1
|
Yang S, Du S, Zhu J, Ma S. Closed-loop recyclable polymers: from monomer and polymer design to the polymerization-depolymerization cycle. Chem Soc Rev 2024; 53:9609-9651. [PMID: 39177226 DOI: 10.1039/d4cs00663a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The extensive utilization of plastic, as a symbol of modern technological society, has consumed enormous amounts of finite and non-renewable fossil resources and produced huge amounts of plastic wastes in the land or ocean, and thus recycling and reuse of the plastic wastes have great ecological and economic benefits. Closed-loop recyclable polymers with inherent recyclability can be readily depolymerized into monomers with high selectivity and purity and repolymerized into polymers with the same performance. They are deemed to be the next generation of recyclable polymers and have captured great and increasing attention from academia and industry. Herein, we provide an overview of readily closed-loop recyclable polymers based on monomer and polymer design and no-other-reactant-involved reversible ring-opening and addition polymerization reactions. The state-of-the-art of circular polymers is separately summarized and discussed based on different monomers, including lactones, thiolactones, cyclic carbonates, hindered olefins, cycloolefins, thermally labile olefin comonomers, cyclic disulfides, cyclic (dithio) acetals, lactams, Diels-Alder addition monomers, Michael addition monomers, anhydride-secondary amide monomers, and cyclic anhydride-aldehyde monomers, and polymers with activatable end groups. The polymerization and depolymerization mechanisms are clearly disclosed, and the evolution of the monomer structure, the polymerization and depolymerization conditions, the corresponding polymerization yield, molecular weight, performance of the polymers, monomer recovery, and depolymerization equipment are also systematically summarized and discussed. Furthermore, the challenges and future prospects are also highlighted.
Collapse
Affiliation(s)
- Shuaiqi Yang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China.
| | - Shuai Du
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China.
| | - Jin Zhu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Songqi Ma
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China.
| |
Collapse
|
2
|
Li K, Tran NV, Pan Y, Wang S, Jin Z, Chen G, Li S, Zheng J, Loh XJ, Li Z. Next-Generation Vitrimers Design through Theoretical Understanding and Computational Simulations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302816. [PMID: 38058273 PMCID: PMC10837359 DOI: 10.1002/advs.202302816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/03/2023] [Indexed: 12/08/2023]
Abstract
Vitrimers are an innovative class of polymers that boast a remarkable fusion of mechanical and dynamic features, complemented by the added benefit of end-of-life recyclability. This extraordinary blend of properties makes them highly attractive for a variety of applications, such as the automotive sector, soft robotics, and the aerospace industry. At their core, vitrimer materials consist of crosslinked covalent networks that have the ability to dynamically reorganize in response to external factors, including temperature changes, pressure variations, or shifts in pH levels. In this review, the aim is to delve into the latest advancements in the theoretical understanding and computational design of vitrimers. The review begins by offering an overview of the fundamental principles that underlie the behavior of these materials, encompassing their structures, dynamic behavior, and reaction mechanisms. Subsequently, recent progress in the computational design of vitrimers is explored, with a focus on the employment of molecular dynamics (MD)/Monte Carlo (MC) simulations and density functional theory (DFT) calculations. Last, the existing challenges and prospective directions for this field are critically analyzed, emphasizing the necessity for additional theoretical and computational advancements, coupled with experimental validation.
Collapse
Affiliation(s)
- Ke Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Nam Van Tran
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yuqing Pan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Sheng Wang
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore, 138634, Singapore
| | - Zhicheng Jin
- Laboratory for Biomaterials and Drug Delivery, The Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Guoliang Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Shuzhou Li
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jianwei Zheng
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore, 138634, Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore, 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117576, Singapore
| |
Collapse
|
3
|
Morodo R, Dumas DM, Zhang J, Lui KH, Hurst PJ, Bosio R, Campos LM, Park NH, Waymouth RM, Hedrick JL. Ring-Opening Polymerization of Cyclic Esters and Carbonates with (Thio)urea/Cyclopropenimine Organocatalytic Systems. ACS Macro Lett 2024:181-188. [PMID: 38252690 DOI: 10.1021/acsmacrolett.3c00716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Organocatalyzed ring-opening polymerization is a powerful tool for the synthesis of a variety of functional, readily degradable polyesters and polycarbonates. We report the use of (thio)ureas in combination with cyclopropenimine bases as a unique catalyst for the polymerization of cyclic esters and carbonates with a large span of reactivities. Methodologies of exceptionally effective and selective cocatalyst combinations were devised to produce polyesters and polycarbonates with narrow dispersities (Đ = 1.01-1.10). Correlations of the pKa of the various ureas and cyclopropenimine bases revealed the critical importance of matching the pKa of the two cocatalysts to achieve the most efficient polymerization conditions. It was found that promoting strong H-bonding interactions with a noncompetitive organic solvent, such as CH2Cl2, enabled greatly increased polymerization rates. The stereoselective polymerization of rac-lactide afforded stereoblock poly(lactides) that crystallize as stereocomplexes, as confirmed by wide-angle X-ray scattering.
Collapse
Affiliation(s)
- Romain Morodo
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - David M Dumas
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Jia Zhang
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Kai H Lui
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Paul J Hurst
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Riccardo Bosio
- IBM Almaden Research Center, San Jose, California 95120, United States
| | - Luis M Campos
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Nathaniel H Park
- IBM Almaden Research Center, San Jose, California 95120, United States
| | - Robert M Waymouth
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - James L Hedrick
- IBM Almaden Research Center, San Jose, California 95120, United States
| |
Collapse
|
4
|
Kalinova R, Grancharov G, Doumanov J, Mladenova K, Petrova S, Dimitrov I. Green Synthesis and the Evaluation of a Functional Amphiphilic Block Copolymer as a Micellar Curcumin Delivery System. Int J Mol Sci 2023; 24:10588. [PMID: 37445767 DOI: 10.3390/ijms241310588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Polymer micelles represent one of the most attractive drug delivery systems due to their design flexibility based on a variety of macromolecular synthetic methods. The environmentally safe chemistry in which the use or generation of hazardous materials is minimized has an increasing impact on polymer-based drug delivery nanosystems. In this work, a solvent-free green synthetic procedure was applied for the preparation of an amphiphilic diblock copolymer consisting of biodegradable hydrophobic poly(acetylene-functional carbonate) and biocompatible hydrophilic polyethylene glycol (PEG) blocks. The cyclic functional carbonate monomer 5-methyl-5-propargyloxycarbonyl-1,3-dioxane-2-one (MPC) was polymerized in bulk using methoxy PEG-5K as a macroinitiator by applying the metal-free organocatalyzed controlled ring-opening polymerization at a relatively low temperature of 60 °C. The functional amphiphilic block copolymer self-associated in aqueous media into stable micelles with an average diameter of 44 nm. The copolymer micelles were physico-chemically characterized and loaded with the plant-derived anticancer drug curcumin. Preliminary in vitro evaluations indicate that the functional copolymer micelles are non-toxic and promising candidates for further investigation as nanocarriers for biomedical applications.
Collapse
Affiliation(s)
- Radostina Kalinova
- Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev St., bl. 103-A, 1113 Sofia, Bulgaria
| | - Georgy Grancharov
- Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev St., bl. 103-A, 1113 Sofia, Bulgaria
| | - Jordan Doumanov
- Department of Biochemistry, Faculty of Biology, Sofia University "St. Kliment Ohridski", 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Kirilka Mladenova
- Department of Biochemistry, Faculty of Biology, Sofia University "St. Kliment Ohridski", 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Svetla Petrova
- Department of Biochemistry, Faculty of Biology, Sofia University "St. Kliment Ohridski", 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Ivaylo Dimitrov
- Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev St., bl. 103-A, 1113 Sofia, Bulgaria
| |
Collapse
|
5
|
Mandal S, Jana D, Dolai J, Sarkar AK, Ghorai BK, Jana NR. Biodegradable Poly(trehalose) Nanoparticle for Preventing Amyloid Beta Aggregation and Related Neurotoxicity. ACS APPLIED BIO MATERIALS 2023. [PMID: 37167565 DOI: 10.1021/acsabm.2c00771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Trehalose is a disaccharide that is capable of inhibiting protein aggregation and activating cellular autophagy. It has been shown that a polymer or nanoparticle form, terminated with multiple trehalose units, can significantly enhance the anti-amyloidogenic performance and is suitable for the treatment of neurodegenerative diseases. Here, we report a trehalose-conjugated polycarbonate-co-lactide polymer and formulation of its nanoparticles having multiple numbers of trehalose exposed on the surface. The resultant poly(trehalose) nanoparticle inhibits the aggregation of amyloid beta peptides and disintegrates matured amyloid fibrils into smaller fragments. Moreover, the poly(trehalose) nanoparticle lowers extracellular amyloid β oligomer-driven cellular stress and enhances cell viability. The presence of biodegradable polycarbonate components in the poly(trehalose) nanoparticle would enhance their application potential as an anti-amyloidogenic material.
Collapse
Affiliation(s)
- Suman Mandal
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Debabrata Jana
- Department of Chemistry, Ramakrishna Mission Vivekananda Centenary College, Rahara, West Bengal 700118, India
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India
| | - Jayanta Dolai
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Ankan Kumar Sarkar
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Binay K Ghorai
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India
| | - Nikhil R Jana
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
6
|
Ramey EE, Whitman EL, Buller CE, Tucker JR, Jolly CS, Oberle KG, Becksvoort AJ, Turlington M, Turlington CR. A Biodegradable, Polymer-Supported Oxygen Atom Transfer Reagent. Polymers (Basel) 2023; 15:polym15092052. [PMID: 37177199 PMCID: PMC10181130 DOI: 10.3390/polym15092052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Biodegradable polymers are desirable to mitigate the environmental impact of plastic waste in the environment. Over the past several decades, the development of organocatalytic ring-opening polymerization (OROP) has made the synthesis of many new types of biodegradable polymers possible. In this research article, the first example of an oxygen atom transfer reagent pendant on a biodegradable polymer backbone is reported. The monomers for the polycarbonate backbone are sourced from the biodegradable 2,2-bis(hydroxymethyl) propionic acid molecule, and an iodoaryl group is installed pendant to the cyclic monomer for post-polymerization modification into an iodosylaryl oxygen atom transfer reagent. The key I-O bond is characterized by XPS spectroscopy, and a test reaction to triphenylphosphine demonstrates the ability of the polymer to engage in an oxygen atom transfer reaction with a substrate.
Collapse
Affiliation(s)
- Erin E Ramey
- Department of Chemistry and Biochemistry, Hope College, Holland, MI 49422, USA
| | - Elizabeth L Whitman
- Department of Chemistry and Biochemistry, Berry College, Mount Berry, GA 30149, USA
| | - Cole E Buller
- Department of Chemistry and Biochemistry, Hope College, Holland, MI 49422, USA
| | - James R Tucker
- Department of Chemistry and Biochemistry, Berry College, Mount Berry, GA 30149, USA
| | - Charles S Jolly
- Department of Chemistry and Biochemistry, Berry College, Mount Berry, GA 30149, USA
| | - Kjersti G Oberle
- Department of Chemistry and Biochemistry, Hope College, Holland, MI 49422, USA
| | - Austin J Becksvoort
- Department of Chemistry and Biochemistry, Hope College, Holland, MI 49422, USA
| | - Mark Turlington
- Department of Chemistry and Biochemistry, Berry College, Mount Berry, GA 30149, USA
| | | |
Collapse
|
7
|
Ho HT, Nguyen NH, Rollet M, Phan TNT, Gigmes D. Phosphonate-Functionalized Polycarbonates Synthesis through Ring-Opening Polymerization and Alternative Approaches. Polymers (Basel) 2023; 15:polym15040955. [PMID: 36850240 PMCID: PMC9965847 DOI: 10.3390/polym15040955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Well-defined phosphonate-functionalized polycarbonate with low dispersity (Ð = 1.22) was synthesized using organocatalyzed ring-opening polymerization (ROP) of novel phosphonate-based cyclic monomers. Copolymerization was also performed to access different structures of phosphonate-containing polycarbonates (PC). Furthermore, phosphonate-functionalized PC was successfully synthesized using a combination of ROP and post-modification reaction.
Collapse
Affiliation(s)
- Hien The Ho
- Correspondence: (H.T.H.); (T.N.T.P.); (D.G.); Tel.: +33-04-9128-8083 (D.G.)
| | | | | | - Trang N. T. Phan
- Correspondence: (H.T.H.); (T.N.T.P.); (D.G.); Tel.: +33-04-9128-8083 (D.G.)
| | - Didier Gigmes
- Correspondence: (H.T.H.); (T.N.T.P.); (D.G.); Tel.: +33-04-9128-8083 (D.G.)
| |
Collapse
|
8
|
Fukushima K, Watanabe Y, Ueda T, Nakai S, Kato T. Organocatalytic depolymerization of poly(trimethylene carbonate). JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Kazuki Fukushima
- Department of Chemistry and Biotechnology, School of Engineering The University of Tokyo Tokyo Japan
- Japan Science and Technology Agency (JST), PRESTO Saitama Japan
| | - Yuya Watanabe
- Department of Chemistry and Biotechnology, School of Engineering The University of Tokyo Tokyo Japan
| | - Tetsuya Ueda
- Department of Chemistry and Biotechnology, School of Engineering The University of Tokyo Tokyo Japan
| | - So Nakai
- Department of Chemistry and Biotechnology, School of Engineering The University of Tokyo Tokyo Japan
| | - Takashi Kato
- Department of Chemistry and Biotechnology, School of Engineering The University of Tokyo Tokyo Japan
- Research Initiative for Supra‐Materials Shinshu University Nagano Japan
| |
Collapse
|
9
|
Lalanne-Tisné M, Eyley S, De Winter J, Favrelle-Huret A, Thielemans W, Zinck P. Cellulose nanocrystals modification by grafting from ring opening polymerization of a cyclic carbonate. Carbohydr Polym 2022; 295:119840. [DOI: 10.1016/j.carbpol.2022.119840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 02/04/2023]
|
10
|
Cationic polymerization of cyclic trimethylene carbonate induced with initiator and catalyst in one molecule: Polymer structure, kinetics and DFT. J Catal 2022. [DOI: 10.1016/j.jcat.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
DFT Investigations on the Ring-Opening Polymerization of Trimethylene Carbonate Catalysed by Heterocyclic Nitrogen Bases. Catalysts 2022. [DOI: 10.3390/catal12101280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Organocatalysts for polymerization have known a huge interest over the last two decades. Among them, heterocyclic nitrogen bases are widely used to catalyse the ring-opening polymerization (ROP) of heterocycles such as cyclic carbonates. We have investigated the ring-opening polymerization of trimethylene carbonate (TMC) catalysed by DMAP (4-dimethylaminopyridine) and TBD (1,5,7-triazabicyclo[4.4.0]dec-5-ene) as case studies in the presence of methanol as co-initiator by Density Functional Theory (DFT). A dual mechanism based on H-bond activation of the carbonyl moieties of the monomer and a basic activation of the alcohol co-initiator has been shown to occur more preferentially than a direct nucleophilic attack of the carbonate monomer by the heterocyclic nitrogen catalyst. The rate-determining step of the mechanism is the ring opening of the TMC molecule, which is slightly higher than the nucleophilic attack of the TMC carbonyl by the activated alcohol. The calculations also indicate TBD as a more efficient catalyst than DMAP. The higher energy barrier found for DMAP vs. TBD, 23.7 vs. 11.3 kcal·mol−1, is corroborated experimentally showing a higher reactivity for the latter.
Collapse
|
12
|
Akkravijitkul N, Cheechana N, Rithchumpon P, Junpirom T, Limwanich W, Nalampang K, Thavornyutikarn P, Punyodom W, Meepowpan P. Scalable and Room-Temperature Ring-Opening Polymerization of ε-Caprolactone Catalyzed by Active Lithium Tetramethylene-Tethered Bis[ N-( N'-butylimidazol-2-ylidene)] N-Heterocyclic Carbene as a Lewis Acid Organocatalyst. J Org Chem 2022; 87:12052-12064. [PMID: 36073019 DOI: 10.1021/acs.joc.2c01062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Lewis acid organocatalytic system of lithium tetramethylene-tethered bis[N-(N'-butylimidazol-2-ylidene)] N-heterocyclic carbene (1,4-bisNHC) including lithium benzyloxide and benzyl alcohol has been successfully utilized in the ring-opening polymerization (ROP) of ε-caprolactone (CL) for the first time. The catalytic performance of this organic catalyst in the synthesis of high-molecular-weight polymers was investigated via bulk polymerization using different combinations of tetramethylene-tethered bis[N-(N'-butylimidazolium)] hexafluorophosphate (1,4-bis[Bim][PF6]), benzyl alcohol (BnOH), and n-butyl lithium (nBuLi) ([1,4-bis[Bim][PF6]]/[BnOH]/[nBuLi]) with the molar ratios of 0:2:2, 1:1:3, 1:2:3, and 1:2:4. The results showed that the molar ratio of 1:2:3 efficiently and rapidly initiated the bulk ROP of CL at room temperature with a high molar ratio of CL to 1,4-bis[Bim][PF6] of 3000/1 and produced the highest number of average-molecular-weight (Mn) poly(ε-caprolactone) (103,057 g mol-1) with the dispersity (D̵) and %conversion of 1.73 and 98% in a short period of time (152 s). From comparative studies, the relative polymerization rates of the bulk ROP of CL with different [1,4-bis[Bim][PF6]]/[BnOH]/[nBuLi] molar ratios was determined in the following order: 1:2:4 > 1:1:3 > 1:2:3 > 0:2:2. For mechanistic investigation, the bulk ROP mechanism of CL with our organic catalyst was proposed through the intramolecular bis-lithium-carbene interaction pathway for 1,4-bisNHC1,1,3, 1,4-bisNHC1,2,3, and 1,4-bisNHC1,2,4 systems.
Collapse
Affiliation(s)
- Natthapol Akkravijitkul
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai 50200, Thailand.,Graduate School, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai 50200, Thailand
| | - Nathaporn Cheechana
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai 50200, Thailand.,Graduate School, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai 50200, Thailand
| | - Puracheth Rithchumpon
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai 50200, Thailand.,Graduate School, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai 50200, Thailand
| | - Thiti Junpirom
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai 50200, Thailand
| | - Wanich Limwanich
- Faculty of Sciences and Agricultural Technology, Rajamangala University of Technology Lanna, Chiang Mai 50300, Thailand
| | - Kanarat Nalampang
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai 50200, Thailand
| | - Praput Thavornyutikarn
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai 50200, Thailand
| | - Winita Punyodom
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai 50200, Thailand.,Center of Excellence for Innovation in Chemistry (PERCH-CIC), Chiang Mai University, 239 Huay Kaew Road, Chiang Mai 50200, Thailand.,Center of Excellence in Materials Science and Technology, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai 50200, Thailand
| | - Puttinan Meepowpan
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai 50200, Thailand.,Center of Excellence for Innovation in Chemistry (PERCH-CIC), Chiang Mai University, 239 Huay Kaew Road, Chiang Mai 50200, Thailand.,Center of Excellence in Materials Science and Technology, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai 50200, Thailand
| |
Collapse
|
13
|
Rheinberger T, Ankone M, Grijpma D, Wurm FR. Real-Time 1H and 31P NMR spectroscopy of the copolymerization of cyclic phosphoesters and trimethylene carbonate reveals transesterification from gradient to random copolymers. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Andriani F, Fuoco T. Statistical enchainment of ester/ether and carbonate cleavable bonds to control copolymers’ erosion rate and trigger environment-specific degradation. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
15
|
Organocatalyzed chemo-selective one-pot upcycling of polyester-block-polycarbonate. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Sun W, Lu K, Wang L, Hao Q, Liu J, Wang Y, Wu Z, Chen H. Introducing SuFEx click chemistry into aliphatic polycarbonates: a novel toolbox/platform for post-modification as biomaterials. J Mater Chem B 2022; 10:5203-5210. [PMID: 35734968 DOI: 10.1039/d2tb01052f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As a biodegradable and biocompatible biomaterial, aliphatic polycarbonates (APCs) have attracted substantial attention in terms of post-polymerization modification (PPM) for functionalization. A strategy for the introduction of sulfur(VI)-fluoride exchange (SuFEx) click chemistry into APCs for PPM is proposed for the first time in this work. 4'-(Fluorosulfonyl)benzyl 5-methyl-2-oxo-1,3-dioxane-5-carboxylate (FMC) was designed as a SuFEx clickable cyclic carbonate for APCs via ring-opening polymerization (ROP), and an operational and nontoxic synthetic route was achieved. FMC managed to undergo both ROP and PPM through the SuFEx click chemistry organocatalytically without constraining or antagonizing each other, using 1,5,7-triazabicyclo[4,4,0]dec-5-ene (TBD) as a co-organocatalyst here. Its ROP was systematically investigated, and density functional theory (DFT) calculations were performed to understand the acid-base catalytic mechanism in the anionic ROP. Exploratory investigations into PPM by SuFEx of poly(FMC) were conducted as biomaterials, and the one-pot strategies to achieve both ROP and SuFEx were confirmed.
Collapse
Affiliation(s)
- Wei Sun
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Kunyan Lu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Ling Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Qing Hao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Jingrui Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Yong Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Zhaoqiang Wu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| |
Collapse
|
17
|
Sun W, Shen X, Liu J, Wu Z, Chen H. Preparing Well-Defined Polyacrylamide-b-Polycarbonate by Integrating Photoiniferter Polymerization and TBD-Catalyzed ROP. Macromol Rapid Commun 2022; 43:e2200376. [PMID: 35726483 DOI: 10.1002/marc.202200376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/09/2022] [Indexed: 11/07/2022]
Abstract
The dual-initiator technique allows the polymerization of different monomers from orthogonal polymerization mechanisms to obtain block copolymers (BCPs). In this study, it is attempted to combine photoiniferter living free radical polymerization and organocatalytic ring-opening polymerization (ROP) to design a hydroxyl-functionalized carbamodithioate, i.e., 4-(hydroxymethyl)benzyl diethylcarbamodithioate (HBDC), which can integrate photoiniferter polymerization of acrylamide monomers and ROP of cyclic carbonates. As a proof of concept, the monomer applicability is further extended to acrylates and lactones. The results confirm that the two polymerization systems are experimentally compatible in a stepwise sequence as well as in a simultaneous one-pot process to synthesize BCPs. It is reasonable to assume that HBDC can allow for simple and efficient one-pot access to well-defined BCPs from a larger range of monomers, which is more advantageous from the operational, economical, and environmental points of view.
Collapse
Affiliation(s)
- Wei Sun
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Xiang Shen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Jingrui Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Zhaoqiang Wu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
18
|
Overview: Polycarbonates via Ring-Opening Polymerization, Differences between Six- and Five-Membered Cyclic Carbonates: Inspiration for Green Alternatives. Polymers (Basel) 2022; 14:polym14102031. [PMID: 35631913 PMCID: PMC9147941 DOI: 10.3390/polym14102031] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022] Open
Abstract
This review aims to cover the topic of polycarbonate synthesis via ring-opening polymerization (ROP) of cyclic carbonates. We report a wide variety of ROP-initiating systems along with their detailed mechanisms. We focus on the challenges of preparing the polymers; the precise control of the properties of the materials, including molecular weight; the compositions of the copolymers and their structural characteristics. There is no one approach that works for all scales in cyclic carbonates ROP. A green process to produce polycarbonates is a luring challenge in terms of CO2 utilization and the targeted domains for application. The main resolution seems to be the use of controlled incorporation of functional/reactive groups into polymer chains that can tailor the physicochemical and biological properties of the polymer matrices, producing what appears to be an unlimited field of applications. Glycerol carbonate (GC) is prepared from renewable glycerol and considered as a CO2 fixation agent resulting in GC compound. This family of five-membered cyclic carbonates has attracted the attention of researchers as potential monomers for the synthesis of polycarbonates (PCs). This cyclic carbonate group presents a strong alternative to Bisphenol A (BPA), which is used mainly as a monomer for the production of polycarbonate and a precursor of epoxy resins. As of December 2016, BPA is listed as a substance of very high concern (SVHC) under the REACH regulation. In 2006, Mouloungui et al. reported the synthesis and oligomerization of GCs. The importance of GCs goes beyond their carbonate ring and their physical properties (high boiling point, high flash point, low volatility, high electrical conductivity) because they also contain a hydroxyl group. The latter offers the possibility of producing oligo and/or polycarbonate compounds that have hydroxyl groups that can potentially lead to different reaction mechanisms and the production of new classes of polycarbonates with a wide range of applications.
Collapse
|
19
|
Tan J, Zhao Y, Hedrick JL, Yang YY. Effects of Hydrophobicity on Antimicrobial Activity, Selectivity, and Functional Mechanism of Guanidinium-Functionalized Polymers. Adv Healthc Mater 2022; 11:e2100482. [PMID: 33987953 DOI: 10.1002/adhm.202100482] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/21/2021] [Indexed: 11/06/2022]
Abstract
In this study, a series of guanidinium-functionalized polycarbonate random co-polymers is prepared from organocatalytic ring-opening polymerization to investigate the effect of the hydrophobic side chain (ethyl, propyl, isopropyl, benzyl, and hexyl) on their antimicrobial activity and selectivity. Although the polymers exhibit similar minimum inhibitory concentrations, the more hydrophobic polymers exhibit a faster rate of bacteria elimination. At higher percentage content (20 mol%), polymers with more hydrophobic side chains suffer from poor selectivity due to their high hemolytic activity. The highly hydrophobic co-polymer, containing the hydrophobic hexyl-functionalized cyclic carbonate, kills bacteria via a membrane-disruptive mechanism. Micelle formation leads to a lower extent of membrane disruption. This study unravels the effects of hydrophobic side chains on the activities of the polymers and their killing mechanism, providing insights into the design of new antimicrobial polymers.
Collapse
Affiliation(s)
- Jason Tan
- Institute of Bioengineering and Bioimaging 31 Biopolis Way Singapore 138669 Singapore
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - James L. Hedrick
- IBM Almaden Research Center 650 Harry Road San Jose CA 95120 USA
| | - Yi Yan Yang
- Institute of Bioengineering and Bioimaging 31 Biopolis Way Singapore 138669 Singapore
| |
Collapse
|
20
|
Hedrick JL, Piunova V, Park NH, Erdmann T, Arrechea PL. Simple and Efficient Synthesis of Functionalized Cyclic Carbonate Monomers Using Carbon Dioxide. ACS Macro Lett 2022; 11:368-375. [PMID: 35575375 DOI: 10.1021/acsmacrolett.2c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aliphatic polycarbonates represent an important class of materials with diverse applications ranging from battery electrolytes, polyurethane intermediates, and materials for biomedical applications. These materials can be produced via the ring-opening polymerization (ROP) of six- to eight-membered cyclic carbonates derived from precursor 1,3- and 1,5-diols. These diols can contain a range of functional groups depending on the desired thermal, mechanical, and solution properties. Generally, the ring closure to form the cyclic carbonate requires the use of undesirable and hazardous reagents. Advances in synthetic methodologies and catalysis have enabled the use of carbon dioxide (CO2) to perform these transformations with a high conversion of diol to cyclic carbonate, yet modest isolated yields due to oligomerization side reactions. In this Letter, we evaluate a series of bases in the presence of p-toluenesulfonyl chloride and the appropriate diol to better understand their effect on the yield and presence of oligomer byproducts during cyclic carbonate formation from CO2. From this study, N,N-tetramethylethylenediamine (TMEDA) was identified as an optimal base, facilitating the preparation of a diverse array of both six- and eight-membered carbonates from CO2 within 10 to 15 min. The robust conditions for both, the preparation of the diol precursor, and the TMEDA-mediated carbonate synthesis enabled readily telescoping the two-step reaction sequence, greatly simplifying the process of monomer preparation.
Collapse
Affiliation(s)
- James L. Hedrick
- IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, United States
| | - Victoria Piunova
- IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, United States
| | - Nathaniel H. Park
- IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, United States
| | - Tim Erdmann
- IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, United States
| | - Pedro L. Arrechea
- IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, United States
| |
Collapse
|
21
|
Xu J, Wang X, Liu J, Feng X, Gnanou Y, Hadjichristidis N. Ionic H-bonding organocatalysts for the ring-opening polymerization of cyclic esters and cyclic carbonates. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2021.101484] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
22
|
You H, Wang E, Cao H, Zhuo C, Liu S, Wang X, Wang F. From Impossible to Possible: Atom‐Economic Polymerization of Low Strain Five‐Membered Carbonates. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Huai You
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry CAS Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Enhao Wang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry CAS Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Han Cao
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry CAS Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Chunwei Zhuo
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry CAS Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Shunjie Liu
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry CAS Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Xianhong Wang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry CAS Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Fosong Wang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry CAS Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| |
Collapse
|
23
|
En Route to CO2-Based (a)Cyclic Carbonates and Polycarbonates from Alcohols Substrates by Direct and Indirect Approaches. Catalysts 2022. [DOI: 10.3390/catal12020124] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
This review is dedicated to the state-of-the art routes used for the synthesis of CO2-based (a)cyclic carbonates and polycarbonates from alcohol substrates, with an emphasis on their respective main advantages and limitations. The first section reviews the synthesis of organic carbonates such as dialkyl carbonates or cyclic carbonates from the carbonation of alcohols. Many different synthetic strategies have been reported (dehydrative condensation, the alkylation route, the “leaving group” strategy, the carbodiimide route, the protected alcohols route, etc.) with various substrates (mono-alcohols, diols, allyl alcohols, halohydrins, propargylic alcohols, etc.). The second section reviews the formation of polycarbonates via the direct copolymerization of CO2 with diols, as well as the ring-opening polymerization route. Finally, polycondensation processes involving CO2-based dimethyl and diphenyl carbonates with aliphatic and aromatic diols are described.
Collapse
|
24
|
Huang J, Olsén P, Svensson Grape E, Inge AK, Odelius K. Simple Approach to Macrocyclic Carbonates with Fast Polymerization Rates and Their Polymer-to-Monomer Regeneration. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02225] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jin Huang
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Peter Olsén
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Erik Svensson Grape
- Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden
| | - A. Ken Inge
- Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden
| | - Karin Odelius
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| |
Collapse
|
25
|
You H, Wang E, Cao H, Zhuo C, Liu S, Wang X, Wang F. From Impossible to Possible: Atom-Economic Polymerization of Low Strain Five-Membered Carbonates. Angew Chem Int Ed Engl 2021; 61:e202113152. [PMID: 34905260 DOI: 10.1002/anie.202113152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Indexed: 01/18/2023]
Abstract
The direct ring-opening polymerization (ROP) of propylene carbonate (PC) only affords oligomers with substantial unidentified by-products, which hinders the efficient utilization of PC. Through detailed studies, for the first time, a careful mechanism involving the in situ release of propylene oxide (PO) from PC decarboxylation is proposed. Further, we report a novel strategy of copolymerization of PC/cyclic anhydrides via in situ capture of the formed intermediates. Results show that PC is successfully transformed into polyesters. Especially for the ring-opening alternating copolymerization (ROAC) of PC/phthalic anhydride (PA), a variety of advantages are manifold: i) slow-release of PO ensuring a perfectly alternating structure; ii) quantitative and fast transformation of PC; iii) visualization of polymerization process by a CO2 pressure gauge. Of importance, through tandem polymerizations, PC is fully transformed into polyesters and polycarbonates concurrently, thus achieving PC utilization with a high atom-economy.
Collapse
Affiliation(s)
- Huai You
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, CAS, Changchun, 130022, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Enhao Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, CAS, Changchun, 130022, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Han Cao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, CAS, Changchun, 130022, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Chunwei Zhuo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, CAS, Changchun, 130022, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Shunjie Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, CAS, Changchun, 130022, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xianhong Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, CAS, Changchun, 130022, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Fosong Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, CAS, Changchun, 130022, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
26
|
Aluminium‐based ruthenium/diamine catalysts for produce aliphatic polycarbonates from carbon dioxide and oxetanes. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
27
|
Synthesis of ester-free type poly(trimethylene carbonate) derivatives bearing cycloalkyl side groups. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Bernat R, Maksym P, Tarnacka M, Koperwas K, Knapik-Kowalczuk J, Malarz K, Mrozek-Wilczkiewicz A, Dzienia A, Biela T, Turczyn R, Orszulak L, Hachuła B, Paluch M, Kamiński K. The effect of high-pressure on organocatalyzed ROP of γ-butyrolactone. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Lingua G, Grysan P, Vlasov PS, Verge P, Shaplov AS, Gerbaldi C. Unique Carbonate-Based Single Ion Conducting Block Copolymers Enabling High-Voltage, All-Solid-State Lithium Metal Batteries. Macromolecules 2021; 54:6911-6924. [PMID: 34475591 PMCID: PMC8397401 DOI: 10.1021/acs.macromol.1c00981] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/03/2021] [Indexed: 01/08/2023]
Abstract
Safety and high-voltage operation are key metrics for advanced, solid-state energy storage devices to power low- or zero-emission HEV or EV vehicles. In this study, we propose the modification of single-ion conducting polyelectrolytes by designing novel block copolymers, which combine one block responsible for high ionic conductivity and the second block for improved mechanical properties and outstanding electrochemical stability. To synthesize such block copolymers, the ring opening polymerization (ROP) of trimethylene carbonate (TMC) monomer by the RAFT-agent having a terminal hydroxyl group is used. It allows for the preparation of a poly(carbonate) macro-RAFT precursor that is subsequently applied in RAFT copolymerization of lithium 1-[3-(methacryloyloxy)propylsulfonyl]-1-(trifluoromethylsulfonyl)imide and poly(ethylene glycol) methyl ether methacrylate. The resulting single-ion conducting block copolymers show improved viscoelastic properties, good thermal stability (T onset up to 155 °C), sufficient ionic conductivity (up to 3.7 × 10-6 S cm-1 at 70 °C), and high lithium-ion transference number (0.91) to enable high power. Excellent plating/stripping ability with resistance to dendrite growth and outstanding electrochemical stability window (exceeding 4.8 V vs Li+/Li at 70 °C) are also achieved, along with enhanced compatibility with composite cathodes, both LiNiMnCoO2 - NMC and LiFePO4 - LFP, as well as the lithium metal anode. Lab-scale truly solid-state Li/LFP and Li/NMC lithium-metal cells assembled with the single-ion copolymer electrolyte demonstrate reversible and very stable cycling at 70 °C delivering high specific capacity (up to 145 and 118 mAh g-1, respectively, at a C/20 rate) and proper operation even at a higher current regime. Remarkably, the addition of a little amount of propylene carbonate (∼8 wt %) allows for stable, highly reversible cycling at a higher C-rate. These results represent an excellent achievement for a truly single-ion conducting solid-state polymer electrolyte, placing the obtained ionic block copolymers on top of polyelectrolytes with highest electrochemical stability and potentially enabling safe, practical Li-metal cells operating at high-voltage.
Collapse
Affiliation(s)
- Gabriele Lingua
- GAME
Lab, Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy
- National
Reference Center for Electrochemical Energy Storage (GISEL) - INSTM, Via G. Giusti 9, Firenze 50121, Italy
| | - Patrick Grysan
- Luxembourg
Institute of Science and Technology (LIST), 5 Avenue des Hauts-Fourneaux, Esch-sur-Alzette L-4362, Luxembourg
| | - Petr S. Vlasov
- Department
of Macromolecular Chemistry, Saint-Petersburg
State University, Universitetsky pr. 26, Saint Petersburg 198504, Russia
| | - Pierre Verge
- Luxembourg
Institute of Science and Technology (LIST), 5 Avenue des Hauts-Fourneaux, Esch-sur-Alzette L-4362, Luxembourg
| | - Alexander S. Shaplov
- Luxembourg
Institute of Science and Technology (LIST), 5 Avenue des Hauts-Fourneaux, Esch-sur-Alzette L-4362, Luxembourg
| | - Claudio Gerbaldi
- GAME
Lab, Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy
- National
Reference Center for Electrochemical Energy Storage (GISEL) - INSTM, Via G. Giusti 9, Firenze 50121, Italy
| |
Collapse
|
30
|
DeRosa CA, Luke AM, Anderson K, Reineke TM, Tolman WB, Bates FS, Hillmyer MA. Regioregular Polymers from Biobased ( R)-1,3-Butylene Carbonate. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00828] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Christopher A. DeRosa
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Anna M. Luke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Kendra Anderson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Theresa M. Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - William B. Tolman
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Frank S. Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Marc A. Hillmyer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
31
|
Ramesh MS, Rajaram S. Organocatalyzed regio-regular polymerization of α-aryl trimethylene carbonate. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Leong J, Yang C, Tan J, Tan BQ, Hor S, Hedrick JL, Yang YY. Combination of guanidinium and quaternary ammonium polymers with distinctive antimicrobial mechanisms achieving a synergistic antimicrobial effect. Biomater Sci 2021; 8:6920-6929. [PMID: 32959808 DOI: 10.1039/d0bm00752h] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The increasing emergence and spread of antimicrobial resistance are urgent and important global challenges today. The clinical pipeline is lacking in innovative drugs that avoid the development of drug resistance. Macromolecular antimicrobials kill bacteria and fungi through physical disruptions to the cell membrane, which is difficult for microbes to overcome. Recently, we reported antimicrobial polycarbonates that kill microbes via two different mechanisms. Polycarbonates functionalized with quaternary ammonium disrupted the lipid bilayer membrane of the microbes, while polycarbonates functionalized with guanidinium translocated the membrane and precipitated cytosolic components. We hypothesized that the combination of these two distinct mechanisms would result in a more than additive increase in antimicrobial efficacy. Block and random copolymers containing both cationic groups had similar minimum inhibitory concentrations (MICs) as the guanidinium homopolymer on 5 representatives of the ESKAPE pathogens. Interestingly, the random copolymer killed P. aeruginosa and A. baumannii more rapidly than the block copolymer and the guanidinium homopolymer with the same number of guanidinium groups. Like quaternary ammonium homopolymer, the copolymers killed the bacteria via a membrane-disruptive mechanism. Then, we simply mixed quaternary ammonium homopolymer and guanidinium homopolymer, and studied antimicrobial activity of the combination at various concentrations. Checkerboard assay results showed that the combination of the polymers, in general, achieved a synergistic or additive effect in inhibiting the growth of bacteria. At concentrations where it exibited a synergistic or additive effect in inhibiting bacterial growth, the combination killed the bacteria effectively (99%-99.9% killing efficiency) although the individual polymers at these concentrations did not exert bactericidal activity. Therefore, it is essential to have the two functional groups on separate molecules to provide synergism. This study provides a basic understanding of polymer design with different cationic groups.
Collapse
Affiliation(s)
- Jiayu Leong
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore 138669, Singapore.
| | | | | | | | | | | | | |
Collapse
|
33
|
Azemar F, Gimello O, Pinaud J, Robin JJ, Monge S. Insight into the Alcohol-Free Ring-Opening Polymerization of TMC Catalyzed by TBD. Polymers (Basel) 2021; 13:1589. [PMID: 34069275 PMCID: PMC8156564 DOI: 10.3390/polym13101589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/28/2021] [Accepted: 05/10/2021] [Indexed: 12/03/2022] Open
Abstract
We report herein a study on the alcohol-free, ring-opening polymerization of trimethylene carbonate (TMC) in THF, catalyzed by 1,5,7-triazabicyclo [4.4.0] ec-5-ene (TBD) with ratios nTBD/nTMC ranging between 1/20 and 1/400. In all cases, the reaction proceeds very rapidly, even faster than in the presence of alcohol initiators, and provides PTMC with molecular weights up to Mn = 34,000 g mol-1. Characterization of the obtained PTMC samples by MALDI-TOF mass spectrometry, triple detection size exclusion chromatography and 1H NMR spectroscopy reveals the presence of both linear and cyclic polymer chains.
Collapse
Affiliation(s)
| | | | | | - Jean-Jacques Robin
- ICGM, Univ. Montpellier, CNRS, ENSCM, 34095 Montpellier, France; (F.A.); (O.G.); (J.P.); (S.M.)
| | | |
Collapse
|
34
|
Amsden B. In Vivo Degradation Mechanisms of Aliphatic Polycarbonates and Functionalized Aliphatic Polycarbonates. Macromol Biosci 2021; 21:e2100085. [PMID: 33893715 DOI: 10.1002/mabi.202100085] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/29/2021] [Indexed: 11/06/2022]
Abstract
Aliphatic polycarbonates (APCs) have been studied for decades but have not been as utilized as aliphatic polyesters in biomaterial applications such as drug delivery and tissue engineering. With the recognition that functionalized aliphatic polymers can be readily synthesized, increased attention is being paid to these materials. A frequently provided reason for utilizing these polymers is that they degrade to form diols and carbon dioxide. However, depending on the structure and molecular weight of the APC, degradation may not occur. In this review, the mechanisms by which APCs and functionalized APCs have been found to degrade in vivo are examined with the objective of providing guidance in the continued development of these polymers as biomaterials.
Collapse
Affiliation(s)
- Brian Amsden
- Department of Chemical Engineering, Queen's University, Kingston, K7L 3N6, Canada
| |
Collapse
|
35
|
Bhusal S, Oh C, Kang Y, Varshney V, Ren Y, Nepal D, Roy A, Kedziora G. Transesterification in Vitrimer Polymers Using Bifunctional Catalysts: Modeled with Solution-Phase Experimental Rates and Theoretical Analysis of Efficiency and Mechanisms. J Phys Chem B 2021; 125:2411-2424. [PMID: 33635079 DOI: 10.1021/acs.jpcb.0c10403] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recently, thermoset vitrimer polymers have shown significant promise for structural applications because of their ability to be reshaped and remolded due to their covalent adaptive network (CAN). In these vitrimers, the transesterification reaction is responsible for the CAN, where the efficiency of the reaction is controlled either by organic or by organometallic catalysts. Understanding the mechanism of the transesterification reaction in the bulk phase using direct experimental techniques is extremely difficult due to the highly cross-linked complex structure of thermosetting vitrimers. Therefore, we use solution-phase experiments to investigate the catalytic efficiency and to guide density functional theory (DFT) simulations of the transesterification reaction mechanism with catalysts triazabicyclodecene (TBD), zinc acetate (Zn(OAc)2), 1-methylimidazole (1-MI), and dibutyltin oxide (DBTO). The estimated catalytic efficiency from the detailed DFT reaction path calculations follows the order TBD ≳ DBTO ≳ Zn(OAc)2 > 1-MI, which agrees with the experimental results. In addition to reaction path modeling, the mechanism and the relative rates of the transesterification reaction are analyzed with the assistance of Fukui indices as a measure of electrophilicity and nucleophilicity of atomic sites and with partial charges. It was found that the sum of the nucleophilicity index of the base and the electrophilicity index of the acid of the bifunctional catalysts correlates with the SN2 transition state and tetrahedral intermediate energies, which are related to the barrier of the rate-limiting step. This correlation provides a hypothesis for computational prescreening of potentially better catalysts that have an index in a range of values. These results provide a basis for understanding an important part of the mechanism of transesterification in vitrimer systems and may assist with designing new catalysts.
Collapse
Affiliation(s)
- Shusil Bhusal
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright Patterson Air Force Base, Dayton, Ohio 45433, United States.,Universal Technology Corporation, 1270 N Fairfield Rd., Beavercreek, Ohio 45432, United States
| | - Changjun Oh
- Department of Chemistry, Hanyang University, 222 Wangsimni-ro, Seongdong-Gu, Seoul 04763, Republic of Korea
| | - Youngjong Kang
- Department of Chemistry, Hanyang University, 222 Wangsimni-ro, Seongdong-Gu, Seoul 04763, Republic of Korea
| | - Vikas Varshney
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Yixin Ren
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright Patterson Air Force Base, Dayton, Ohio 45433, United States.,Universal Technology Corporation, 1270 N Fairfield Rd., Beavercreek, Ohio 45432, United States
| | - Dhriti Nepal
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Ajit Roy
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Gary Kedziora
- Air Force Institute of Technology, Department of Engineering Physics, Wright Patterson Air Force Base, Dayton, Ohio 45433, United States
| |
Collapse
|
36
|
Yu W, Maynard E, Chiaradia V, Arno MC, Dove AP. Aliphatic Polycarbonates from Cyclic Carbonate Monomers and Their Application as Biomaterials. Chem Rev 2021; 121:10865-10907. [DOI: 10.1021/acs.chemrev.0c00883] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wei Yu
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
| | - Edward Maynard
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
| | - Viviane Chiaradia
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
| | - Maria C. Arno
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, B15 2TT U.K
| | - Andrew P. Dove
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
| |
Collapse
|
37
|
Ji M, Wu M, Han J, Zhang F, Peng H, Guo L. Recent Advances in Organocatalytic Ring-opening Polymerization. CURR ORG CHEM 2021. [DOI: 10.2174/1385272824999200917151344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
As compared with widely used polyolefin materials, aliphatic polyesters have
been primarily used in electronics, packaging, and biomedicine owing to its unique biocompatibility
and degradability. At present, ring-opening polymerization (ROP) of lactone is the
main method to synthesize polyesters. Two types of catalysts, including metal-based catalysts
and organocatalysts, were most researched today. However, metal-based catalysts lead
to polymer materials with metal residues, which limits its properties and applications. As a
result, organocatalysts have received great attention. In this review, the progress of organocatalytic
ring-opening polymerization in the past decades was systematically summarized.
The potential challenges and development directions in this field are also discussed.
Collapse
Affiliation(s)
- Mingjun Ji
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Mengqi Wu
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Jiayu Han
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Fanjun Zhang
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Hongwei Peng
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Lihua Guo
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| |
Collapse
|
38
|
Gabov IS, Khamidullina LA, Puzyrev IS, Ezhikova MA, Kodess MI, Pestov AV. N-Alkylation of Imidazoles with Dialkyl and Alkylene
Carbonates. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428020120052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Montagna V, Takahashi J, Tsai MY, Ota T, Zivic N, Kawaguchi S, Kato T, Tanaka M, Sardon H, Fukushima K. Methoxy-Functionalized Glycerol-Based Aliphatic Polycarbonate: Organocatalytic Synthesis, Blood Compatibility, and Hydrolytic Property. ACS Biomater Sci Eng 2021; 7:472-481. [DOI: 10.1021/acsbiomaterials.0c01460] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Valentina Montagna
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018 Donostia-San Sebastian, Spain
- Department of Polymer Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Junko Takahashi
- Department of Polymer Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Meng-Yu Tsai
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Takayuki Ota
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Nicolas Zivic
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018 Donostia-San Sebastian, Spain
| | - Seigou Kawaguchi
- Department of Polymer Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Takashi Kato
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580, Japan
| | - Haritz Sardon
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018 Donostia-San Sebastian, Spain
| | - Kazuki Fukushima
- Department of Polymer Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
40
|
Liang ZC, Yang C, Ding X, Hedrick JL, Wang W, Yang YY. Carboxylic acid-functionalized polycarbonates as bone cement additives for enhanced and sustained release of antibiotics. J Control Release 2021; 329:871-881. [DOI: 10.1016/j.jconrel.2020.10.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 01/22/2023]
|
41
|
Li S, Lu H, Kang X, Wang P, Luo Y. DBU and TU synergistically induced ring-opening polymerization of phosphate esters: a mechanism study. NEW J CHEM 2021. [DOI: 10.1039/d0nj05422d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Biocompatible and biodegradable polyphosphoesters derived from the ring-opening polymerization (ROP) of phosphate esters have drawn increasing attention because of their potential applications in clinical and therapeutic fields.
Collapse
Affiliation(s)
- Shuang Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology
- Dalian 116024
- China
| | - Han Lu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology
- Dalian 116024
- China
| | - Xiaohui Kang
- College of Pharmacy, Dalian Medical University
- Dalian
- China
| | - Pan Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology
- Dalian 116024
- China
| | - Yi Luo
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology
- Dalian 116024
- China
| |
Collapse
|
42
|
Reinišová L, Hermanová S. Poly(trimethylene carbonate- co-valerolactone) copolymers are materials with tailorable properties: from soft to thermoplastic elastomers. RSC Adv 2020; 10:44111-44120. [PMID: 35517150 PMCID: PMC9059556 DOI: 10.1039/d0ra08087j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/16/2020] [Indexed: 12/22/2022] Open
Abstract
Aliphatic poly(ester-carbonates) are receiving extensive research attention as tailorable materials suitable for multiple applications from tissue engineering and 3D scaffold printing to drug delivery. Thus, simple reliable procedures for producing easily tailorable poly(ester-carbonates) without metal residues are continuously sought after. In this work, we report on one-pot synthesis of random copolymers of TMC and δ-VL using metal-free biocompatible 1,5,7-triazabicyclo[4.4.0]dec-5-ene as a catalyst and benzyl alcohol and poly(ethylene oxide) as initiators. Random poly(ester-carbonates) with TMC : VL unit ratios ranging from 80 : 20 to 20 : 80 were synthesized via ring-opening polymerization while displaying excellent agreement of comonomers' ratios in the feed and copolymer chains. The copolymers' supramolecular structure, thermal and mechanical properties were thoroughly analyzed by various methods. The obtained results clearly indicated that the physicochemical properties can be controlled simply by varying the ratio of comonomers and the length of segments in the copolymer chain. Several copolymers exhibited behavior of thermoplastic elastomers with the most promising one exhibiting a 2200% increase in elongation at break compared to the poly(valerolactone) homopolymer while retaining tensile strength and Young's modulus suitable for biomedical applications. Overall, our work contributed to widening the portfolio of tailorable copolymers for specialized bioapplications and possibly paving a way for the use of more sustainable polymers in the biomedical field.
Collapse
Affiliation(s)
- Lucie Reinišová
- Department of Polymers, Faculty of Chemical Technology, University of Chemistry and Technology Prague Technická 5 16628 Prague Czech Republic
| | - Soňa Hermanová
- Department of Polymers, Faculty of Chemical Technology, University of Chemistry and Technology Prague Technická 5 16628 Prague Czech Republic
| |
Collapse
|
43
|
Vogler C, Naumann S. A simplified approach for the metal-free polymerization of propylene oxide. RSC Adv 2020; 10:43389-43393. [PMID: 35519681 PMCID: PMC9058424 DOI: 10.1039/d0ra08970b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 11/23/2020] [Indexed: 12/05/2022] Open
Abstract
Triethyl borane (Et3B), in combination with phosphazene-type superbases, has recently emerged as a powerful co-catalyst for the anionic polymerization of epoxides. Here, it is demonstrated that the monomer-activating property of Et3B can also compensate for the application of much gentler organobases. This not only results in simpler setups, but also significantly reduces nucleophilicity/basicity-derived side reactions. Notably, this principle applies to such a degree that simple 4-dimethylaminopyridine (DMAP) or 1,4-diazabicyclo[2.2.2]octane (DABCO) can serve to polymerize propylene oxide (PO). With suitable initiators, this results for example in very well-defined block copolyethers (Ð M ≤ 1.03) without requiring work-up to remove side products such as PPO homopolymer. Performance correlates nicely with the corresponding organobase proton affinities (PAs), and a limiting PA of 220-230 kcal mol-1 was identified for successful PO polymerization.
Collapse
Affiliation(s)
- Charlotte Vogler
- University of Stuttgart, Institute of Polymer Chemistry 70569 Stuttgart Germany
| | - Stefan Naumann
- University of Stuttgart, Institute of Polymer Chemistry 70569 Stuttgart Germany
| |
Collapse
|
44
|
Sharma S, Pukale SS, Sahel DK, Agarwal DS, Dalela M, Mohanty S, Sakhuja R, Mittal A, Chitkara D. Folate-Targeted Cholesterol-Grafted Lipo-Polymeric Nanoparticles for Chemotherapeutic Agent Delivery. AAPS PharmSciTech 2020; 21:280. [PMID: 33037506 DOI: 10.1208/s12249-020-01812-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022] Open
Abstract
Docetaxel (DTX), an FDA approved chemotherapeutic agent, is used as a first-line treatment for triple-negative breast cancer (TNBC). Its poor aqueous solubility, rapid metabolism, short half-life, and effective targeting to the cancer cells limits its optimal therapeutic use. Herein, we report folate targeted amphiphilic lipopolymer grafted with cholesterol conjugated carbonate and DL-lactide prepared by microwave assisted ring opening polymerization, for the efficient actively targeted delivery of DTX. The DTX-loaded folate-targeted lipopolymeric nanoparticles (F-DTX-LPNs) prepared by the emulsion solvent evaporation method exhibited a smaller size of ∼115.17 nm with a PDI of 0.205 and encapsulation efficiency of >80%. Further, these lipopolymeric nanoparticles (F-DTX-LPNs) showed a good on-bench stability and sustained DTX release for 7 days. Cell-based assays in MDA-MB-231 cells revealed a significant enhancement in the intracellular uptake of folate-targeted lipopolymeric nanoparticles compared to non-targeted nanoparticles. Further, methyl beta-cyclodextrin (Mβ-CD) completely inhibited the uptake of these nanoparticles in the cells, indicating a lipid raft-mediated uptake mechanism. The developed F-DTX-LPNs showed improved cytotoxicity, apoptosis, and significant fold-change in expression levels of Bcl-2, BAX and Ki-67 as compared to non-targeted DTX-LPNs and free DTX. Further, F-DTX-LPNs showed an improved in vivo pharmacokinetic profile in Sprague Dawley rats as compared to the free DTX. The bio-imaging of ex vivo tissues demonstrated that the DiR loaded folate targeted LPNs exhibited intense signals after 24 h because of slow release of DiR dye from the nanoparticles.
Collapse
|
45
|
Brissenden AJ, Amsden BG. Insights into the polymerization kinetics of thermoresponsive polytrimethylene carbonate bearing a methoxyethoxy side group. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | - Brian G. Amsden
- Department of Chemical Engineering Queen's University Kingston Ontario Canada
| |
Collapse
|
46
|
Chanthaset N, Beckerle K, Okuda J, Ajiro H. Investigation of ring‐opening polymerization of 5‐[2‐{2‐(2‐methoxyethoxy)ethoxy}‐ethoxymethyl]‐5‐methyl‐1,3‐dioxa‐2‐one by organometallic catalysts. J Appl Polym Sci 2020. [DOI: 10.1002/app.49073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nalinthip Chanthaset
- Graduate School of Materials ScienceNara Institute of Science and Technology Ikoma, Nara Japan
| | - Klaus Beckerle
- Institute of Inorganic ChemistryRWTH Aachen University Aachen Germany
| | - Jun Okuda
- Institute of Inorganic ChemistryRWTH Aachen University Aachen Germany
| | - Hiroharu Ajiro
- Graduate School of Materials ScienceNara Institute of Science and Technology Ikoma, Nara Japan
- Institute for Research Initiatives, Division for Research StrategyNara Institute of Science and Technology Ikoma, Nara Japan
- JST PRESTO Kawaguchi, Saitama Japan
| |
Collapse
|
47
|
Nobuoka H, Nagasawa M, Chanthaset N, Yoshida H, Haramiishi Y, Ajiro H. Synthesis of amphiphilic block copolymer using trimethylene carbonate bearing oligo(ethylene glycol) and investigation of thin film including cilostazol. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hiroaki Nobuoka
- Division of Materials Science Nara Institute of Science and Technology Nara Japan
| | - Masakazu Nagasawa
- Research and Development Department, Otsuka Medical Devices Co., Ltd., Kanda‐Tsukasamachi, Chiyoda‐ku Tokyo Japan
| | - Nalinthip Chanthaset
- Division of Materials Science Nara Institute of Science and Technology Nara Japan
| | - Hiroaki Yoshida
- Division of Materials Science Nara Institute of Science and Technology Nara Japan
| | - Yoshiaki Haramiishi
- Division of Materials Science Nara Institute of Science and Technology Nara Japan
| | - Hiroharu Ajiro
- Division of Materials Science Nara Institute of Science and Technology Nara Japan
| |
Collapse
|
48
|
Fukushima K, Nozaki K. Organocatalysis: A Paradigm Shift in the Synthesis of Aliphatic Polyesters and Polycarbonates. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00582] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
49
|
Jain I, Malik P. Advances in urea and thiourea catalyzed ring opening polymerization: A brief overview. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109791] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
50
|
Li X, Mignard N, Taha M, Fernández‐de‐Alba C, Chen J, Zhang S, Fort L, Becquart F. Synthesis of Poly(trimethylene carbonate) Oligomers by Ring‐Opening Polymerization in Bulk. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.201900367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xiang Li
- Université de Lyon F‐42023 Saint‐Etienne France
- CNRSUMR 5223Ingénierie des Matériaux Polymères F‐42023 Saint‐Etienne France
- Université Jean Monnet F‐42023 Saint‐Etienne France
| | - Nathalie Mignard
- Université de Lyon F‐42023 Saint‐Etienne France
- CNRSUMR 5223Ingénierie des Matériaux Polymères F‐42023 Saint‐Etienne France
- Université Jean Monnet F‐42023 Saint‐Etienne France
| | - Mohamed Taha
- Université de Lyon F‐42023 Saint‐Etienne France
- CNRSUMR 5223Ingénierie des Matériaux Polymères F‐42023 Saint‐Etienne France
- Université Jean Monnet F‐42023 Saint‐Etienne France
| | - Carlos Fernández‐de‐Alba
- Université de Lyon F‐42023 Saint‐Etienne France
- CNRSUMR 5223Ingénierie des Matériaux Polymères F‐42023 Saint‐Etienne France
- INSA‐LyonIngénierie des Matériaux Polymères F‐69621 Villeurbanne France
| | - Jianding Chen
- Laboratory of Advanced Materials ProcessingEast China University of Science and Technology Shanghai 200237 China
| | - Shengmiao Zhang
- Laboratory of Advanced Materials ProcessingEast China University of Science and Technology Shanghai 200237 China
| | - Laure Fort
- Université Grenoble AlpesCNRSDCM F‐38000 Grenoble France
| | - Frédéric Becquart
- Université de Lyon F‐42023 Saint‐Etienne France
- CNRSUMR 5223Ingénierie des Matériaux Polymères F‐42023 Saint‐Etienne France
- Université Jean Monnet F‐42023 Saint‐Etienne France
| |
Collapse
|