Systems Engineering, Center for Interventional Biomaterials, ECG 334, Arizona State University, Tempe, AZ 85287-9709, USA.
| |
Collapse
|
49
|
Affiliation(s)
- Tina Vermonden
- Department of Pharmaceutics, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands.
| | | | | |
Collapse
|
50
|
Nelson DM, Ma Z, Leeson CE, Wagner WR. Extended and sequential delivery of protein from injectable thermoresponsive hydrogels. J Biomed Mater Res A 2012; 100:776-85. [PMID: 22237975 DOI: 10.1002/jbm.a.34015] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 09/12/2011] [Accepted: 10/25/2011] [Indexed: 11/10/2022]
Abstract
Thermoresponsive hydrogels are attractive for their injectability and retention in tissue sites where they may serve as a mechanical support and as a scaffold to guide tissue remodeling. Our objective in this report was to develop a thermoresponsive, biodegradable hydrogel system that would be capable of protein release from two distinct reservoirs--one where protein was attached to the hydrogel backbone, and one where protein was loaded into biodegradable microparticles mixed into the network. Thermoresponsive hydrogels consisting of N-isopropylacrylamide (NIPAAm), 2-hydroxyethyl methacrylate (HEMA), and biodegradable methacrylate polylactide were synthesized along with modified copolymers incorporating 1 mol % protein-reactive methacryloxy N-hydroxysuccinimide (MANHS), hydrophilic acrylic acid (AAc), or both. In vitro bovine serum albumin (BSA) release was studied from hydrogels, poly(lactide-co-glycolide) microparticles, or microparticles mixed into the hydrogels. The synthesized copolymers were able to gel below 37°C and release protein in excess of 3 months. The presence of MANHS and AAc in the copolymers was associated with higher loaded protein retention during thermal transition (45% vs. 22%) and faster release (2 months), respectively. Microspheres entrapped in the hydrogel released protein in a delayed fashion relative to microspheres in saline. The combination of a protein-reactive hydrogel mixed with protein-loaded microspheres demonstrated a sequential release of specific BSA populations. Overall the described drug delivery system combines the advantages of injectability, degradability, extended release, and sequential release, which may be useful in tissue engineering applications.
Collapse
Affiliation(s)
- Devin M Nelson
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
| | | | | | | |
Collapse
|